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Preface 

As a member of the IC Division at Mentor Graphics Corporation, I am fortunate 
to have worked with many bright, talented software engineers, developing very large 
systems. 

Back in 1985, Mentor Graphics became one of the first companies to attempt a truly 
large project in C++. Back then no one knew how to do that, and no one could have 
anticipated the cost overruns, slipped schedules, huge executables, poor performance, 
and incredibly expensive build times that a naive approach would inevitably produce. 

Many valuable lessons were learned along the way-knowledge obtained through bit
ter experience. There were no books to help guide the design process; object-oriented 
designs on this scale had never before been attempted. 

Ten years later, with a wealth of valuable experience under its belt, Mentor Graphics 
has produced several large software systems written in C++, and in doing so has 
paved the way for others to do the same without having to pay such a high price for 
the privilege. 

During my 13 years as a C (turned C++) Computer-Aided Design (CAD) software 
developer, I have seen over and over again that planning ahead invariably produces a 
higher-quality, more maintainable product. My emphasis at Mentor Graphics has been 
on helping to ensure that quality is an integral part of the design process from the very start. 
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In 1990 I developed the graduate course "Object-Oriented Design and Programming" 

at Columbia University. As the instructor of this course since 1991, I have had the 
opportunity to share many of the insights that we at Mentor Graphics gained during 
our industrial-strength software development efforts. Questions and feedback from 
literally hundreds of graduate students and professional programmers have helped me 
to crystallize many important concepts. This book is a direct result of that experience. 
To my knowledge, this is the first text that identifies development and quality issues 
that arise only in large C++ projects. I hope that this information will be as useful in 
your work as it is in mine. 

Audience 

Large-Scale C++ Software Design was written explicitly for experienced C++ soft
ware developers, system architects, and proactive quality-assurance professionals. 
This book is particularly appropriate for those involved in large development efforts 
such as databases, operating systems~ compilers, and frameworks. 

Developing a large-scale software system in C++ requires more than just a sound 
understanding of the logical design issues covered in most books on C++ program
ming. Effective design also requires a grasp of physical design concepts that, although 
closely tied to the technical aspects of development, include a dimension with which 
even expert professional software developers may have little or no experience. 

Yet most of the advice presented in this book also applies to small projects. It is typical 
for a person to start with a small project and then begin to take on larger and more 
challenging enterprises. Often the scope of a p.articular project will expand, and what 
starts out as a small project becomes a major undertaking. The immediate conse
quences of disregarding good practice in a large project, however, are far more severe 
than they are for disregarding good practice in a smaller project. 

This book unites high-level design concepts with specific c++ programming details 
to satisfy two needs: 

I. An object-oriented design book geared specifically to practical aspects of 
the c++ programming language. 

2. A C++ programming book describing how to use the C++ programming 
language to develop very large systems. 
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Make no mistake, this is an advanced text. This is not the book from which to learn 
C++ syntax for the first time, nor is it likely to expose you to the dark corners of the 
language. Instead, this book will show you how to use the full power of the C++ lan
guage in ways that scale well to very large systems. 

In short, if you feel that you know C++ well, but would like to understand more about 
how to use the language effectively on large projects, this book is for you. 

Examples in this Text 

Most people learn by example. In general, I have supplied examples that illustrate 
real-world designs. I have avoided examples that illustrate one point but have blatant 
errors in other aspects of the design. I have also tried to avoid examples that illustrate 
a detail of the language but serve no other usef~l purpose. 

Except where otherwise indicated, all examples in this text are intended to represent 
"good design." Examples presented in earlier chapters are therefore consistent with 
all practices recommended throughout the book. A disadvantage of this approach is 
that you may see code that is written differently from the code you are used to seeing, 
without yet knowing exactly why. I feel that being able to use all of the examples in 
the book for reference compensates for this drawback. 

There are two notable exceptions to this practice: comments and 'package prefixes. 
Comments for many of the examples in this text have simply been omitted for lack of 
space. Where they are presented, they are at best minimal. Unfortunately, this is one 
place where the reader is asked to "do as I say, not as I do"-at least in this book. Let 
the reader be assured that in practice I am scrupulous about commenting all interfaces 
as I write them (not after). 

The second exception is the inconsistent use of package prefixes in the early examples 
of the book. In a large project environment package prefixes are required, but they are 
awkward at first and take some getting used to. I have elected to omit the consistent use 
of registered package prefixes until after they are formally presented in Chapter 7, so as 
not to detract from the presentation of other important fundamental material. 

Many texts note that inline functions are used in examples for textual brevity when 
illustrating intended functionality. Since much of this book is directly related to orga
nizational issues such as when to inline, my tendency will be to avoid inline functions 
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in examples. If a function is declared i n 1 i n e, there is a justification for it beyond 
notational convenience. 

Developing large systems in C++ is a constant series of engineering trade-offs. There 
are almost no absolutes. It is tempting to make statements using words such as never 
and always. Such statements allow for a simplified presentation of the material. For 
the level of C++ programmers whom I expect will read this book, such sweeping 
statements would be challenged-and rightly so. To avoid getting side-tracked in such 
situations, I will state what is (almost) always true, and then provide a footnote or a 
pointer to the exceptional case. 

There are a variety of popular file name extensions used to distinguish C++ header 
files and C++ implementation files. For example: 

Header File Extensions: . h • h x x . H . h ++ . h h . h P P 

Implementation File Extensions: .c .cxx .c . c++ .cc .cpp 

Throughout the examples we consistently use the . h extension to identify C++ header 
files and the . c extension to identify C++ implementation files. In the text, we will 
frequently refer to header files as . h files and to implementation files as . c files. 
Finally, all of the examples in this text have been compiled and are syntactically 
correct using SUN'S version of CFRONT 3.0 running on SUN SPARC stations, as well as 
on HP700 series machines running their native C++ compiler. Of course, any errors are 
the sole responsibility of the author. 

A Road Map 

There is a lot of material to cover in this book. Not all readers will have the same 
background. I have therefore provided some basic (but essential) material in Chapter 
1 to help level the field. Expert C++ programmers may choose to skim this section or 
simply refer to it if needed. Chapter 2 contains a modest collection of software design 
rules that I would hope every experienced developer will quickly ratify. 

Chapter 0: Introduction. 
An overview of what lies in wait for the large-scale C++ software 
developer. 
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PART I: BASICS 

Chapter 1: Preliminaries. 
A review of basic language information, common design patterns, and 
style conventions used in this book. 

Chapter 2: Ground Rules. 
Important design practices that should be followed in any C++ project. 

The remainder of the text is divided into two main sections. The first, entitled "Physical 
Design Concepts," presents a sequence of important topics related to the physical 
structure of large systems. The material in these chapters (3 through 7) focuses on 
aspects of programming that will be entirely new to many readers, and cuts right to 
the bone of large program design. This section is presented "bottom up," with each 
chapter drawing on information developed in previous chapters. 

PART II: PHYSICAL DESIGN CONCEPTS 

Chapter 3: Components. 
The fundamental physical building blocks of a system. 

Chapter 4: Physical Hierarchy. 
The importance of creating a hierarchy of components with acyclic 
physical dependencies for testing, maintainability, and reuse. 

Chapter 5: Levelization. 
Specific techniques for reducing link-time dependencies. 

Chapter 6: Insulation. 
Specific techniques for reducing compile-time dependencies. 

Chapter 7: Packages. 
Extending the above techniques to yet larger systems. 

The final section, entitled "Logical Design Issues," addresses the conventional 
discipline of logical design in conjunction with physical design. These chapters (8 
through 10) address the design of a component as a whole, summarize the myriad 
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issues surrounding sensible interface design, and address implementation issues in the 

context of a large-project environment. 

PART III: LOGICAL DESIGN ISSUES 

Chapter 8: Architecting a Component. 
An overview of considerations important to the overall design of 
components. 

Chapter 9: Designing a Function . 
. A detailed survey of the issues involved in creating a component's 
functional interface. 

Chapter 10: Implementing an Object. 
Several organizational issues specific to the implementation of 
objects in a large-project environment. 

Topics found in the appendixes are referenced throughout the text. 
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Introduction 

Developing good C++ programs is not easy. Developing highly reliable and maintain
able software in C++ becomes even more difficult and introduces many new concepts 
as projects become larger. Just as experience gained from building single-family 
homes does not qualify a carpenter to erect a skyscraper, many techniques and prac
tices learned through experiences with smaller C++ projects simply do not scale well 
to larger development efforts. 

