
artima

Scott Meyers

Presentation Materials

The New C++
Overview of

(C++0x)

Overview of the New C++ (C++0x)

Artima Press is an imprint of Artima, Inc.
P.O. Box 305,Walnut Creek, California 94597

Copyright © 2010 Scott Meyers. All rights reserved.

First version published April 5, 2010
This version published April 30, 2011
Produced in the United States of America

Cover photo by Stephan Jockel. Used with permission.

No part of this publication may be reproduced, modified, distributed, stored in a re-
trieval system, republished, displayed, or performed, for commercial or noncommer-
cial purposes or for compensation of any kind without prior written permission from
Artima, Inc.

This PDF eBook is prepared exclusively for its purchaser, who may use it for personal
purposes only, as described by the Artima eBook license (http://www.artima.com/
ebook_license.html). In addition, the purchaser may modify this PDF eBook to high-
light sections, add comments and annotations, etc., except that the “For the exclusive
use of ” text that identifies the purchaser may not be modified in any way.

All information and materials in this eBook are provided “as is” and without warranty
of any kind.

The term “Artima” and the Artima logo are trademarks or registered trademarks of
Artima, Inc. All other company and/or product names may be trademarks or registered
trademarks of their owners.

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Last Revised: 4/24/11

Scott Meyers, Ph.D.
Software Development Consultant

smeyers@aristeia.com Voice: 503/638-6028
http://www.aristeia.com/ Fax: 503/974-1887

Overview of the New C++ (C++0x)

These are the official notes for Scott Meyers’ training course, “Overview of the New C++ (C++0x)”.
The course description is at http://www.aristeia.com/C++0x.html . Licensing information is at
http://aristeia.com/Licensing/licensing.html.

Please send bug reports and improvement suggestions to smeyers@aristeia.com.

In these notes, references to numbered documents preceded by N (e.g., N3290) are references to
C++ standardization documents. All such documents are available via http://www.open-
std.org/jtc1/sc22/wg21/docs/papers/.

References to sections of draft C++0x are of the form [chapter.section.subsection]. Such symbolic
names don’t change from draft to draft. References also give section numbers and (following a
slash) paragraph numbers of specific drafts; those numbers may vary across drafts. Hence
[basic.fundamental] (3.9.1/5 in N3290) refers to the section with (permanent) symbolic name
[basic.fundamental]—in particular to section 3.9.1 paragraph 5 in N3290.

[Comments in braces, such as this, are aimed at instructors presenting the course. All other
comments should be helpful for both instructors and people reading the notes on their own.]

[Day 1 usually ends somewhere in the discussion of the C++0x concurrency API. Day 2 usually
goes to the end of the library material.]

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 2

Overview
 Introduction
History, vocabulary, quick C++98/C++0x comparison

 Features for Everybody
auto, range-based for, lambdas, threads, etc.

 Library Enhancements
Really more features for everybody
TR1-based functionality, forward_list, unique_ptr, etc.

 Features for Class Authors
Move semantics, perfect forwarding, delegating/inheriting ctors, etc.

 Features for Library Authors
Variadic templates, decltype, etc.

 Yet More Features

 Removed and Deprecated Features

 Further Information

This course is an overview, so there isn’t time to cover the details on most features. In
general, the features earlier in the course (the ones applicable to more programmers) get
more thorough treatments than the features later in the course.

Rvalue references aren’t listed on this page, because it’s part of move semantics.

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 3

History and Vocabulary
1998: ISO C++ Standard officially adopted (“C++98”).

 776 pages.

2003: TC1 (“Technical Corrigendum 1”) published (“C++03”).

 Bug fixes for C++98.

 786 pages.

2005: TR1 (Library “Technical Report 1”) published.

 14 likely new components for the standard library.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 4

History and Vocabulary
2008: Draft for new C++ standard (“C++0x”) achieves CD status.

 13 TR1-derived components plus much more.

 1265 pages.

2009: (Limited) C++0x feature availability becomes common.

2011: Ratification of new standard expected.

 Final Draft International Standard (“FDIS”) approved in
March.
1353 pages.

 “C++0x” now effectively a code name.

2012?: TR2

 Additional likely future standard library components.

An overview of support for C++0x features in various compilers is available at
http://www.aristeia.com/C++0x/C++0xFeatureAvailability.htm.

Stephan T. Lavavej notes (9/15/09) that “The Boost::FileSystem library was the only thing
incorporated into TR2 before work on it was paused.”

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 5

Sample Code Caveat
Some of the code in this course is untested :-(

 Compilers don’t support all features or combinations of features.

I believe the code is correct, but I offer no guarantee.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 6

Copying vs. Moving
C++ has always supported copying object state:

 Copy constructors, copy assignment operators

C++0x adds support for requests to move object state:

Widget w1;

...

// copy w1’s state to w2
Widget w2(w1);

Widget w3;

…

// move w3’s state to w4
Widget w4(std::move(w3));

Note: w3 continues to exist in a valid state after creation of w4.

w1 w1’s state

w2 copy of w1’s state

w3 w3’s state

w4

The diagrams on this slide make up a PowerPoint animation.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 7

Copying vs. Moving
Temporary objects are prime candidates for moving:

typedef std::vector<T> TVec;

TVec createTVec(); // factory function

TVec vt;
…
vt = createTVec(); // in C++98, copy return value to

// vt, then destroy return value

createTVec
TVec

T T T … T T T

vt

T T T … T T T

The diagrams on this slide make up a PowerPoint animation.

In this discussion, I use a container of T, rather than specifying a particular type, e.g.,
container of string or container of int. The motivation for move semantics is largely
independent of the types involved, although the larger and more expensive the types are
to copy, the stronger the case for moving over copying.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 8

Copying vs. Moving
C++0x turns such copy operations into move requests:

TVec vt;
…
vt = createTVec(); // implicit move request in C++0x

createTVec
TVec

T T T … T T T

vt

The diagrams on this slide make up a PowerPoint animation.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 9

Copying vs. Moving
Move semantics examined in detail later, but:

Moving a key new C++0x idea.
Usually an optimization of copying.

Most standard types in C++0x are move-enabled.
They support move requests.
E.g., STL containers.

 Some types are move-only:
Copying prohibited, but moving is allowed.
E.g., stream objects, std::thread objects, std::unique_ptr, etc.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 10

Sample C++98 vs. C++0x Program
List the 20 most common words in a set of text files.
countWords Alice_in_Wonderland.txt War_and_Peace.txt

Dracula.txt The_Kama_Sutra.txt The_Iliad.txt

70544 words found. Most common:
the 58272
and 34111
of 27066
to 26992
a 16937
in 14711
his 12615
he 11261
that 11059
was 9861
with 9780
I 8663
had 6737
as 6714
not 6608
her 6446
is 6277
at 6202
on 5981
for 5801

The data shown is from the plain text versions of the listed books as downloaded from
Project Gutenberg (http://www.gutenberg.org/).

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 11

Counting Words Across Files: C++98
#include <cstdio> // easier than iostream for formatted output
#include <iostream>
#include <iterator>
#include <string>
#include <fstream>
#include <algorithm>
#include <vector>
#include <map>

typedef std::map<std::string, std::size_t> WordCountMapType;

WordCountMapType wordsInFile(const char * const fileName) // for each word
{ // in file, return

std::ifstream file(fileName); // # of
WordCountMapType wordCounts; // occurrences

for (std::string word; file >> word;) {
++wordCounts[word];

}

return wordCounts;
}

It would be better software engineering to have wordsInFile check the file name for validity
and then call another function (e.g., "wordsInStream") to do the actual counting, but the
resulting code gets a bit more complicated in the serial case (C++98) and yet more
complicated in the concurrent case (C++0x), so to keep this example program simple and
focused on C++0x features, we assume that every passed file name is legitimate, i.e., we
embrace the "nothing could possibly go wrong" assumption.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 12

Counting Words Across Files: C++98
struct Ptr2Pair2ndGT { // compare 2nd

template<typename It> // components of
bool operator()(It it1, It it2) const { return it1->second > it2->second; } // pointed-to pairs

};

template<typename MapIt> // print n most
void showCommonWords(MapIt begin, MapIt end, const std::size_t n) // common words
{ // in [begin, end)

typedef std::vector<MapIt> TempContainerType;
typedef typename TempContainerType::iterator IterType;

TempContainerType wordIters;
wordIters.reserve(std::distance(begin, end));
for (MapIt i = begin; i != end; ++i) wordIters.push_back(i);

IterType sortedRangeEnd = wordIters.begin() + n;

std::partial_sort(wordIters.begin(), sortedRangeEnd, wordIters.end(), Ptr2Pair2ndGT());

for (IterType it = wordIters.begin();
it != sortedRangeEnd;
++it) {

std::printf(" %-10s%10u\n", (*it)->first.c_str(), (*it)->second);
}

}

Using range initialization for wordIters (i.e., “TempContainerType wordIters(begin, end);”)
would be incorrect, because we want wordIters to hold the iterators themselves, not what
they point to.

The use of “%u” to print an object of type std::size_t is technically incorrect, because there
is no guarantee that std::size_t is of type unsigned. (It could be e.g., unsigned long.) The
technically portable solution is probably to use the “%lu” format specifier and to cast (it*)-
>second to unsigned long (or to replace use of printf with iostreams), but I’m taking the
lazy way out and ignoring the issue. Except in this note :-)

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 13

Counting Words Across Files: C++98
int main(int argc, const char** argv) // take list of file names on command line,
{ // print 20 most common words within

WordCountMapType wordCounts;

for (int argNum = 1; argNum < argc; ++argNum) {
const WordCountMapType results = // copy map returned by

wordsInFile(argv[argNum]); // wordsInFile (modulo
// compiler optimization)

for (WordCountMapType::const_iterator i = results.begin();
i != results.end();
++i) {

wordCounts[i->first] += i->second;
}

}

std::cout << wordCounts.size() << " words found. Most common:\n" ;

const std::size_t maxWordsToShow = 20;
showCommonWords(wordCounts.begin(), wordCounts.end(),

std::min(wordCounts.size(), maxWordsToShow));
}

results is initialized by copy constructor, which, because WordCountMapType is a map
holding strings, could be quite expensive. Because this is an initialization (rather than an
assignment), compilers may optimize the copy operation away.

Technically, maxWordsToShow should be of type WordCountMapType::size_type instead
of std::size_t, because there is no guarantee that these are the same type (and if they are
not, the call to std::min likely won’t compile), but I am unaware of any implementations
where they are different types, and using the officially correct form causes formatting
problems in the side-by-side program comparison coming up in a few slides, so I’m
cutting a corner here.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 14

Counting Words Across Files: C++0x
#include <cstdio>
#include <iostream>
#include <iterator>
#include <string>
#include <fstream>
#include <algorithm>
#include <vector>
#include <unordered_map>
#include <future>

using WordCountMapType = std::unordered_map<std::string, std::size_t>;

WordCountMapType wordsInFile(const char * const fileName) // for each word
{ // in file, return

std::ifstream file(fileName); // # of
WordCountMapType wordCounts; // occurrences

for (std::string word; file >> word;) {
++wordCounts[word];

}

return wordCounts;
}

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 15

Counting Words Across Files: C++0x
template<typename MapIt> // print n most
void showCommonWords(MapIt begin, MapIt end, const std::size_t n) // common words
{ // in [begin, end)

// typedef std::vector<MapIt> TempContainerType;
// typedef typename TempContainerType::iterator IterType;

std::vector<MapIt> wordIters;
wordIters.reserve(std::distance(begin, end));
for (auto i = begin; i != end; ++i) wordIters.push_back(i);

auto sortedRangeEnd = wordIters.begin() + n;

std::partial_sort(wordIters.begin(), sortedRangeEnd, wordIters.end(),
[](MapIt it1, MapIt it2){ return it1->second > it2->second; });

for (auto it = wordIters.cbegin();
it != sortedRangeEnd;
++it) {

std::printf(" %-10s%10zu\n", (*it)->first.c_str(), (*it)->second);
}

}

sortedRangeEnd is initialized with the result of an expression using begin, not cbegin,
because sortedRangeEnd will later be passed to partial_sort, and partial_sort instantiation
will fail with a mixture of iterators and const_iterators. The begin and end iterators in that
call must be iterators (not const_iterators), because partial_sort will be moving things
around.

%z is a format specifier (added in C99). Followed by u, it correctly prints variables of type
size_t.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 16

Counting Words Across Files: C++0x
int main(int argc, const char** argv) // take list of file names on command line,
{ // print 20 most common words within;

// process files concurrently

std::vector<std::future<WordCountMapType>> futures;

for (int argNum = 1; argNum < argc; ++argNum) {
futures.push_back(std::async([=]{ return wordsInFile(argv[argNum]); }));

}

WordCountMapType wordCounts;
for (auto& f : futures) {

const auto results = f.get(); // move map returned by wordsInFile

for (const auto& wordCount : results) {
wordCounts[wordCount.first] += wordCount.second;

}
}

std::cout << wordCounts.size() << " words found. Most common:\n" ;

const std::size_t maxWordsToShow = 20;
showCommonWords(wordCounts.begin(), wordCounts.end(),

std::min(wordCounts.size(), maxWordsToShow));
}

This code has the main thread wait for each file to be processed on a separate thread rather
than processing one of the files itself. That’s just to keep the example simple.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 17

Comparison
#include <cstdio>
#include <iostream>
#include <iterator>
#include <string>
#include <fstream>
#include <algorithm>
#include <vector>
#include <map>

typedef std::map<std::string, std::size_t>
WordCountMapType;

WordCountMapType
wordsInFile(const char * const fileName)
{

std::ifstream file(fileName);
WordCountMapType wordCounts;

for (std::string word; file >> word;) {
++wordCounts[word];

}

return wordCounts;
}

#include <cstdio>
#include <iostream>
#include <iterator>
#include <string>
#include <fstream>
#include <algorithm>
#include <vector>
#include <unordered_map>
#include <future>

using WordCountMapType =
std::unordered_map<std::string, std::size_t>;

WordCountMapType
wordsInFile(const char * const fileName)
{

std::ifstream file(fileName);
WordCountMapType wordCounts;

for (std::string word; file >> word;) {
++wordCounts[word];

}

return wordCounts;
}

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 18

Comparison
struct Ptr2Pair2ndGT {

template<typename It>
bool operator()(It it1, It it2) const
{ return it1->second > it2->second; }

};

template<typename MapIt>
void showCommonWords(MapIt begin, MapIt end,

const std::size_t n)
{

typedef std::vector<MapIt> TempContainerType;
typedef typename TempContainerType::iterator IterType;

TempContainerType wordIters;
wordIters.reserve(std::distance(begin, end));
for (MapIt i = begin; i != end; ++i) wordIters.push_back(i);

IterType sortedRangeEnd = wordIters.begin() + n;

std::partial_sort(wordIters.begin(), sortedRangeEnd,
wordIters.end(), Ptr2Pair2ndGT());

for (IterType it = wordIters.begin();
it != sortedRangeEnd;
++it) {

std::printf(" %-10s%10u\n", (*it)->first.c_str(),
(*it)->second);

}
}

template<typename MapIt>
void showCommonWords(MapIt begin, MapIt end,

const std::size_t n)
{

std::vector<MapIt> wordIters;
wordIters.reserve(std::distance(begin, end));
for (auto i = begin; i != end; ++i) wordIters.push_back(i);

auto sortedRangeEnd = wordIters.begin() + n;

std::partial_sort(wordIters.begin(), sortedRangeEnd,
wordIters.end(),
[](MapIt it1, MapIt it2)
{ return it1->second > it2->second; });

for (auto it = wordIters.cbegin();
it != sortedRangeEnd;
++it) {

std::printf(" %-10s%10zu\n", (*it)->first.c_str(),
(*it)->second);

}
}

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 19

Comparison
int main(int argc, const char** argv)
{

WordCountMapType wordCounts;

for (int argNum = 1; argNum < argc; ++argNum) {

const WordCountMapType results =
wordsInFile(argv[argNum]);

for (WordCountMapType::const_iterator i = results.begin();
i != results.end();
++i) {

wordCounts[i->first] += i->second;
}

}

std::cout << wordCounts.size()
<< " words found. Most common:\n" ;

const std::size_t maxWordsToShow = 20;
showCommonWords(wordCounts.begin(), wordCounts.end(),

std::min(wordCounts.size(),
maxWordsToShow));

}

int main(int argc, const char** argv)
{

std::vector<std::future<WordCountMapType>> futures;

for (int argNum = 1; argNum < argc; ++argNum) {
futures.push_back(

std::async([=]{ return wordsInFile(argv[argNum]); })
);

}

WordCountMapType wordCounts;
for (auto& f : futures) {

const auto results =
f.get();

for (const auto& wordCount : results) {

wordCounts[wordCount.first] += wordCount.second;
}

}

std::cout << wordCounts.size()
<< " words found. Most common:\n" ;

const std::size_t maxWordsToShow = 20;
showCommonWords(wordCounts.begin(), wordCounts.end(),

std::min(wordCounts.size(),
maxWordsToShow));

}

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 20

Overview
 Introduction

 Features for Everybody

 Library Enhancements

 Features for Class Authors

 Features for Library Authors

 Yet More Features

 Further Information

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 21

“>>”as Nested Template Closer
“>>” now closes a nested template when possible:

std::vector<std::list<int>> vi1; // fine in C++0x, error in C++98

The C++98 “extra space” approach remains valid:
std::vector<std::list<int> > vi2; // fine in C++0x and C++98

For a shift operation, use parentheses:

 I.e., “>>” now treated like “>” during template parsing.
const int n = … ; // n, m are compile-
const int m = … ; // time constants

std::array<int, n>m?n:m > a1; // error (as in C++98)

std::array<int, (n>m?n:m) > a2; // fine (as in C++98)

std::list<std::array<int, n>>2 >> L1; // error in ’98: 2 shifts;
// error in ’0x: 1st “>>”
// closes both templates

std::list<std::array<int, (n>>2) >> L2; // fine in C++0x,
// error in ’98 (2 shifts)

[std::array has not yet been introduced.]

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 22

auto for Type Declarations
auto variables have the type of their initializing expression:

auto x1 = 10; // x1: int

std::map<int, std::string> m;
auto i1 = m.begin(); // i1: std::map<int, std::string>::iterator

const/volatile and reference/pointer adornments may be added:
const auto *x2 = &x1; // x2: const int*

const auto& i2 = m; // i2: const std::map<int, std::string>&

To get a const_iterator, use the new cbegin container function:
auto ci = m.cbegin(); // ci: std::map<int, std::string>::const_iterator

 cend, crbegin, and crend exist, too.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 23

auto for Type Declarations
Type deduction for auto is akin to that for template parameters:

template<typename T> void f(T t);
…
f(expr); // deduce t’s type from expr

auto v = expr; // do essentially the same thing for v’s type

Rules governing auto are in [dcl.spec.auto](7.1.6.4 in N3290).

As far as I know, the only way that auto type deduction is not the same as template
parameter type deduction is when deducing a type from brace initialization lists. auto
deduces “{ x, y, z }” to be of type std::initializer_list<T> (where T is the type of x, y, and z),
but template parameter deduction does not apply to brace initialization lists. (It’s a “non-
deduced context.”)

As noted in the discussion on rvalue references, the fact that auto uses the type deduction
rules as templates means that variables of type auto&& may, after reference collapsing,
turn out to be lvalue references:

int x;

auto&& a1 = x; // x is lvalue, so type of a1 is int&

auto&& a2 = std::move(x); // std::move(x) is rvalue, so type of a2 is int&&

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 24

auto for Type Declarations
For variables not explicitly declared to be a reference:
 Top-level consts/volatiles in the initializing type are ignored.
 Array and function names in initializing types decay to pointers.

const std::list<int> li;
auto v1 = li; // v1: std::list<int>
auto& v2 = li; // v2: const std::list<int>&
float data[BufSize];
auto v3 = data; // v3: float*
auto& v4 = data; // v4: float (&)[BufSize]

Examples from earlier:
auto x1 = 10; // x1: int
std::map<int, std::string> m;
auto i1 = m.begin(); // i1: std::map<int, std::string>::iterator
const auto *x2 = &x1; // x2: const int* (const isn’t top-level)
const auto& i2 = m; // i2: const std::map<int, std::string>&
auto ci = m.cbegin(); // ci: std::map<int, std::string>::const_iterator

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 25

auto for Type Declarations
auto can be used to declare multiple variables:

void f(std::string& s)
{

auto temp = s, *pOrig = &s; // temp: std::string,
… // pOrig: std::string*

}

Each initialization must yield the same deduced type.
auto i = 10, d = 5.0; // error!

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 26

auto for Type Declarations
Both direct and copy initialization syntaxes are permitted.

auto v1(expr); // direct initialization syntax

auto v2 = expr; // copy initialization syntax

For auto, both syntaxes have the same meaning.

The fact that in ordinary initializations, direct initialization syntax can call explicit
constructors and copy initialization syntax cannot is irrelevant, because no conversion is at
issue here: the type of the initializing expression will determine what type auto deduces.

Technically, if the type of the initializing expression has an explicit copy constructor, only
direct initialization is permitted. From Daniel Krügler:

struct Explicit {
Explicit(){}
explicit Explicit(const Explicit&){}

} ex;

auto ex2 = ex; // Error

auto ex3(ex); // OK

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 27

Range-Based for Loops
Looping over a container can take this streamlined form:

std::vector<int> v;
…
for (int i : v) std::cout << i; // iteratively set i to every

// element in v

The iterating variable may also be a reference:
for (int& i : v) std::cout << ++i; // increment and print

// everything in v

auto, const, and volatile are allowed:
for (auto i : v) std::cout << i; // same as above

for (auto& i : v) std::cout << ++i; // ditto

for (volatile int i : v) someOtherFunc(i); // or "volatile auto i"

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 28

Range-Based for Loops
Valid for any type supporting the notion of a range.

 Given object obj of type T, begin(obj) and end(obj) are valid.

Includes:

 All C++0x library containers.

 Arrays and valarrays.

 Initializer lists.

 Regular expression matches.

 Any UDT T where begin(T) and end(T) yield suitable iterators.

[Initializer lists, regular expressions, and tuples have not yet been introduced.]

Iteration over regular expression matches is supported, because std::match_results offers
begin and end member functions for iterating over submatches within the match.

“UDT” = “User Defined Type”.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 29

Range-Based for Loops
Examples:

std::unordered_multiset<std::shared_ptr<Widget>> msspw;
…

for (const auto& p : msspw) {
std::cout << p << '\n'; // print pointer value

}

short vals[ArraySize];
…
for (auto& v : vals) { v = -v; }

[unordered_multiset and shared_ptr have not yet been introduced.]

The loop variable p is declared a reference, because copying the shared_ptrs in msspw
would cause otherwise unnecessary reference count manipulations, which could have a
performance impact in multi-threaded code (or even in single-threaded code where
shared_ptr uses thread-safe reference count increments/decrements).

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 30

Range-Based for Loop Specification
for (iterVarDeclaration : expression) statementToExecute

is essentially equivalent to
{

auto&& range = expression;

for (auto b = begin(range), e = end(range);
b != e;
++b) {

iterVarDeclaration = *b;

statementToExecute

}
}

Standardese somewhat more complex.

This slide is for reference only and is not expected to be self-explanatory. Among the
details not mentioned are that (1) arrays get special handling rather than calling begin/end,
(2) when using ADL to find begin/end, the versions in the standard namespace are always
available, and (3) expression may be a braced initializer list.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 31

Range-Based for Loops
Range form valid only for for-loops.

Not do-loops, not while-loops.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 32

nullptr
A new keyword. Indicates a null pointer.

 Convertible to any pointer type and to bool, but nothing else.
Can’t be used as an integral value.

const char *p = nullptr; // p is null

if (p) … // code compiles, test fails

int i = nullptr; // error!

Traditional uses of 0 and NULL remain valid:
int *p1 = nullptr; // p1 is null
int *p2 = 0; // p2 is null
int *p3 = NULL; // p3 is null

if (p1 == p2 && p1 == p3) … // code compiles, test succeeds

The term “keyword” is stronger than “reserved word.” Keywords are unconditionally
reserved (except as attribute names, sigh), while, e.g., “main” is reserved only when used
as the name of a function at global scope.

The type of nullptr is std::nullptr_t. Other pointer types may be cast to this type via
static_cast (or C-style cast). The result is always a null pointer.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 33

nullptr
Only nullptr is unambiguously a pointer:

void f(int *ptr); // overloading on ptr and int
void f(int val);

f(nullptr); // calls f(int*)

f(0); // calls f(int)

f(NULL); // probably calls f(int)

 The last call compiles unless NULL isn’t defined to be 0
E.g., it could be defined to be 0L.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 34

nullptr
Unlike 0 and NULL, nullptr works well with forwarding templates:

template<typename F, typename P> // make log entry, then
void logAndCall(F func, P param) // invoke func on param
{

… // write log entry
func(param);

}

void f(int* p); // some function to call

f(0); // fine
f(nullptr); // also fine

logAndCall(f, 0); // error! P deduced as
// int, and f(int) invalid

logAndCall(f, NULL); // error!

logAndCall(f, nullptr); // fine, P deduced as
// std::nullptr_t, and
// f(std::nullptr_t) is okay

nullptr thus meshes with C++0s’s support for perfect forwarding, which is mentioned later
in the course.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 35

Unicode Support
Two new character types:

char16_t // 16-bit character (if available);
// akin to uint_least16_t

char32_t // 32-bit character (if available);
// akin to uint_least32_t

Literals of these types prefixed with u/U, are UCS-encoded:
u'x' // 'x' as a char16_t using UCS-2

U'x' // 'x' as a char32_t using UCS-4/UTF-32

C++98 character types still exist, of course:
'x' // 'x' as a char

L'x' // 'x' as a wchar_t

From draft C++0 ([basic.fundamental], 3.9.1/5 in N3290): “Types char16_t and char32_t
denote distinct types with the same size, signedness, and alignment as uint_least16_t and
uint_least32_t, respectively, in <stdint.h>, called the underlying types.”

UCS-2 is a 16-bit/character encoding that matches the entries in the Basic Multilingual
Plane (BMP) of UTF-16. UTF-16 can use surrogate pairs to represent code points outside
the BMP. UCS-2 cannot. UCS-4 and UTF-32 are essentially identical.

char16_t character literals can represent only UCS-2, because it’s not possible to fit a UTF-
16 surrogate pair (i.e., two 16-bit values) in a single char16_t object. Notes [lex.ccon]
(2.14.3/2 in N3290), “A character literal that begins with the letter u, such as u’y’, is a
character literal of type char16_t. ... If the value is not representable within 16 bits, the
program is ill-formed.”

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 36

Unicode Support
There are corresponding string literals:

u"UCS-2 string literal" // ⇒ char16_ts in UTF-16

U"UCS-4 string literal" // ⇒ char32_ts in UCS-4/UTF-32

"Ordinary/narrow string literal" // "ordinary/narrow" ⇒ chars

L"Wide string literal" // "wide" ⇒ wchar_ts

UTF-8 string literals are also supported:
u8"UTF-8 string literal" // ⇒ chars in UTF-8

Code points can be specified via \unnnn and \Unnnnnnnn:
u8"G clef: \U0001D11E" //)

u"Thai character Khomut: \u0E5B" // ๛
U"Skull and crossbones: \u2620" // ☠

A code point is a specific character/glyph, i.e., a specific member of the Unicode character set.
UTF-8 and UTF-16 are multibyte encodings, UCS-n and UTF-32 are fixed-size encodings. All
except UCS-2 can represent every code point of the full Unicode character set. UTF-8, UTF-16, and
UCS-4/UTF-32 are all defined by ISO 10646 as well as by the Unicode standard. Per the Unicode
FAQ (http://unicode.org/faq/unicode_iso.html), “Although the character codes and encoding forms
are synchronized between Unicode and ISO/IEC 10646, the Unicode Standard imposes additional
constraints on implementations to ensure that they treat characters uniformly across platforms and
applications. To this end, it supplies an extensive set of functional character specifications,
character data, algorithms and substantial background material that is not in ISO/IEC 10646.”