This book is about how to design very large, high-quality software systems. It is 
intende~ for experienced C++ software developers who strive to create highly main
tainable, highly testable software architectures. This book is not a theoretical 
approach to programming; it is a thorough, practical guide to success, drawing from 
years of experience of expert C++ programmers developing huge, multi-site systems. 
We will demonstrate how to design systems that involve hundreds of programmers, 
thousands of classes, and potentially millions of lines of C++ source code. 

This introduction considers some of the kinds of problems encountered when devel
oping large projects in C++, and provides a context for the groundwork we must do 
in the early chapters. In this introduction several terms are used without definition. 
Most of these terms should be understandable from context. In the chapters that fol
low, these terms are defined more precisely. The real payoff will come in Chapter 5, 
where we begin to apply specific techniques to reduce the coupling (i.e., the degree 
of interdependency) within our C++ systems. 
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0.1 From C to C++ 

The potential advantages of the object-oriented paradigm in managing the complexity 
of large systems are widely assumed. As of the writing of this book, the number of 
C++ programmers has been doubling every seven to nine months. 1 In the hands of 
experienced C++ programmers, C++ is a powerful amplifier of human skill and engi
neering talent. It is completely wrong, however, to think that just using C++ will 
ensure success in a large project. 

C++ is not just an extension of C: it supports an entirely new paradigm. The object
oriented paradigm is notorious for demanding more design effort and savvy than its 
procedural counterpart. C++ is more difficult to master than C, and there are innu
merable ways to shoot yourself in the foot. Often you won't realize a serious error 
until it is much too late to fix it and still meet your schedule. Even relatively small 
indiscretions, such as the indiscriminate use of virtual functions or the passing of 
user-defined types by value, can result in perfectly correct C++ programs that run ten 
times slower than they would have had you written them in C. 

During the initial exposure to C++, there is invariably a period during which produc
tivity will grind to a halt as the seemingly limitless design alternatives are explored. 
During this period, conventional procedural programmers will· be filled with an 
uneasiness as they try to get their arms around the concept referred to as object 
oriented. 

Although the size and complexity of the C++ language can at first be somewhat over
whelming for even the most experienced professional C programmers, it does not take 
too long for a competent C programmer to get a small, nontrivial C++ program up and 
running. Unfortunately, the undisciplined techniques used to create small programs in 
C++ are totally inadequate for tackling larger projects. That is to say, a naive application 
of C++ technology does not scale well to larger projects. The consequences for the 
uninitiated are many. 

0.2 Using C++ to Develop Large Projects 

Just like a program in C, a poorly written C++ program can be very hard to under
stand and maintain. If interfaces are not fully encapsulating, it will be difficult to tune 

1 stroostrup94, Section 7.1, pp. 163-164. 
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or to enhance implementations. Poor encapsulation will hinder reuse, and any 

advantage in testability will be eliminated. 

Contrary to popular belief, object-oriented programs in their most general form are 
fundamentally more difficult to test and verify than their procedural counterparts.2 

The ability to alter internal behavior via virtual functions can invalidate class invari
ants essential to correct performance. Further, the potential number of control flow 
paths through an object-oriented system can be explosively large. 

Fortunately, it is not necessary to write such arbitrarily general (and untestable) 
object-oriented programs. Reliability can be achieved by restricting our use of the par
adigm to a more testable subset. 

As programs get larger, forces of a different nature come into play. The following sub
sections illustrate specific instances of some of the kinds of problems that we are 
likely to encounter. 

0.2.1 Cyclic Dependencies 

As a software- professional, you have probably been in a situation where you were 
looking at a software system for the first time and you could not seem to find a rea
sonable starting point or a piece of the system that made sense on its own. Not being 
able to understand or use any part of a system independently is a symptom of a cycli
cally dependent design. C++ objects have a phenomenal tendency to get tangled up in 
each other. This insidious form of tight physical coupling is illustrated in Figure 0-1. A 
circuit is a collection" of elements and wires. Consequently, class C ire u i t knows 
about the definitions of both E1 ement and Wi reo An element knows the circuit to 
which it belongs, and can tell whether or not it is connected to a specified wire. Hence 
class E1 ement also knows about both Ci rcui t and Wi reo Finally, a wire can be con
nected to a terminal of either an element or a circuit. In order to do its job, class Wi re 

must access the definitions of both E1 ement and Ci rcui t. 

The definitions for each of these three object types reside in separate physical compo
nents (translation units) in order to improve modularity. Even though the implementa
tions of these individual types are fully encapsulated by their interfaces, however, the 
. c files for each component are forced to include the header files of the other two. The 

2 perry, pp. 13-19. 
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resulting dependency graph for these three components is cyclic. That is, no one com
ponent can be used or even tested without the other two. 

II element.h 
II ... 

class Circuit; 
class Wire; 

class Element 
I I ... 
Circuit *getParent(); 
int isConn(const Wire&); 

II e1ement.c 
.... i}include "element.h" 
'. #include »circuit.h H 

#include "wire.h" 
/ I ... 

element 

II circuit.h 
I I .. . 

...•..•. class Wi re; 

class Circuit { 
/ I ... 
Wire *addWire(const char*); 
Wire *addElem(const char*); 

II circuit.c 
#include "circuit.h" 
#include "wire.h" 
#include "element.h" 
/! ... 

class Element; 
class Circuit; 

class Wire 
/ I ... 
void conn(Element*~int term); 
void connCCircuit*,int term); 

. . . 
II wire.c 
#include "wire.h" 

--...... --____ ...,-,Fil iti ncl ude "el ement. hI! 
#include "circuit.h" 
/ I ... 

wire 

Figure 0-1: Cyclically Dependent Components 

Large systems that are naively architected tend to become tightly coupled by cyclic 
dependencies and fiercely resist decomposition. Supporting such systems can be a 
nightmare, and effective modular testing is often impossible. 
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A case in point is an early version of an electronic-design database. At the time, its 
authors did not realize the need for avoiding cyclic dependencies in the physical 
design. The result was an interdependent collection of files containing hundreds of 
classes with thousands of functions, and no way to use or even test it except as a sin
gle module. This system had very poor reliability, proved impractical to extend or 
maintain, and ultimately had to be thrown out and rewritten from scratch. 

By contrast, hierarchical physical designs (i.e., without cyclic interdependencies) are 
relatively easy to understand, test, and reuse incrementally. 

0.2.2 Excessive Link-Time Dependencies 

If you have attempted to link to a small amount of functionality in a library and 
found that your time to link has increased disproportionately to the benefit you are 
deriving, then you may have been trying to reuse heavy-weight rather than light
weight components. 

One of the nice things about objects is that it is easy to add missing functionality as the 
need presents itself. This almost seductive feature of the paradigm has tempted many 
conscientious developers to tum lean, well-thought-out classes into huge dinosaurs 
that embody a tremendous amount of code-most of which is unused by the vast 
majority of its clients. Figure 0-2 illustrates what can happen when the functionality in 
a simple S t r i n 9 class is allowed to grow to fill the needs of all clients. Each time a 
new feature is added for one client, it potentially costs all of the rest of the clients in 
terms of increased instance size, code size, runtime, and physical dependencies. 

c++ programs are often larger than necessary. If care is not taken, the executable size 
for a C++ program could be much larger than it would be if the equivalent program 
were written in C. By ignoring external dependencies, overly ambitious class develop
ers have created sophisticated classes that directly or indirectly depend on enormous 
amounts of code. A "Hello World" program employing one particularly elaborate 
S t r i n 9 class produced an executable size of 1.2 megabytes! 
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II str.h 
#ifndef INCLUDED STR 
#define INCLUDED_STR 

class String { 

} ; 

II 

char *d_string_p; 
int d_length; 
int d size; 
int d_count; 
I I .. 0 

double d_creationTime; 

public: 
String(); 
String(const String& s); 
String(const char *cp); 
String(const char c); 
I I .00 

--String(); 
String &operator=(const String& s); 
String &operator+=(const String& s); 
II 
II (27 pages omitted!) 
I I ... 
int isPalindrome() const; 
int isNameOfFamousActor() const; 

#endif 

II str.c 
Hinclude IIstrohl! 
#include IIsun.h" 
#include "moon.h" 
#include "stars.hl! 
I r ... 