Although u-qualified character literals are not permitted to yield UTF-16 surrogate pairs,
characters in u-qualified string literals appear to be. Per [lex.string] (2.14.5/9 in N3290), “A
char16_t string literal ... is initialized with the given characters. A single c-char may produce more
than one char16_t character in the form of surrogate pairs..”

The results of appending string literals of different types (if supported) are implementation-
defined:

u8"abc" "def" u"ghi" // implementation-defined results

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 37

Unicode Support
There are std::basic_string typedefs for all character types:

std::string s1; // std::basic_string<char>

std::wstring s2; // std::basic_string<wchar_t>

std::u16string s3; // std::basic_string<char16_t>

std::u32string s4; // std::basic_string<char32_t>

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 38

Conversions Among Encodings
C++98 guarantees only two codecvt facets:

 char ⇄ char (std::codecvt<char, char, std::mbstate_t>)
“Degenerate” – no conversion performed.

 wchar_t ⇄ char (std::codecvt<wchar_t, char, std::mbstate_t>)

C++0x adds:

 UTF-16 ⇄ UTF-8 (std::codecvt<char16_t, char, std::mbstate_t>)

 UTF-32 ⇄ UTF-8 (std::codecvt<char32_t, char, std::mbstate_t>)

 UTF-8 ⇄ UCS-2, UTF-8 ⇄ UCS-4 (std::codecvt_utf8)

 UTF-16 ⇄ UCS-2, UTF-16 ⇄ UCS-4 (std::codecvt_utf16)

 UTF-8 ⇄ UTF-16 (std::codecvt_utf8_utf16)
Behaves like std::codecvt<char16_t, char, std::mbstate_t>.

The “degenerate” char ⇄ char conversion allows for code to be written that always pipes
things through a codecvt facet, even in the (common) case where no conversion is needed.
Such behavior is essentially mandated for std::basic_filebuf in both C++98 and C++0x.

P.J. Plauger, who proposed codecvt_utf8_utf16 for C++0x, explains the two seemingly
redundant UTF-16 ⇄ UTF-8 conversion instantiations: “The etymologies of the two are
different. There should be no behavioral difference.”

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 39

Conversions Among Encodings
C++98 supports only IO-based conversions.

 Designed for multibyte external strings ⇄ wide internal strings.

 Requires changing locale associated with stream.

New in C++0x:

 std::wbuffer_convert does IO-based encoding conversions w/o
changing stream locale.

 std::wstring_convert does in-memory encoding conversions.
E.g., std::u16string/std::u32string ⇒ std::string.

Usage details esoteric, hence omitted in this overview.

Changing the locale associated with a stream is accomplished via the imbue member
function, which is a part of several standard iostream classes, e.g., ios_base.

Among the esoteric details are that the existence of protected destructors mean that none
of the the standard code_cvt facets work with std::wbuffer_convert and
std::wstring_convert. Instead, users must derive classes from the standard facets and add
public destructors. More information on this issue (and others) is in the comp.std.c++
thread at http://tinyurl.com/ykup5qe.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 40

Raw String Literals
String literals where “special” characters aren’t special:

 E.g., escaped characters and double quotes:
std::string noNewlines(R"(\n\n)");

std::string cmd(R"(ls /home/docs | grep ".pdf")");

 E.g., newlines:
std::string withNewlines(R"(Line 1 of the string...

Line 2...
Line 3)");

“Rawness” may be added to any string encoding:
LR"(Raw Wide string literal \t (without a tab))"

u8R"(Raw UTF-8 string literal \n (without a newline))"

uR"(Raw UTF-16 string literal \\ (with two backslashes))"

UR"(Raw UTF-32 string literal \u2620 (without a code point))"

“R” must come after “u8”, “u”, “U”, etc. – it can't come in front of those specifiers.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 41

Raw String Literals
Raw text delimiters may be customized:

 Useful when)" is in raw text, e.g., in regular expressions:
std::regex re1(R"!("operator\(\)"|"operator->")!"); // "operator()"|

// "operator->"

std::regex re2(R"xyzzy("\([A-Za-z_]\w*\)")xyzzy"); // "(identifier)"

Green text shows what would be interpreted as closing the raw string if the default raw
text delimiters were being used.

Custom delimiter text (e.g., xyzzy in re2's initializer) must be no more than 16 characters in
length and may not contain whitespace.

The backslashes in front of the parentheses inside the regular expressions are to prevent
them from being interpreted as demarcating capture groups.

\w means a word character (i.e., letter, digit, or underscore).

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 42

Uniform Initialization Syntax
C++98 offers multiple initialization forms.

 Initialization ≠ assignment.
E.g., const objects can be initialized, not assigned.

Examples:
const int y(5); // “direct initialization” syntax
const int x = 5; // “copy initialization” syntax

int arr[] = { 5, 10, 15 }; // brace initialization

struct Point1 { int x, y; };
const Point1 p1 = { 10, 20 }; // brace initializtion

class Point2 {
public:

Point2(int x, int y);
};

const Point2 p2(10, 20); // function call syntax

None of the consts on this page are important to the examples. They’re present only to
emphasize that we are talking about initialization.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 43

Initialization in C++98
Containers require another container:

int vals[] = { 10, 20, 30 };
const std::vector<int> cv(vals, vals+3); // init from another

// container

Member and heap arrays are impossible:
class Widget {
public:

Widget(): data(???) {}
private:

const int data[5]; // not initializable
};

const float * pData = new const float[4]; // not initializable

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 44

Uniform Initialization Syntax
Brace initialization syntax now allowed everywhere:

const int val1 {5};
const int val2 {5};

int a[] { 1, 2, val1, val1+val2 };

struct Point1 { … }; // as before
const Point1 p1 {10, 20};

class Point2 { … }; // as before
const Point2 p2 {10, 20}; // calls Point2 ctor

const std::vector<int> cv { a[0], 20, val2 };

class Widget {
public:

Widget(): data {1, 2, a[3], 4, 5} {}
private:

const int data[5];
};

const float * pData = new const float[4] { 1.5, val1-val2, 3.5, 4.5 };

When initializing a data member via brace initializer, the brace initializer may be enclosed
in parentheses, e.g., the Widget constructor above could be written like this:

Widget(): data({1, 2, a[3], 4, 5}) {}

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 45

Uniform Initialization Syntax
Really, everywhere:

Point2 makePoint() { return { 0, 0 }; } // return expression;
// calls Point2 ctor

void f(const std::vector<int>& v); // func. declaration

f({ val1, val2, 10, 20, 30 }); // function argument

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 46

Uniform Initialization Syntax
Semantics differ for aggregates and non-aggregates:

 Aggregates (e.g., arrays and structs):
Initialize members/elements beginning-to-end.

Non-aggregates:
Invoke a constructor.

The technical definition of an aggregate is slightly more flexible than what's above. From
[dcl.init.aggr] (8.5.1/1 in N3290): “An aggregate is an array or a class with no user-
provided constructors, no [default] initializers for non-static data members, no private or
protected non-static data members, no base classes, and no virtual functions.“

Uniform initialization syntax can be used with unions, but only the first member of the
union may be so initialized:

union u { int a; char* b; };

u a = { 1 }; // okay

u d = { 0, "asdf" }; // error

u e = { "asdf" }; // error (can’t initialize an int with a char array)

Per [dcl.init.list] (8.5.4/4 in N3290), elements in an initialization list are evaluated left to
right.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 47

Brace-Initializing Aggregates
Initialize members/elements beginning-to-end.

 Too many initializers ⇒ error.

 Too few initializers ⇒ remaining objects are value-initialized:
Built-in types initialized to 0.
UDTs with constructors are default-constructed.
UDTs without constructors: members are value-initialized.
struct Point1 { int x, y; }; // as before

const Point1 p1 = { 10 }; // same as { 10, 0 }

const Point1 p2 = { 1, 2, 3 }; // error! too many
// initializers

std::array is also an aggregate:
long f();

std::array<long, 3> arr = { 1, 2, f(), 4, 5 }; // error! too many
// initializers

“UDT” = “User Defined Type”.

C++0x does not support C99’s designated initializers:
struct Point {

int x, y, z;
};

Point p { .x = 5, .z = 8 }; // error!

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 48

Brace-Initializing Non-Aggregates
Invoke a constructor.

class Point2 { // as before
public:

Point2(int x, int y);
};

short a, b;
…
const Point2 p1 {a, b}; // same as p1(a, b)

const Point2 p2 {10}; // error! too few ctor args

const Point2 p3 {5, 10, 20}; // error! too many ctor args

 True even for containers (details shortly):
std::vector<int> v { 1, a, 2, b, 3 }; // calls a vector ctor

std::unordered_set<float> s { 0, 1.5, 3 }; // calls an
// unordered_set ctor

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 49

Uniform Initialization Syntax
Use of “=“ with brace initialization typically allowed:

const int val1 = {5};
const int val2 = {5};

int a[] = { 1, 2, val1, val1+val2 };

struct Point1 { … };
const Point1 p1 = {10, 20};

class Point2 { … };
const Point2 p2 = {10, 20};

const std::vector<int> cv = { a[0], 20, val2 };

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 50

Uniform Initialization Syntax
But not always:

class Widget {
public:

Widget(): data = {1, 2, a[3], 4, 5} {} // error!
private:

const int data[5];
};

const float * pData =
new const float[4] = { 1.5, val1-val2, 3.5, 4.5 }; // error!

Point2 makePoint() { return = { 0, 0 }; } // error!

void f(const std::vector<int>& v); // as before

f(= { val1, val2, 10, 20, 30 }); // error!

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 51

Uniform Initialization Syntax
And “T var = expr“ syntax can’t call explicit constructors:

class Widget {
public:

explicit Widget(int);
…

};

Widget w1(10); // okay, direct init: explicit ctor callable
Widget w2{10}; // ditto

Widget w3 = 10; // error! copy init: explicit ctor not callable
Widget w4 = {10}; // ditto

Develop the habit of using brace initialization without “=“.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 52

Uniform Initialization Syntax
Uniform initialization syntax a feature addition, not a replacement.

 Almost all initialization code valid in C++98 remains valid.
Rarely a need to modify existing code.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 53

Brace Initialization and Implicit Narrowing
Sole exception: implicit narrowing.

 C++98 allows it via brace initialization, C++0x doesn’t:
struct Point { int x, y; };

Point p1 { 1, 2.5 }; // fine in C++98:
// implicit double ⇒ int
// conversion;
// error in C++0x

Point p2 { 1, static_cast<int>(2.5) }; // fine in both C++98
// and C++0x

Narrowing conversions are defined in [decl.init.list] (8.5.4/7 in N3290). Basically, a
conversion is narrowing if (1) the target type can’t represent all the values of the source
type and (2) the compiler can’t guarantee that the source value will be within the range of
the target type, e.g.,

int x { 2.5 }; // error: all conversions from floating point
// to integer type are narrowing

double d { x }; // error: double can’t exactly represent all ints

unsigned u { x }; // error: unsigned can’t represent all ints

unsigned u { 25 }; // okay: compiler knows that unsigned can represent 25

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 54

Brace Initialization and Implicit Narrowing
Direct constructor calls and brace initialization thus differ subtly:

class Widget {
public:

Widget(unsigned u);
…

};

int i;
…

Widget w1(i); // okay, implicit int ⇒ unsigned
Widget w2 {i}; // error! int ⇒ unsigned narrows

unsigned u;

Widget w3(u); // fine
Widget w4 {u}; // also fine, same as w3’s init.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 55

Initializer Lists
A mechanism to generalize array aggregate initialization:

 Available to all UDTs.
int x, y;
…
int a[] { x, y, 7, 22, -13, 44 }; // array initialization

std::vector<int> v { 99, -8, x-y, x*x }; // std. library type

Widget w { a[0]+a[1], x, 25, 16 }; // arbitrary UDT

 Available for more than just initialization, e.g.
std::vector<int> v {}; // initialization

v.insert(v.end(), { 99, 88, -1, 15 }); // multi-element insertion

v = { 0, 1, x, y }; // replace v’s value
Any function can use an “initializer” list.

“UDT” = “User Defined Type”.

The statement
v = { 0, 1, x, y };

creates no temporary vector for the assignment, because there’s a vector::operator= taking
a parameter of type std::initializer_list.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 56

Initializer Lists
Approach startlingly simple:

 Brace initializer lists convertible to std::initializer_list objects.

 Functions can declare parameters of this type.

 std::initializer_list stores initializer values in an array and offers
these member functions:
size // # of elements in the array
begin // ptr to first array element
end // ptr to one-beyond-last array element

There are no cbegin/cend member functions for initializer_list, presumably because
initializer_list<T>::begin and initializer_list<T>::end both return const T*. There are no
rbegin/rend member functions, either, presumably because initialization lists are supposed
to be processed front-to-back.

In the standard library, std::initializer_list objects are always passed by value. On gcc 4.5
and MSVC 10, sizeof(std::initializer_list<T>) is 8.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 57

Initializer Lists
#include <initializer_list> // necessary header

std::u16string getName(int ID); // lookup name with given ID

class Widget {
public:

Widget(std::initializer_list<int> nameIDs)
{

names.reserve(nameIDs.size());
for (auto id: nameIDs) names.push_back(getName(id));

}

private:
std::vector<std::u16string> names;

};

...

Widget w { a[0]+a[1], x, 25, 16 }; // copies values into an array
// wrapped by an initializer_list
// passed to the Widget ctor.

The idea behind this example is that the Widget is initialized with a list of IDs, which are
then converted into UTF-16-formatted names during construction. The names are stored
in the Widget.

Move semantics would be used when passing the result of getName to push_back.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 58

Initializer Lists
std::initializer_list parameters may be used with other parameters:

class Widget {
public:

Widget(const std::string& name, double epsilon,
std::initializer_list<int> il);

…
};

std::string name("Buffy");

Widget w { name, 0.5, // same as
{5, 10, 15} }; // Widget w(name, 0.5,

// std::initializer_list({5,10,15}));

Note the nested brace sets.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 59

Initializer Lists
They may be templatized:

class Widget {
public:

template<typename T> Widget(std::initializer_list<T> il);
...

};

...

Widget w1 { -55, 25, 16 }; // fine, T = int

Only homogeneous initializer lists allow type deduction to succeed:
Widget w2 { -55, 2.5, 16 }; // error, T can’t be deduced

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 60

Initializer Lists and Overload Resolution
When resolving constructor calls, std::initializer_list parameters are
preferred for brace-delimited arguments:

class Widget {
public:

Widget(double value, double uncertainty); // #1
Widget(std::initializer_list<double> values); // #2
…

};

double d1, d2;
…
Widget w1 { d1, d2 }; // calls #2

For brace-delimited arguments:
Widget w2(d1, d2); // calls #1

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 61

Initializer Lists and Overload Resolution
std::initializer_list parameters are always preferred over other types:

class Widget {
public:

Widget(double value, double uncertainty); // #1
Widget(std::initializer_list<std::string> values); // #2
…

};

double d1, d2;
…
Widget w1 { d1, d2 }; // tries to call #2; fails because

// no double ⇒ string conversion

Braced initializers are viewed as std::initializer_lists if at all possible.

True only for braced initializers:
Widget w2(d1, d2); // still calls #1

The relevant parts of draft C++0x wrt this topic are [over.match.list] (13.3.1.7 in N3290),
[dcl.init.list] (8.5.4/2-3 in N3290), and [temp.deduct.call] (14.8.2.1/1 in N3290).

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 62

Initializer Lists and Overload Resolution
Given multiple std::initialization_list candidates, best match is
determined by worst element conversion:

class Widget {
public:

Widget(std::initializer_list<int>); // #1
Widget(std::initializer_list<double>); // #2
Widget(std::initializer_list<std::string>); // #3

Widget(int, int, int); // due to above ctors, this ctor not
}; // considered for “{... }” args

Widget w1 { 1, 2.0, 3 }; // int ⇒ double same rank as
// double ⇒ int, so ambiguous

Widget w2 { 1.0f, 2.0, 3.0 }; // float ⇒ double better than
// float ⇒ int, so calls #2

std::string s;
Widget w3 { s, "Init", "Lists" }; // calls #3

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 63

Initializer Lists and Overload Resolution
If best match involves a narrowing conversion, call is invalid:

class Widget {
public:

Widget(std::initializer_list<int>);

Widget(int, int, int); // due to above ctor, not
}; // considered for “{... }” args

Widget w { 1, 2.0, 3 }; // error! double ⇒ int narrows

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 64

Uniform Initialization Summary
 Brace initialization syntax now available everywhere.
Aggregates initialized top-to-bottom/front-to-back.
Non-aggregates initialized via constructor.

 Implicit narrowing not allowed.

 std::initializer_list parameters allow “initialization” lists to be
passed to functions.
Not actually limited to initialization (e.g., std::vector::insert).

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 65

Lambda Expressions
A quick way to create function objects at their point of use.

std::vector<int> v;
…
auto it = std::find_if(v.cbegin(), v.cend(),

[](int i) { return i > 0 && i < 10; });

Essentially generates:
class MagicType1 {
public:

bool operator()(int i) const { return i > 0 && i < 10; }
};

auto it = std::find_if(v.cbegin(), v.cend(), MagicType1());

The generated MagicType above is not technically accurate, because closure types aren’t
default-constructible, but that detail isn’t important for understanding the essence of what
lambdas do.

I ignore mutable lambdas in this course, because use cases for them are uncommon, and
this course is an overview, not an exhaustive treatment. I also ignore how capture-by-
value retains the cv qualifiers of the captured variable, because, again, situations in which
this is relevant are uncommon.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 66

Lambda Expressions
Another example:

typedef std::shared_ptr<Widget> SPWidget;

std::deque<SPWidget> d;
…
std::sort(d.begin(), d.end(),

[](const SPWidget& sp1, const SPWidget& sp2)
{ return *sp1 < *sp2; });

Essentially generates:
class MagicType2 {
public:

bool operator()(const SPWidget& p1, const SPWidget& p2) const
{ return *p1 < *p2; }

};

std::sort(d.begin(), d.end(), MagicType2());

Function objects created through lambda expressions are closures.

Again, the generated MagicType above is not technically accurate, because closure types
aren’t default-constructible.

In this example, it would be possible to pass the parameters by value without changing the
correctness of the code, but that would cause the shared_ptr reference counts to be
modified, which could have a performance impact in multi-threaded code (or even in
single-threaded code where shared_ptr uses thread-safe reference count
increments/decrements).

Per [expr.prim.lambda] (5.1.2/2 in N3290), closures are rvalues (prvalues, to be precise).

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 67

Variable References in Lambdas
Closures may outlive their creating function:

std::function<bool(int)> returnLambda(int a) // return type to be
{ // discussed soon

int b, c;
...
return [](int x) // won’t compile, but

{ return a*x*x + b*x + c == 0; }; // assume it would
}

auto f = returnLambda(10); // f is essentially a
// copy of λ’s closure

In this call,
if (f(22)) ... // “invoke the lambda”

what are the values of a, b, c?

 returnLambda no longer active!

[std::function has not yet been introduced.]

“λ” is the (lowercase) Greek letter lambda.

“Invoke the lambda” is in quotes, because we’re really invoking the copy of the lambda’s
closure that’s stored inside the std::function object.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 68

Variable References in Lambdas
This version has no such problem:

int a; // now at global or
// namespace scope

std::function<bool(int)> returnLambda()
{

static int b, c; // now static
...
return [](int x) // now compiles

{ return a*x*x + b*x + c == 0; };
}

auto f = returnLambda(); // as before

...

if (f(22)) ... // as before

a, b, c outlive returnLambda’s invocation.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 69

Variable References in Lambdas
Rules for variables lambdas may refer to:

 Locals in the calling context referenceable only if “captured.”
std::function<bool(int)> returnLambda(int a)
{

int b, c;
...
return [](int x){ return a*x*x + b*x + c == 0; }; // to compile, must

} // capture a, b, c;
// this example
// won’t compile

Non-locals always referenceable.
int a;

std::function<bool(int)> returnLambda()
{

static int b, c;
...
return [](int x){ return a*x*x + b*x + c == 0; }; // no need to

} // capture a, b, c

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 70

Capturing Local Variables
Capturing locals puts copies in closures:

{
int minVal;
double maxVal;
…
auto it = std::find_if(v.cbegin(), v.cend(),

[minVal, maxVal](int i)
{ return i > minVal && i < maxVal; });

}

Corresponds to:
class MagicType {
public:

MagicType(int v1, double v2): _minVal(v1), _maxVal(v2) {}
bool operator()(int i) const { return i > _minVal && i < _maxVal; }

private:
int _minVal;
double _maxVal;

};

auto it = std::find_if(v.cbegin(), v.cend(), MagicType(minVal, maxVal));

There is no way to capture a move-only type. A workaround is to store the move-only
type in a std::shared_ptr (e.g., std::shared_ptr(std::thread)), but that requires the creator of
the lambda to create a std::shared_ptr that can then be copied into the closure. Another
workaround is to eschew use of a lambda and manually create a custom functor class.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 71

Capturing Local Variables
Captures may also be by reference:

{
int minVal;
double maxVal;
…
auto it = std::find_if(v.cbegin(), v.cend(),

[&minVal, &maxVal](int i)
{ return i > minVal && i < maxVal; });

}

Corresponds to:
class MagicType {
public:

MagicType(int& v1, double& v2): _minVal(v1), _maxVal(v2) {}
bool operator()(int i) const { return i > _minVal && i < _maxVal; }

private:
int& _minVal;
double& _maxVal;

};

auto it = std::find_if(v.cbegin(), v.cend(), // same as
MagicType(minVal, maxVal)); // before

There is no “capture by const reference,” although const locals captured by reference are
essentially captured by const reference.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 72

Capturing Local Variables
Different locals may be captured differently:

{
int minVal;
double maxVal;
…
auto it = std::find_if(v.cbegin(), v.cend(),

[minVal, &maxVal](int i)
{ return i > minVal && i < maxVal; });

}

Corresponds to:
class MagicType {
public:

MagicType(int v1, double& v2): _minVal(v1), _maxVal(v2) {}
bool operator()(int i) const { return i > _minVal && i < _maxVal; }

private:
int _minVal;
double& _maxVal;

};

auto it = std::find_if(v.cbegin(), v.cend(), // same as
MagicType(minVal, maxVal)); // before

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 73

Capturing Local Variables
Capture mode defaults may be specified:

auto it = std::find_if(v.cbegin(), v.cend(), // default is
[=](int i) // by value
{ return i > minVal && i < maxVal; });

auto it = std::find_if(v.cbegin(), v.cend(), // default is
[&](int i) // by ref
{ return i > minVal && i < maxVal; });

With a default capture mode, captured variables need not be listed.

 As in examples above.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 74

Capturing Local Variables
Default overridable on a per-variable basis:

auto it = std::find_if(v.cbegin(), v.cend(), // default capture is
[=, &maxVal](int i) // by value, but maxVal
{ return i > minVal && // is by reference

i < maxVal; });

Corresponds to:
class MagicType {
public:

MagicType(int v1, double& v2): _minVal(v1), _maxVal(v2) {}
bool operator()(int i) const { return i > _minVal && i < _maxVal; }

private:
int _minVal;
double& _maxVal;

};

auto it = std::find_if(v.cbegin(), v.cend(), MagicType(minVal, maxVal));

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 75

Capturing Class Members
To access class members within a member function, capture this:

class Widget {
public:

void doSomething();
private:

std::list<int> li;
int minVal;

};

void Widget::doSomething() {
auto it = std::find_if(li.cbegin(), li.cend(),

[minVal](int i) { return i > minVal; } // error!
);

…
}

void Widget::doSomething() {
auto it = std::find_if(li.cbegin(), li.cend(),

[this](int i) { return i > minVal; } // fine
);

…
}

Lambdas used in a member function yield closure types defined in that member function,
hence within the class containing the member function. That's what makes it possible for
the closure's operator() to refer to all members of the class, e.g., to minVal in the lambda on
this page. There's no need for friendship, because the closure type is within (i.e., part of)
the class.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 76

Capturing Class Members
A default capture mode also makes this available:

class Widget {
public:

void doSomething();
private:

std::list<int> li;
int minVal;

};

void Widget::doSomething() {
auto it = std::find_if(li.cbegin(), li.cend(),

[=](int i) { return i > minVal; } // fine
);

…
}

void Widget::doSomething() {
auto it = std::find_if(li.cbegin(), li.cend(),

[&](int i) { return i > minVal; } // also fine, same
); // effect (for “this”)

…
}

Capturing this by reference may be less efficient than capturing it by value, because going
through the reference requires double indirection (modulo compiler optimizations).

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 77

Lambda Return Types
Optional when:

 Return type is void.

 Lambda body is “return expr;”
Return type is that of expr.

Otherwise must be specified via trailing return type syntax:
std::vector<double> v;
…
std::transform(v.begin(), v.end(), v.begin(),

[](double d)->double
{

makeLogEntry("std::transform", d);
return std::sqrt(std::abs(d));

});

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 78

Trailing Return Types
Must be used with lambdas (when a return type is given).

Often useful with decltype (described later).

 Permitted for any function (with a leading auto):
void f(int x); // traditional syntax

auto f(int x)->void; // same declaration with trailing
// return type

class Widget {
public:

void mf1(int x); // traditional
auto mf2() const -> bool; // trailing return type

};
Non-lambda non-decltype uses not expected to be common.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 79

Lambdas without Parameter Lists
Lambdas without parameters may omit the parameter list.

 Such functions especially useful with threads:
void doWork(int x, int y);
void doMoreWork();

std::thread t1([]() { doWork(10, 20); doMoreWork(); }); // w/empty
// param list

std::thread t2([] { doWork(10, 20); doMoreWork(); }); // w/o empty
// param list

Omitting the optional parentheses seems to be common.

[std::thread has not yet been introduced.]

mutable lambdas may not omit the parameter list, but this course does not discuss mutable
lambdas.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 80

Lambda Expression Complexity
Lambdas may be arbitrarily complex:

Multiple statements, multiple returns.

 Throw/catch exceptions.

 Essentially anything allowed in a “normal” function.

Maintainability considerations suggest:

 Short, clear, context-derived lambdas are best.

Not absolutely everything allowed in a normal function is allowed in a lambda expression,
e.g., there is no way to refer to the this pointer of the operator() function generated from
the lambda.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 81

Storing Closures
Closure types not specified, but two easy ways to store closures:

 auto:
auto multipleOf5 = [](long x) { return x % 5 == 0; };

std::vector<long> vl;
…
vl.erase(std::remove_if(vl.begin(), vl.end(), multipleOf5), vl.end());

 std::function:
std::function<bool(long)> multipleOf5 = // see next page for syntax

[](long x) { return x % 5 == 0; };
…
vl.erase(std::remove_if(vl.begin(), vl.end(), multipleOf5), vl.end());

Every lambda expression yields a unique closure type. VC10 names these types
anonymous-namespace::<lambda0>, anonymous-namespace::<lambda1>, etc. gcc 4.5
naming is less obvious (e.g., UlvE_, UlvE0_, UlvE1_, etc.).

The closure types are created in the smallest block scope, class scope, or namespace scope
that contains the lambda.

Lambdas can’t be directly recursive, but the effect can be achieved by having a closure
invoke a std::function object that has been initialized with the closure. For example:

std::function<int(int)> factorial = [&](int x) { return (x==1) ? 1 : (x * factorial(x-1)); };

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 82

Specifying Function Types
A function’s type is its declaration w/o any names:

void f1(int x); // type is void(int)

double f2(int x, std::string& s); // type is double(int, std::string&)

C++ uses function types for e.g., std::function:
std::function<bool(long)> multipleOf5 = // from prior slide

[](long x) { return x % 5 == 0; };

Trailing return type syntax is equivalent:
std::function<auto (long)->bool> multipleOf5 = // equivalent to

[](long x) { return x % 5 == 0; }; // above

VC10, despite support for trailing return type syntax in general, does not compile the
second declaration of multipleOf5 on this page. gcc 4.5 accepts it.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 83

Storing Closures
auto more efficient than std::function, but not always applicable.

Not allowed for function parameters or return types:
void useIt(auto func); // error!

void useIt(std::function<bool(long)> func); // fine

template<typename Func>
void useIt(Func func); // fine, but generates

// multiple functions

auto makeFunc(); // error!

std::function<bool(long)> makeFunc(); // fine

template<typename Func>
Func makeFunc(); // fine, but generates

// multiple functions,
// and callers must
// specify Func

Regarding efficiency of auto vs. std::function, Stephan T. Lavavej says, “A compiler would
have to perform extreme heroics to get function to be as efficient as auto.”

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 84

Storing Closures
Not allowed for class data members:

class Widget {
private:

auto func; // error!
...

};

class Widget {
private:

std::function<bool(long)> f; // fine
...

};

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 85

Stored Closures and Dangling References
Stored closures can hold dangling members.

 E.g., pointers to deleted heap objects.

 E.g., references to beyond-scope locals:
std::vector<long> vl;

std::function<bool(long)> f;

{ // some block
int divisor;
…
f = [&](long x) { return x % divisor == 0; }; // closure refers
… // to local var

} // local var’s
// scope ends

vl.erase(std::remove_if(vl.begin(), vl.end(), f), // calls to f use
vl.end()); // dangling ref!

It’s your responsibility to avoid such problems.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 86

Lambdas as Container Comparison Functions
Pass the closure to the container constructor:

auto cmpFnc = [](int *pa, int *pb) // compare values,
{ return *pa < *pb; }; // not pointers

std::set<int*, decltype(cmpFnc)> s(cmpFnc); // sort s that way

[decltype has not been introduced yet.]

Closure types are not default-constructible, so this will fail:
std::set<int*, decltype(cmpFnc)> s; // error! comparison object can't be

// constructed

Download from Wow! eBook <www.wowebook.com>
0F0SXkp4pk

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 87

Lambda/Closure Summary
 Lambda expressions generate closures.

 Calling state can be captured by value or by reference.

 Return types, when specified, use trailing return type syntax.

 Closures can be stored using auto or std::function.
Be alert for dangling references/pointers in stored closures.

 Short, clear, context-derived lambdas are best.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 88

Template Aliases
using declarations can now be used for “partially bound” templates:

template<typename T>
using MyAllocVec = std::vector<T, MyAllocator>;

MyAllocVec<int> v; // std::vector<int, MyAllocator>

template<std::size_t N>
using StringArray = std::array<std::string, N>;

StringArray<15> sa; // std::array<std::string, 15>

template<typename K, typename V>
using MapGT = std::map<K, V, std::greater<K>>;

MapGT<long long, // std::map<long long,
std::shared_ptr<std::string>> // std::shared_ptr<std::string>,

myMap; // std::greater<long long>>

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 89

Template Aliases
Template aliases may not be specialized:

template<typename T> // from prior
using MyAllocVec = std::vector<T, MyAllocator>; // page

template<typename T>
using MyAllocVec = std::vector<T*, MyPtrAllocator>; // error!

To achieve this effect, use a traits class:
template<typename T> // primary
struct VecAllocator { // template

typedef MyAllocator type;
};

template<typename T> // specialized
struct VecAllocator<T*> { // template

typedef MyPtrAllocator type;
};

template<typename T>
using MyAllocVec = std::vector<T, typename VecAllocator<T>::type>;

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 90

using as typedef

Without templatization, usings can be equivalent to typedefs:

typedef std::unordered_set<int> IntHash; // these 2 lines do
using IntHash = std::unordered_set<int>; // the same thing

using declarations can be more comprehensible:

typedef void (*CallBackPtr)(int); // func. ptr. typedef
using CallBackPtr = void (*)(int); // equivalent using decl.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 91

Concurrency Support
Primary components:

 Threads for independent units of execution.

 std::async and Futures for asynchronous calls.

Mutexes for controlled access to shared data.

 Condition Variables for block-until-true execution.

 Thread-Local Data for thread-specific data.

API relatively low level, but has some interesting generality.

Headers:
 <thread>

 <mutex>

 <condition_variable>

 <future>

This course is about C++0x, not concurrency, so I assume that attendees are familiar with
the basic issues in threading, including when it should and shouldn’t be used, races,
synchronization, deadlock, testing, etc. The feature list on this page is not exhaustive, and
near the end of the concurrency discussion is a bullet list of “other features.”

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 92

Threads
std::thread takes any “callable object” and runs it asynchronously:

void doThis();
class Widget {
public:

void operator()() const;
void normalize(long double, int, std::vector<float>);
…

};
std::thread t1(doThis); // run function asynch.
Widget w;
…
std::thread t2(w); // “run” function object asynch.

To pass arguments, a lambda can be used:
long double ld;
int x;
std::thread t3([=]{ w.normalize(ld, x, { 1, 2, 3 }); }); // “run” closure

// asynch.

Behavior with multiple threads is largely the same as classic single-threaded C/C++
behavior, with generalizations added as needed. Objects of static storage duration
continue to have only one representation in a program, and although they are guaranteed
to be initialized in a race-free fashion, unsynchronized access may cause races. If an
exception is not caught by a thread (any thread), std::terminate is called.

If main exits and other threads are still running, they are, in Anthony Williams’ words,
“terminated abruptly,” which essentially means you get undefined behavior.

Threads cannot be started in a suspended state, but the underlying platform-specific
thread handle should be available via std::thread::native_handle.

Threads cannot be forcibly killed, but std::thread_handle may provide a platform-specific
way. (Posix has no such functionality; pthread_cancel is cooperative.)

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 93

Data Lifetime Considerations
Functions called in ST sytems know that outside data are “frozen:”

 They won’t be destroyed during the call.

Only the called function can change their value.

int x, y, z;
Widget *pw;
…
f(x, y); // call in ST system

During f’s execution:
 x, y, z, and pw will continue to exist.
 *pw will continue to exist unless f causes pw to be deleted.
Their values will change only through f’s actions.

True regardless of how f declares its parameters:

void f(int xParam, int yParam);
void f(int& xParam, int& yParam);
void f(const int& xParam, const int& yParam);

“ST” = “Single-Threaded”.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 94

Data Lifetime Considerations
No data is inherently frozen in an asynchronous call.

int x, y, z;
Widget *pw;
…
call f(x, y) asynchronously (i.e., on a new thread);

 During f’s execution:
x, y, z, and pw might go out of scope.
*pw might be deleted.
The values of x, y, z, pw and *pw might change.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 95

Data Lifetime Considerations
Details depend on how f declares its parameters:

void f(int xParam, int yParam); // pass by value:
// f unaffected by
// changes to x, y

void f(int& xParam, int& yParam); // pass by ref:
void f(const int& xParam, const int& yParam); // f affected by

// changes to x, y

int x, y, z;
Widget *pw;
…
call f(x, y) asynchronously;

No declaration insulates f from changes to z, pw, and *pw.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 96

Data Lifetime Considerations
Conclusions:

 Data lifetime issues critical in multi-threading (MT) design.
A special aspect of synchronization/race issues.
Even shared immutable data subject to lifetime issues.

 By-reference/by-pointer parameters in asynch calls always risky.
 Prefer pass-by-value.
 Including via lambdas!
void f(int xParam); // function to call asynchronously

{
int x;
…
std::thread t1([&]{ f(x); }); // risky! closure holds a ref to x

std::thread t2([=]{ f(x); }); // okay, closure holds a copy of x
…

} // x destroyed

In the case of t1, the lambda's closure object is created before the calling thread can
continue, but the calling thread may continue before f starts executing. By the time f's
parameter xParam is initialized, the closure may hold a dangling reference to x, because x
has already been destroyed.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 97

Avoiding Lifetime Problems
Two basic strategies:

 Copy data for use by the asynchronous call.

 Ensure referenced objects live long enough.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 98

Copying Arguments for Asynchronous Calls
std::thread’s variadic constructor (conceptually) copies everything:

void f(int xVal, const Widget& wVal);

int x;
Widget w;
…
std::thread t(f, x, w); // invoke copy of f on copies of x, w

 Copies of f, x, w, guaranteed to exist until asynch call returns.

 Inside f, wVal refers to a copy of w, not w itself.

Copying optimized to moving whenever possible.

 Details when we do move semantics.

In this example, “copying” f really means copying a pointer to it, and “optimizing” this
copy to a move makes no sense, because copying a pointer is cheap. The general rule,
however, is that the thread constructor copies/moves its first parameter, i.e., the function to
be executed asynchronously.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 99

Copying Arguments
Using by-value captures in closures works, too:

void f(int xVal, const Widget& wVal);

int x;
Widget w;
…
std::thread t([=]{ f(x, w); }); // invoke copy of f on copies of x, w

 Closure contains copies of x and w.

 Closure copied by thread ctor; copy exists until f returns.
Copying optimized to moving whenever possible.

 Inside f, wVal refers to a copy of w, not w itself.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 100

Copying Arguments
Another approach is based on std::bind:

void f(int xVal, const Widget& wVal);

int x;
Widget w;
…
std::thread t(std::bind(f, x, w)); // invoke f with copies of x, w

Object returned by bind contains copies of x and w.

 That object copied by thread ctor; copy exists until f returns.

 Inside f, wVal refers to a copy of w, not w itself.

We’ll examine std::bind later.

 Lambdas are usually a better choice than bind.
Easier for readers to understand.
More efficient.

[std::bind has not been introduced yet.]

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 101

Copying Arguments
Summary:

Options for creating argument copies with sufficient lifetimes:
Use variadic thread constructor.
Use lambda with by-value capture.
Use bind.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 102

Ensuring Sufficient Argument Lifetimes
One way is to delay locals’ destruction until asynch call is complete:

void f(int xVal, const Widget& wVal); // as before

{
int x;
Widget w;
…
std::thread t([&]{ f(x, w); }); // wVal really refers to w
…
t.join(); // destroy w only after t

} // finishes

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 103

Mixing By-Value and By-Reference Arguments
Given

void f(int xVal, int yVal, int zVal, Widget& wVal);

what if you really want to pass w by reference?

 Lambdas: use by-reference capture:
{

Widget w;
int x, y, z;
…
std::thread t([=, &w]{ f(x, y, z, w); }); // pass copies of x, y, z;
… // pass w by reference

}
You’re responsible for avoiding data races on w.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 104

Mixing By-Value and By-Reference Arguments
 Variadic thread constructor or bind: Use C++0x’s std::ref:
Creates objects that act like references.
Copies of a std::ref-generated object refer to the same object.

void f(int xVal, int yVal, int zVal, Widget& wVal); // as before

{
static Widget w;
int x, y, z;
…
std::thread t1(f, x, y, z, std::ref(w)); // pass copies of
std::thread t2(std::bind(f, x, y, z, std::ref(w))); // x, y, z; pass w
… // by reference

}
std::cref also exists (for ref-to-consts), but implicit

ref(T) ⇒ const T& means std::ref often suffices.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 105

Asynchronous Calls
Building blocks:

 std::async: Request asynchronous execution of a function.

 Future: token representing function’s result.

Unlike raw use of std::thread objects:

 Allows values or exceptions to be returned.
Just like “normal” function calls.

This course neither shows nor discusses std::packaged_task or std::promise.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 106

async
double bestValue(int x, int y); // something callable

std::future<double> f = // run λ asynch.;
std::async([]{ return bestValue(10, 20); }); // get future for it

… // do other work

double val = f.get(); // get result (or
// exception) from λ

As usual, auto reduces verbiage:
auto f = std::async([]{ return bestValue(10, 20); });

…

auto val = f.get();

The idea behind bestValue is that it computes the optimal value for something given
parameters x and y. Presumably, such computation takes a while, hence makes a natural
separate task.

Instead of passing only a lambda, std::async may also be passed a function and its
arguments (like std::thread), but I don’t show any such examples.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 107

async Launch Policies
 std::launch::async: function runs on a new thread.
Maintains calling thread’s responsiveness (e.g., GUI threads).
auto f = std::async(std::launch::async, doBackgroundWork);

 std::launch::deferred: function runs on calling thread.
Useful for debugging, performance tuning.
Invocation occurs upon get or a waiting call.
auto f = std::async(std::launch::deferred,

[]{ return bestValue(10, 20); });
…
auto val = f.get(); // run λ synchronously here

By default, implementation chooses, presumably with goals:

 Take advantage of all hardware concurrency, i.e., scale.

 Avoid oversubscription.

Threads used by std::async may (but need not) be drawn from a thread pool under the as-if rule,
but implementions would have to, e.g., destroy and reinitialize thread-local variables before
reusing a thread object.

Until November 2010, std::launch::deferred was named std::launch::sync.

When multiple launch policies are permitted (e.g., by specifying std::launch::async |
std::launch::deferred), the decision between synchronous and asynchronous execution need not be
made before std::async returns.

Motivation for async calls using std::launch::deferred executing only when get/wait is called is in
N2973 under “Eager and Lazy Evaluation.” Invoking wait_for or wait_until on a future for a
deferred function returns the status std::future_status_deferred immediately.

Anthony Williams notes that tasks running synchronously may not use promises or conventional
futures: “std::async(std::launch::deferred, some_function) [may create] a special type of future
holding a deferred function. When you call get or wait on the future, it executes the deferred
function.”

A std::async-launched task that ends up running on the calling thread will modify the calling
thread’s thread-local data. Tasks where this is a problem should be run with the std::launch::async
policy.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 108

Futures
Two kinds:

 std::future<T>: result may be accessed only once.
Suitable for most use cases.
Moveable, not copyable.
Exactly one future has right to access result.

 std::shared_future<T>: result may be accessed multiple times.
Appropriate when multiple threads access a single result.
Both copyable and moveable.
Multiple std::shared_futures for the same result may exist.

Creatable from std::future.
 Such creation transfers ownership.

Both std::async and std::promise return std::future objects, so the only way to create a non-
null std::shared_future is to do it from a std::future object.

Until November 2009, std::future was named std::unique_future.

Regarding implementation of futures, Anthony Williams writes, “Implementations of
std::future<T> must provide space for storing a T or a std::exception_ptr, and a means of
counting references to the shared state. Additional storage may be required for managing
the state, such as a mutex and some flags. In the case of futures arising from the use of
std::async, the state must also include storage for the callable object and its arguments (for
a policy of std::launch::deferred), or a handle to the new thread (for a policy of
std::launch::async).”

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 109

Futures
Result retrieval via get:

 Blocks until a return is available, then grabs it.
For future<T>, “grabs” ≡ “moves (if possible) or copies.”
For shared_future<T> or anyKindOfFuture<T&>, “grabs” ≡ “gets

reference to.”
“Return” may be an exception (which is then propagated).

Invoking get more than once on a std::future yields undefined behavior. Invoking get
more than once on a std::shared_future yields the same result (return value or exception)
each time. There is no need to copy such results or exceptions, because (1) non-exceptions
are accessed by reference and (2) a copy of an exception is made only if the catch clause
catching it catches by value.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 110

Futures
An alternative is wait:

 Blocks until a return is available.
std::future<double> f = std::async([]{ return bestValue(10, 20); });
…
f.wait(); // block until λ is done

A timeout may be specified.
Most useful when std::launch::async specified.

std::future<double> f =
std::async(std::launch::async, []{ return bestValue(10, 20); });

…

while (f.wait_for(std::chrono::seconds(0)) != // if result of λ
std::future_status::ready) { // isn’t ready,

... // do more work
}

double val = f.get(); // grab result

For unshared futures, wait_for is most useful when you know the task is running asynchronously, because if
it’s a deferred task (i.e., slated to run sychronously), calling wait_for will never timeout. (It will just invoke
the deferred task synchronously, and you’ll have to wait for it to finish.)

The enumerant future_status::ready must be qualified with future_status::, because std::future_status is an
enum class, not just an enum.

There is no support for waiting for one of several futures (i.e., something akin to Windows’
WaitForMultipleObjects). Anthony Williams writes: "The standard doesn't provide a means to do it, just like
you cannot wait on more than one condition variable, more than one mutex or more than one thread in a
‘wake me when the first one signals’ kind of way. If multiple threads can provide a single result, I would use
a promise and a single future. The first thread to set the promise will provide the result to the waiting thread,
the other threads will get an exception when they try and set the promise. To wait for all the results, you can
just wait on each in turn. The order doesn't matter, since you need to wait for all of them. The only issue is
when you need to wait for the first of two unrelated tasks. There is no mechanism for that without polling. I
would be tempted to add an additional flag (e.g. with a future or condition variable) which is set by either
when ready — you can then wait for the flag to be set and then poll to see which task set it.“ As for why
there is no WaitForMultipleObjects-like support, Anthony writes, “no-one proposed it for anything other
than futures, and that didn't make it to the final proposal because we were so short of time. There was also
lack of consensus over whether it was actually useful, or what form it should take.”

There is similarly no support akin to Unix’s select, but select applies only to asynchronous IO (it waits on
file handles), and IO is not a part of C++0x’s concurrency support.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 111

void Futures
Useful when callers want to know only when a callee finishes.

 Callable objects returning void.

 Callers uninterested in return value.
But possibly interested in exceptions.

void initDataStructs(int defValue);
void initGUI();

std::future<void> f1 = std::async([]{ initDataStructs(-1); });
std::future<void> f2 = std::async([]{ initGUI(); });

… // init everything else

f1.get(); // wait for asynch. inits. to
f2.get(); // finish (and get exceptions,

// if any)

… // proceed with the program

The choice between waiting to join with a thread or for a future depends on several things.
First, if you have only a thread or only a future available, you have no choice. If a thread
that returns a future throws an exception, that exception is available to the caller via the
future, but it is silently discarded if you simply join with the thread (because the future is
not read). A caller can poll to see if a future is available (via future::wait_for with a timeout
of 0), but there is no way to poll to see if a thread is ready to be joined with.

The choice between using wait or get on a void future depends on whether you need a
timeout (only wait offers that) and whether you need to know if an exception was thrown
(only get offers that). wait can also be used as a signaling mechanism, i.e., to indicate to
other threads that an operation has completed side effects they are waiting for. And wait
can allow you to force execution of a deferred function at a point other than where you
want to retrieve the result.

The example on this page uses get, because it seems likely that if an exception is thrown
during asynchronous initialization, the main thread would want to know that.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 112

Mutexes
Four types:

 std::mutex: non-recursive, no timeout support

 std::timed_mutex: non-recursive, timeout support

 std::recursive_mutex: recursive, no timeout support

 std::recursive_timed_mutex: recursive, timeout support

Recursively locking non-recursive mutexes ⇒ undefined behavior.

Mutex objects are neither copyable nor movable. Copying a mutex doesn’t really make
any sense (you’d end up with multiple mutexes for the same data). Regarding moving,
Anthony Williams, in a 6 April 2010 post to comp.std.c++, explained: “Moving a mutex
would be disasterous if that move raced with a lock or unlock operation from another
thread. Also, the identity of a mutex is vital for its operation, and that identity often
includes the address, which means that the mutex CANNOT be moved. Similar reasons
apply to condition variables.”

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 113

RAII Classes for Mutexes
Mutexes typically managed by RAII classes:

 std::lock_guard: lock mutex in ctor, unlock it in dtor.
std::mutex m; // mutex object

{
std::lock_guard<std::mutex> L(m); // lock m
… // critical section

} // unlock m
No other operations.
No copying/moving, no assignment, no manual unlock, etc.

RAII = “Resource Acquisition is Initialization.”

In general, the terminology “lock” seems to mean an RAII or RAII-like class for managing
the locking/unlocking of a mutex.

std::lock_guard is neither copyable nor movable. Again, copying makes no sense.
Movability is precluded, because, as Daniel Krügler put in a 6 April 2010 comp.std.c++
posting, “lock_guard is supposed to provide the minimum necessary functionality with
minimum overhead. If you need a movable lock, you should use unique_lock.”

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 114

RAII Classes for Mutexes
 std::unique_lock: much more flexible.
May lock mutex after construction, unlock before destruction.
Moveable, but not copyable.
Supports timed mutex operations:
Try locking, timeouts, etc.
Typically the best choice for timed mutexes.

using RCM = std::recursive_timed_mutex; // typedef

RCM m; // mutex object

{
std::unique_lock<RCM> L(m); // lock m

… // critical section

L.unlock(); // unlock m
…

} // nothing happens

The name unique_lock is by analogy to unique_ptr. Originally, a "shared_lock" type was
proposed (to be a reader/writer lock), but it was not adopted for C++0x.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 115

Additional unique_lock Functionality
using TM = std::timed_mutex; // typedef
TM m; // mutex object

{
std::unique_lock<TM> L(m, std::defer_lock); // associate m with

// L w/o locking it
…
if (L.try_lock_for(std::chrono::microseconds(10))) {

… // critical section
} else {

… // timeout w/o
} // locking m

…
if (L) { // convert to bool

… // critical section
} else {

… // m isn’t locked
}

} // if m locked, unlock

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 116

Multiple Mutex Acquisition
Acquiring mutexes in different orders leads to deadlock:

int weight, value;
std::mutex wt_mux, val_mux;

{ // Thread 1
std::lock_guard<std::mutex> wt_lock(wt_mux); // wt 1st

std::lock_guard<std::mutex> val_lock(val_mux); // val 2nd

work with weight and value // critical section
}

{ // Thread 2
std::lock_guard<std::mutex> val_lock(val_mux); // val 1st

std::lock_guard<std::mutex> wt_lock(wt_mux); // wt 2nd

work with weight and value // critical section

}

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 117

Multiple Mutex Acquisition
std::lock solves this problem:

{ // Thread 1
std::unique_lock<std::mutex> wt_lock(wt_mux, std::defer_lock);
std::unique_lock<std::mutex> val_lock(val_mux, std::defer_lock);

std::lock(wt_lock, val_lock); // get mutexes w/o
// deadlock

work with weight and value // critical section
}

{ // Thread 2
std::unique_lock<std::mutex> val_lock(val_mux, std::defer_lock);
std::unique_lock<std::mutex> wt_lock(wt_mux, std::defer_lock);

std::lock(val_lock, wt_lock); // get mutexes w/o
// deadlock

work with weight and value // critical section

}

How std::lock avoids deadlock is unspecified. It could canonically order the locks, use a
back-off algorithm, etc.

If std::lock is called with a lock object that is already locked, an exception is thrown. If
std::lock is called with mutex objects and one of the mutex objects is already locked,
behavior may be undefined. (It depends on the details of the mutex type.)

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 118

Condition Variables
Allow threads to communicate about changes to shared data.

 Consumers wait until producers notify about changed state.

Rules:

 Call wait while holding locked mutex.

 wait unlocks mutex, blocks thread, enqueues it for notification.

 At notification, thread is unblocked and moved to mutex queue.
“Notified threads awake and run with the mutex locked.”

Condition variable types:

 condition_variable: wait on std::unique_lock<std::mutex>.
Most efficient, appropriate in most cases.

 condition_variable_any: wait on any mutex type.
Possibly less efficient, more flexible.

In concept, condition variables simply make it possible for one thread to notify another
when some event occurs, but the fact that condition variables are inheritly tied to mutexes
suggests that shared data is always involved. Pure notification could be achieved via
semaphores, but there are no semaphores in C++0x.

There are no examples of condition_variable_any in this course.

As noted in the mutex discussion, condition variables are neither copyable nor movable.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 119

Condition Variables
wait parameters:

Mutex for shared data (required).

 Timeout (optional).

 Predicate that must be true for thread to continue (optional).
Allows library to handle spurious wakeups.
Often specified via lambda.

Notification options:

 notify_one waiting thread.
When all waiting threads will do and only one needed.
No guarantee that only one will be awakened.

 notify_all waiting threads.

All threads waiting on a condition variable must specify the same mutex. In general,
violations of this constraint can not be statically detected, so programs violating it will
compile (and have undefined behavior).

The most common use case for notify_all seems to be after a producer adds multiple
elements to a work queue, at which point multiple consumers can be awakened.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 120

waiting Examples
std::atomic<bool> readyFlag(false);
std::mutex m;
std::condition_variable cv;

{
std::unique_lock<std::mutex> lock(m);

while (!readyFlag) // loop for spurious wakeups
cv.wait(lock); // wait for notification

cv.wait(lock, []{ return readyFlag; }); // ditto, but library loops

if (cv.wait_for(lock, // if (notification rcv’d
std::chrono::seconds(1), // or timeout) and
[]{ return readyFlag; })) { // predicate’s true…

… // critical section
}
else {

… // timed out w/o getting
} // into critical section

}

[std::atomic<bool> has not yet been introduced.]

The copy constructor in std::atomic<bool> is deleted, so direct initialization syntax or brace
initialization syntax must be used; copy initialization won't compile.

Atomic types (e.g., std::atomic<bool>) are defined in <atomic>.

The waiting functions are wait, wait_for, and wait_until. The only difference between
wait_for and wait_until is that the former takes a duration as a timeout (how long to wait),
while the latter takes an absolute time (when to wait until). Waiting times are absolute
(e.g., the example above will wait for a total of 1 second, regardless of how many spurious
wakeups occur).

The examples on this page assume that readyFlag, m, and cv are nonlocal variables, e.g., at
global or namespace scope. That’s why the lambdas can refer to readyFlag without
capturing it.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 121

Notification Examples
std::atomic<bool> readyFlag(false); // as before
std::condition_variable cv;

{
… // make things “ready”
readyFlag = true;
cv.notify_one(); // wake ~1 thread

} // blocked on cv

{
… // make things “ready”
readyFlag = true;
cv.notify_all(); // wake all threads

} // blocked on cv (all but
// 1 will then block on m)

notify_all moves all blocked threads from the condition variable
queue to the corresponding mutex queue.

The examples make no mention of a mutex, because notifiers need not hold a mutex in
order to signal a condition.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 122

Thread-Local Data
Variables eligible for static storage duration may be thread_local.

 I.e., global/file/namespace-scoped vars; class-statics, file-statics.
thread_local std::string threadName; // e.g., at global or

// namespace scope

static thread_local
std::chrono::microseconds timeUsed(0); // e.g., at file scope

void f(int x)
{

static thread_local unsigned timesCalled;
…

}

class Widget {
private:

thread_local static std::unordered_map<std::u16string, int> cache;
…

};

The threadName variable, for example, could be set by the function that the thread is
started running in (i.e., that's passed to the std::thread constructor).

The standard does not require that unused thread-locals be constructed, so under good
implementations, threads should pay for construction/destruction of only those thread-
locals they use. This is a difference from global objects, which must be
constructed/destructed unless the implementation can establish that they have no side
effects.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 123

Thread-Local Data
Some details:

 thread_locals may be dynamically initialized.
Their constructors may be arbitrarily complex.

 thread_local may be combined with extern.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 124

Other Concurrency Features
 Thread-safe initialization of objects of static storage duration.