Chapter 0 

II (lots of dependencies omitted) 
I I ... 
#include "everyone.h" 
#include "theirbrother.h" 
String::StringC) 

d_string_p(O) 
, d_length(O) 
, d_size(O) 
, d_count(O) 
II 
II 
II 

Figure 0-2: Oversized, Heavy-Weight, Non-Reusable Stri ng Class 
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Overweight types such as this S t r i n 9 class not only increase executable size but can 
make the linking process unduly slow and painful. If the time necessary to link in 
5 t r i n 9 (along with all of its implementation dependencies) is large relative to the 
time it would otherwise take to link your subsystem, it becomes less likely that you 

would bother to reuse S t r i n g. 

Fortunately,. techniques exist for avoiding these and other forms of unwanted link

time dependencies. 

0.2.3 Excessive Compile-Time Dependencies 

If you have ever tried to develop a multi-file program in C++, then you know that 
changing a header file can potentially cause several translation units to recompile. At 
the very early stages of system development, making a change that forces the entire 
system to recompile presents no significant burden. As you continue to develop your 
system, however, the idea of changing a low-level header file becomes increasingly 
distasteful. Not only is the time necessary to recompile the entire system increasing, 
but so is the time to compile even individual translation units. Sooner or later, there 
comes a point where you simply refuse to modify a low-level class because of the cost 
of recompiling. If this sounds familiar, then you may have experienced excessive 
compile-time dependencies. 

Excessive cornpile-:-time coupling, which is virtually irrelevant for small projects, can 
grow to dominate the development time for larger projects. Figure 0-3 shows a com
mon example of what appears to be a good idea at first but turns bad as the size of a 
system grows. The myerror component defines a struct, MyError, that contains an 

. enumeration of all possible error codes. Each new component that is added to the 
system naturally includes this header file. Unfortunately, each new component may 
have its own error codes that have not already been identified in the master list. 
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II myerror.h 
#ifndef INCLUDED_MYERROR 
#define INCLUDED MYERROR 

struct MyError { 

} ; 

enum Codes { 
SUCCESS = 0, 
WARNING, 
ERROR, 
IO_ERROR, 

} ; 

I I ... 
READ_ERROR, 
WRITE_ERROR, 
I / .. . 
/ / .. . 
BAD_STRING, 
BAD_FILENAME. 
/ / .. . 
/ / .. . 
CANNOT_CONNECT_TO_WORK_PHONE, 
CANNOT_CONNECT_TO_HOME_PHONE, 
/ / .. . 
/ / .. . 
MARTIANS_HAVE_LANDEO, 
/ / ... 

#endif 

Figure 0-3: An Insidious Source of Compile-Time Coupling 

Chapter 0 

As the number of components gets larger, our desire to add to this list will wane. We 
will be tempted to reuse existing error codes that are, perhaps, only roughly appropri
ate just to avoid changing myerror. h. Eventually, we will abandon any thought of add
ing a new error code, and simply return ERROR or WARNING rather than change 
myerror. h. By the time we reach this point, the design is unmaintainable and practi

cally useless. 
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There are many other causes of unwanted compile-time dependencies. A large C++ 
program tends to have many more header files than an equivalent C program. The 
unnecessary inclusion of one header file by another is a common source of excessive 
coupling in c++. In Figure 0~4, for example, it is not necessary to include the defini
tion of objects in the simulator header file just because a client of class S i m u 1 at 0 r 
may find these definitions useful. Doing so forces the client to depend at compile
time on all such components whether or not they are actually used. Excessive include 
directives not only increase the cost of compiling the client, but increase the likeli
hood that the client will need to be recompiled as a result of a low-level change to the 
system. 

By ignoring compile-time dependencies, it is possible to cause each translation unit in 
the system to include nearly every header file in the system, reducing compilation 
speed to a crawl. One of the first truly large c++ projects (literally thousands of staff 
years) was a CAD framework product developed at Mentor Graphics. The developers 
initially had no idea how much compile-time dependencies would impede their 
efforts. Even using our large network of workstations, recompiling the entire system 
was taking on the order of a week! 

The problem was due to organizational details illustrated in part by the simulator 
component shown in Figure 0-4. Cosmetic techniques were developed to mitigate this 
problem, but the real solution came when the unnecessary compile-time dependencies 
were eliminated. 
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II simulator.h 
#ifndef INCLUDED_SIMULATOR 
#define INCLUDED_SIMULATOR 
#include "cadtool.h" 
#include "myerror.h" 

II required by "IsA" relationship 
II bad idea (see'Section 6.9) 

If inc 1 u de" c i r cui t reg i s try. h I! 
#include "inputtable.h" 
#include "circuit.hl! 
#include "rectangle.h" 

II unnecessary compile-time dependency 
II unnecessary compile-time dependency 
II required by "HasA" relationship 
II unnecessary compile-time dependency 

/ I ... 
#include <iostream.h> II unnecessary compile-time dependency 

class Simulator: public CadTool { II mandatory compile-time dependency 

} ; 

CircuitRegistry *d_circuitRegistry_p; 
InputTable& d_inputTable; 
Circuit d_currentCircuit; 
I / ... 

private: 

II mandatory compile-time dependency 

Simulator(const Simulator &); 
Simulator& operator=(const Simulator&); 

public: 
Simulator(); 
-Simulator(); 
I I ... 
MyError::Code readlnput(istream& in. canst char *name); 
MyError::Code writeOutput(ostream& out. const char *name): 
MyError::Code addCircuit(const Circuit& circuit); 
MyError::Code simulate(const char *autputName, 

const char *inputName, 
const char *circuitName); 

Rectangle window(const char *circuitName) canst; 
I / ... 

#endif 

Figure 0-4: Unnecessary Compile-Time Dependencies 

As with link-time dependencies, there are several specific techniques available for 
eliminating compile-time dependencies. 

0.2.4 The Global Name Space 

If you have ever worked on a mUlti-person C++ project, then you know that software 
integration is a common forum for unwanted surprises. In particular, the proliferation 
of global identifiers can become problematic. One obvious danger is that these names 
can collide. The consequence is that the individually developed parts of the system 
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cannot be integrated without modification. For larger projects with hundreds of 
header files, it can be difficult even to find the declarations of a global name. 

For example, I have used object libraries that have consisted of literally thousands of 
header files. I recall trying to find the definition of a type Tar get I d at file scope that 
looked like a class (but wasn't): 

Targetld id; 

I remember trying to "grep,,3 through all of the thousands of header files looking for 
the definition, only to receive a message to the effect that there were too many files. I 
wound up having to nest the grep command in a shell script that split up the header 
files based on the first letter in order to pare down the problem into 26 problems of 
manageable size. I eventually discovered that the "class" I was looking for was not a 
cl ass at all. Nor was it a struct or a uni on! As illustrated in Figure 0.5, the type 
Ta rget I d, it turned out, was actually a typedef declaration at file scope for an i nt! 

II upd_system.h 
#ifndef INCLUDED_UPD_SYSTEM 
#define INCLUDED_UPD_SYSTEM 

typedef int Targetld; 
class upd_System { 

I I ... 
public: 

II 
} ; 

#endif 

II bad idea! 

Figure 0-5: Unnecessary Global Name Space Pollution 

The typedef had introduced a new type name into the global name space. There was 
no indication that type was an i nt, nor was there any hint of where I might find its 
definition. 

3 "grep" is a Unix search utility program'. 
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II upd_system.h 
#ifndef INCLUDED_UPD_SYSTEM 
#define INCLUDED_UPD_SYSTEM 

class upd_System { 
I I ... 

} ; 

public: 
typedef int Targetld; 
II 

#endif 

II much better! 

Figure 0-6: Typedefs in Class Scope Are Easy to Find 
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Had the typedef declaration been nested within a class (as suggested in Figure 0-6), 
the reference would have been qualified with that class name (or the declaration 
would have been inherited), making it straightforward to track down: 

upd_System: :Targetld id; 

Following simple practices like the one suggested above can minimize the likelihood 
of collisions and at the same time make logical entities easier to find in large systems. 

0.2.5 Logical vs. Physical Design 

Most books on C++ address only logical design. Logical design is that which pertains 
to language constructs such as classes, operators, functions, and so on. For example, 
whether a particular class should or should not have a copy constructor is a logical 
design issue. Deciding whether a particular operator (e.g., 0 per a to r==) should be a 
class member or a free (i.e., nonmember) function is also a logical issue. Even select
ing the types of the internal data members of a class would fall under the umbrella of 
logical de~ign. 

c++ supports an overwhelmingly rich set of logical design alternatives. For example, 
inheritance is an essential ingredient of the object-oriented paradigm. Another, called 
layering, involves composing types from more primitive objects, often embedded 
directly in the class definition. Unfortunately there are many who would try to use 
inheritance where layering is indicated: A Telephone is not a kind of Recei ver, Di al, 

or Cor d; rather, it is composed of (or "layered on") those primitive parts. 
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Misdiagnosing a situation in this way can lead to inefficiencies in both time and space, 
and can obscure the semantics of the architecture to a point where the entire system 
becomes difficult to maintain. Knowing when (and when not) to use a particular lan
guage construct is part of what makes the experienced C++ developer so valuable. 