 Thread-safe one-time function invocation via std::call_once and
std::once_flag.

 Thread detachment when no join is needed.

 Separation of task setup and invocation via std::packaged_task.

 Support for mutex and lock UDTs via standard interfaces.

 Atomic types (e.g., std::atomic<int>) with memory ordering options.

Operations on current thread, e.g., yield and sleep.

Query number of hardware-supported threads.

 Library thread safety guarantees (e.g., for std::cin/std::cout, STL
containers, std::shared_ptr, etc.)

Many other features for threads, locks, condition variables, etc.,
This was an overview.

There is also a standard API for getting at the platform-specific handles behind threads,
mutexes, condition variables, etc.. These handles are assumed to be the mechanism for
setting thread priorities, setting stack sizes, etc. (Regarding setting stack sizes, Anthony
Williams notes: "Of those OSs that support setting the stack size, they all do it differently.
If you're coding for a specify platform (such that use of the native_handle would be OK),
then you could use that platform's facilities to switch stacks. e.g. on POSIX you could use
makecontext and swapcontext along with explicit allocation of a stack, and on Windows
you could use Fibers. You could then use the platform-specific facilities (e.g. Linker flags)
to set the default stack size to something really tiny, and then switch stacks to something
bigger where necessary.“)

“UDT” = “User Defined Type”.

The best way to find C++0x’s library thread safety guarantees is to search draft standard
chapters 17ff for “data race”. Relevant sections of N3290 are 17.6.5.9 (general rules),
18.6.1.4 (memory allocators), 23.2.2 and 21.4/3 (STL containers and string), and 27.4.1/4
(streams). Sometimes you have to read between the lines, e.g., 17.6.5.9/7 of N3290 is, I
believe, the standard’s way of saying that reference count manipulations (e.g., in
shared_ptr, promise, shared_future, etc.) must be thread-safe.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 125

Concurrency Support Summary
 Threads run callable objects, support joining and detaching.
Callers must avoid argument lifetime problems.

 std::async and futures support asynchronous calls.

Mutexes may do timeouts or recursion; typical use is via locks.
std::lock_guard often suffices, std::unique_lock is more flexible.

 std::lock locks multiple mutexes w/o deadlock.

 Condition variables do timeouts, predicates, custom mutex types.

 Data eligible for static storage duration may be thread-local.

Many concurrency support details aren’t treated in this talk.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 126

Summary of Features for Everybody
 “>>” at close of nested templates eliminates a syntactic pothole.

 auto variables have the type of their initializing expression.

 Range-based for loops ease iteration over containers, arrays, etc.

 nullptr avoids int/pointer confusion and aids perfect forwarding.

 Unicode string encodings support UTF-8, UCS-16, and UTF-32.

 Uniform initialization syntax and std::initializer_list makes brace
initialization lists valid everywhere.

 Lambda expressions create function objects at their point of use.

 Template aliases allow “template typedefs” to be created.

 Concurrency support includes mutexes, locks, condition
variables, thread-local data, asynchronous calls, and more.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 127

Overview
 Introduction

 Features for Everybody

 Library Enhancements

 Features for Class Authors

 Features for Library Authors

 Yet More Features

 Further Information

In general, the material on library enhancements is terser than the rest of the material,
because I assume many attendees will be familiar with the STL and possibly even TR1,
hence there is less need to provide background information.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 128

C++0x Standard Library Influences

C++98
STL, strings,
iostreams, etc.

TR1
Boost stuff
unordered containers
Math functions
Random numbers
C99 Compabitility

Boost
shared_ptr/weak_ptr
function, bind, mem_fn
tuple
array
regex
ref/cref
result_of
type traits

New Components
Concurrency support
unique_ptr
forward_list
18 new algorithms

C++0x Standard Library

Minor
changes

Removed math
functions;
otherwise minor
changes

Modified per new
C++0x language
features; otherwise
minor changes

Although the C++98 box is smallest, it had the strongest influence on the C++0x standard
library.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 129

New Features for Standard Containers
General:

 Initializer list support.

Move semantics support to avoid unnecessary copying.

 Improved const_iterator support:
cbegin/cend/crbegin/crend generate

const_iterators/const_reverse_iterators.
const_iterators instead of iterators to specify locations.

 emplace/emplace_hint for copy/move-free in-place construction:
std::vector<Widget> vw;
…
vw.push_back(Widget(10, 20)); // create temp Widget, copy

// (or move) it into vw,
// destroy temp

vw.emplace_back(10, 20); // create Widget in vw
// using given ctor args

Emplacement operations can't be called with brace initialization lists, because brace
initialization lists can't be perfect-forwarded.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 130

New Features for Standard Containers
Specific containers:

 vector::shrink_to_fit, deque::shrink_to_fit, string::shrink_to_fit
All request removal of unused capacity.

 vector::data member function (akin to string’s).

map::at member function that throws if key not present.

 set and multiset elements now officially immutable.
Originally agreed on in 2001…
Loopholes: mutable members, const_cast.
Mutations affect sort order ⇒ undefined behavior.

Regarding vector::shrink_to_fit, N3290 says only that “shrink_to_fit is a non-binding
request to reduce capacity() to size().” The description for string::shrink_to_fit is similar.
Presumably one can make no assumptions about memory allocation, copying or moving of
elements, exceptions, etc.

The motivation for deque::shrink_to_fit is that the array of block pointers can become
arbitrarily large, depending on the maximum size of the deque over its lifetime. Details at
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2795.html#850 .

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 131

TR1
 Standard C++ Committee Library “Technical Report 1.”

 Basis for most new library functionality in C++0x.

 Largely derived from Boost libraries.

 TR1 functionality in namespace std::tr1.

 C++0x TR1-derived functionality in std.
Not identical to that in TR1.
Uses new C++0x features.
Tweaks some APIs based on experience.

APIs mostly backwards-compatible

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 132

From TR1 to C++0x
Common C++0x enhancements:

 Variadic templates eliminate number-of-parameter restrictions.

New container conventions adopted.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 133

TR1 Functionality

64-bit ints, <cstdint>, new format specs, etc.C99 Compatibility
Generalized regex searches/replacementsRegular Expressions
Hash table-based set/multiset/map/multimapHash Tables
Like vector, but no dynamic allocationFixed Size Array
Generalization of pairTuples
Laguerre polynomials, beta function, etc.Mathematical Special Functions
Supports customizable distributionsRandom Numbers
Compile-time type reflectionType Traits
Generalization of function pointersGeneralized Functors
2nd-generation bind1st/bind2ndEnhanced Binder
2nd-generation mem_fun/mem_fun_refEnhanced Member Pointer Adapter
Useful for template programmingReturn Type Determination
Reference-counting smart pointersSmart Pointers
Objects that act like referencesReference Wrapper

SummaryNew Functionality

Libraries in blue are also in C++0x. Libraries in bold are covered in this course (to at least
some degree).

Regarding random numbers, C supports only rand, which is expected to produce a
uniform distribution. C++0x supports both engines and distributions. An engine produces a
uniform distribution, while a distribution takes the result of an engine and produces an
arbitrary distribution from it. C++0x specifies default versions for the engine and
distributions, but it also allows for customized versions of both.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 134

From TR1 to C++0x

fabs(complex<T>) ⇒ abs(complex<T>).C99 Compatibility
String literals often okay (not just std::strings).Regular Expressions
Support for operators == and !=.Hash Tables
Renamed assign ⇒ fill.Fixed Size Array
Added tuple_cat.Tuples
Not in C++0x. (To be a separate standard.)Mathematical Special Functions

Revised engines/distributions. Removal of
variate_generator.Random Numbers

Inherent C++98 restrictions lifted. Some
additions/renamings.Type Traits

Support for allocators. Added assign.Generalized Functors
Inherent C++98 restrictions lifted.Enhanced Binder
None.Enhanced Member Pointer Adapter
Inherent C++98 restrictions lifted.Return Type Determination

Support for allocators and unique_ptr. Minor
new functionality (details shortly).Smart Pointers

None.Reference Wrapper
C++0x Functionality ChangesTR1 Functionality

Of the 23 proposed mathematical special functions in TR1, 21 are preserved in the separate
draft standard, “Extensions to the C++ Library to Support Mathematical Special
Functions.” The two missing functions are confluent hypergeometric functions and
hypergeometric functions.

“Inherent C++98 restrictions lifted” means that restrictions inherent in library functionality
based on C++98 were removed from the corresponding C++0x specification. From Stephan
T. Lavavej: “In C++0x, result_of is powered by decltype and thus always gets the right
answer without TR1's cumbersome and incomplete library machinery. Similarly, bind is
powered by rvalue references, lifting its restriction on rvalues. Type traits are guaranteed
to use compiler hooks and always get the right answers.” Practically speaking, it means
that many TR1 edge cases are no longer edge cases.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 135

From TR1: shared_ptr and weak_ptr
Motivation:

 Smart pointers simplify resource management.
E.g., prevention of leaks when exceptions are thrown.

 auto_ptr is constraining:
Designed for exclusive-ownership.
Has strange copy semantics.
No containers of auto_ptr.

 A standard shared-ownership smart pointer needed:
Should offer “normal” copy semantics.
Hence may be stored in containers.

Many versions have been created/deployed.
Typically based on reference counting.

The "From TR1" in the title indicates that this is a C++0x feature based on TR1
functionality.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 136

 Declared in <memory>.

 A reference-counting smart pointer.

 Pointed-to resources are released when the ref. count (RC) → 0.
{

std::shared_ptr<Widget> p1(new Widget);

std::shared_ptr<Widget> p2(p1);
…

p1->doThis(); // use p1 and p2
if (p2) p2->doThat(); // like normal ptrs
…

p2 = nullptr;
…

} // RC = 0; Widget
// deleted

shared_ptr

p1
1

:Widget
p1

1

:Widget

p1 2

p2 :Widget

p1 2

p2 :Widget

p1
1

:Widget
p1

1

:Widget
p2 (null)p2 (null)

p2 = nullptr; is essentially the same as p2.reset();.

“RC” = “Reference Count”.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 137

shared_ptr Constructors
 Default, copy, from raw pointer.

std::shared_ptr<Widget> pw1;

std::shared_ptr<Widget> pw2(pw1);

std::shared_ptr<Widget> pw3(new Widget); // typical use

Latter is explicit:
std::shared_ptr<Widget> pw4 = new Widget; // error!

 From compatible unique_ptr, auto_ptr, shared_ptr, or weak_ptr.
std::unique_ptr<Widget> makeUP(); // factory funcs
std::auto_ptr<Widget> makeAP();

std::shared_ptr<Widget> pw5(makeUP()); // from unique_ptr

std::shared_ptr<Widget> pw6(makeAP()); // from auto_ptr

std::shared_ptr<const Widget> pw7(pw3); // add const

[std::unique_ptr has not been introduced yet.]

“Compatible” pointer types takes into account derived-to-base conversions (e.g.,
shared_ptr<base> from shared_ptr<derived>.

Conversion from unique_- and auto_ptrs is supported only for sources that are non-const
rvalues (as shown in the examples). Initializing a shared_ptr with an lvalue auto_- or
unique_ptr requires use of std::move.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 138

shared_ptr Constructors
 From this:
It’s a raw pointer, but other shared_ptrs might already exist!

std::shared_ptr<ISomething>
Widget::getISomething()
{ // dangerous!

return std::shared_ptr<ISomething>(this); // could create a
} // new ref count!

std::shared_ptr<ISomething>
Widget::getISomething()
{ // okay, no chance

return shared_from_this(); // of a new RC
}

Inheritance from enable_shared_from_this is required:
class Widget: public ISomething,

public std::enable_shared_from_this<Widget> {
…

};

“RC” = “Reference Count”.

shared_from_this can’t be used to create the first shared_ptr to an object.

Using shared_from_this in constructors, e.g., to register an object during its construction, is
not reliable. A brief discussion of the problem can be found at
http://www.boost.org/libs/smart_ptr/sp_techniques.html#in_constructor.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 139

Some shared_ptr Features
 Access to underlying raw pointer:
Useful for communicating with legacy APIs.
void oldAPI(Widget *pWidget);

std::shared_ptr<Widget> spw(new Widget);

oldAPI(spw.get());

 Access to reference count:
if (spw.unique()) … // always efficient

std::size_t refs = spw.use_count(); // may be inefficient

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 140

Some shared_ptr Features
Operators:
static_pointer_cast, dynamic_pointer_cast, const_pointer_cast

void someFunc(std::shared_ptr<Widget> spw)
{

if (std::shared_ptr<Gadget> spg =
std::dynamic_pointer_cast<Gadget>(spw)) {

… // spw really points to a Gadget
}

}

Relationals: ==, !=, <
Output: <<

std::shared_ptr<Widget> spw;
…
std::cout << spw;

There is no reinterpret_pointer_cast for shared_ptrs. N1450 (the proposal document for
adding shared_ptr to TR1, which is the precursor to shared_ptr in C++0x) says,
“reinterpret_cast and const_cast equivalents have been omitted since they have never
been requested by users (although it's possible to emulate a reinterpret_pointer_cast by
using an intermediate shared_ptr<void> and a static_pointer_cast).” Both TR1 and C++0x
include const_pointer_cast but lack reinterpret_pointer_cast, so presumably during
standardization uses cases were found for the former but not for the latter.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 141

shared_ptr and Incomplete Types
Unlike auto_ptr (but like unique_ptr), shared_ptr supports
incomplete types:

class Widget; // incomplete type

std::auto_ptr<Widget> ap; // undefined behavior!

std::shared_ptr<Widget> sp; // fine

std::unique_ptr<Widget> up; // also fine

shared_ptr thus allows common coupling-reduction strategies.

 E.g., pimpl.

In C++03, auto_ptr’s undefined behavior when used with incomplete types is a fallout of
17.4.3.6/2, which says that instantiating any standard library template with an incomplete
type yields undefined behavior. (The corresponding section in draft C++0x is
[res.on.functions]/2 (17.6.4.8/2 in N3290).)

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 142

shared_ptr and Inheritance Conversions
auto_ptr fails to support some inheritance-based conversions that
shared_ptr offers:

class Base { … };
class Derived: public Base { … };

std::auto_ptr<Derived> produce(); // func. returning auto_ptr<Der>
void consume(std::auto_ptr<Base>); // func. taking auto_ptr<Base>

consume(produce()); // error! won’t compile

std::shared_ptr<Derived> produce(); // same code, but with
void consume(std::shared_ptr<Base>); // shared_ptr

consume(produce()); // fine

Note: the auto_ptr-based code (erroneously) compiles on some
platforms.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 143

Custom Deleters
By default, shared_ptrs use delete to release resources, but this can
be overridden:

Widget* getWidget(); // API to acquire/release a
void releaseWidget(Widget*); // resource

{
std::shared_ptr<Widget> pw(getWidget(), releaseWidget);

…

} // releaseWidget called

The default deleter is a function invoking delete.

Out of the box, the cross-DLL delete problem goes away!

Deleters are really releasers (as above):

 E.g., a deleter could release a lock.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 144

weak_ptr
weak_ptrs are like raw pointers, but they know when they dangle:

When a resource’s RC → 0, its weak_ptrs expire.
The shared_ptr releasing a resource expires all weak_ptrs:

std::shared_ptr<Widget> spw(new Widget); // RC = 1

std::weak_ptr<Widget> wpw(spw); // RC remains 1
…
if (!wpw.expired()) … // if RC >= 1 …

 Useful for “observing” data structures managed by others.

Pointer observers – Risky weak_ptr observers – Less Risky

Calling expired may be faster than calling use_count, because use_count may not be
constant-time. Calling unique is not an alternative, because unique does not exist for
weak_ptrs.

“RC” = “Reference Count”.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 145

weak_ptr
 Also to facilitate cyclic structures that would otherwise foil RC:
Consider reassigning the red pointer, then later the blue one.

ObjectA

ObjectB

shared_ptr shared_ptr

RC-Unfriendly

ObjectA

ObjectB

shared_ptr raw pointer

RC-Friendly,
but Risky

ObjectA

ObjectB

shared_ptr weak_ptr

RC-Friendly,
less Risky

Using only shared_ptrs, we have an uncollectable cycle after both pointers are reassigned.
Using a raw back pointer, ObjectB has no way to tell that its raw pointer dangles after the
red pointer is assigned. (The blue pointer keeps ObjectB alive and referenceable.) Using a
weak_ptr as a back pointer, ObjectB can detect if its back pointer dangles.

“RC” = “Reference Count”.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 146

weak_ptr
weak_ptrs aren’t really smart pointers!

No dereferencing operators (no operator-> or operator*).

No implicit nullness test (conversion to something boolish).

To use a weak_ptr as a pointer, create a shared_ptr from it:
std::weak_ptr<Widget> wpw(spw);

wpw->doSomething(); // risky and won’t compile

if (!wpw.expired()) wpw->doSomething(); // won’t compile

std::shared_ptr<Widget> pw1(wpw); // create shared_ptr;
// throws if wpw’s expired

pw1->doSomething(); // fine (if pw1 constructed)

std::shared_ptr<Widget> pw2(wpw.lock()); // pw2 is null if wpw’s
// expired

if (pw2) pw2->doSomething(); // fine

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 147

Cost of shared_ptrs
Sample implementation (Boost 1.41):

 2 words in size (pointer to object, pointer to RC).

 Uses dynamically allocated memory for the RC.

 Resource release (i.e., deletion) via a virtual function call ⇒ vtbls.

 Incurs cost for weak_ptr count even if no weak_ptrs are used.

T Object
shared_ptr<T>

Ref Count
Weak Count

px
pn.pi

Deleter
Allocator{Optional

“RC” = “Reference Count”.

The Boost implementaton allocates space for a custom deleter or a custom allocator only if
the smart pointer is constructed with them. If the default deleter/allocator is used, no
memory is used to store pointers to them.

The weak count keeps track of how many weak pointers exist for the object. When the RC
becomes 0, the object itself is destroyed, but the RC block continues to exist until the weak
count becomes 0. Weak pointers can tell whether they have expired by checking to see if
the RC == 0. If so, they have.

Memory allocation for the RC is avoided if std::make_shared (discussed on next page) is
used.

Both px and the object pointer in *pn.pi point to the RC’d object, but the pointer values may
be different. From N1450 (the proposal to add smart pointers to TR1): “The original
pointer passed at construction time needs to be remembered for shared_ptr<X> to be able
to correctly destroy the object when X is incomplete or void, ~X is inaccessible, or ~X is not
virtual.”

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 148

From TR1 to C++0x
make_shared<T> and allocate_shared<T> allocate object and

RC with one allocation:
auto p =

std::make_shared<Widget>(Widget ctor args);

class MyAllocator { … };
MyAllocator a;

auto p = std::allocate_shared<Widget>(a, Widget ctor args);

 Supports two “p1 and p2 point to same object” semantics:
Value: p1.get() == p2.get()
Ownership: p1 and p2 affect the RC of the same object
Good for shared_ptr<void>s pointing to MI-based types.

p 1 :Widget

Use of make_shared/allocate_shared precludes specification of custom deleters, because
there would be no way to differentiate those parameters from those for the object (e.g.,
Widget) constructor.

Operators == and < on shared_ptrs use value “points to the same object” semantics.
Ownership semantics are available via std::shared_ptr::owner_before.

“RC” = “Reference Count”.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 149

TR1-Derived Smart Pointers Summary
 shared_ptrs use reference counting to manage resource lifetimes.

 They support incomplete types, inheritance-based conversions,
custom deleters, and C++-style casts.

 weak_ptrs can detect dangling pointers and help break cycles.

 shared_ptrs bigger/slower than built-in pointers.

make_shared and allocate_shared avoid dedicated memory
allocations for reference counts.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 150

unique_ptr
Successor to auto_ptr (which C++0x deprecates).

 Declared in <memory>.

 Like auto_ptr, supports moving values instead of copying.
But avoids “copy syntax that really moves.”

More general than auto_ptr:
Safe in containers and arrays.
Supports inheritance conversions and custom deleters.
May point to arrays.

More efficient than shared_ptr for factory function returns.

May be larger than auto_ptr.
gcc 4.5: auto_ptr holds 1 ptr, unique_ptr holds 2.
VC10: both typically hold 1.

Unlike VC10, gcc 4.5 stores data in a unique_ptr for a deleter, even if the default deleter is
being used. This is why gcc’s unique_ptr is bigger than an auto_ptr. The comment about
VC10 “typically” holding only 1 pointer is based on the assumption that “typical” use
involves no custom deleter.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 151

unique_ptr
class Base {
public:

virtual ~Base(); // so polymorphic deletes work
virtual void doIt(); // some virtual

};
class Derived: public Base {
public:

virtual void doIt(); // overridden virtual function
};
...

{
std::unique_ptr<Derived> pd(new Derived);
std::unique_ptr<Base> pb(pd); // error! can’t copy lvalue

std::unique_ptr<Base> // ownership xfer; note
pb(std::move(pd)); // Derived ⇒ Base

… // conversion

pb->doIt(); // calls Derived::doIt
…

} // delete pb.get()

[This slide mentions lvalues for the first time.]

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 152

unique_ptr
using UPS = std::unique_ptr<std::string>; // same as typedef

std::vector<UPS> vsp; // fine, container of
// unique_ptrs

for (int i = 0; i < n; ++i) { // move “copied”
vsp.push_back(UPS(new std::string("Hello"))); // rvalue unique_ptrs

} // into vsp

…

std::sort(vsp.begin(), vsp.end(), // fine due to library
[](const UPS& p1, const UPS& p2) // guarantee that sort
{ return *p1 < *p2; }); // moves (not copies)

[This slide mentions rvalues for the first time.]

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 153

unique_ptr and Custom Deleters
Unlike shared_ptr, deleters for unique_ptr are part of its type.

Widget* getWidgetFromPool(); // Widget Pool API
void returnWidgetToPool(const Widget*);

std::unique_ptr<Widget, void(*)(const Widget*)>
getWidget() // factory function
{

return { getWidgetFromPool(), returnWidgetToPool };
}

...

{
auto pw = getWidget();
…

} // invoke
// returnWidgetToPool(pw.get())

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 154

unique_ptr and Arrays
Unlike shared_ptr, unique_ptr may point to an array.

 Its behavior then correspondingly modified:
No inheritance conversions.
No dereferencing (* or ->) operations.
Indexing added.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 155

unique_ptr and Arrays
class Base { … };

class Derived: public Base {
public:

void doIt();
…

};

std::unique_ptr<Derived[]> upda1(new Derived[10]);
…
std::unique_ptr<Derived[]> upda2;

upda2 = upda1; // error! lvalue unique_ptr
// not copyable

upda2 = std::move(upda1); // okay (upda1 now null)

std::unique_ptr<Base[]> upba = // error! no inheritance
std::move(upda2); // conversions with arrays

upda2->doIt(); // error! no op-> or op*

for (int i = 0; i < 10; ++i) upda2[i].doIt(); // okay

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 156

unique_ptr vs. shared_ptr
Already noted:

 Deleter type part of unique_ptr type, not shared_ptr type.

 unique_ptr supports arrays, shared_ptr doesn’t.

 Both support incomplete types.

In addition:

 shared_ptr supports static_pointer_cast, const_pointer_cast,
dynamic_pointer_cast; unique_ptr doesn’t.

No unique_ptr analogue to make_shared/allocate_shared.

unique_ptr’s support for incomplete types has one caveat. Given a std::unique_ptr<T> p,
the type T must be complete at the point where p’s destructor is invoked. Violation of this
constraint requires a diagnostic, i.e., code failing to fulfill it will typically not compile. This
constraint applies only to unique_ptrs using the default deleter; unique_ptrs using custom
deleters are not so constrained.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 157

unique_ptr Summary
 Small/fast smart pointer for unique ownership; replaces auto_ptr.

 Safe for use in containers/arrays.

 Supports custom deleters and arrays.

 API “different” from shared_ptr API.

unique_ptr and shared_ptr do different things, so their APIs can’t be the same, but in some
cases they are different for no apparent reason.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 158

forward_list
A singly-linked list.

 Declared in <forward_list>

 Goal: zero time/space overhead compared to hand-written C.

 STL container conventions sacrificed to achieve goal:
 insert_after/emplace_after/erase_after instead of

insert/emplace/erase.
Normal “insert/emplace/erase before” behavior costly.

before_begin returns iterator preceding *begin.
Needed to insert/emplace/erase at front of list.

No size or push_back.
 Store size or end (footprint) or run in O(n) time (surprising)?

Offers only forward iterators.

Iterator

Having iterators point to the node prior to the one they reference would allow for an
interface that was more like the rest of the STL, but at the cost of additional indirection per
dereference, something contrary to the goal of as-good-as-hand-written-C performance.

Iterator invalidation rules for forward_list are essentially the same as for list: insertions
invalidate nothing, erasures invalidate only iterators to erased elements.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 159

forward_list
Example:

#include <forward_list>
#include <algorithm>

std::forward_list<int> fli { 1, 2, 3, 4, 5 };

auto it = std::find(fli.cbegin(), fli.cend(), 3);

fli.erase(it); // error! no erase

--it; // error! forward iterator

fli.erase_after(it); // fli = 1, 2, 3, 5

fli.push_back(10); // error! no push_back

fli.push_front(0); // fli = 0, 1, 2, 3, 5

fli.erase_after(fli.before_begin()); // fli = 1, 2, 3, 5

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 160

From TR1: Hash Tables
 Declared in <unordered_set> and <unordered_map>.
Default hashing functionality declared in <functional>.

 Designed not to conflict with pre-TR1/C++0x implementations.
I.e., hash_set, hash_map, hash_multiset, hash_multimap.
 Interfaces vary – hence the need for standardization.
 Standard names are unordered_set, unordered_map, etc.

Compatible with hash_* interfaces where possible.

 Each bucket has its own chain of elements:

 Bucket count can change dynamically.

Conceptual diagram!
Implementations vary!

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 161

Containers’ Characteristics
 Usual members exist:
 iterator/const_iterator and other typedefs.
begin/end/cbegin/cend, insert/erase, size, swap, etc.

 Also 3 associative container functions: find, count, equal_range.
 lower_bound/upper_bound are absent.

 unordered_map/unordered_multimap offer operator[] and at.

Most relationals not supported: no <, <=, >=, >
Indeterminate ordering makes these too expensive.
== and != do exist: result based on content, not ordering.
Expected complexity O(n); worse-case is O(n2).

Only forward iteration is provided.
No reverse_iterators, no rbegin/rend/crbegin/crend.

When equal_range finds no elements, it returns (container.end(), container.end()). This
makes it a bit easier to swallow the failure to include upper_- and lower_bound in the
containers’ interfaces.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 162

Hash Table Parameters
Hashing and equality-checking types are template parameters:

template<class Value,
class Hash = std::hash<Value>,
class Pred = std::equal_to<Value>,
class Alloc = std::allocator<Value>>

class unordered_set { … };

template<class Key,
class T,
class Hash = std::hash<Key>,
class Pred = std::equal_to<Key>,
class Alloc = std::allocator<std::pair<const Key, T>>>

class unordered_map { … };

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 163

Hashing Functions
Defaults are provided for built-in, string, and smart pointer types:

class Widget { … };

std::unordered_set<int> si; // all use default hash
std::unordered_multiset<double> md; // func for shown types
std::unordered_map<std::wstring, int>mwi;
std::unordered_multimap<Widget*, std::string> mm1;
std::unordered_multimap<std::unique_ptr<Widget>, std::string> mm2;

Also for these less commonly used types:
 std::vector<bool>
 std::bitset
 std::thread::id
 std::error_code
 std::type_index

Keys in associative containers (both ordered and unordered) are immutable; modifying
elements in an associative container yields undefined behavior. Changing a key could
affect the sort order (for sorted containers) or the hashed location (for unordered
containers).

In [syserr.errcode.overview] (19.5.2.1/1 of N3290), draft C++0x describes std::error_code
this way: “The class error_code describes an object used to hold error code values, such as
those originating from the operating system or other low-level application program
interfaces. ... Class error_code is an adjunct to error reporting by exception.”

std::type_index is a wrapper for std::type_info objects that’s designed for storage in
associative containers (ordered or unordered).

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 164

Hashing Functions
To override a default or hash a UDT, specialize hash<T> or create a
custom functor:

template<>
struct std::hash<Widget>: public std::unary_function<Widget,

std::size_t> {
std::size_t operator()(const Widget& w) const { … };

};

std::unordered_set<Widget> sw;

struct IntHasher: public std::unary_function<int, std::size_t> {
std::size_t operator()(int i) const { … };

};

std::unordered_map<int, std::string, IntHasher> mis;

“UDT” = “User Defined Type”.

Function pointers can also be used as hashing objects, but only the function pointer type
would be specified as part of the type of the container. To actually use a function for
hashing, the container would have to be constructed with a pointer to the specific hashing
function.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 165

Operations for Bucket Count and Load Factor
Constructors allow a floor on bucket count (B) to be specified:

std::unordered_set<int> s1; // B chosen by implementation

std::unordered_set<int> s2(53); // B >= 53. (Other ctor forms
// support bucket floor, too.)

A table’s load factor (z) is the average number of elements/bucket:

 z = container.size()/B.

 z can be queried, and a ceiling for it can be “hinted” (requested):
float z = s1.load_factor(); // get current load factor

s1.max_load_factor(0.75f); // request ceiling for z;
// future insertions may
// increase B so that z <= .75,
// then rehash s to use new B

float z_max = s1.max_load_factor(); // get current zmax (defaults to 1)

Because max_load_factor(z) is only a request, it’s possible that
container.load_factor() > container.max_load_factor().

The variables z and z_max on this page could use auto in their declarations, but I’m using
float to show that that’s the precision used for load factors.

Empty buckets are included in an unordered_* container’s load factor calculation.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 166

Rehashing
Explicit rehashing can also change the bucket count and load factor.

 Specify number of desired buckets via rehash.

 Specify number of expected elements via reserve.
std::unordered_set<int> s;
...

auto newB = computeNewB();

s.rehash(newB); // reorganize s so that B >= newB
// and s.size()/B <= zmax

...

auto expElems = computeExpectedElements();

s.reserve(expElems); // reorganize s so that expElems/B <= zmax

Rehashing (implicitly or explicitly) invalidates iterators.

 But not pointers or references.

From what I can tell from the iterator invalidation rules, rehashing can happen only when
insert or rehash is called.

For multi containers, rehashing preserves the relative order of equivalent elements.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 167

Iterating Over Bucket Contents
Useful for e.g., monitoring performance of hashing functions.

std::unordered_set<std::string> s;

…

auto numBuckets = s.bucket_count(); // # buckets

for (std::size_t b = 0; b < numBuckets; ++b) {
std::cout << "Bucket " << b << " has "

<< s.bucket_size(b) // # elems in bucket b
<< " elements: ";

std::copy(
s.cbegin(b), s.cend(b), // iters for bucket b
std::ostream_iterator<std::string>(std::cout, " ")

);

std::cout << '\n';
}

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 168

Hash Tables Summary
 Unordered containers based on hash tables with open hashing.

Only forward iteration is supported.

Maximum load factor can be dynamically altered.

 There is support for iterating over individual buckets.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 169

From TR1: Tuples
Motivation:

 pair should be generalized.

 Tuple utility demonstrated by other languages.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 170

TR1 Tuples
 tuple declared in <tuple>, helper templates in <utility>.

Offers fixed-size heterogeneous “containers:”
Fixed-size ⇒ no dynamic memory ⇒ no allocator.
class Name { ... };
class Address { … };
class Date { … };

std::tuple<Name, Address, Date> // function to return
employeeInfo(unsigned employeeID); // employee name,
… // address, hire date

unsigned eid;
…
std::tuple<Name, Address, Date> // initialize tuple with

info(employeeInfo(eid)); // value from
// employeeInfo

“Containers” is in quotes, because tuple doesn’t, in general, adhere to the container
interface.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 171

get
Tuple elements are accessed via get:

 Takes a compile-time index; indices start at 0:
Name empName(std::get<0>(info));
Address empAddr(std::get<1>(info));
Date empHDate(std::get<2>(info));

 A compile-time index!
get is a template, and the index is a template argument.

int nameIdx = 0;

Name empName(std::get<nameIdx>(info)); // error!

 for/do/while loops over tuple contents aren’t possible.

TMP can be used to generate code to iterate over the contents of a tuple.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 172

get
Using named indices makes for more readable code:

enum { EmpName, EmpAddr, EmpHireDate };

Name empName(std::get<EmpName>(info));
Address empAddr(std::get<EmpAddr>(info));
Date empHDate(std::get<EmpHireDate>(info));

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 173

tie
tie can perform the work of multiple gets:

std::tie(empName, empAddr, empHDate) = // assign to all 3
employeeInfo(eid); // variables

ignore can be used within tie to get only selected elements:
std::tie(empName, empAddr, std::ignore) = // assign only name

employeeInfo(eid); // and address

std::tie(std::ignore, // assign address only.
empAddr, // (Here, using get
std::ignore) = employeeInfo(eid); // would be easier.)

std::tie can be used with std::pair objects, because std::tie returns a tuple, and std::tuple has
a constructor that takes a std::pair:

std::pair<Name, Address> empNameAddr(unsigned employeeID);

std::tie(empName, empAddr) = empNameAddr(eid);

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 174

make_tuple
A generalization of make_pair:

class Employee {
public:

Name name() const;
Address address() const;
Date hireDate() const;
…

};

Employee findByID(unsigned eid);

std::tuple<Name, Address, Date>
employeeInfo(unsigned employeeID)
{

Employee e(findByID(employeeID));
return std::make_tuple(e.name(), e.address(), e.hireDate());

}

The final return statement in the example can’t be written as
return { e.name(), e.address(), e.hireDate() };

because the relevant tuple constructors are either explicit (hence not usable here) or are
templates (also not usable here, because templates can’t deduce a type for brace
initialization lists).

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 175

Reflection
There’s support for compile-time reflection:

template<typename Tuple>
void someFunc(Tuple t)
{

std::size_t numElems = // # elems
std::tuple_size<Tuple>::value; // in Tuple

typedef
typename std::tuple_element<0, Tuple>::type // type of
FirstType; // 1st elem

…
}

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 176

Other tuple Functionality
The usual STL container relationals (<, <=, ==, !=, >=, >):

 == and != tests use elementwise ==

Other relational tests are lexicographical using only <:
Values are considered equal if they’re equivalent (based on <)

pair<T1, T2> can often be used as a tuple<T1, T2>:

 A 2-element tuple can be created or assigned from a compatible
pair.

 get<0> and get<1> both work on pairs.

 So do tuple_size and tuple_element.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 177

Tuples Summary
 Tuples are a generalization of std::pair.

 Element access is via compile-time index using get or via tie.

 Compile-time reflection is supported. It works on std::pairs, too.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 178

From TR1: Fixed-Size Arrays
Motivation:

 Built-in arrays aren’t STL containers:
No begin, end, etc.
They don’t know their size.
They decay into pointers.

 vector imposes overhead:
Dynamic memory allocation.

Need an STL container with performance of built-in arrays.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 179

Fixed-Size Arrays
 Declared in <array>.

Offers conventional members:
 iterator/const_iterator/reverse_iterator and other typedefs
begin/end/cbegin/cend, empty, swap, relational operators, etc.
But swap runs in linear (not constant) time.

 Also vectoresque members: operator[], at, front, back

 Contents layout-compatible with C arrays (and vector).
Get a pointer to elements via data (as with vector and string):

std::array<int, 5> arr; // create array

…

int *pElements = arr.data(); // get pointer to elements

For std::array objects with a size of 0, results of invoking data are “unspecified.”

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 180

Fixed-Size Arrays
Because arrays are fixed-size,

No insert, push_back, erase, clear, etc.

No dynamic memory allocation.
Hence no allocator.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 181

arrays are Aggregates
A array is an aggregate, so:

No initializer for built-in element types ⇒ default initialization.
For stack or heap arrays ⇒ “random values”:

std::array<int, 5> arr1; // if arr1 on stack or heap,
// element values undefined

For arrays with static storage duration ⇒ zeros:
std::array<int, 5> arr2; // if arr2 in static storage,

// element values are zero

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 182

arrays are Aggregates
 Too few initializers ⇒ remaining objects are value-initialized:
Built-in types initialized to 0.
UDTs with constructors are default-constructed.
UDTs without constructors: members are value-initialized.
std::array<short, 5> arr3 { 1, 2, 3, 4, 5 };

std::array<int, 5> arr4 {10, arr1[3], 30 }; // last 2 values
// init’d to 0

std::array<float, 1> arr5 { 1, 2, 3, 4, 5 }; // error! won’t
// compile

 Too many initializers ⇒ error.

Value initialization is defined in [dcl.init] (8.5/7 of N3290).

“UDT” = “User Defined Type”.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 183

arrays are Aggregates
For built-in types, no initializer ≠ too few initializer values:

std::array<int, 5> arr1; // no initializer:
// - on stack or heap ⇒ random values
// - static storage ⇒ all zeros

std::array<int, 5> arr2 {}; // too few initializers ⇒ use zeros
std::array<int, 5> arr3 = {}; // too few initializers ⇒ use zeros

Types with constructors always have constructors called:
class Widget {
public:

explicit Widget(int = -1);
...

};

std::array<Widget, 5> arr4; // construct all Widgets from -1

std::array<Widget, 5> arr5 {}; // construct all Widgets from 0

All behavior above is same as for built-in arrays.

The aggregate initialization rules for std::arrays are the same as for built-in arrays.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 184

arrays are Aggregates
Because array is an aggregate:

 All members are public!

Only default, copy, and move construction is supported.
These constructors are compiler-generated.
Range construction is unavailable:

std::vector<int> v;
…

std::array<int, 10> // error! array supports only
arr(v.begin(), v.begin()+10); // default and copy construction

Technically, aggregates may have non-public members that are static.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 185

arrays as Tuples
array<T, n> can sometimes be treated like tuple<T, T, …, T>:

class Widget { … };
const std::size_t arraySz = 10;
typedef std::array<Widget, arraySz> WidgetArray;

WidgetArray arr; // 10 Widgets default-constructed

…

std::size_t numElements = std::tuple_size<WidgetArray>::value;

std::size_t elemSize =
sizeof(std::tuple_element<0, WidgetArray>::type);

const auto& value = std::get<0>(arr);

std::cout << "arr has " << numElements
<< " elements, each of size " << elemSize
<< ". The first element’s value is " << value
<< '\n';

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 186

array vs. vector
 array is fixed-size, vector is dynamically sized.

 array uses no dynamic memory, vector does.

 array::swap is linear-time and may throw, vector::swap is
constant-time and can’t throw.

 array can be treated like a tuple, vector can’t.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 187

array vs. C Arrays
 array objects know their size, C arrays don’t

 array allows 0 elements, C arrays don’t

 array requires an explicit size, C arrays can deduce it from their
initializer

 array supports assignment, C arrays don’t

 array can be treated like a tuple, C arrays can’t

Given array, vector, and string, there is little reason to use C-style
arrays any longer.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 188

Fixed-Size Arrays Summary
 array objects are STLified C arrays.

 They support brace-initialization, but not range initialization.

 They support some tuple operations.

 Given array, std::vector, and std::string, there is little reason to
use C-style arrays.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 189

From TR1: Regular Expressions
Motivation:

 Regular expression (RE) functionality is widely useful.

Many programming languages and tools support it.

 C RE libraries support only char*-based strings.
C++ should support wchar_t* strings and string objects, too.

Conceptually, C++0x regex support works not just with std::string, but with all
std::basic_string instantiations (e.g., std::wstring, std::u16string, std::u32string). However,
library specializations and overloads exist only for strings based on char*, wchar_t*,
std::string, and std::wstring. How difficult it would be to use the library’s regex
components with other string types, I don’t know.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 190

TR1 Regular Expressions
 Declared in <regex>.
 RE objects modeled on string objects:
Support char, wchar_t, Unicode encodings, locales.
 RE syntax defaults to modified ECMAScript.

std::regex capStartRegex("[A-Z][[:alnum:]]*"); // alnum substr.
// starting with a
// capital letter

std::regex SSNRegex(R"(\d{3}-\d{2}-\d{4})"); // looks like a SSN
// (ddd-dd-dddd)

Alternatives: POSIX Basic, POSIX Extended, awk, grep, egrep.
Raw string literals very useful in RE specifications.
Offers control over state machine behavior:

std::regex filenameRegex(// regex for some
R"(\w+\.((txt)|(dat)|(log)))", // .txt, .dat, and .log files;
std::regex::icase | // ignore case during search;
std::regex::optimize // match speed more important

); // than regex ctor speed

ECMAScript is essentially a standardized version of Perl RE syntax.

"SSN" is short for "Social Security Number", which is a government-issued ID number in
the USA.

\w means word characters (i.e., letters, digits, and underscores).

Regarding the optimize flag, Pete Becker’s The C++ Standard Library Extensions (see end of
notes for full reference) says: “This optimization typically means converting a
nondeterministic FSA into a deterministic FSA. There are well-understood algorithms for
doing this. Unfortunately, this conversion can sometimes be very complex; hence, very
slow. So don’t ask for it if you don’t need it.”

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 191

Fundamental Functionality
 regex_match: Does the RE match the complete string?

 regex_search: Does the RE occur in the string?

 regex_replace: Replace text matching RE with other text.
Replacement isn’t in-place: new text is returned.

Matches are held in match_results objects. Iteration is supported:

 regex_iterator: Iterate over matches for a string.

 regex_token_iterator: Iterate over matches and match subfields.

These are templates. You normally use named instantiations:

 For strings: smatch/sregex_iterator/sregex_token_iterator

 For wstrings: wsmatch/wsregex_iterator/wsregex_token_iterator

 For char*s: cmatch/cregex_iterator/cregex_token_iterator

 For wchar_t*s: wcmatch/wcregex_iterator/wcregex_token_iterator

regex_replace can be configured with flags to (1) replace only the first match and/or to (2)
not write out unmatched text, but by default, it behaves as summarized in these slides.
I’m not familiar with use cases for these options.

Regex iterators iterate only over nonoverlapping matches. Iteration over overlapping
matches must be done manually and must take into account the issues described in
Becker’s book (mentioned on a subsequent slide).

I don’t know why there are no typedefs for char16_t- and char32_t-based types (e.g.,
char16_t*s and u16strings).

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 192

Examples: regex_match, regex_search
Does text look like an SSN?

const std::regex SSNRegex(R"(\d{3}-\d{2}-\d{4})");

bool looksLikeSSN(const std::string& text)
{

return std::regex_match(text, SSNRegex);
}

Does text contain a substring that looks like an SSN?
bool mayContainSSN(const std::string& text)
{

return std::regex_search(text, SSNRegex);
}

Information on matches found can be retrieved through an optional match_results
parameter. The next slide gives an example.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 193

Example: regex_search
Collect all (non-overlapping) substrings that look like SSNs:

void possibleSSNs1(const std::string& text, std::list<std::string>& results)
{

auto b(text.cbegin()), e(text.cend());
std::smatch match;

while (std::regex_search(b, e, match, SSNRegex)) {
results.push_back(match.str());
b = match[0].second;

}
}

This works, but iterative calls to regex_search are suspect:

 REs allowing empty matches can cause infinite loops.

 REs with ^ and \b specifiers problematic after first iteration.

Details in chapter 19 of Becker’s The C++ Standard Library Extensions.

An empty match is one matching no text, e.g., the regex “(abc)*”can match zero characters,
because “*” means “zero or more.”

\b is the beginning-of-word specifier.

This loop finds only nonoverlapping matches. To allow overlapping matches, change b’s
assigment to

b = ++match[0].first;

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 194

Example: regex_iterator
A better approach:

void possibleSSNs2(const std::string& text, std::list<std::string>& results)
{

std::sregex_iterator b(text.cbegin(), text.cend(), SSNRegex);
std::sregex_iterator e;

for (auto it = b; it != e; ++it) {
results.push_back(it->str());

}

}

regex_iterator (and regex_token_iterator) handle tricky cases.

 Use them instead of loops over regex_search calls.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 195

Example: regex_replace
Replace all substrings that look like SSNs with dashes:

void dashifySSNs(std::string& text)
{

const std::string dashes("-----------");

text = std::regex_replace(text, SSNRegex, dashes);
}

int main()
{

std::string data("123-45-6789x777-77-7777abc");

std::cout << data; // 123-45-6789x777-77-7777abc
dashifySSNs(data);
std::cout << data; // -----------x-----------abc

}

Note that the assignment to text in dashifySSNs is a move assignment.

There is no conditional replacement, i.e., no “regex_replace_if”. If you don’t want a global
substitution of the regex or a replacement for only the first match, you have to iterate from
match to match and construct the modified string yourself.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 196

Capture Groups
Count (non-overlapping) word repetitions in a string (e.g., “the the”):

std::size_t repWords(std::string::const_iterator b,
std::string::const_iterator e)

{
std::regex wordRepeatRgx(R"(\b)" // word boundary

R"(([A-Za-z_]\w*))" // word
R"(\s+)" // whitespace
R"(\1)" // same word text
R"(\b)" // word boundary

);
std::size_t repCount = 0;

for (std::sregex_iterator i(b, e, wordRepeatRgx), end;
i != end;
++i) {

++repCount;
}

return repCount;
}

With this regex, the repeated word must begin with a letter or an underbar. This avoids
matching repeated numbers, which we’d get if we just used “\w\w*”.

With std::regex_replace, capture groups can be referred to in the replacement pattern. For
a nice example, consult Marius Bancila’s article in the Further Information section.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 197

Capture Groups
Alternative (for loop-haters and lambda-lovers):

std::size_t repWords(std::string::const_iterator b,
std::string::const_iterator e)

{
// same regex as before
std::regex wordRepeatRgx(R"(\b([A-Za-z_]\w*)\s+\1\b)");

std::size_t repCount = 0;

std::for_each (std::sregex_iterator(b, e, wordRepeatRgx),
std::sregex_iterator(),
[&](const std::smatch&) { ++repCount; }

);

return repCount;
}

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 198

Regular Expressions Summary
 Several RE syntaxes and string representations are supported.

 Search functions are regex_match and regex_search.

 regex_replace does global search/replace; result is a new string.

Match iteration done via regex_iterator/regex_token_iterator.

 Capture groups are supported.

Again, regex_replace can be configured with flags to (1) replace only the first match
and/or to (2) not write out the result of the replacements it performs (i.e., not return any
new text), but by default, it behaves as summarized in these slides.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 199

From TR1: Generalized Functors
Motivation:

 Function pointers and member function pointers are rigid:
Exact parameter/return types and ex. specs. must be specified.
Can’t point to nonstatic member functions.
Can’t point to function objects.

 Useful to be able to refer to any callable entity compatible with
a given calling interface.
Convenient for developers (especially for callbacks).
Can help limit code bloat from template instantiations.

Regarding code bloat, instead of instantiating a template for many types with the same
calling interface, the template can be instantiated only once for the function type that
specifies that interface. (Under the hood, the implementation machinery for std::function
will be instantiated once for each actual type, but the template taking a std::function
parameter will be instantiated only once for all types compatible with the std::function
type.)

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 200

Callable Entities
Something that can be called like a function:

 Functions, function pointers, function references:
void f(int x); // function

void (*fp)(int) = f; // function pointer

int val;

…

f(val); // call f

fp(val); // call *fp

The term “callable entity” is mine and slightly more restricted than the C++0x notion of a
“callable object,” because callable objects include member data pointers. Callable objects
also include pointers to nonstatic member functions, which I don’t discuss in conjunction
with std::function. (I do discuss them in conjunction with std::bind and lambdas, both of
which produce function objects that can be stored in std::function objects.)

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 201

Callable Entities
Objects implicitly convertible to one of those:

class Widget {
public:

using FuncPtr = void (*)(int);
operator FuncPtr() const; // conversion to function ptr
…

};

Widget w; // object with conversion to func ptr

int val;
…
w(val); // “call” w, i.e.,

// invoke (w.operator FuncPtr())()

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 202

Callable Entities
 Function objects (including closures):

class Gadget {
public:

void operator()(int); // function call operator
…

};

Gadget g; // object supporting operator()

int val;
…
g(val); // “call” g, i.e., invoke w.operator()

auto f = [](int x) { return x < currentThreshhold(); };

if (f(val)) … // “call” closure

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 203

std::function Basics
 Declared in <functional>.

 std::functions are type-safe wrappers for callable entities:
std::function<int(std::string&)> f; // f refers to callable entity

// compatible with given sig.

int someFunc(std::string&); // some function

f = someFunc; // f refers to someFunc

f = [](std::string &s)->unsigned
{ s += "!"; return s.size(); }; // f refers to λ’s closure

class Gadget {
public:

int operator()(std::string&); // function call operator
…

};

Gadget g;

f = g; // f refers to g

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 204

Fundamental Behavior

int someFunc(std::string&); // some function

f = someFunc;
std::string str;
...
int result = f(str); // calls someFunc

f = [](std::string& s)->unsigned { s += "!"; return s.size(); };
...
result = f(str); // calls λ’s closure

Callable Entity

std::function object

Arguments
from caller

Return Value
to caller

declared
std::function
parameters

declared
std::function
return type

The outer box represents the std::function object, the inner box the callable entity it wraps
(i.e., forwards calls to).

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 205

Compatible Signatures
A callable entity is compatible with a function object if:

 The function object’s parameter types can be converted to the
entity’s parameter types.

 The entity’s return type can be converted the function object’s.

All entity return types are compatible with void-returning
function objects.

Callable Entity

std::function object

Arguments
from caller

Return Value
to caller

Callable Entity

std::function object

Arguments
from caller

Return Value
to caller

Callable Entity

std::function object

Arguments
from caller

Callable Entity

std::function object

Arguments
from caller

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 206

function Callback Example
A Button class supporting click-event callbacks:

 The callback parameter indicates a down- or up-click.
class Button: public SomeGUIFrameworkBaseClass {
public:

…
using CallbackType = std::function<void(short)>;

void setCallback(const CallbackType& cb)
{

clickHandler = cb;
}

virtual void onClick(short upOrDown) // invoked by base class
{

clickHandler(upOrDown); // invoke function object
}

private:
CallbackType clickHandler;

};

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 207

function Callback Example
void buttonClickHandler(int eventType); // non-member function

class ButtonHandler {
public:

…
static int clicked(short upOrDown); // static member function

};

void (*clicker)(int) = buttonClickHandler; // function pointer

Button b;
…
b.setCallback(buttonClickHandler); // pass non-member func

b.setCallback(ButtonHandler::clicked); // pass static member func

b.setCallback(clicker); // pass function ptr

Note the (compatible) type mismatches:
 buttonClickHandler and clicker take int, not short

 ButtonHandler::clicked returns int, not void

For static member functions, the use of "&" before the name is optional when taking their
address (i.e., same as non-member functions).

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 208

function Callback Example
class ButtonClickCallback { // class generating
public: // function objects

void operator()(short upOrDown) const;
};

Button b;
…

ButtonClickCallback bccb;

b.setCallback(bccb); // pass function object

void logClick(short upOrDown);
...
b.setCallback([](int v) { logClick(v); }); // pass closure; note

// (compatible) param.
// type mismatch

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 209

function Callback Example
class ButtonHandler {
public:

…
int clicked(short upOrDown) const; // as before, but non-static

};

Button b;
ButtonHandler bh;
…
b.setCallback(std::bind(&ButtonHandler::clicked,

bh, _1)); // pass non-static member func;
// info on std::bind coming soon

ButtonHandler::clicked is declared const, because that avoids my having to mention
mutable lambdas when I later contrast lambdas and bind.

_1 is actually in namespace std::placeholders, so the call to bind on this page won’t
compile as shown unless std::placeholders::_1 has been made visible (e.g., via a using
declaration). In practice, this is virtually always done in code that uses bind.

For non-static member functions, the use of "&" before the name is not optional when
taking their address.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 210

Other function Characteristics
 Declared in <functional>

 Supports nullness testing:
std::function<signature> f;
…
if (f) … // fine
if (f == nullptr) … // also fine

 Disallows equality and inequality testing
Nontrivial to determine whether two function objects refer to

equal callable entities.
std::function<signature> f1, f2;
…
if (f1 == f2) … // error!
if (f1 != f2) … // error!

operator== and operator!= are deleted functions (which have not yet been introduced).

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 211

function Summary
 function objects are generalizations of function pointers.

 Can refer to any callable entity with a compatible signature.

 Especially useful for callback interfaces.

 Explicitly disallow tests for equality or inequality.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 212

From TR1: bind
Motivation:

 bind1st and bind2nd are constrained:
Bind only first or second arguments.
Bind only one argument at a time.
Can’t bind functions with reference parameters.
Require adaptable function objects.
Often necessitates ptr_fun, mem_fun, and mem_fun_ref.

bind1st and bind2nd are deprecated in C++0x.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 213

bind
 Declared in <functional>.

 Produces a function object from:
A callable entity.
A specification of which arguments are to be bound.

functionObject std::bind(callableEntity,
1stArgBinding,
2ndArgBinding,
…
nthArgBinding);

Placeholders allow mapping from arguments for bind’s return
value to callable object arguments.
 _n specifies the nth argument passed to the function object

returned by bind.

The information on this page is likely to make sense only after examples have been
presented.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 214

bind Basics
int f(int x, int y);

auto bf = std::bind(f, 10, _1); // same as std::bind1st(f, 10)

int val = bf(99); // call to bound function

Function Object returned from std::bind

f

f’s 2nd parameter

f’s 1st parameter10

_1

Function Object returned from std::bind

f

f’s 2nd parameter

f’s 1st parameter10

_199

val

Placeholders or formal parameter names are shown in black just inside the box that
represents the callable entity they apply to. Hence the outer box (representing the function
object returned by std::bind) has a placeholder name of _1.

_1 is actually in namespace std::placeholders, so the call to bind on this page won’t
compile as shown unless std::placeholders::_1 has been made visible (e.g., via a using
declaration). In practice, this is virtually always done in code that uses bind.

bf is not the same object as the one returned from bind, but in all likelihood, it’s been move-
constructed from the rvalue returned by bind.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 215

Binding Non-Static Member Functions
For non-static member functions, this comes from the first argument:
 Just like for bind1st and bind2nd.
class ButtonHandler { // from the std::function example
public:

…
int clicked(short upOrDown) const;

};

Button b;
ButtonHandler bh;
…
b.setCallback(std::bind(&ButtonHandler::clicked, bh, _1));

ButtonHandler::clicked

Function Object returned from std::bind

upOrDown

thiscopyOfbh

_1

_1 is actually in namespace std::placeholders, so the call to bind on this page won’t
compile as shown unless std::placeholders::_1 has been made visible (e.g., via a using
declaration). In practice, this is virtually always done in code that uses bind.

std::bind copies the arguments it binds, hence the use of the name copyOfbh inside the
function object returned by bind.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 216

Binding Non-Static Member Functions
bind supports this specified via:

Object:
ButtonHandler bh;
b.setCallback(std::bind(&ButtonHandler::clicked, bh, _1));

 Pointer:
ButtonHandler *pbh;
b.setCallback(std::bind(&ButtonHandler::clicked, pbh, _1));

 Smart Pointer:
std::shared_ptr<ButtonHandler> sp;
b.setCallback(std::bind(&ButtonHandler::clicked, sp, _1));

std::unique_ptr<ButtonHandler> up;
b.setCallback(std::bind(&ButtonHandler::clicked, std::ref(up), _1));

MyCustomSmartPtr<ButtonHandler> mcsp;
b.setCallback(std::bind(&ButtonHandler::clicked, mcsp, _1));

std::unique_ptr must be wrapped by std::ref when bound, because std::unique_ptr isn’t
copyable. (It’s only movable.)