Logical design does not address issues such as where to place a class definition. From 
a purely logical perspective, all definitions at file scope exist at the same level in a sin
gle space without boundaries. Where a class is defined relative to its member defini
tions and supporting free operators is not relevant to logical design. All that is 
important is that these logical entities somehow come together to form a working pro
gram, and that, because the entire program is thought of as a single unit, there is no 
notion of individual physical dependencies. The program as a whole depends on itself. 

There are several good books on logical design (see the bibliography). Unfortunately, 
there are also many problems, which arise only as programs get larger, that these 
books do not address. This is because much of the material relevant to successful 
large-system design falls under a different category, referred to in this book as 
physical design. 

Physical design addresses the issues surrounding the physical entities of a system (e.g., 
files, directories, and libraries) as well as organizational issues such as compile-time or 
link-time dependencies between physical entities. For example, making a member 
ri ng() of class Telephone an i nl i ne function forces any client of Tel ephone to 
have seen not only the declaration of r i n 9 ( ) but also its definition in order to com
pile. The logical behavior of r i n 9 () is the same whether or not r i n 9 () is declared 
i n 1 i n e. What is affected is the degree and character of the physical coupling between 
Tel e p h 0 n e and its clients, and therefore the cost of maintaining any program using 
Telephone. 

Good physical design, however, involves more than passively deciding how to partition 
the existing logical entities of a system. Physical design implications will often. dictate 
the outcome of logical design decisions. For example, relationships between classes 
in the logical domain, such as IsA, HasA, and Uses, collapse into a single relation
ship, DependsOn, between components in the physical domain. Furthermore, the 
dependencies of a sound physical design will form a graph that has no cycles. There
fore we avoid logical design choices that would imply cyclic physical dependencies 
among components. 
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Simultaneously satisfying the constraints of both logical and physical design may, at 
times, prove challenging. In fact, some logical designs may have to be reworked or 
even replaced in order to meet the physical design quality criteria. In my experience, 
however, there have always been solutions that adequately address both domains, 
although it may (at first) take some time to discover them. 

For small projects that fit easily into a single directory, physical design may warrant 
little concern. However, for larger projects the importance of a sound physical design 
grows rapidly. For very large projects, physical design will be a critical factor in deter
mining the success of the project. 

0.3 Reuse 

Object-oriented design touts reuse as an incentive, yet like many other benefits of the 
paradigm, it is not without cost. Reuse implies coupling, and coupling in itself is 
undesirable. If several programmers are attempting to use the same standard component 
without demanding functional changes, the reuse is probably reasonable and justified. 

Consider, however, the scenario where there are several clients working on different 
programs, and each is attempting to "reuse" a common component to achieve some
what different purposes. If those otherwise independent clients are actively seeking 
enhancement support, they could find themselves at odds with one another as a result 
of the reuse: an enhancement for one client could disrupt the others. Worse, we could 
wind up with an overweight class (like the s t r i n 9 class of Figure 0-2) that serves the 
needs of no one. 

Reuse is often the right answer. But in order for a component or subsystem to be 
reused successfully, it must not be tied to a large block of unnecessary code. That is, it 
must be possible to reuse the part of the system that is needed without having to link 
in the rest of the system. 

Not all code can be reusable. Attempting to implement excessive functionality or 
robust error checking for implementation objects can add unnecessarily to the devel
opment and maintenance cost as well as to the size of the executable. 

Large projects stand to benefit from their implementors' knowing both when to reuse 
code and when to make code reusable. 
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0.4 Quality 

Quality has many dimensions. Reliability addresses the traditional definition of quality 
(Le., "Is it buggy?"). A product that is easy to use and does the right thing most of the 
time is often considered adequate. For some applications, however-in areas such as 
aerospace, medical, and financial, for example--errors can be extremely costly. In 
general, software cannot be made reliable through testing alone; by the time you are 
able to test it, the software's intrinsic quality has already been established. Not all 
software can be tested effectively. For software to be tested effectively, it must be 
designed from the start with that goal in mind. 

Design for testability, although rarely the first concern of smaller projects, is of para
mount importance when successfully architecting large and very large C++ systems. 
Testability, like quality itself, cannot be an afterthought: it must be considered from 
the start-before the first line of code is ever written. 

There are many other aspects to quality besides reliability. Functionality, for example, 
addresses whether a product does what the customer expects. Sometimes a product 
will fail to gain acceptance because it does not have enough of the features that 
customers have come to expect. Worse, a product can miss its mark altogether: if a 
customer expects to buy a screwdriver, the best hammer in the world will fail a function
ality test. Having a clear functional specification that meets marketing requirements 
before development is underway is an important first step toward ensuring appropriate 
functionality. In this book, however, we consider techniques that address how to 
design and build large systems, and not what large systems to design. 

Usability is yet another measure of .quality. Some software products can be very 
powerful in the right hands. However, it is not enough that the developer be able to 
use the product effectively. If the product is too complex, difficult, awkward, or pain
ful for the typical intended customer to pick up and use, it will not be used. Often 
when we say user, we think of the end user of the system. In a large, hierarchically 
designed system, however, the clients of your component are probably just other com
ponents. Early feedback from customers (including other developers) is essential for 
ensuring usability. 

Maintainability measures the relative cost to support a working system. Support 
includes such things as tracking down bugs, porting to new platforms, and extending 
the features of the product to meet the anticipated (or even unanticipated) future needs 
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of customers. A poorly designed system written in C++ (or any other language, for 
that matter) can be expensive to maintain and even more expensive to extend. Large, 
maintainable designs don't just happen; they are engineered by following a discipline 
that ensures maintainability. 

Peiformance addresses how fast and small the product is. Although object-oriented 
design is known to have valuable advantages in the areas of extensibility and reuse, 
there are aspects of the paradigm that, if applied naively, can cause programs to run 
more slowly and require more memory than is necessary. If our code runs too slowly, 
or if it requires much more memory than a competitor's product, we cannot sell it. For 
example, modeling every character in a text editor as an object, although perhaps 
theoretically appealing, could be an inappropriate design decision if we are interested 
in optimal space/time performance.4 Attempting to replace a heavily used funda
mental type (such as i n t) with a user-defined version (such as a Big I n t class) will 
inevitably degrade performance. If we fail to address our performance goals in the 
beginning, we may adopt architectures or coding practices that will preclude our ever 
achieving these goals, short of rewriting the entire system. Knowing where to accept 
some inelegance and knowing how to contain the effects of performance trade-offs 
distinguishes software engineers from mere programmers. 

Each of these dimensions of quality is important to the overall success of a product. 
However, achieving each of them has one thing in common: we must consid~r each 
aspect of quality from the very start of a project. There is simply no way to add the 
quality once the design is complete. 

0.4.1 Quality Assurance 

Quality assurance (QA) is typically an organization within a company responsible for 
"assuring" that a certain measure of quality has been attained. A significant obstacle 
to achieving high-quality software is that QA often does not get involved until late in 
the development process, after the damage is already done. QA often does not influ
ence the design of a software product. QA is rarely involved in low-level engineering 
design decisions. Typically, the testing that QA performs is at the end-user level, and 
it relies on the developers themselves for any low-level regression testing. 

4 See the Flyweight pattern in gamma, Chapter 4, pp. 195-206 for a clever solution to this particu
lar kind of performance problem. 
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In this all-too-common process model, it is engineering's job to produce raw software 
that it then "throws over the wall" to QA. The software is often poorly documented, 
hard to understand, difficult to test, and unreliable. QA i~ now, somehow, expected to 
instill quality into the software. But how? Over and over, this model for assuring qual
ity has demonstrated its ineffectiveness at achieving high-quality software in large 
projects. We now suggest a different model. 

0.4.2 Quality Ensurance 

QA must become an integral part of development. In this process model, developers 
have the responsibility for ensuring quality. That is, the quality must already be there 
in order for test engineers to find it. 

In this process model, the distinction of QA and development is blurred; the technical 
qualifications for either position are essentially the same. One day, an engineer could 
write an interface and have another engineer review it for consistency, clarity, and 
usability. The next day the roles could be reversed. To be truly effective, the culture 
must be one of teamwork-each member helping the other to ensure high-quality 
software as it is being developed. 