Any smart pointer will work with bind as long as it defines operator* in the conventional
manner, i.e., to return a reference to the pointed-to object. (This implies that std::weak_ptr
won’t work with bind.)

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 217

Binding Beyond the 2nd Argument
Binding beyond the 2nd argument is easy:

class Point {
public:

…
void translate(int deltaX, int deltaY);

};

std::vector<Point> vp;
…

std::for_each(// translate points
vp.begin(), vp.end(), // in vp by (10, 20);
std::bind(&Point::translate, _1, 10, 20) // note that deltaY

); // is 3rd arg

 bind’s placeholder arguments passed by reference, so this loop
modifies Points in vp, not copies of them.

Arguments corresponding to bind placeholders are passed using perfect forwarding.

_1 is actually in namespace std::placeholders, so the call to bind on this page won’t
compile as shown unless std::placeholders::_1 has been made visible (e.g., via a using
declaration). In practice, this is virtually always done in code that uses bind.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 218

bind and Adapters
Unlike bind1st and bind2nd, bind needs no adapters:

class Point {
public:

…
void setColor(Color c);

};

std::forward_list<Point> flp;
…

// without bind
std::for_each(

flp.begin(), flp.end(),
std::bind2nd(std::mem_fun_ref(&Point::setColor), green)

);

// with bind
std::for_each(flp.begin(), flp.end(),

std::bind(&Point::setColor, _1, green));

_1 is actually in namespace std::placeholders, so the call to bind on this page won’t
compile as shown unless std::placeholders::_1 has been made visible (e.g., via a using
declaration). In practice, this is virtually always done in code that uses bind.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 219

bind and function
bind’s result often stored in a function object:

class Button: public SomeGUIFrameworkBaseClass { // from
public: // std::function

typedef std::function<void(short)> CallbackType; // discussion

void setCallback(const CallbackType& cb)
{ clickHandler = cb; }

…

private:
CallbackType clickHandler;

};

class ButtonHandler { // from
public: // earlier

int clicked(short upOrDown) const;
};

Button b;
ButtonHandler bh;
…
b.setCallback(std::bind(&ButtonHandler::clicked, bh, _1));

_1 is actually in namespace std::placeholders, so the call to bind on this page won’t
compile as shown unless std::placeholders::_1 has been made visible (e.g., via a using
declaration). In practice, this is virtually always done in code that uses bind.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 220

Fun With bind
bind allows reordering and duplicating arguments:

void f(int a, int b, int c);
int x, y, z;
…
std::function<void(int, int)> f1 = std::bind(f, _1, _1, _2);
f1(x, y);

std::function<void(int, int, int)> f2 = std::bind(f, _3, _2, _1);
f2(x, y, z);

f

Function Object returned from std::bind

b

a_1

c_2y

x

f

Function Object returned from std::bind

b

a

c

_2y

_1x

_3z

These diagrams are a little misleading, because they don’t show the std::function objects
that wrap the objects returned by std::bind.

_1, _2, and _3 are actually in namespace std::placeholders, so the calls to bind on this page
won’t compile as shown unless std::placeholders::_1 (and similarly for _2 and _3) have
been made visible (e.g., via a using declaration). In practice, this is virtually always done
in code that uses bind.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 221

Lambdas vs. bind
Both lambdas and bind create function objects:

std::for_each(vp.begin(), vp.end(),
std::bind(&Point::translate, _1, 10, 20));

std::for_each(vp.begin(), vp.end(),
[](Point& p) { p.translate(10, 20); });

b.setCallback(std::bind(&ButtonHandler::clicked, bh, _1));

b.setCallback([=](short upOrDown) { bh.clicked(upOrDown); });

std::function<void(int, int, int)> f2 = std::bind(f, _3, _2, _1);

std::function<void(int, int, int)> f2 = [](int a, int b, int c) { f(c, b, a); };

Many people find lambdas clearer.

No _1, _2, etc.

All the examples on this page are taken from the foregoing bind discussion.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 222

Lambdas vs. bind
Lambdas always clearer when more than simple binding needed:

class Person {
public:

std::size_t age() const;
…

};

std::vector<Person> vp;
…
std::partition(vp.begin(), vp.end(),

[](const Person& p) { return p.age() < 21 || p.age() > 65; }
);

std::partition(vp.begin(), vp.end(),
std::bind (std::logical_or<bool>(),

std::bind(std::less<std::size_t>(),
…_1…, // ???
21),

std::bind(std::greater<std::size_t>(),
…_1…, // ???
65)

)
);

As far as I know, there is no way to use bind with the call to partition, because there is no
way to specify that _1 for the outer call to bind maps to _1 for the other two calls to bind.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 223

Lambdas vs. bind
Lambdas typically generate better code.

 Calls through bind involve function pointers ⇒ no inlining.

 Calls through closures allow full inlining.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 224

bind Summary
 Generalizes bind1st and bind2nd (which are now deprecated).

No need for ptr_fun, mem_fun, mem_fun_ref, or std::mem_fn.

 Results often stored in function objects.

 Lambdas typically preferable.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 225

New Algorithms for C++0x
R is a range, e is an element, p is a predicate:

all_of is p true for all e in R?
any_of is p true for any e in R?
none_of is p true for no e in R?

find_if_not find first e in R where p is false

copy_if copy all e in R where p is true
copy_n copy first n elements of R

iota assign all e in R increasing values starting with v

minmax return pair(minVal, maxVal) for given inputs
minmax_element return pair(min_element, max_element) for R
min/max/minmax return values.
min_element/max_element/minmax_element return iterators.

The descriptions for minmax and minmax_element are different, because minmax is
overloaded to take individual objects or an initializer_list, but not a range.
minmax_element accepts only ranges.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 226

New Algorithms for C++0x
R is a range, e is an element, p is a predicate, v is a value:

partition_copy copy all e in R to 1 of 2 destinations per p(e)
is_partitioned is R partitioned per p?
partition_point find first e in R where p(e) is false

is_sorted is R sorted?
is_sorted_until find first out-of-order e in R

is_heap do elements in R form a heap?
is_heap_until find first out-of-heap-order e in R

move like copy, but each e in R is moved
move_backward like copy_backward, but each e in R is moved

 std::move_iterator turns copying algorithms into moves, e.g.:
std::copy_if(std::move_iterator<It>(b), // ≡ std::copy_if(b, e, p),

std::move_iterator<It>(e), // but moves instead of
p); // copies

There is no actual need for std::move and std::move_backward, because their effects can be
achieved with copy, copy_backward, and move_iterators, but, per a comp.std.c++ posting
by Howard Hinnant, the committee felt that these two algorithms “might be used so
often, move versions of them should be provided simply for notational convenience.”

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 227

Extended C++98 Algorithms in C++0x
swap New overload taking arrays

min New overloads taking initializer lists

max New overloads taking initializer lists

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 228

Summary of Library Enhancements
 Initializer lists, emplacement, and move semantics added to

C++98 containers.

 TR1 functionality except mathematical functions adopted.

 forward_list is a singly-linked list.

 unique_ptr replaces auto_ptr.

 18 new algorithms.

There are some more subtle library changes in moving from C++03 to C++0x, e.g., function
objects used with STL algorithms in C++03 are generally prohibited from having side
effects, while in C++0x, some side effects are allowed. For example, in C++03, the
specification for accumulate says that “binary_op shall not cause side effects,” but in
[accumulate] (26.7.2/2 of N3290), the corresponding wording is “In the range [first,last],
binary_op shall neither modify elements nor invalidate iterators or subranges.”

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 229

Overview
 Introduction

 Features for Everybody

 Library Enhancements

 Features for Class Authors

 Features for Library Authors

 Yet More Features

 Further Information

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 230

Move Support
C++ sometimes performs unnecessary copying:

typedef std::vector<T> TVec;

TVec createTVec(); // factory function

TVec vt;
…
vt = createTVec(); // copy return value object to vt,

// then destroy return value object

createTVec
TVec

T T T … T T T

vt

T T T … T T T

The diagrams on this slide make up a PowerPoint animation.

Throughout this discussion, I use a container of T, rather than specifying a particular type,
e.g., container of string or container of int. The motivation for move semantics is largely
independent of the types involved, although the larger and more expensive the types are
to copy, the stronger the case for moving over copying.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 231

Move Support
Moving values would be cheaper:

TVec vt;
…
vt = createTVec(); // move data in return value object

// to vt, then destroy return value
// object

createTVec
TVec

T T T … T T T

vt

The diagrams on this slide make up a PowerPoint animation.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 232

Move Support
Appending to a full vector causes much copying before the append:

std::vector<T> vt;
...
vt.push_back(T object); // assume vt lacks

// unused capacity

vt T T T … T T T

T
 S

ta
te

T
 S

ta
te

T
 S

ta
te

T
 S

ta
te

T
 S

ta
te

T
 S

ta
te

T T T … T T T
T

 S
ta

te

T
 S

ta
te

T
 S

ta
te

T
 S

ta
te

T
 S

ta
te

T
 S

ta
te

T
T

 S
ta

te

The diagrams on this slide make up a PowerPoint animation.

The new element has to be added to the new storage for the vector before the old elements
are destroyed, because it’s possible that the new element is a copy of an existing element,
e.g. vt.emplace_back(vt[0]).

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 233

Move Support
Again, moving would be more efficient:

std::vector<T> vt;
...
vt.push_back(T object); // assume vt lacks

// unused capacity

Other vector and deque operations could similarly benefit.

 insert, emplace, resize, erase, etc.

vt T T T … T T T

T
 S

ta
te

T
 S

ta
te

T
 S

ta
te

T
 S

ta
te

T
 S

ta
te

T
 S

ta
te

T T T … T T T T
T

 S
ta

te

The diagrams on this slide make up a PowerPoint animation.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 234

Move Support
Still another example:

template<typename T> // straightforward std::swap impl.
void swap(T& a, T& b)
{

T tmp(a); // copy a to tmp (⇒ 2 copies of a)
a = b; // copy b to a (⇒ 2 copies of b)
b = tmp; // copy tmp to b (⇒ 2 copies of tmp)

} // destroy tmp

a

b

tmp copy of a’s state

a’s state

b’s state

copy of b’s state

copy of a’s state

The diagrams on this slide make up a PowerPoint animation. That’s why there appears to
be overlapping text.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 235

Move Support
template<typename T> // straightforward std::swap impl.
void swap(T& a, T& b)
{

T tmp(std::move(a)); // move a’s data to tmp
a = std::move(b); // move b’s data to a
b = std::move(tmp); // move tmp’s data to b

} // destroy (eviscerated) tmp

a

b

tmpa’s state

b’s state

The diagrams on this slide make up a PowerPoint animation.

std::move is defined in <utility>.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 236

B
data

B

B

B

B

Move Support
Moving most important when:

Object has data in separate memory (e.g., on heap).

 Copying is deep.

Moving copies only object memory.

 Copying copies object memory + separate memory.

Consider copying/moving A to B:

copied

moved

Ac

Am

Ac
A

data
copied

copied
A data

Am
A

data
moved

B
data

Moving never slower than copying, and often faster.

The diagrams on this slide make up a PowerPoint animation. The upper line depicts
copying objects with and without separate memory, the lower line depicts moving such
objects.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 237

Performance Data
Consider these use cases again:

vt = createTVec(); // return/assignment

vt.push_back(T object); // push_back

Copy-vs-move performance differences notable:

All data are for a std::vector<Widget> of length n (where n = 100, 1000, or 10000, as
indicated), where a Widget contains a single std::string data member with a value that’s 29
characters in length. Data was collected on a Lenovo Z61t laptop.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 238

Move Support
Lets C++ recognize move opportunities and take advantage of them.

How recognize them?

How take advantage of them?

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 239

Lvalues and Rvalues
Lvalues are generally things you can take the address of:
Named objects.
 Lvalue references.
More on this term in a moment.

Rvalues are generally things you can’t take the address of.
 Typically unnamed temporary objects.

Examples:
int x, *pInt; // x, pInt, *pInt are lvalues

std::size_t f(std::string str); // str is lvalue, f's return is rvalue

f("Hello"); // temp string created for call
// is rvalue

std::vector<int> vi; // vi is lvalue
…
vi[5] = 0; // vi[5] is lvalue
Recall that vector<T>::operator[] returns T&.

The this pointer is a named object, but it’s defined to be an rvalue expression.

Per [expr.prim.general] (5.1.1/1 in N3290) literals (other than string literals) are rvalues,
too, but those types don’t define move operations, so they are not relevant for purposes of
this discussion. User-defined literals yield calls to literal operator functions, and the
temporaries returned from such functions are rvalues, so user-defined literals are rvalues,
too, but not rvalues any different from any other temporary returned from a function, so
they don’t require any special consideration.

Because f takes its std::string parameter by value, a copy or move constructor should be
called to initialize it. The call to f with "Hello" is thus supposed to generate a temporary,
which is then used to initialize the parameter str. In practice, the copy or move operation
will almost certainly be optimized away, and str will be initialized via std::string’s
constructor taking a const char*, but that does not change the analysis: f("Hello") generates
a temporary std::string object, at least conceptually.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 240

Moving and Lvalues
Value movement generally not safe when the source is an lvalue.

 The lvalue object continues to exist, may be referred to later:
TVec vt1;
…
TVec vt2(vt1); // author expects vt1 to be

// copied to vt2, not moved!

…use vt1… // value of vt1 here should be
// same as above

In some cases, it’s known that an lvalue object will never be referenced again, and in those
cases, C++0x permits lvalues to be implicitly moved from. Such objects are known in
(draft) C++0x as xvalues: lvalues that may be treated as rvalues. Probably the most
common manifestation of an xvalue is an object being returned from a function, where
C++0x permits the function’s return value to be move-constructed from an lvalue return
expression. As another example, an exception object may be move-constructed from an
lvalue throw operand.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 241

Moving and Rvalues
Value movement is safe when the source is an rvalue.

 Temporaries go away at statement’s end.
No way to tell if their value has been modified.

TVec vt1;

vt1 = createTVec(); // rvalue source: move okay

auto vt2 { createTVec() }; // rvalue source: move okay

vt1 = vt2; // lvalue source: copy needed

auto vt3(vt2); // lvalue source: copy needed

std::size_t f(std::string str); // as before

f("Hello"); // rvalue (temp) source: move okay

std::string s("C++0x");

f(s); // lvalue source: copy needed

In the example declaring/defining vt2, the move could be optimized away (as could the
copy in C++98), but that doesn’t change the fact that the source is an rvalue and hence a
move could be used instead of a copy.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 242

Rvalue References
C++0x introduces rvalue references.

 Syntax: T&&

 “Normal” references now known as lvalue references.

Rvalue references behave similarly to lvalue references.

Must be initialized, can’t be rebound, etc.

Rvalue references identify objects that may be moved from.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 243

Reference Binding Rules
Important for overloading resolution.

As always:

 Lvalues may bind to lvalue references.

 Rvalues may bind to lvalue references to const.

In addition:

 Rvalues may bind to rvalue references to non-const.

 Lvalues may not bind to rvalue references.
Otherwise lvalues could be accidentally modified.

General rules governing reference binding are in [dcl.init.ref] (8.5.3 in N3290), and rules
governing the interaction of reference binding and overloading resolution are in
[over.ics.ref] (13.3.3.1.4 in N3290) and [over.ics.rank] (13.3.3.2 in N3290, especially
13.3.3.2/3 which states that in case of a tie between binding to an lvalue reference or an
rvalue reference, rvalues preferentially bind to rvalue references. A tie can occur only
when one function takes a parameter of type const T& and the other a type of const T&&,
because rvalues can’t bind at all to non-const T& parameters, and a non-const rvalue
would prefer to bind to a T&& parameter over a const T& parameter, because the former
would not require the addition of const.

There was a time in draft C++0x when lvalues were permitted to bind to rvalue references,
and some compilers (e.g., gcc 4.3 and 4.4 (but not 4.5), VC10 beta 1 (but not beta 2 or
subsequent releases)) implemented this behavior. This is sometimes known as "version 1
of rvalue references." Motivated by N2812, the rules were changed such that lvalues may
not bind to rvalue references, sometimes called "version 2 of rvalue references."
Developers need to be aware that some older compilers supporting rvalue references may
implement the "version 1" rules instead of the version 2 rules.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 244

Rvalue References
Examples:

void f1(const TVec&); // takes const lvalue ref

TVec vt;

f1(vt); // fine (as always)
f1(createTVec()); // fine (as always)

void f2(const TVec&); // #1: takes const lvalue ref
void f2(TVec&&); // #2: takes non-const rvalue ref

f2(vt); // lvalue ⇒ #1
f2(createTVec()); // both viable, non-const rvalue ⇒ #2

void f3(const TVec&&); // #1: takes const rvalue ref
void f3(TVec&&); // #2: takes non-const rvalue ref

f3(vt); // error! lvalue
f3(createTVec()); // both viable, non-const rvalue ⇒ #2

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 245

Rvalue References and const
C++ remains const-correct:

 const lvalues/rvalues bind only to references-to-const.

But rvalue-references-to-const are essentially useless.

 Rvalue references designed for two specific problems:
Move semantics
Perfect forwarding

 C++0x language rules carefully crafted for these needs.
rvalue-refs-to-const not considered in these rules.

 const T&&s are legal, but not designed to be useful.
Uses already emerging :-)

The crux of why rvalue-references-to-const are not useful is the special handling accorded
T&& parameters in [temp.deduct.call] (14.8.2.1/3 in N3290): “If P is an rvalue reference to a
cv-unqualified template parameter [i.e. T&&] and the argument is an lvalue, the type
‘lvalue reference to A’ [i.e., T&] is used in place of A for type deduction.” This hack
applies only to T&& parameters, not const T&& parameters.

The emerging use for const T&& function template parameters is to allow binding lvalues
while prohibing binding rvalues, e.g., from [function.objects] (20.8/2 in N3290):

template <class T> reference_wrapper<T> ref(T&) noexcept;
template <class T> reference_wrapper<const T> cref(const T&) noexcept;

template <class T> void ref(const T&&) = delete;
template <class T> void cref(const T&&) = delete;

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 246

Rvalue References and const
Implications:

 Don't declare const T&& parameters.
You wouldn’t be able to move from them, anyway.
Hence this (from a prior slide) rarely makes sense:

void f3(const TVec&&); // legal, rarely reasonable

 Avoid creating const rvalues.
They can’t bind to T&& parameters.
E.g., avoid const function return types:
This is a change from C++98.
class Rational { … };

const Rational operator+(const Rational&, // legal, but
const Rational&); // poor design

Rational operator+(const Rational&, // better design
const Rational&);

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 247

Distinguishing Copying from Moving
Overloading exposes move-instead-of-copy opportunities:

class Widget {
public:

Widget(const Widget&); // copy constructor
Widget(Widget&&); // move constuctor

Widget& operator=(const Widget&); // copy assignment op
Widget& operator=(Widget&&); // move assignment op
…

};

Widget createWidget(); // factory function

Widget w1;

Widget w2 = w1; // lvalue src ⇒ copy req’d

w2 = createWidget(); // rvalue src ⇒ move okay

w1 = w2; // lvalue src ⇒ copy req’d

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 248

Implementing Move Semantics
Move operations take source’s value, but leave source in valid state:

class Widget {
public:

Widget(Widget&& rhs)
: pds(rhs.pds) // take source’s value
{ rhs.pds = nullptr; } // leave source in valid state
Widget& operator=(Widget&& rhs)
{

delete pds; // get rid of current value
pds = rhs.pds; // take source’s value
rhs.pds = nullptr; // leave source in valid state
return *this;

}
…

private:
struct DataStructure;
DataStructure *pds;

};
Easy for built-in types (e.g., pointers). Trickier for UDTs…

:Widget
:DataStructure

A move operation needs to do three things: get rid of the destination’s current value,
move the source’s value to the destination, and leave the source in a valid state. For UDTs,
memberwise move is the way to achieve all three. For types managing primitive types
(e.g., pointers, semaphores, etc.), their move operations have to do these things manually.

A generic, “clever” (i.e., suspicious) way to implement move assignment for a type T is
T& operator=(T&& rhs) { T(rhs).swap(*this); return *this; }

This has the effect of swapping the contents of *this and rhs. The idea is that because rhs is
an rvalue reference, it’s bound to an rvalue, and that rvalue will be destroyed at the end of
the statement containing the assignment. When it is, the data formerly associated with
*this will be destroyed (e.g., resources will be released). The problem is that rhs may
actually correspond to an lvalue that has been explicitly std::move’d, and in that case, the
lvalue may not be destroyed until later than expected. That can be problematic. Details
can be found at http://thbecker.net/articles/rvalue_references/section_04.html and
http://cpp-next.com/archive/2009/09/your-next-assignment/ .

“UDT” = “User Defined Type”.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 249

Implementing Move Semantics
Widget’s move operator= fails given move-to-self:

Widget w;

w = std::move(w); // undefined behavior!

It may be harder to recognize, of course:
Widget *pw1, *pw2;
…
*pw1 = std::move(*pw2); // undefined if pw1 == pw2

C++0x likely to condone this.

 In contrast to copy operator=.

A fix is simple, if you are inclined to implment it:
Widget& Widget::operator=(Widget&& rhs)
{

if (this == &rhs) return *this; // or assert(this != &rhs);
…

}

The condoning of “self-move-assignment yields undefined behavior” is found at
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#1204. A discussion of the
issue can be found in the comments at the end of http://cpp-
next.com/archive/2009/09/making-your-next-move/ .

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 250

Implementing Move Semantics
Part of C++0x’s string type:

string::string(const string&); // copy constructor
string::string(string&&); // move constructor

An incorrect move constructor:
class Widget {
private:

std::string s;

public:
Widget(Widget&& rhs) // move constructor
: s(rhs.s) // compiles, but copies!
{ … }
…

};

 rhs.s an lvalue, because it has a name.
Lvalueness/rvalueness orthogonal to type!
 ints can be lvalues or rvalues, and rvalue references can, too.

s initialized by string’s copy constructor.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 251

Implementing Move Semantics
Another example:

class WidgetBase {
public:

WidgetBase(const WidgetBase&); // copy ctor
WidgetBase(WidgetBase&&); // move ctor
…

};

class Widget: public WidgetBase {
public:

Widget(Widget&& rhs) // move ctor
: WidgetBase(rhs) // copies!
{ … }
…

};

 rhs is an lvalue, because it has a name.
Its declaration as Widget&& not relevant!

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 252

Explicit Move Requests
To request a move on an lvalue, use std::move:

class WidgetBase { … };

class Widget: public WidgetBase {
public:

Widget(Widget&& rhs) // move constructor
: WidgetBase(std::move(rhs)), // request move

s(std::move(rhs.s)) // request move
{ … }

Widget& operator=(Widget&& rhs) // move assignment
{

WidgetBase::operator=(std::move(rhs)); // request move
s = std::move(rhs.s); // request move
return *this;

}
…

};

std::move turns lvalues into rvalues.
 The overloading rules do the rest.

The move assignment operator on this page fails to worry about move-to-self.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 253

Why move Rather Than Cast?
std::move uses implicit type deduction. Consider:

template<typename It>
void someAlgorithm(It begin, It end)
{

// permit move from *begin to temp, static_cast version
auto temp1 =

static_cast<typename std::iterator_traits<It>::value_type&&>(*begin);

// same thing, C-style cast version
auto temp2 = (typename std::iterator_traits<It>::value_type&&)*begin;

// same thing, std::move version
auto temp3 = std::move(*begin);

...

}

What would you rather type?

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 254

Implementing std::move
std::move is simple – in concept:

template<typename T>
T&& // return as an rvalue whatever
move(MagicReferenceType obj) // is passed in; must work with
{ // both lvalue/rvalues

return obj;
}

Between concept and implementation lie arcane language rules.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 255

Reference Collapsing in Templates
In C++98, given

template<typename T>
void f(T& param);

int x;

f<int&>(x); // T is int&

f is initially instantiated as
void f(int& & param); // reference to reference

C++98’s reference-collapsing rule says

 T& & ⇒ T&

so f’s instantiation is actually:
void f(int& param); // after reference collapsing

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 256

Reference Collapsing in Templates
C++0x’s rules take rvalue references into account:

 T& & ⇒ T& // from C++98

 T&& & ⇒ T& // new for C++0x

 T& && ⇒ T& // new for C++0x

 T&& && ⇒ T&& // new for C++0x

Summary:

 Reference collapsing involving a & is always T&.

 Reference collapsing involving only && is T&&.

These rules are defined by [dcl.ref] (8.3.2/6 in N3290).

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 257

std::move’s Return Type
To guarantee an rvalue return type, std::move does this:

template<typename T>
typename std::remove_reference<T>::type&&
move(MagicReferenceType obj)
{

return obj;
}

 Recall that a T& return type would be an lvalue!

Hence:
int x;

std::move<int&>(x); // calls remove_reference<int&>::type&& std::move(/*…*/)
// ⇒ int&& std::move(/*…*/)

Without remove_reference, move<int&> would return int&.

std::remove_reference is part of the type traits functionalityin C++0x. It turns both T& and
T&& types into T.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 258

std::move’s Parameter Type
Must be a non-const reference, because we want to move its value.

An lvalue reference doesn’t work.

 Rvalues can’t bind to them:
TVec createTVec(); // as before

TVec&& std::move(TVec& obj); // possible move
// instantiation

std::move(createTVec()); // error!

Note that this page shows move as a function, not a template.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 259

std::move’s Parameter Type
An rvalue reference doesn’t, either.

 Lvalues can’t bind to them.
TVec&& std::move(TVec&& obj); // possible move

// instantiation

TVec vt;

std::move(vt); // error!

What std::move needs:

 For lvalue arguments, a parameter type of T&.

 For rvalue arguments, a parameter type of T&&.

Note that this page shows move as a function, not a template.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 260

Why Not Just Overload?
Overloading could solve the problem:

template<typename T>
typename std::remove_reference<T>::type&& move(T& lvalue)
{ return static_cast<T&&>(lvalue); }

template<typename T>
typename std::remove_reference<T>::type&& move(T&& rvalue)
{ return static_cast<T&&>(rvalue); }

But the perfect forwarding problem would remain:

How forward n arguments to another function?
We’d need 2n overloads!

Rvalue references aimed at both std::move and perfect forwarding.

This slide assumes the C++98/C++03 rules for template argument deduction, i.e., that no
distinction is drawn between lvalue and rvalue arguments for purposes of determining T.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 261

T&& Parameter Deduction in Templates
Given

template<typename T>
void f(T&& param); // note non-const rvalue reference

T’s deduced type depends on what’s passed to param:
 Lvalue ⇒ T is an lvalue reference (T&)
 Rvalue ⇒ T is a non-reference (T)

In conjunction with reference collapsing:
int x;

f(x); // lvalue: generates f<int&>(int& &&),
// calls f<int&>(int&)

f(10); // rvalue: generates/calls f<int>(int&&)

TVec vt;

f(vt); // lvalue: generates f<TVec&>(TVec& &&),
// calls f<TVec&>(TVec&)

f(createTVec()); // rvalue: generates/calls f<TVec>(TVec&&)

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 262

Implementing std::move
std::move’s parameter is thus T&&:

template<typename T>
typename std::remove_reference<T>::type&&
move(T&& obj)
{

return obj;
}

This is almost correct. Problem:

 obj is an lvalue. (It has a name.)

move’s return type is an rvalue reference.