Providing a complete process model is a huge task and well beyond the scope of this 
book. However if high-quality software is to be achieved, system architects and soft
ware developers must take the lead by designing in the quality all along the way. 

0.5 Software Development Tools 

Large projects can benefit from many kinds of tools, including browsers, incremental 
linkers, and code generators. Even simple tools can be very useful. A detailed descrip
tion of a simple dependency analyzer that I have found invaluable in my own work is 
provided in Appendix C. 

Some tools can help to mitigate the symptoms of a poor design. Class browsers can 
help to analyze convoluted'designs and find definitions for logical entities that would 
otherwise be hidden-buried within a large project. Sophisticated programming 
environments with incremental linkers and program databases can help to push the 
envelope of what can be accomplished even with a poor physical design. But none of 
these tools address the underlying problem: a lack of inherent design quality. 
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Unfortunately there is no single quick and easy way to achieve quality. Tools alone 

cannot solve fundamental problems resulting from a poor physical design. Although 
tools can postpone the onset of some of these symptoms, no tool will design in the' 

quality for you, nor will it ensure that your design complies with its specification. 
Ultimately, it is experience, intelligence, and discipline that yield a quality product. 

0.6 Summary 

c++ is a whole lot more than just an extension of C. Cyclic link-time dependencies 
among translation units can undermine understanding, testing, and reuse. Unnecessary 

• 

or excessive compile-time dependencies can increase compilation cost and destroy 
maintainability. A disorganized, undisciplined, or naive approach to C++ development 
will virtually guarantee that these problems occur as projects become larger. 

Most C++ design books address only logical issues (such as classes, functions, and 
inheritance) and ignore physical issues (such as files, directories, and dependencies). 
In larger systems, however, physical design quality will dictate the correct outcome of 

many logical design decisions .. 

Reuse is not without cost. Reuse implies coupling, and coupling can be undesirable. 

Unwarranted reuse is to be avoided. 

Quality has many dimensions: reliability, functionality, usability, maintainability, and per
formance. Each of these dimensions contributes to the success or failure of large projects. 

Achieving quality is an engineering responsibility: it must be actively sought from the 
start. Quality is not something that can be added after a project is largely complete. For 
a QA organization to be effective, it must be an integral part of the entire design process. 

Finally, good tools are an important part of the development process. But tools cannot 
make up for a lack of inherent design quality in large C++ systems. This book is about 

how to design in that quality. 



PART I: 

This book covers quite a bit of material relating to object-oriented design and C++ 
programming. Not all readers will have the same background. In Part I of this text, we 
address the fundamentals in an effort to reach a common starting point from which to 
launch further discussions. 

Chapter 1 is a review of several key properties of the C++ language, basic object
oriented design principles and notation, and standard coding and documentation 
conventions used throughout this text. The purpose of this chapter is to help level the 
field. It is expected that much of this material will be familiar to many readers. Nothing 
presented here is new. Expert C++ programmers may choose to skim this chapter or 
simply refer to it as needed. 

Chapter 2 describes a modest collection of commonsense design practices that most 
experienced software developers have already discovered. Adherence to the fundamen
tal rules presented here is an integral part of successful software design. These rules also 
serve to frame the more advanced and subtle principles and guidelines presented 
throughout the book. 



Preliminaries 

This chapter reviews some important aspects of the C++ programming language and 
object-oriented analysis that are fundamental to large-system design. Nothing revolu
tionary is presented; some material, however, may be unfamiliar. We start by examin
ing multi-file programs, declaration versus definition, and internal versus external 
linkage in the contexts of both header (. h) and implementation (. c) files. Next we 
explore the use of typedef declarations and ass~rt statements. After considering a few 
matters of style regarding naming conventions and class member layout, we explore 
one of the most common object-oriented design patterns: iterator. We conclude with 
a thorough discussion of the logical design notation used throughout this book, a 
brief discussion of inheritance versus layering, -and, finally, a recommendation for 
minimality in our interfaces. 

1.1 Multi .. File C++ Programs 

For all but the tiniest programs, it is neither wise nor practical to place an entire program 
in a single file. For one thing, each- time you made a change to any part of the program, 
you would be forced to recompile the program in its entirety. You also would not be 
able to reuse any part of your program in another program without copying the source 
code to another file. Such duplication can quickly become a maintenance headache. 

PlaCing the source code for cohesive parts of a program in separate files enables the 
program to be compiled more efficiently, while enabling its parts to be reused in other 
programs. 
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In this section, we review some basic properties of the structure of the C++ language with 
regard to programs that are created from several source files. These concepts will be 
used frequently throughout this book. 

1.1.1 Declaration versus Definition 

A declaration is a definition unless: 1 

• it declares a function without specifying its body, 
• it contains an ext ern specifier and no initializer or function body, 
• it is the declaration of a static class data member within a class definition, 
• it is a class name declaration, or 
• it is a typedef declaration. 

A definition is a declaration unless: 

• it defines a static class data member or 
• it defines a non-inline member function. 

DEFINITION: A declaration introduces a name into a program; a 
definition provides a unique description of an entity (e.g., type, 
instance, function) within a program. 

A declaration introduces a name into a scope. A declaration differs from a definition 
in that it is legal in C++ to repeat a declaration within a given scope. By contrast, there 
must be exactly one definition of each entity (e.g., class, object, enumerator, or func
tion) used in the program. For example, 

int f(int,int); 
int f(int,int); 
class IntSetIter; 
class IntSetIter; 
typedef int Int; 
typedefint Int; 
friend IntSetlter; 
friend IntSetlter; 
extern int globalVariable; II bad idea (global variable declaration) 
extern int global Variable; II (see Section 2.3.1) 

1 ellis, Section 3.1. o. 14. 
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are all declarations, and can be repeated any number of times within a single scope. 
On the other hand, the following declarations at file scope are also definitions, and 
therefore cannot be seen more than once in a given scope without triggering a compile-

time error: 

int x; 
char *p; 
extern int globalVariable = 1; 
static int s instanceCount; 
static int f(int t int) {/* */} 
inline int hCint, int) {/* */} 
enum Color { RED, GREEN. BLUE }; 
enum DummyType {}; 
enum { SIZE = 100 }; 
enum {} silly; 

II bad idea (global variable) 
II bad idea (global variable) 
II bad idea (global variable) 

const double DEFAULT TOLERANCE = 1.0e-6; 
class Stack { 1* ... *1 }; 
struct Util { 1* ... *1 }; 
union Rep { 1* ... *1 }; 
template(class T> void sort(const T** array, int size) { 1* ... *1 } 

We should note that function and static data member declarations are exceptions that, 
although not definitions, may not be repeated within the definition of a class: 

class NoGood { 

static int 1 • 
t II declaration 

static int i ; II illegal in C++ 
public: 

int f(); II declaration 
int f(); II illegal in C++ 

} ; 

1.1.2 Internal versus External Linkage 

When a . c file is compiled, the header files are first included (recursively) by the C 
preprocessor (cpp) to form a single source file containing all the necessary informa
tion. This intermediate file (called a translation unit) is then compiled to produce a . 0 

file (object file) with the same root name. Linkage connects the symbols produced 
within the various translation units to form an executable program. There are two dis
tinct kinds of linkage: internal and external. The kind of linkage used will directly 
influence how we incorporate a given logical construct in our physical design. 
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DEFINITION: A name has internal linkage if it is local to its transla
tion unit and cannot collide with an identical name defined in 
another translation unit at link time. 

Intemallinkage means that access to the definition is limited to the current translation 
unit. That is, a definition with internal linkage is not "visible" to any other translation 
unit and therefore cannot be used to resolve undefined symbols during the linking 
process. For example, 

static int x; 

is defined at file scope, but the keyword s tat i c forces the linkage to be internal. 
Another example of internal linkage is an enumeration: 

enum Boolean { NO, YES }; 

Enumerations are definitions (not just declarations), but never themselves introduce 
symbols into the . 0 file. In order for definitions with internal linkage to affect other 
parts of a program, they must be placed in the header file, not the . c file. 

An important example of a definition with internal linkage is that of a class. The 
description of class Poi nt (shown in Figure 1-1) is a definition, not a declaration; 
hence, it cannot be repeated in a translation unit in the same scope. For classes to be 
used outside of a single translation unit, they must be defined in a header file. An 
inline function definition (such as the one shown for ope r a to r== at the bottom of Fig
ure 1-1) is another example of a definition with internal linkage. 

class Point { 
int d_x; 
i nt d-y; 

public: 
Point C i n t x, 
int xC) canst 
i nt y ( ) const 
II . . . 

} ; 

int y) . . 
{ return 
{ return 

d_x (x) , d-y(y) { } II internal 
d x' - , } II internal 
d-y; } II internal 

II internal 

inline int operator==(const Paint& left, canst Point& right) 
{ 

return left.xC) == right.xC) && left.y() == right.y(); 

linkage 
linkage 
linkage 

linkage 

} II internal linkage 
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DEFINITION: A name has external linkage if, in a multi-file pro
gram, that name can interact with other translation units at link 
time. 

External linkage means that the definition is not limited to a single translation unit. 
Definitions with external linkage produce external symbols in the . 0 file that are 
accessible by all other translation units for resolving their undefined symbols. Such 
external symbols .must be unique throughout the program or the program will not link. 

Non-inline member functions (including static members) have external linkage, as do 
non-inline, non-static free (i.e., nonmember) functions. Examples of functions with 
external linkage are shown in Figure 1-2. 

II non-inline member function: 
Point& Point: :operator+=(canst Point& right) 
{ 

} 

d_x += right.d_x; 
d-y += right.d_y; 
return *this; 

II external linkage 

II non-inline free function: 
Point operator+(const Point& left. canst Point& right) 
{ 

return Point(left.x() + right.xC), left.yC) + right.yC)); 
} II external linkage 

Figure 1-2: Some Function Definitions with External Linkage 

Note that we will consistently refer to a nonmember function as a free function and 
never as afriendfunction. A free function need not be a friend of any class; whether 
or not it is should be an implementation detail (see Section 3.6). 

Where possible, the C++ compiler substitutes the body of an inline function directly 
in place of the function call and introduces no symbols into the . 0 file. Sometimes the 
compiler will elect (for various reasons, such as·recursion or dynamic binding) to lay 
down a static copy of an inline function. This static copy introduces only a local sym
bol into the current . 0 file, which cannot interact with external symbols. 
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Because a declaration is solely for the benefit of the current translation unit, 
declarations themselves introduce nothing at all into a . 0 file. Consider the following 
declarations: 

1* 1 *1 int fC); II bad idea (see Section 2.3.2) 
1* 2 *1 extern int i ; II bad idea (see Section 2.3.1) 

struct S { 

1* 3 *1 int g(); II fine 
} ; 

None of these declarations themselves affects the contents of the resulting .0 file. 
Instead, each of these declarations merely names an external symbol, enabling the 
current translation unit to gain access to the corresponding global definition if needed. 
It is actually the 'use of the symbol name (e.g., calling a function) and not the declara
tion itself that causes an undefined symbol to be introduced into the . 0 file. It is precisely 
this fact that allows early prototyping: as long as the missing functionality is not 
needed, partially implemented objects can be used in running programs. 

In the previous example, each of the three declarations enabled access to an externally 
defined function or object. We might be sloppy and say that these "declarations" have 
external linkage. But there are other kinds of declarations that do not serve to enable 
access to external definitions. We will often refer to these kinds of declarations as 
having "internal" linkage. For example, 

typedef int Int; II internal linkage 

is a typedef declaration. It does not introduce any symbols into the . 0 file, nor does it 
enable access to a global object with external linkage: its linkage is internal. An 
important kind of declaration that happens to have internal linkage is that of a class. 

class Point; 
struct Point; 
union Point; 

II internal linkage 
II internal linkage 
II internal linkage 

All of the above have the identical effect of introducing the name Poi n t as some kind 
of user-defined type; the particular declaration type (e.g., c1 ass) need not match the 
actual definition type (e.g., un ion): 

class Rep; 
I / ... 
union Rep { 

/ / ... 
1 • 
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The definitions to which these declarations potentially refer also have internal link
age; this property distinguishes class declarations from the external declarations in 
previous examples. Both class declarations and class definitions contribute nothing to 
the . 0 file and are solely for the benefit of the current translation unit. 

On the other hand, static class data members (declared within the class definition) 

have external linkage: 

class Point { 
static int s numPoints; II declaration of external object 
I I ... 

} ; 

The static class data member s_numPoi nts (shown above) is only a declaration, but 
, its definition in the . c file has "external" linkage: 

II point.c 
int Point::s_numPoints; II definition of external object 

II (initialized to 0 by default) 

Note that, according to the language specification, every static class data member 
must be defined exactly once somewhere in the final program. 2 

Finally, the c++ language treats enumerations and classes differently: 

enum Point; II error 

It is not possible in c++ to declare an enumeration without defining it. As we will see, 
class declarations are quite often used in place of preprocessor inc 1 u de directives to 
declare a class without defining it. 

1.1.3 Header (. h) Files 

In C++ it is almost always a programming error to place a definition with external 
linkage in a . h file. If you do, and you include that header in more than one translation 
unit, linking them together will fail with a message such as 

MULTIPLY DEFINED SYMBOL. 

2 e1Iis, Section 9.4, p.179; Section 18.3, p. 405. 
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It is legal in c++ to place definitions with intemallinkage, such as static functions or 
static data, at file scope within a header file, but it is undesirable. Not only do these 
file-scope definitions pollute the global name space but, in the case of static data and 
functions, they consume data space in every translation unit that includes the header. 
Even data declared con stat file scope can cause this same problem, especially if the 
address of the constant is ever taken. Compare a file-scope constant (with internal 
linkage) with a static constant class member (which has extemallinkage): there will 
be only a single copy of the class-scoped constant in the entire program. Some exam
ples of what does and doesn't belong in a header file are provided in Figure 1.3. 

II radio.h 
#ifndef INCLUDED_RADIO 
#define INCLUDED RADIO 

int z; 
extern int LENGTH = 10; 
const int WIDTH = 5; 
static int y; 
static void func() {/* ..• */} 

class Radio { 

} ; 

static int s_count; 
static canst double S PI· - , 
int d_size; 
I / ... 

public: 
int size() canst; 
I I ... 

inline int Radio::size() canst 
{ 

return d_size; 

II illegal: external data definition 
II illegal: external data definition 
II avoid: constant data definition 
II avoid: static data definition 
II avoid: static function definition 

II fine: static member declaration 
II fine: static canst member dec. 
1/ fine: member data definition 

II fine: member function declaration 

II fine: class definition 

} II fine: inline function definition 

int Radio::s_count; II illegal: static member definition 

double Radio::"S_PI = 3.14159265358; II illegal: static const member def. 

int Radio::size() canst { I* ... */} II illegal: member function definition 

#endif 

Figure 1-3: What Does and Does Not Belong in a Header File 

The redundancy of duplicated nonmember data definitions affects not only program size 
but also runtime performance by defeating the caching mechanism of the host computer. 
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Occasionally, however, there are valid reasons for placing a static instance of a user~ 

defined object in a header file at file scope. In particular, the constructor of such an 
object can be used to ensure that a particular global facility (such as i ostream) has 

been initialized before it is used.3 Although this solution may be elegant for small and 

medium-sized systems, it is problematic for very large systems. We will return to this 

issue in Section 7.8.1.3. 

1.1.4 Implementation (. c) Files 

We will sometimes elect to define functions and data for use in our own implementation 

that we do not want exposed outside of our translation unit. Definitions with internal 

but not external linkage can appear at file scope in a . c file without affecting the glo

bal (symbol) name space. The definitions to be avoided at file scope in . c files are 

data and functions that have not been declared static. For example, 

II filel.c 

i nt i; 
int max(int a, int b) { return a > b ? a : b } 

II external linkage 
II external linkage 

The above definitions have external linkage and could potentially collide with other 

similar names in the global name space. Because inline and static free functions have 

internal linkage, these kinds of functions can be defined at file scope in a . c file and 

not pollute the global name space. For example, 

II file2.c 

inline int min(int a, int b) { return a < b ? a : b } II internal 

static int factCint n) { return n <= 1 ? 1 : n * fact(n - 1); } II internal 

Enumeration definitions, nonmember objects declared s tat i c, and (by default) con s t 

data definitions also have internal linkage. It is safe to define all of these entities at file 

scope in the . c file. For example, 

3 ellis, Section 3.4, pp. 21-22. 
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II file3.c 
#include <math.h> 
class Link; 

enum { START_SIZE = 1, GROW_FACTOR = 2 }; 

canst double PI SO = M PI * M PI· - - -, 

Chapter 1 

1/ internal 

II internal 

II internal 

static canst char *names[] = { "Ntran", "Ptran", "NPN", "PNP" }; I I internal 

static Link *s_root_p; 
Link *const s_first_p = s_roat_p; 

II internal 
II internal 

Other constructs such as typedef declarations and preprocessor macros do not intro
duce exported symbols into the . 0 file. They too may appear in . c files at file scope 
without affecting the global name space. For example, 

typedef int (PointerToFunctionOfVoidReturningInt *)(); 

ifdefinE CASE(X) case x: cout « "X" « endl; II Classic C preprocessor 

#define CASE(X) case X: cout « #X « endl; II ANSI C preprocessor 

Typedefs and macros have limited usefulness in C++, and they can be harmful if 
abused. We will explore the perils of typedefs in Sections 1.2 and 2.3.3, and those of 
macros in Section 2.3.4. 