 Lvalues can’t bind to rvalue references.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 263

Implementing std::move
A cast eliminates the problem:

template<typename T>
typename std::remove_reference<T>::type&&
move(T&& obj)
{

using ReturnType =
typename std::remove_reference<T>::type&&;

return static_cast<ReturnType>(obj);
}

This is a correct implementation.

I believe (but have not yet confirmed) that it’s possible to avoid repeating std::move’s
return type in the body of the function by apply decltype to move itself:

template<typename T>
type std::remove_reference<T>::type&&
move(T&& obj)
{

using ReturnType = decltype(move(obj);

return static_cast<ReturnType>(obj);
}

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 264

T&& Parameters in Templates
Note that function templates with a T&& parameter need not
generate functions taking a T&& parameter!

template<typename T>
void f(T&& param); // as before

int x;

f(x); // still calls f<int&>(int&),
// i.e., f(int&)

f(10); // still calls f<int>(int&&),
// i.e., f(int&&)

TVec vt;

f(vt); // still calls f<TVec&>(TVec&),
// i.e., f(TVec&)

f(createTVec()); // still calls f<TVec>(TVec&&),
// i.e., f(TVec&&)

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 265

T&& Parameters in Templates
T&&-taking function templates should be read as “takes anything:”

template<typename T>
void f(T&& param); // takes anything: lvalue or rvalue,

// const or non-const

 Lvalues can’t bind to rvalue references, but param may bind to
an lvalue.
After instantiation, param’s type may be T&, not T&&.

 Important for perfect forwarding (described shortly).

T&& as a “takes anything” parameter applies only to templates!

 For functions, a && parameter binds only to non-const rvalues:
void f(Widget&& param); // takes only non-const rvalues

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 266

auto&& ≡ T&&
auto type deduction ≡ template type deduction, so an auto&&
variable’s type may be an lvalue reference:

int calcVal();

int x;

auto&& v1 = calcVal(); // deduce type from rvalue ⇒
// v1’s type is int&&

auto&& v2 = x; // deduce type from lvalue ⇒
// v2’s type is int&

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 267

Move is an Optimization of Copy
Move requests for copyable types w/o move support yield copies:

class Widget { // class w/o move support
public:

Widget(const Widget&); // copy ctor
};

class Gadget { // class with move support
public:

Gadget(Gadget&& rhs) // move ctor
: w(std::move(rhs.w)) // request to move w’s value
{ … }

private:
Widget w; // lacks move support

};

rhs.w is copied to w:

 std::move(rhs.w) returns an rvalue of type Widget.

 That rvalue is passed to Widget’s copy constructor.

Move requests on types that are not copyable but also lack move support will fail to
compile.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 268

Move is an Optimization of Copy
If Widget adds move support:

class Widget {
public:

Widget(const Widget&); // copy ctor
Widget(Widget&&); // move ctor

};

class Gadget { // as before
public:

Gadget(Gadget&& rhs)
: w(std::move(rhs.w)) { … } // as before

private:
Widget w;

};

rhs.w is now moved to w:
 std::move(rhs.w) still returns an rvalue of type Widget.
 That rvalue now passed to Widget’s move constructor.
Via normal overloading resolution.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 269

Move is an Optimization of Copy
Implications:

 Giving classes move support can improve performance even for
move-unaware code.
Copy requests for rvalues may silently become moves.

Move requests safe for types w/o explicit move support.
Such types perform copies instead.
E.g., all built-in types.

In short:

Give classes move support.

 Use std::move for lvalues that may safely be moved from.

Both move and copy operations may throw, and the issues associatied with exceptions in
move functions are essentially the same as those associated with copy functions. E.g., both
must implement at least the basic guarantee, both should document the guarantee they
offer, clients must take into account that such functions might throw, etc.

N2983 recommends that generic (i.e., template-based) code wishing to offer the strong
guarantee but that uses a move operation on an unknown type T offer a conditional
guarantee: the generic code offers the strong guarantee only if T’s version of the move
operation offers the strong (or nothrow) guarantee. This approach is viable for generic
code using any unknown operation, however; there is nothing move-specific about it.

N2983 also explains how std::move_if_noexcept can be used in the tiny corner case of (1)
legacy code offering the strong guarantee (2) that is being revised to replace copy
operations known to offer the strong guarantee (3) with move operations not known to
offer that guarantee. std::move_if_noexcept on an object of type T is like std::move on that
object, except it performs a copy instead of a move unless the relevant T move operation is
known to not throw.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 270

Implicitly-Generated Move Operations
Move constructor and move operator= are “special: ”

 Generated by compilers under appropriate conditions.

Conditions:

 All data members and base classes are movable.
Implicit move operations move everything.
Most types qualify:
All built-in types (move ≡ copy).
Most standard library types (e.g., all containers).

 Generated operations likely to maintain class invariants.
No user-declared copy or move operations.
Custom semantics for any ⇒ default semantics inappropriate.
Move is an optimization of copy.

No user-declared destructor.
Often indicates presence of implicit class invariant.

Library types that aren’t movable tend to be infrastructure-related, e.g., (to quote from a
Daniel Krügler post in the comp.std.c++ thread at http://tinyurl.com/3afblkw) “type_info,
error_category, all exception classes, reference_wrapper, all specializations from the
primary allocator template, weak_ptr, enable_shared_from_this, duration, time_point, all
iterators / iterator adaptors I am aware of, local::facet, locale::id, random_device,
seed_seq, ios_base, basic_istream<charT,traits>::sentry,
basic_ostream<charT,traits>::sentry, all atomic types, once_flag, all mutex types,
lock_guard, all condition variable types.”

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 271

Destructors and Implicit Class Invariants
class Widget {
private:

std::vector<int> v;
std::set<double> s;
std::size_t sizeSum;

public:
~Widget() { assert(sizeSum == v.size()+s.size()); }
...

};

If Widget had implicitly-generated move operations:
{

std::vector<Widget> vw;
Widget w;
... // put stuff in w’s containers
vw.push_back(std::move(w)); // move w into vw
... // no use of w

} // assert fires!

User-declared dtor ⇒ no compiler-generated move ops for Widget.

The assertion would fire, because the moved-from w would have empty containers
(presumably), but sizeSum would continue to have a value corresponding to the
containers’ pre-move sizes.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 272

Implicitly-Generated Move Operations
Examples:

class Widget1 { // copyable & movable type
private:

std::u16string name; // copyable/movable type
long long value; // copyable/movable type

public:
explicit Widget1(std::u16string n);

}; // implicit copy/move ctor;
// implicit copy/move operator=

class Widget2 { // copyable type; not movable
private:

std::u16string name;
long long value;

public:
explicit Widget2(std::u16string n);
Widget2(const Widget2& rhs); // user-declared copy ctor

}; // ⇒ no implicit move ops;
// implicit copy operator=

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 273

Custom Moving ⇒ Custom Copying
Declaring a move operation prevents generation of copy operations.

 Custom move semantics ⇒ custom copy semantics.
Move is an optimization of copy.

class Widget3 { // movable type; not copyable
private:

std::u16string name;
long long value;

public:
explicit Widget3(std::u16string n);
Widget3(Widget3&& rhs); // user-declared move ctor

// ⇒ no implicit copy ops;
Widget3& // user-declared move op=

operator=(Widget3&& rhs); // ⇒ no implicit copy ops
};

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 274

Implicit Copy Operations Revisited
Rules for implicit copy operations can lead to trouble:

class ProblemSince1983 { // copyable class
public:

~ProblemSince1983() { delete p; } // implicit invariant:
// p owns *p

... // no copy ops
// declared

private:
int *p;

};

{ // some scope
ProblemSince1983 prob1;
...
ProblemSince1983 prob2(prob1);
...

} // double delete!

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 275

Implicit Copy Operations Revisited
Ideally, rules for copying would mirror rules for moving, i.e.,

 Declaring a custom move op ⇒ no implicit copy ops.
Already true.

 Declaring any copy op ⇒ no implicit copy ops.
Too big a change for C++0x.

 Declaring a destructor ⇒ no implicit copy ops.
Too big a change for C++0x.

However:

 Implicit copy ops deprecated in classes with user-declared copy,
move, or dtor operations.
Compilers may issue warnings.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 276

Implicit Copy Operations Revisited
class ProblemSince1983 { // as before
public:

~ProblemSince1983() { delete p; }
... // no copy ops

private:
int *p;

};

{ // as before
ProblemSince1983 prob1;
...
ProblemSince1983 prob2(prob1); // generation of copy

// ctor deprecated
...

} // still double delete

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 277

Copying, Moving, and Concurrency
Conceptually, copying an object reads it, but moving also writes it:

Widget w1;
Widget w2(w1); // read w1, but don’t modify it

Widget w3(std::move(w1)); // both read and modify w1

Conceptually, in an MT environment:

 Concurrent copying of an object is safe.

 Concurrent moving of an object is not safe.

Concurrent copies/moves possible only with lvalues:

 Rvalues visible only in thread where they’re created.

 Concurrent moves entail use of std::move in multiple threads.
std::moves on shared objects require manual synchronization.
E.g., use of std::lock_guard or std::unique_lock.

MT = “Multi-threaded”.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 278

Copying, Moving, and Concurrency
Conceptual reality is simplistic:

 Copying an object may modify it.
mutable data members.
Copy constructors with a non-const param (e.g., std::auto_ptr).
Copying shared objects may require manual synchronization.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 279

Move Operations
May exist even if copy operations don’t.
E.g., std::thread and std::unique_ptr moveable, but not copyable.
 “Move-only types”

 Types should provide when moving cheaper than copying.
Libraries use moves whenever possible (e.g., STL, Boost, etc.).

May lead to races in MT environments.
Synchronization your responsibility.
Applies to some copy operations, too.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 280

Beyond Move Construction/Assignment
Move support useful for other functions, e.g., setters:

class Widget {
public:

...
void setName(const std::string& newName)
{ name = newName; } // copy param

void setName(std::string&& newName)
{ name = std::move(newName); } // move param

void setCoords(const std::vector<int>& newCoords)
{ coordinates = newCoords; } // copy param

void setCoords(std::vector<int>&& newCoords)
{ coordinates = std::move(newCoords); } // move param
...

private:
std::string name;
std::vector<int> coordinates;

};

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 281

Construction and Perfect Forwarding
Constructors often copy parameters to data members:

class Widget {
public:

Widget(const std::string& n, const std::vector<int>& c)
: name(n), // copy n to name

coordinates(c) // copy c to coordinates
{}
...

private:
std::string name;
std::vector<int> coordinates;

};

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 282

Construction and Perfect Forwarding
Moves for rvalue arguments would be preferable:

std::string lookupName(int id);

int widgetID;
...
std::vector<int> tempVec; // used only for Widget ctor
...

Widget w(lookupName(widgetID), // rvalues args, but Widget
std::move(tempVec)); // ctor copies to members

Overloading Widget ctor for lvalue/rvalue combos ⇒ 4 functions.

 Generally, n parameters requires 2n overloads.
Impractical for large n.
Boring/repetitive/error-prone for smaller n.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 283

Construction and Perfect Forwarding
Goal: one function that “does the right thing:”

 Copies lvalue args, moves rvalue args.

Solution is a perfect forwarding ctor:

 Templatized ctor forwarding T&& params to members:
class Widget {
public:

template<typename T1, typename T2>
Widget(T1&& n, T2&& c)
: name(std::forward<T1>(n)), // forward n to string ctor

coordinates(std::forward<T2>(c)) // forward c to vector ctor
{}
...

private:
std::string name;
std::vector<int> coordinates;

};

As noted on a later slide, this doesn’t behave precisely like the non-template constructor,
because perfect forwarding isn’t perfect.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 284

Construction and Perfect Forwarding
Once again:
 A templatized ctor forwarding T&& params to members:
class Widget {
public:

template<typename T1, typename T2>
Widget(T1&& n, T2&& c)
: name(std::forward<T1>(n)), // forward n to string ctor

coordinates(std::forward<T2>(c)) // forward c to vector ctor
{}
...

private:
std::string name;
std::vector<int> coordinates;

};
Effect:
 Lvalue arg passed to n ⇒ std::string ctor receives lvalue.
 Rvalue arg passed to n ⇒ std::string ctor receives rvalue.
 Similarly for for c and std::vector ctor.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 285

Perfect Forwarding Beyond Construction
Useful for more than just construction, e.g., for setters:

class Widget { // revised
public: // example

...
template<typename T>
void setName(T&& newName) // forward
{ name = std::forward<T>(newName); } // newName

template<typename T>
void setCoords(T&& newCoords) // forward
{ coordinates = std::forward<T>(newCoords); } // newCoords
...

private:
std::string name;
std::vector<int> coordinates;

};

As noted on a later slide, this doesn’t behave precisely like the non-template setters,
because perfect forwarding isn’t perfect.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 286

Perfect Forwarding Beyond Construction
Despite T&& parameter, code fully type-safe:

 Type compatibility verified upon instantiation.
E.g., only std::string-compatible types valid in setName.

More flexible than a typed parameter.

 Accepts/forwards all compatible parameter types.
E.g., std::string, char*, const char* for setName.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 287

Perfect Forwarding Beyond Construction
Flexibility can be removed via static_assert (described soon):

template<typename T>
void setName(T&& newName)
{

static_assert(std::is_same< typename std::decay<T>::type,
std::string

>::value,
"T must be a [const] std::string"

);

name = std::forward<T>(newName);
};

[static_assert has not been introduced yet.]

std::decay<T>::type is, for non-array and non-function types, equivalent to
std::remove_cv<std::remove_reference<T>::type>::type.

std::enable_if could also be used, but static_assert seems simpler and clearer in this case.
std::enable_if would remove setName from the overload set, while static_assert would be
evaluated only after setName had been selected as the overload to be called.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 288

std::forward
Consider again:

template<typename T>
void setName(T&& newName)
{ name = std::forward<T>(newName); }

 T a reference (i.e.,T is T&) ⇒ lvalue was passed to newName.
std::forward<T>(newName) should return lvalue.

 T a non-reference (i.e.,T is T) ⇒ rvalue was passed to newName.
std::forward<T>(newName) should return rvalue.

Reference-collapsing rules makes implementation easy:
template<typename T> // For lvalues (T is T&),
T&& std::forward(T&& param) // take/return lvalue refs.
{ // For rvalues (T is T),

return static_cast<T&&>(param); // take/return rvalue refs.
}

Real implementations more sophisticated; see Further Information.

Production implementations of std::forward prevent misuse by disabling implicit
argument deduction, thus forcing specification of T at the call site. That forces clients to
write

std::forward<T>(param)

instead of
std::forward(param)

The latter expression would always return an lvalue, because param has a name.

The usual std::forward implementation is:
template<typename T>
struct identity {

typedef T type;
};

template<typename T>
T&& forward(typename identity<T>::type&& param)
{ return static_cast<identity<T>::type&&>(param); }

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 289

Perfect Forwarding
 Applicable only to function templates.

 Preserves arguments’ lvalueness/rvalueness/constness when
forwarding them to other functions.

 Implemented via std::forward.

Perfect forwarding isn’t really perfect. There are several kinds of arguments that cannot be
perfectly forwarded, including (but not necessarily limited to):

• 0 as a null pointer constant.
• Names of function templates (e.g., std::endl and other manipulators).
• Braced initializer lists.
• In-class initialized const static data members lacking an out-of-class definition.
• Bit fields.

For details consult the comp.std.c++ discussion, “ Perfect Forwarding Failure Cases,”
referenced in the Further Information section of the course.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 290

default Member Functions
The “special” member functions are implicity generated if used:
 Default constructor
Only if no user-declared constructors.
 Destructor
 Copy operations (copy constructor, copy operator=)
Only if move operations not user-declared.
Move operations (move constructor, move operator=)
Only if copy operations not user-declared.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 291

default Member Functions
Generated versions are:
 Public
 Inline
Non-explicit

defaulted member functions have:

 User-specified declarations with the usual compiler-generated
implementations.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 292

default Member Functions
Typical use: “unsuppress” implicitly-generated functions:

class Widget {
public:

Widget(const Widget&); // copy ctor prevents implicitly-
// declared default ctor and
// move ops

Widget() = default; // declare default ctor, use
// default impl.

Widget(Widget&&) = default; // declare move ctor, use
// default impl.

...

};

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 293

default Member Functions
Or change “normal” accessibility, explicitness, virtualness:

class Widget {
public:

virtual ~Widget() = default; // declare as virtual

explicit Widget(const Widget&) = default; // declare as explicit

private:
Widget& operator=(Widget&&) = default; // declare as private
...

};

Declaring a copy constructor explicit changes its behavior in odd ways, e.g., in the code
above, functions would not be permitted to return Widget objects by value, nor would
callers be allowed to bind rvalues to parameters of type const Widget&. I am unaware of
any practical uses for explicit copy constructors.

The class on this page is strange in another way. The declaration of the copy constructor
will suppress generation of the move operations, and the declaration of the move
assignment operator will suppress generation of the copy operations. I do not know of
any use for such a type.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 294

delete Functions
deleted functions are declared, but can’t be used.

Most common application: prevent object copying:
class Widget {

Widget(const Widget&) = delete; // declare and
Widget& operator=(const Widget&) = delete; // make uncallable
…

};

Note that Widget isn’t movable, either.
Declaring copy operations suppresses implicit move operations!
 It works both ways:

class Gadget {
Gadget(Gadget&&) = delete; // these also
Gadget& operator=(Gadget&&) = delete; // suppress copy
… // operations

};

“=delete” functions can’t be used in any way: they can’t be called, can’t have their address
taken, can’t be used in a sizeof expression, etc.

Template functions may be deleted. For example, this is how construction from rvalues is
prevented for std::reference_wrappers (e.g., as returned from std::ref).

A virtual function may be deleted, but if it is, all base and derived versions of that virtual
must also be deleted. That is, either all declarations of a virtual in a hierarchy are deleted
or none are.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 295

delete Functions
Not limited to member functions.

 Another common application: control argument conversions.
deleted functions are declared, hence participate in overload

resolution:
void f(void*); // f callable with any ptr type
void f(const char*) = delete; // f uncallable with [const] char*

auto p1 = new std::list<int>; // p1 is of type std::list<int>*
extern char *p2;
…
f(p1); // fine, calls f(void*)

f(p2); // error! f(const char*) unavailable

f("Fahrvergnügen"); // error!

f(u"Fahrvergnügen"); // fine (char16_t* ≠ char*)

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 296

Default Member Initialization
Default initializers for non-static data members may now be given:

class Widget {
private:

int x = 5;
std::string id = defaultID();

};

Widget w1; // w1.x initialized to 5,
// w1.id initialized per defaultID.

Uniform initialization syntax is also allowed:
class Widget { // semantically identical to above

…
private:

int x {5}; // "=" is not required,
std::string id = {defaultID()}; // but is allowed

};

Widget w2; // same as above

Direct initialization syntax (using parentheses) is not permitted for default member initialization.
Default member initialization values may depend on one another:

class Widget {
private:

int x { 15 };
int y { 2 * x };
...

};

Per N2756, everything valid as an initializer in a member initialization list should be valid as a
default initializer. In particular, non-static member function calls are valid, e.g., in the
initialization of Widget::id above, defaultID may be either a static or a non-static member function.
If a non-static member function is used, there could be issues of referring to data members that
have not yet been initialized.
In-class initialization of static data members continues to be valid only for const objects with static
initializers (i.e., in-class dynamic initialization is not valid). However, all “literal” types – not just
integral types – may be so initialized in C++0x. (Literal types are defined in [basic.types] (3.9/10 in
N3290).)

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 297

Default Member Initialization
Constructor initializer lists override defaults:

class Widget {
public:

Widget() = default;
explicit Widget(int xVal): x(xVal) {}

private:
int x = 5;
std::string id = defaultID();

};

Widget w3; // w3.x == 5, w3.id == defaultID()

Widget w4(-99); // w4.x == -99, w4.id == defaultID()

Default member initialization most useful when initialization
independent of constructor called.

 Eliminates redundant initialization code in constructors.

Use of a default member initializer renders the class/struct a non-aggregate, so, e.g.:
struct Widget {

int x = 5;

};

Widget w { 10 }; // error! Attempt to call a constructor taking an int,
// but Widget has no such constructor

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 298

Delegating Constructors
Consider a class with several constructors:

class Base {
public:

explicit Base(int);
…

};
class Widget: public Base { // 4 constructors
public:

Widget();
explicit Widget(double fl);
explicit Widget(int sz);
Widget(const Widget& w);

private:
static int calcBaseVal();
static const double defaultFlex = 1.5;
const int size;
long double flex;

};

Java has delegating constructors.

Base’s constructor in this (and subsequent) examples is explicit, just to show good default
style. None of the examples depends on it.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 299

Delegating Constructors
Often, implementations include redundancy:

Widget::Widget()
: Base(calcBaseVal()), size(0), flex(defaultFlex)
{

registerObject(this);
}

Widget::Widget(double fl)
: Base(calcBaseVal()), size(0), flex(fl)
{

registerObject(this);
}

Widget::Widget(int sz)
: Base(calcBaseVal()), size(sz), flex(defaultFlex)
{

registerObject(this);
}

Widget::Widget(const Widget& w)
: Base(calcBaseVal()), size(w.size), flex(w.flex)
{

registerObject(this);
}

The first two constructors are also redundant, in that they both contain “size(0)”. This
redundancy is removed in the forthcoming code using delegating constructors.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 300

Delegating Constructors
Delegating constructors call other constructors:

class Base { … }; // as before
class Widget: public Base {
public:

Widget(): Widget(defaultFlex) {} // #1 (calls #2)
explicit Widget(double fl): Widget(0, fl) {} // #2 (calls #5)
explicit Widget(int sz): Widget(sz, defaultFlex) {} // #3 (calls #5)
Widget(const Widget& w): Widget(w.size, w.flex) {} // #4 (calls #5)

private:
Widget(int sz, double fl) // #5 (this is new)
: Base(calcBaseVal()), size(sz), flex(fl)
{ registerObject(this); }
static int calcBaseVal();
static const double defaultFlex = 1.5;
const int size;
long double flex;

};

A constructor that delegates to another constructor may not do anything else on its
member initialization list.

A constructor that delegates to itself (directly or indirectly) yields an “ill-formed”
program.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 301

Delegating Constructors
Delegation independent of constructor characteristics.

 Delegator and delegatee may each be inline, explicit,
public/protected/private, etc.

 Delegatees can themselves delegate.

 Delegators’ code bodies execute when delegatees return:
class Widget: public Base {
public:

Widget(const Widget& w): Widget(w.size, w.flex)
{

makeLogEntry("Widget copy constructor");
}
...

private:
Widget(int sz, double fl); // as before
...

};

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 302

Inheriting Constructors
using declarations can now be used with base class constructors:

class Base {
public:

explicit Base(int);
void f(int);

};

class Derived: public Base {
public:

using Base::f; // okay in C++98 and C++0x

using Base::Base; // okay in C++0x only; causes implicit
// declaration of Derived::Derived(int),
// which, if used, calls Base::Base(int)

void f(); // overloads inherited Base::f
Derived(int x, int y); // overloads inherited Base ctor

};

Derived d1(44); // okay in C++0x due to ctor inheritance

Derived d2(5, 10); // normal use of Derived::Derived(int, int)

using declarations for constructors only declare inherited constructors, they don’t define
them. Such constructors are defined only if used.

If the derived class declares a constructor with the same signature as a base class
constructor, that specific base class constructor is not inherited. This is the same rule for
non-constructors.

Inherited constructors retain their exception specifications and whether they are explicit or
constexpr.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 303

Inheriting Constructors
“Inheritance” ⇒ new implicit constructors calling base class versions.

 The resulting code must be valid.
class Base {
private:

explicit Base(int);
};

class Derived: public Base {
public:

using Base::Base;
};

Derived d(10); // error! calls Derived(int), which calls
// Base(int), which is private

The error is diagnosed at the point of use of the inheriting constructor (i.e., the declaration
of d).

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 304

Inheriting Constructors
Inheriting constructors into classes with data members risky:

class Base {
public:

explicit Base(int);
};

class Derived: public Base {
public:

using Base::Base;

private:
std::u16string name;
int x, y;

};

Derived d(10); // compiles, but d.name is
// default-initialized, and
// d.x and d.y are uninitialized

It’s not quite true that Derived::x and Derived::y are uninitialed. Rather, they are treated as
if they are not mentioned on the member initialization list of the inherited constructor. If
the Derived object is of static or thread storage duration, its x and y data members would
be initialized to zero.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 305

Inheriting Constructors
Default member initializers can mitigate the risk:

class Base { … }; // as before

class Derived: public Base {
public:

using Base::Base;

private:
std::u16string name = "Uninitialized";
int x = 0, y = 0;

};

Derived d(10); // d.name == "Uninitialized",
// d.x == d.y == 0

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 306

Summary of Features for Class Authors
 Rvalue references facilitate move semantics and perfect

forwarding.

 =default yields default body for user-declared special functions.

 =delete makes declared functions unusable.

 All data members may have default initialization values.

 Delegating constructors call other constructors.

 Inherited constructors come from base classes.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 307

Overview
 Introduction

 Features for Everybody

 Library Enhancements

 Features for Class Authors

 Features for Library Authors

 Yet More Features

 Further Information

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 308

Static Assertions
Generate user-defined diagnostics when compile-time tests fail:

static_assert(sizeof(void*)==sizeof(long),
"Pointers and longs are different sizes");

Valid anywhere a declaration is:

 Global/namespace scope.

 Class scope.

 Function/block scope.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 309

Static Assertions
Especially useful with templates:

template<typename T>
void f(const T& obj)
{

static_assert(std::is_base_of<Widget,T>::value,
"T doesn't inherit from Widget");

…
}

template<short val>
class Gadget {

static_assert(1 <= val && val <= 10,
"val out of range (must be 1-10)");

…
};

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 310

Static Assertions
Diagnostics may be any kind of string literal:

static_assert(CHAR_BIT == 8, // ordinary
"chars don't have 8 bits \u2620"); // string

static_assert(CHAR_BIT == 8,
L"chars don't have 8 bits \u2620"); // wide string

static_assert(CHAR_BIT == 8,
u8"chars don't have 8 bits \u2620"); // UTF-8

static_assert(CHAR_BIT == 8,
u"chars don't have 8 bits \u2620"); // UTF-16

static_assert(CHAR_BIT == 8,
U"chars don't have 8 bits \u2620"); // UTF-32

Raw string literals are also valid.

Code point 2620 is the skull and crossbones symbol (☠).

When a code point specified via an escape sequence is part of a narrow string literal (e.g.,
the first example on this page), the resulting string literal contains as many bytes as is
needed for that code point. So if representing \2620 requires 2 bytes, 2 bytes will be
included as part of the narrow string literal.