1.2 typedef Declarations 

A typedef declaration creates an alias for an existing type, not a new type. A 
typedef, therefore, gives only the illusion of type safety. Consequently, typedefs in 
the interface can easily do more harm than good. 

Consider class Person shown in Figure 1-4. We have decided to nest typedef 

declarations within the Per son class to avoid affecting the global name space and to 
make them easier to find. The set Wei 9 h t member function is defined to take a weight 
argument in "Pounds," while the getHei ght method returns height in "Inches." 
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II person.h 
#ifndef INCLUDED_PERSON 
#define INCLUDED_PERSON 

class Person { 
I I ... 

public: 
typedef double Inches; 
typedef double Pounds; 
I I ... 
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void setWeight(Pounds weight); 
Inches getHeight() const; 
I I ... 

} ; 

lIendif 

Figure 1-4: Typedefs Are Not Type-Safe 

Unfortunately, a nested typedef offers no more type safety than one declared at file 

scope: 

void f (const Person& person) 
{ 

} ; 

Person::lnches height = person.height(); 
person.setWeight(height); II ok ?? 

The two type names Inc h e sand Po U n d s are structurally equal and therefore com
pletely interchangeable. These typedefs afford absolutely no compile-time type safety, 
yet make it difficult to know the actual type. 

Typedefs do, however, have their place when it comes to defining complex function 
arguments. For example, 

typedef int (Person: :*PCPMFDI)(double) canst; 

declares PCPMFDI to be of type: pointer to a canst Person member function taking a 
daub 1 e argument and returning an ; nt. Typedefs are also useful in defining data 
members that must maintain a constant size across different compilers and computer 
hardware (see Section 10.1.3). 
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1.3 Assert Statements 

The standard C library provides a macro called ass e r t (see ass e r t . h) for guarantee
ing that a given expression evaluates to a non-zero value; otherwise an error message 
is printed and program execution is terminated.4 Assertions are convenient to use and 
are a powerful implementation-level documentation tool for developers. Assert state
ments are like active comments-they not only make assumptions clear and precise, 
but if these assumptions are violated, they actually do something about it. 

The use of assert stat~ments can be an effective way to catch program logic errors at 
runtime, and yet they are easily filtered out of production code. Once development is 
complete, the runtime cost of these redundant tests for coding errors can be eliminated 
simply by defining the preprocessor symbol NDEBUG during compilation. Be sure, 
however, to remember that code placed in the assert itself will be omitted in the pro
duction version. Consider the following partial definition of a S t r i n 9 class: 

class String { 

} ; 

enum { DEFAULT_SIZE = 8 }; 
char *d_array_p; 
int d_size; 
int d_length; 

public: 
String( }; 
I I ... 

If (as with the code below) the expression argument to the ass e r t macro affects the 
state of the software, then the production version will exhibit disparate behavior. 

String: :StringC) 
d_size (DEFAULT_SIZE) 

, d_length(O) 
{ 

} 
II error 

We can avoid this problem by making sure that the asserted code is completely inde
pendent of the normal operation of the object: 

4 plauger, Chapter 1, pp. 17-24. 
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String: :String() 
d_size CDEFAULT_SIZE) 

, d_lengthCO) 
{ 

} 

d_array_p = new char[d_size]); 
assertCd_array_p); 
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II fine 

A generalization of this technique that addresses fault tolerance is to t h rowan excep
tion such as Cadi ngErrar.5 This way it will be up to the software at higher levels to 
cat chand address this problem. In the absence of a handler for programming errors, 
the default behavior reduces to that of an assert.6 

1.4 A Few Matters of Style 

When programmers get together to start a project, they often discuss what coding 
standards to adopt. Few of these standards contribute to the quality of the product. 
Often they are concerned with questions such as 

Should we indent 2, 4, or 8 spaces? 

Should we put a space between the right parenthesis of an i f statement and 
the following left bracket like this 

if (exp) { 

Or should we not put a space like this 

if (exp){ 

At the beginning of one big project, we spent weeks arguing about standards. We con
cluded that although there is an advantage to standardization, the list of standards 
should be as small as possible, and each should be driven by clear engineering princi
ples. Both of the examples above fail these criteria. 

Another thing we learned is that when it comes to enforcing standards, there are two 
domains: the interface and the implementation. A good interface is much more impor
tant than a good implementation. Interfaces have a direct impact on clients and they 

5 murray, Section 9.2.1, pp. 208-210. 
6 For more on the intended use of exceptions, see ellis, Section 15.1, p. 355. 
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also have global implications. Implementations should affect only the authors and 
maintainers of code. 

There are clear reasons to impose strict standards on interfaces, particularly in large 
projects. Interfaces are generally much more difficult and costly to repair than imple
mentation. It is usually. not too difficult to throw out a poor implementation and 
replace it with a better one, provided the interface is a good encapsulating one. 

1.4.1 Identifier Names 

The following coding conventions have been debated ad infinitum and have survived 
the ordeal. Most of the recommendations proposed here focus on aspects that affect 
interfaces, where their benefit will be most strongly felt. Then again, much of this is a 
matter of personal taste. If there is one rule, it is to be consistent. 

1.4.1.1 Type Names 

c++ syntax is complex. Subtle clues about the nature of its constructs are always wel
come. A fairly standard and widely accepted practice is to treat type names with spe
cial consideration. In this text we consistently make the first character of a type name 
an uppercase letter; non-type names begin with a lowercase letter. 

For our purposes, types are those entities that are neither data nor functions: 

• Classes 
• Structures . 
• Unions 
• Typedefs 
• Enumerations 
• Templates 
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Here are some declarations that illustrate this programming style: 

class Point; 
struct Date; 
union Value; 
enum Temperature { COLD, WARM, HOT, VERY HOT} temp;? 
typedef Temp Temperature; 
template class Stack<int>; 
int Point::getX() const; 
void Point::setX(int xCoord); 

Lexicographically distinguishing type names from other names is an objectively veri
fiable standard that improves readability for both clients and implementors alike. If 
used consistently, this practice can make interfaces easier to understand and code eas
ier to maintain. 

1.4.1.2 Multi-Word Identifier Names 

There are two kinds of people when it comes to naming identifiers-those who 
advocate the use of the underscore character (~ _ ~) to delimit words, and those who 
advocate capitalizing the second and subsequent words: 

There are arguments for both sides. I was originally in the underscore camp but was 
forced to make the change by consensus. Now I realize that it makes no difference: it 
is just a matter of what you are used to. Perhaps the capitals are a bit better because 
the names are shorter; they become easier to read once you are used to them. Using 
capitals also leaves open the use of underscore for other purposes (see Sections 6.4.2 
and 7.2.1). The important thing is that there be consistency throughout the product line. 

It appears unprofessional and can be annoying for one set of classes to use one 
naming convention while other classes in the same product use the other, especially 
if outside paying customers will (or some day could) have direct access to the under
lying C++ classes. Some programmers, however, may dismiss these inconsistencies as 
simply a matter of style. 

7 In this text the names of enumerators and (static) constants are all uppercase and make use of 
underscores to delimit words. 
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In this book I have adopted the uppercaseStanda rd. Whatever you adopt, however, I 
strongly recommend that you be_consi stent, particularly in the interface. 

1.4.1.3 Data Member Names 

Readability and maintainability are greatly served if people remember to add a consis
tent prefix (such as d_) to the data members of their classes. Consider the following 
Shoe class: 

class Shoe 

} ; 

double d_temperature; 
int d_size; 
I I ... 

public: 
I I ... 
void expand(double calories); 
I I ... 
void setSize(int size); 
I I ... 