Some static_assert conditions are so self-explanatory, it may be desirable to use them as
the diagnostic message, i.e., to default the diagnostic to being the text of the condition.
Such behavior can be offered via a suitable macro:

#define STATIC_ASSERT(condition) static_assert(condition, #condition)

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 311

explicit Conversion Functions
explicit now applicable to conversion functions:

class Widget {
public:

explicit Widget(int i); // C++98 and C++0x
…
explicit operator std::string() const; // C++0x only

};

Behavior analogous to that of constructors:
void fw(const Widget& w);
int i;
…
fw(i); // error!
fw(static_cast<Widget>(i)); // okay

void fs(const std::string& s);
Widget w;
…
fs(w); // error!
fs(static_cast<std::string>(w)); // okay

This slide shows uses of static_cast, but other cast syntaxes (i.e, C-style and functions-
style) would behave the same way.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 312

explicit Conversion Functions
explicit operator bool functions treated specially.

 Implicit use okay when “safe”(i.e., in “contextual conversions”):
template<typename T>
class SmartPtr {
public:

…
explicit operator bool() const;

};

SmartPtr<std::string> ps;

if (!ps) … // okay

long len = ps ? ps->size() : -1; // okay

SmartPtr<Widget> pw;

if (ps == pw) … // error!

int i = ps; // error!

The “explicitness” of an operator bool function is ignored in cases where the standard calls
for something being “contextually converted” to bool.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 313

Variadic Templates
Templates may now take arbitrary numbers and types of parameters:

template <class... Types> // std::tuple is in C++0x
class tuple;

template<class T, class... Args> // std::make_shared is
shared_ptr<T> // in C++0x

make_shared(Args&&... params);

Non-type parameters also okay:
template<typename T, std::size_t… Dims> // this template is
class MultiDimensionalArray; // not in C++0x

Whitespace around “…” not significant:
template <class ... Types> // Same meaning as
class tuple; // above

template<class T, class ...Args> // Ditto
shared_ptr<T>

make_shared(Args&&... params);

The declarations for tuple and make_shared are copied from draft C++0x, which is why
they use “class” instead of my preferred “typename” for template type parameters. In
C++0x, the function parameter pack is named “args”, but I’ve renamed it to “params” to
make it easier to distinguish orally from the template parameter “Args” (which is in draft
C++0x).

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 314

Parameter Packs
Two kinds:

 Template: hold variadic template parameters.

 Function: hold corresponding function parameters.
template <class... Types> // template param. pack
class tuple { … };

template<class T, class... Args> // template param. pack
shared_ptr<T>

make_shared(Args&&... params); // function param. pack

std::tuple<int, int, std::string> t1; // Types = int, int, std::string

auto p1 = std::make_shared<Widget>(10); // Args/params = int/int&&

int x;
const std::string s("Variadic Fun");
…
auto p2 = std::make_shared<Widget>(x, s); // Args/params =

// int&, const std::string&/
// int&, const std::string&

A function parameter pack declaration is a function parameter declaration containing a
template parameter pack expansion. It must be the last parameter in the function
parameter list.

Class templates may have at most one parameter pack, which must be at the end of the
template parameter list, but function templates, thanks to template argument type
deduction, may have multiple parameter packs, e.g. (from draft C++0x),

template<class... TTypes, class... UTypes>
bool operator==(const tuple<TTypes...>& t, const tuple<UTypes...>& u);

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 315

Parameter Packs
Manipulation based on recursive “first”/”rest” manipulation:

 Primary operation is unpack via …:
template<typename… Types> // declare list-
struct Count; // walking template

template<typename T, typename… Rest> // walk list
struct Count<T, Rest…> {

const static int value = Count<Rest…>::value +1;
};

template<> struct Count<> // recognize end of
{ // list

const static int value = 0;
};

auto count1 = Count<int, double, char>::value; // count1 = 3

auto count2 = Count<>::value; // count2 = 0

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 316

Parameter Packs
Count purely an exercise; C++0x’s sizeof… does the same thing:

template<typename… Types>
struct VerifyCount {

static_assert(Count<Types…>::value == sizeof…(Types),
"Count<T>::value != sizeof…(T)");

};

Unpack (…) and sizeof… only two operations for parameter packs.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 317

Variadic Function Templates
Example: type-safe printing of arbitrary objects:

void print() { std::cout << '\n'; }; // print 0 objects

template<typename T, // type of 1st object
typename... TRest> // types of the rest

void print(const T& obj, // 1st object
const TRest&... rest) // the rest of them

{
std::cout << obj << " "; // print 1st object
print(rest...); // print the rest

}

double p = 3.14;
std::string s("Vari");

print(-22, p, &p, s, "adic"); // -22 3.14 0x22ff40 Vari adic

 Gregor's/Järvi's article shows a compile-time-checked printf.
Ensures format string consistent with passed arguments.

This example passes everything by const T&, but perfect forwarding would probably be a
better approach.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 318

Unpacking Patterns
Unpacking uses the pattern of the expression being unpacked:

template<class T, class... Args>
shared_ptr<T> // add “&&” to each

make_shared(Args&&... params); // unpacked elem.

template<typename T, typename... TRest> // add “const” and
void print(const T& obj, const TRest&... rest) // “&” to each
{

std::cout << obj << " ";
print(rest...); // add nothing to

} // each elem’s name

Call to print expands to:
print(rest1, rest2, ..., restn);

The ellipsis is always at the end of the pattern.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 319

Unpacking Patterns
template<typename T> // return a normalized
T normalize(T&& obj); // copy of obj

template<typename F, typename… PTypes>
void normalizedCall(F func,

PTypes&&… params) // as before
{

func(normalize(params)…); // call normalize on
} // each unpacked elem

Call to func expands to:
func(normalize(params1), normalize(params2), ..., normalize(paramsn));

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 320

Variadic Class Templates
Foundational for TMP (template metaprogramming). Examples:

Numerical computations similar to Count:
Max size of types in a list (e.g., for a discriminated union).

 Type computations:
<type_traits> has template <class... T> struct common_type;

Object structure generation:
std::tuple<T1, T2, …, Tn> needs n fields, each of correct type.
 std::tuple<T1, T2, …, Tn> inherits from std::tuple<T2, T3,…, Tn>

Given a list of types, std::common_type returns the type in the list to which all types in the
list can be converted. If there is no such type, or if there is more than one such type, the
code won’t compile. For built-in types, the usual promotion and conversion rules apply in
their usual order, so, e.g., std::common_type<int, double>::type is double, because
int→double is preferable to double→int, although both are possible.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 321

Sketch of std::tuple
template <class... Types> // declare primary template
class tuple;

template<> class tuple<>{}; // for empty tuples

template<typename T, // class with data member
typename… TRest> // for 1st T in pack

class tuple<T, TRest…>: // inherits from class for
private tuple<TRest…> { // rest of pack

private:
T data; // data member of type T

public:
tuple() // default ctor; all types
: data() {}; // must be default-

// constructible

… // non-default ctors, etc.
};

Doing “data()” on the member initialization line ensure that built-in types are initialized to
zero (and pointers to null).

The implementation published by Douglas Gregor and Jaakko Järvi (see Further
Information section) declares data protected, but no justification is given, and real
implementations (e.g., in VC 10, gcc 4.5) declare it private. Hence my use of private here.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 322

Generated Hierarchy
std::tuple<int, char, std::string> t;

class tuple<int, char, std::string>:
private tuple<char, std::string> {

private:
int data;

};

class tuple<char, std::string>:
private tuple<std::string> {

private:
char data;

};

class tuple<std::string>:
private tuple<> {

private:
std::string data;

};

class tuple<> {};

The fact that data is private raises the question of how std::get is implemented. Among
tuple member functions not listed in this example is a public one returning a reference to
data. In Gregor’s and Järvi’s implementation, this function is called head. std::get<n> on a
tuple<T, TRest...> recursively walks up TRest, decreasing n at leach level until it’s 0. It
then returns the result of head for that class.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 323

decltype
Yields the type of an expression without evaluating it.

int x, *ptr;

decltype(x) i1; // i1’s type is int
decltype(ptr) p1; // p1’s type is int*

std::size_t sz = sizeof(decltype(ptr[44])); // sz = sizeof(int);
// ptr[44] not evaluated

Fairly intuitive, but some quirks, e.g., parentheses can matter:
struct S { double d; };
const S* p;
...
decltype(p->d) x1; // double

decltype((p->d)) x2; // const double&

Quirks rarely relevant (and can be looked up when necessary).

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 324

decltype
Primary use: template return types that depend on parameter types.
 Common for forwarding templates:

template<typename F, typename… Ts> // logAndInvoke
auto logAndInvoke(std::ostream& os, // returns what

F&& func, Ts&&… args) -> // func(args...) does.
decltype(func(args…)) // not quite right

{
os << std::chrono::system_clock::now(); // from new time lib
return func(args…); // not quite right

}

 Also in math-related libraries:
template<typename T1, typename T2> // mult’s return type
auto mult(T1&& a, T2&& b) -> // is same as a*b’s.
decltype(a * b) // not quite right

{
return a * b; // not quite right

}

For the code on this page to be correct, we need to add uses of std::forward in various
places. Hence the comments that say “not quite right”. The correct code is shown shortly.

There is no operator<< for std::chrono::time_point objects (the return type from
std::chrono::system_clock::now) in the standard library, so the statement involving
std::chrono::system_clock::now will not compile unless such an operator<< has been
explicitly declared.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 325

The Forwarding Problem
template<typename F, typename… Ts> // as before
auto logAndInvoke(std::ostream& os,

F&& func, Ts&&… args) ->
decltype(func(args…)) // not quite right

{
os << std::chrono::system_clock::now();
return func(args…); // not quite right

}

args... are lvalues, but logAndInvoke’s caller may have passed rvalues:

 Templates can distinguish rvalues from lvalues.

 logAndInvoke might call the wrong overload of func.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 326

The Forwarding Problem
Example:

class FontProcessor {
public:

void operator()(const Font&); // takes lvalue
void operator()(Font&&); // takes rvalue

};

Font getFont(); // function returning rvalue

logAndInvoke(std::cout,
FontProcessor(),
getFont()); // caller passes rvalue, but

// logAndInvoke calls
// FontProcessor::operator()
// taking lvalue

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 327

Perfect Forwarding Redux
Solution is perfect forwarding:

template<typename F, typename… Ts> // return type is
auto logAndInvoke(std::ostream& os, // same as func’s

F&& func, Ts&&… args) -> // on original args
decltype(func(std::forward<Ts>(args)…))

{
os << std::chrono::system_clock::now();
return func(std::forward<Ts>(args)...);

}

In the expression “std::forward<Ts>(args)…”, the pattern being unpacked is
“std::forward<Ts>(args)”, so “std::forward<Ts>(args)…” is equivalent to
“std::forward<Ts1>(args1), std::forward<Ts2>(args2), … , std::forward<Tsn>(argsn)”. This is
a parameter pack pattern that involves the simultaneous unpacking of two parameter
packs: one from the template parameter list (Ts) and one from the function parameter list
(args).

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 328

Perfect Forwarding Redux
A correct version of mult:

template<typename T1, typename T2>
auto mult(T1&& a, T2&& b) ->

decltype(std::forward<T1>(a) * std::forward<T2>(b))
{

return std::forward<T1>(a) * std::forward<T2>(b);
}

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 329

decltype vs. auto
To declare objects, decltype can replace auto, but more verbosely:

std::vector<std::string> vs;
…
auto i = vs.begin();

decltype(vs.begin()) i = vs.begin();

Only decltype solves the template-function-return-type problem.

auto is for everybody. decltype is primarily for template authors.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 330

Summary of Features for Library Authors
 static_assert checks its condition during compilation.

 explicit conversion functions restrict their implicit application.

 Variadic templates accept an unlimited number of arguments.

 decltype helps declare template functions whose return type
depends on parameter types.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 331

Overview
 Introduction

 Features for Everybody

 Library Enhancements

 Features for Class Authors

 Features for Library Authors

 Yet More Features

 Further Information

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 332

More C++0x Features
 Enum enhancements:
Forward declaration
Specification of underlying type
Enumerant names scoped to the enum
No implicit conversion to int

 Unrestricted unions (members may be any non-reference type).

 Time library supportings clocks, durations, points in time.

 Local types allowed as template arguments.

 C99 compatibility, e.g., long long, __func__, etc.

 Inline namespaces facilitate library versioning.

 Scoped allocators allow containers and their elements to use
different allocators, e.g., vector<string>.

The primary motivation for the time library was to be able to specify timeouts for the
concurrency API (e.g., sleep durations, timeouts for lock acquisition, etc.).

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 333

Still More C++0x Features
 Generalized constant expressions (constexpr).

 User-defined literals (e.g., 10_km, 30_sec).

 Relaxed POD type definition; new standard layout types.

 extern templates for control of implicit template instantiation.

 sizeof applicable to class data members alone (e.g., sizeof(C::m)).

 & and && member functions.

 Relaxed rules for in-class initialization of static data members.

 Contextual keywords for alignment control and constraining
virtual function overrides.

 Attributes express special optimization opportunities and
provide a standard syntax for platform-specific extensions.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 334

Removed and Deprecated Features
 auto as a storage class has been removed.

 export as a language feature has been removed.
export remains a keyword (with no semantics).

 register as a storage class has been deprecated.

 Exception specifications have been deprecated.
noexcept conceptually replaces the “throw()” specification.

 auto_ptr is deprecated. (Use unique_ptr instead.)

 bind1st/bind2nd are deprecated. (Use bind or lambdas instead.)

If an exception attempts to propagate beyond a noexcept(true) function, terminate is called.
This is different from what happens in C++03 if a “throw()” specifier is violated. In that
case, unexpected is invoked after the stack has been unwound.

From Herb Sutter’s 8 December 2010 blog post, “Trip Report: November 2010 C++
Standards Meeting:” “Destructor and delete operators [are] noexcept by default. ... Briefly,
every destructor will be noexcept by default unless a member or base destructor is
noexcept(false); you can of course still explicitly override the default and write
noexcept(false) on any destructor. ”

Herb Sutter argues that the primary advantage of noexcept over throw() is that noexcept
offers compilers additional optimization opportunities. From a 30 March 2010
comp.std.c++ posting: “noexcept enables optimizations not only in the caller but also in
the callees, so that the optimizer can assume that functions called in a noexcept function
and not wrapped in a try/catch are themselves noexcept without being declared such (e.g.,
C standard library functions are not so annotated). “

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 335

Overview
 Introduction

 Features for Everybody

 Library Enhancements

 Features for Class Authors

 Features for Library Authors

 Yet More Features

 Further Information

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 336

Further Information
FDIS for C++0x:

 Programming Languages — C++, Pete Becker (Ed.), 2011-04-11,
http://www.open-
std.org/jtc1/sc22/wg21/docs/papers/2011/n3290.pdf.

C++0x in General:

 “C++0x,” Wikipedia.

 C++0x - the next ISO C++ standard, Bjarne Stroustrup,
http://www.research.att.com/~bs/C++0xFAQ.html.

 “C++0X: The New Face of Standard C++,” Danny Kalev,
informIT.com,
http://www.informit.com/guides/content.aspx?g=cplusplus&seqNum=216.
Click “Guide Contents,” scroll to C++0X section, select topic.

Many sources listed in this section have no URLs, because they are easy to find via search
engine. The fewer URLs I publish, the fewer will be broken when target sites reorganize.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 337

Further Information
C++0x in General:

 “C++0X with Scott Meyers,” Software Engineering Radio (Audio),
5 April 2010.

 “An Overview of the Coming C++ (C++0x) Standard,” Matt
Austern and Lawrence Crowl, Google Tech Talk (Video),
31 October 2008.

 “Overview: C++ Gets an Overhaul,” Danny Kalev, DevX.com,
18 August 2008.

 “C++0x language feature checklist,” VC10 Slow Chat,
CodeGuru.com, December 2008,
http://www.codeguru.com/forum/showthread.php?t=4668939.
Discusses C++0x support in VC10.

 “Everything you ever wanted to know about nullptr,” Stephan
T. Lavavej, Channel 9 (Video), 19 October 2009.
Also discusses NULL, make_shared, perfect forwarding, auto.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 338

Further Information
C++0x in General:

 “Standard Library Changes in C++0x,” Van’s House, 12 January
2009, http://blogs.msdn.com/xiangfan/archive/2009/01/12/standard-
library-changes-in-c-0x.aspx.

 “The State of the Language: An Interview with Bjarne
Stroustrup,” Danny Kalev, DevX.com, 15 August 2008.

 Summary of C++0x Feature Availability in gcc and MSVC, Scott
Meyers, http://www.aristeia.com/C++0x/C++0xFeatureAvailability.htm.
Includes links to summaries for other compilers.

 “C++0x: Ausblick auf den neuen C++-Standard,” Bernhard
Merkle, heise Developer, 11 November 2008.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 339

Further Information
auto:

 “Lambdas, auto, and static_assert: C++0x Features in VC10, Part 1,”
Stephan T. Lavavej, Visual C++ Team Blog, 28 October 2008.

 C++ Templates, David Vandevoorde and Nicolai M. Josuttis,
Addison-Wesley, 2003, chapter 11, “Template Argument
Deduction.”
Covers type deduction rules for templates and auto.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 340

Further Information
Unicode Support:

 Pete Becker’s Roundhouse Consulting Bits and Pieces,
http://www.versatilecoding.com/bitsandpieces.html.

 “Prepare Yourself for the Unicode Revolution,” Danny Kalev,
DevX.com, 12 April 2007.

 The GNU C++ Library Documentation (section on codecvt),
http://gcc.gnu.org/onlinedocs/libstdc++/manual/codecvt.html.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 341

Further Information
Uniform Initialization Syntax:

 “Uniform and Convenient Initialization Syntax,” Danny Kalev,
DevX.com, 13 November 2008.

 “C++0x Initialization Lists,” Bjarne Stroustrup, Google Tech Talk
(Video), 21 February 2007.

 “Sequence Constructors Add C++09 Initialization Syntax to Your
Homemade Classes,” Danny Kalev, DevX.com, 12 March 2009.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 342

Further Information
Lambda Expressions:

 “Lambda Functions are Ready for Prime Time,” Danny Kalev,
DevX.com, 16 January 2009.

 “Lambdas, auto, and static_assert: C++0x Features in VC10, Part 1,”
Stephan T. Lavavej, Visual C++ Team Blog, 28 October 2008.

 “GCC C++0x Features Exploration,” Dean Michael Berris, C++
Soup!, 15 March 2009.

 “Lambdas, Lambdas Everywhere,” Herb Sutter, presentation at
PDC10, 29 October 2010,
http://channel9.msdn.com/Events/PDC/PDC10/FT13.
Shows many ways (some unconventional) to use lambdas.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 343

Further Information
Concurrency:

 C++ Concurrency in Action, Anthony Williams, Manning
Publications, Summer 2011 (anticipated).
Draft edition available at http://www.manning.com/williams/.

 “Simpler Multithreading in C++0x,” Anthony Williams,
DevX.com, 13 December 2007.

 Just Software Solutions Blog, Anthony Williams,
http://www.justsoftwaresolutions.co.uk/blog/.
Includes several “Multithreading in C++0x” tutorial posts.

 “Broken promises – C++0x futures,” Bartosz Milewski, Bartosz
Milewski’s Programming Café, 3 March 2009.

 “Thanks for Not Sharing, Or, How to Define Thread-Local
Data,” Danny Kalev, DevX.com, 13 March 2008.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 344

Further Information
Concurrency:

 “Getting C++ Threads Right,” Hans Boehm, Google Tech Talk
(Video), 12 December 2007.

 “Designing Multithreaded Programs in C++,” Anthony Williams,
ACCU 2009, 28 April 2009.
Slides from a conference presentation.

 “Concurrency in the Real World,” Anthony Williams, ACCU
2010, 14 April 2010.
Slides from a conference presentation.

 “Implementing Dekker’s algorithm with Fences,” Anthony
Williams, Just Software Solutions (blog), 27 July 2010.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 345

Further Information
Overviews of TR1:

 Scott Meyers’ TR1 Information Page,
http://www.aristeia.com/EC3E/TR1_info.html.
Includes links to proposal documents.

 The C++ Standard Library Extensions, Pete Becker, Addison-
Wesley, 2007, ISBN 0-321-41299-0.
A comprehensive reference for TR1.

 “The Technical Report on C++ Library Extensions,” Matthew H.
Austern, Dr. Dobb's Journal, June 2005.

 “The New C++ Not-So-Standard Library,” Pete Becker, C/C++
Users Journal, June 2005.

Boost:

 Boost C++ Libraries, http://www.boost.org/.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 346

Further Information
shared_ptr and weak_ptr (TR1 Versions):

 “Bad Pointers,” Pete Becker, C/C++ Users Journal, Sept. 2005.

 “More Bad Pointers,” Pete Becker, C/C++ Users Journal, Oct. 2005.

 “Weak Pointers,” Pete Becker, C/C++ Users Journal, Nov. 2005.

 Effective C++, Third Edition, Scott Meyers, Addison-Wesley, 2005.
Describes tr1::shared_ptr and uses it throughout the book.
TOC is attached.

 Smart Pointer Timings,
http://www.boost.org/libs/smart_ptr/smarttests.htm.
Compares performance of 5 possible implementations.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 347

Further Information
unique_ptr:

 “Who’s the Smartest of ‘Em All? Get to Know std::unique_ptr,”
Danny Kalev, DevX.com, 11 September 2008.

Pointer containers:

Not in C++0x. An alternative to containers of smart pointers.

 Boost.PointerContainer Documentation, Thorsten Ottosen,
http://www.boost.org/libs/ptr_container/.

 “Pointer Containers,” Thorsten Ottosen, Dr. Dobbs Journal,
October 2005.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 348

Further Information
Hash Tables (unordered_ containers) (TR1 Versions):

 “STL and TR1: Part III,” Pete Becker, C/C++ Users Journal,
February 2006.

 “Hash Tables for the Standard Library,” Matt Austern, C/C++
Users Journal Experts Forum, April 2002.

Regular Expressions (regex) (TR1 Version):

 “Regular Expressions,” Pete Becker, Dr. Dobb’s Journal, May
2006.

 “A TR1 Tutorial: Regular Expressions,” Marius Bancila,
CodeGuru.com, 2 July 2008.

 Boost.RegEx Documentation, John Maddock,
http://www.boost.org/libs/regex/doc/index.html.
Describes Boost’s RE library, on which TR1’s is based.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 349

Further Information
Tuples (TR1 Versions):

 “The Header <tuple>,” Pete Becker, C/C++ Users Journal, July
2005.

 “GCC C++0x Features Exploration,” Dean Michael Berris, C++
Soup!, 15 March 2009.
Shows use of tuple.

Fixed-Size Arrays (array):

 “std::array: The Secure, Convenient Option for Fixed-Sized
Sequences,” Danny Kalev, DevX.com, 11 June 2009.

 “STL and TR1: Part II,” Pete Becker, C/C++ Users Journal, January
2006.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 350

Further Information
Generalized Function Pointers (function) (TR1 Versions):

 “Generalized Function Pointers,” Herb Sutter, C/C++ Users
Journal, August 2003.

 “Generalizing Observer,” Herb Sutter, C/C++ Users Journal
Experts Forum, September 2003.

 Effective C++, Third Edition, Scott Meyers, Addison-Wesley, 2005.
Item 35 explains and demonstrates use of tr1::function.
The TOC is attached.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 351

Further Information
From TR1 to C++0x:

 “Improvements to TR1’s Facility for Random Number
Generation,” Walter E. Brown et al., 23 February 2006,
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n1933.pdf.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 352

Further Information
Rvalue References and Move Semantics:

 “A Brief Introduction to Rvalue References,” Howard E. Hinnant
et al., The C++ Source, 10 March 2008.
Details somewhat outdated.

 C++ Rvalue References Explained, Thomas Becker, June 2009,
http://thbecker.net/articles/rvalue_references/section_01.html.
Good explanations of std::move/std::forward implementations.

 “Rvalue References: C++0x Features in VC10, Part 2,” Stephan T.
Lavavej, Visual C++ Team Blog, 3 February 2009.

 “GCC C++0x Features Exploration,” Dean Michael Berris, C++
Soup!, 15 March 2009.

 “Howard’s STL / Move Semantics Benchmark,” Howard
Hinnant, C++Next, 13 October 2010.
Move-based speedup for std::vector<std::set<int>> w/gcc 4.0.1.
Reader comments give data for newer gccs, other compilers.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 353

Further Information
Rvalue References and Move Semantics:

 “Making Your Next Move,” Dave Abrahams, C++Next,
17 September 2009.

 “Your Next Assignment…,” Dave Abrahams, C++Next,
28 September 2009.
Correctness and performance issues for move operator=s.

 “Exceptionally Moving!,” Dave Abrahams, C++Next, 5 Oct. 2009.
Exception safety issues for move operations.

 “To move or not to move,” Bjarne Stroustrup, Document N3174 to
the C++ Standardization Committee, 17 October 2010.
Describes rules governing implicit move operations.

 “Class invariants and implicit move constructors (C++0x),”
comp.lang.c++ discussion initiated 14 August 2010.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 354

Further Information
Perfect Forwarding:

 “Onward, Forward!,” Dave Abrahams, C++Next, 7 Dec. 2009.

 “Perfect Forwarding Failure Cases,” comp.std.c++ discussion
initiated 16 January 2010.
Discusses argument types that can’t be perfectly forwarded.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 355

Further Information
Explicit conversion functions:

 “Use Explicit Conversion Functions to Avert Reckless Implicit
Conversions,” Danny Kalev, DevX.com, 9 October 2008.

Variadic Templates:

 “Variadic Templates for C++0x,” Douglas Gregor and Jaakko
Järvi, Journal of Object Technology, February 2008.

 “An Introduction to Variadic Templates in C++0x,” Anthony
Williams, DevX.com, 24 April 2009.

 “Variadic Templates,” BoostCon Wiki, http://tinyurl.com/mtpa66.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 356

Further Information
decltype:

 “decltype: C++0x Features in VC10, Part 3,” Stephan T. Lavavej,
Visual C++ Team Blog, 22 April 2009.

 “Clean up Function Syntax Mess with decltype,” Danny Kalev,
DevX.com, 8 May 2008.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 357

Further Information
Other Features:

 “C++0x Forward Enum Declarations Cut Down Compilation
Time and Dependencies,” Danny Kalev, DevX.com, 13 August
2009.

 “C++09 Attributes: Specify Your Constructs’ Unusual
Properties,” Danny Kalev, DevX.com, 14 May 2009.

 “Overriding Virtual Functions? Use C++0x Attributes to Avoid
Bugs,” Danny Kalev, DevX.com, 12 November 2009.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 358

Acknowledgements
Many, many, thanks to my pre-release materials’ reviewers:

 Stephan T. Lavavej

 Bernhard Merkle

 Stanley Friesen

 Leor Zolman

Hendrik Schober

Anthony Williams contributed C++0x concurrency expertise and use
of his just::thread C++0x threading library.

 Library web site: http://www.stdthread.co.uk/
Use http://www.stdthread.co.uk/sm20/ for a 20% discount.

Participants in comp.std.c++ provided invaluable information and
illuminating discussions.

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 359

Licensing Information
Scott Meyers licenses materials for this and other training courses
for commercial or personal use. Details:

 Commercial use: http://aristeia.com/Licensing/licensing.html

 Personal use: http://aristeia.com/Licensing/personalUse.html

Courses currently available for personal use include:

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 360

About Scott Meyers
Scott is a trainer and consultant on the design and
implementation of C++ software systems. His web
site,

http://www.aristeia.com/

provides information on:

 Training and consulting services

 Books, articles, other publications

 Upcoming presentations

 Professional activities blog

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 361

Download from Wow! eBook <www.wowebook.com>

Overview of the New C++ (C++0x)

Scott Meyers, Software Development Consultant © 2011 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2011 Scott Meyers, all rights reserved.
Slide 362

Download from Wow! eBook <www.wowebook.com>