Values held in local (automatic) variables within member functions are only tempo
rary; they do not exist after the member function returns. On the other hand, class 
member data defines the state of the object, which exists between member function 
calls: 

void Shoe::expand(double calories) 
{ 

canst double FACTOR = 42.57; 
I I '" 

II Always initialized to same value 
II (probably belongs at file scope). 

double factor = calories * FACTOR; II short lived automatic variables 

d_temperature += FACTOR I d_size; II use of "state" variables 
} 

The primary purpose of the d_ is to highlight class data members in a context
independent, mechanical way. Because of the very different purposes for these two 
types of data, lexicographically distinguishing class data member names from those 
of local variables helps to make object implementations easier to understand. 

It is common to see member functions that set an instance variable (e.g., d_s i ze) to 
contain a single assignment expression: 
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inline 
void Shoe::setSize(int size) 
{ 

} 

putting the d_ in front of data members also obviates dreaming up weird names (e.g., 
sz) for the manipulator function's argument: 

void Shoe::setSize(int sz) 
{ 

size = sz; 
} 

The choice of a d_ prefix is quite arbitrary_ We do not use only an underscore (_) as a 
prefix because identifiers beginning with an underscore are reserved for use by C 
compilers.8 Some prefer to use a trailing underscore for this purpose: 

void Shoe::setSize(int size) 
{ 

size_ = size; 
} 

I find it useful to leave the suffix open for other purposes (such as _p to identify a 
pointer data member).9 You may also want to use a different prefix (such as s_ to 
identify static class data). Whether in a class or at file scope, non-canst static data 
potentially contains instance-independent state information. As discussed in Section 
6.3.5, static class data members may be moved to file scope in a . c file to help avoid 
compile-time coupling. Because of the very similar properties and interchangeability 
of these two types of data, it makes sense to identify state variables in the . c file with 
an s_ as well. Consistently following this naming convention makes it easy to search 
for all instance-independent state variables in a component. 

It is worth noting that static class or file scope constant data is stateless. We can iden
tify the nature and lifetime of this data simply by making its name all uppercase. For 
constant data in class scope, a name such as S_DEFAULT_VALUE or simply 
DEFAULT_VALUE could work equally well. In this book we prefer S_DEFAULT_VALUE 

for class-scoped constant static data to remind us of the need to keep it private (see 
Section 2.2). 

8 ellis, Section 2.4, p. 7. 
9 See Section 6.4.2 for another use of an identifier suffix. 
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By contrast, a non-static constant data member has a more limited lifetime and its 
value need not always be the same in each incarnation of the object. Consequently, its 
name would appear in lowercase and begin with a d_ prefix: 

class Set { 1* ... *1 } 
class Setlter { 

} ; 

Set *const d_set_p; 
const double D_PI; 
I I ... 

II d_set_p is a canst pointer ta a Set. 
II bad idea (should be static) 

The d_ convention was adopted, without complaint, by our entire company. 

1.4.2 Class Member Layout 

When using an unfamiliar object, figuring out where to find things can be difficult. 
Although member function ordering within a class is clearly a matter of style, from a 
client's point of view it helps to be consistent. A fundamental way to classify member 
functionality is by whether or not it potentially affects the state of the object. 

An organization useful for both a developer and a client is illustrated in Figure 1-5. 
This organization has the advantage of grouping by categories of functionality that are 
present in nearly every C++ class. This organization is also independent of the partic
ular abstraction being implemented. 

class Car { 
I I ... 

} ; 

public: 
II CREATORS 
Car(int cost = 0); 
Car(const Car& car); 
""'CarC); 

II MANIPULATORS 
Car& operator=(const Car& car); 
void addFuel(double numberOfGallons); 
void drive(double deltaGasPedal); 
void turn(double anglelnDegrees); 
I I ... 

II ACCESSORS 
double getFuel() const; 
double getRPMs() const; 
double getSpeed() const; 
I / ... 

Figure 1-5: CreatorlManipulator/Accessor Member Or2anization 
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CREATORS bring objects into and out of existence. Notice that operatar= is not a 
creator, but rather (by convention) the first manipulator. MAN I PU LATORS are simply 
non-canst member functions; ACCESSORS are canst member functions. This purely 
objective grouping makes it easy to verify at a glance that all of the accessors and 
none of the manipulators are declared as con s t members of the class. But the princi
pal benefit is to provide a common starting point for dissecting the fundamental func
tionality of an unfamiliar class. For larger classes, it can be helpful to sort members 
within each section alphabetically. For very large classes such as wrappers (discussed 
in Sections 5.10 and 6.4.3), other organizations may be more appropriate. 

Sometimes people will try to group member functions as get/set pairs as illustrated in 
Figure 1-6. For some users, .this style is a result of the misguided belief that an object 
is little more than a public data structure that has data members, each of which must 
have both a "get" (accessor) function and a "set" (manipulator) function. This style 
itself could, for some, impede the creation of truly encapsulated interfaces in which the 
data members are not necessarily transparently reflected in the behavior of the object. 

class Car { 

} ; 

double d_fuel; 
double d_speed; 
double d_rpms; 

public: 
CarCint cost = 0); 
Car(const Car& car); 
Car& operator=(const Car& car); 
..... C a r ( ) ; 

double getFuel () canst; 
void setFuel(double numberOfGallons); 

double getRPMs() canst; 
void setRPMs(double rpms); 

double getSpeed() const; 
void setSpeed(double speedlnMPH); 

/ / ... 

Figure 1 .. 6: Get/Set Member Organization 

Finally, there is the question of where to place the data members. Properly encapsu
lated classes do not have public data. From a logical point of view, data members are 
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merely implementation details of the class6 Consequently, many people prefer to place 
the implementation details of a class, including the data members, at the end of the 
class definition, as illustrated in Figure 1-76 

class Car { 
public: 

} ; 

Car(int cost = 0); 
Car(const Car& car); 

/ / ... 

private: 
do u b 1 e d_ f u e 1 ; 
double d_speed; 
double d_rpms; 

Figure 1-7: Trailing Data Member Organization 

Although this organization may be more readable to naive clients, the attempt to hide 
the implementation details at the end of the class definition belies the fact that they are 
not hidden. The presence of implementation details in the header file imposes a 
degree of compile-time coupling that does not evaporate simply by relocating these 
details within the class definition. 

Since this book addresses physical and organizational design issues, we consistently 
place implementation details in the header file ahead of the public interface (partly to 
emphasize their presence). In Chapter 6, we discuss how such implementation-level 
clutter can be removed from a header file entirely, and thus truly hidden from the client. 

1.5 Iterators 

Perhaps the most common pattern in object-oriented design is that of an iterator.10
, 11 

An iterator is an object that is intimately coupled to and supplied with a primary 
object of some kind; its purpose is to allow clients to sequence through the parts, 
attributes, or subobjects of the primary object. 

Often objects will represent a collection of other objects. Such objects are commonly 
referred to as containers. Sets, lists, stacks, heaps, queues, hash tables, and so on are 

10 gamma, [terator, Chapter 5, pp. 257-271. 
II strODstrup, Sections 5.3.2, p. ) 60; 7.8, p. 243; and 8.3.4, p. 267. 
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typical container objects. Note that where relevant, we often identify the source file 
for a body of code with a leading comment. For example, 

// stack.h 
#ifndef INCLUDED_STACK 
/ / ... 

// stack.c 
1fi n c 1 u de" s t a c k . h " 
I / ... 

Consider, for example, the simple class implementing a set of integers shown in Fig
ure 1-8. As we can see from its header file, I n t Set is implemented using I n t Set Lin k 

objects, but that fact is an encapsulated implementation detail of the class. In this min
imal implementation, we have elected to prevent users from constructing a copy of an 
I n t Set or assignirig to one by making these otherwise automatically generated func
tions private. (The comment NOT IMPLEMENTED· indicates that the functionality 
does not exist even privately.) Users of I ntSet are allowed only to create an empty 
set, add integers to it, check for membership, and destroy it. 

/1 intset.h 
#ifndef INCLUDED_INTSET 
#define INCLUDED INTSET 

class IntSetLink; 
class IntSetIter; 
class ostream; 

class IntSet { 
// DATA 
IntSetLink *d_root_p; // root of a linked list of integers 

// FRIENDS 
friend IntSetIter; 

private: 
// NOT IMPLEMENTED 
IntSet(const IntSet&); 
IntSet& operator=(const IntSet&J; 

public: 
// CREATORS 
IntSetC); 

// Create an empty set of integers. 
'"" I ntSet ( ) ; 

/1 Destroy this set. 
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II MANIPULATORS 
void add(int i); 

Chapter 1 

II Add an integer to this set. If the given integer is 
II already present, this operation has no effect. 

} ; 

II ACCESSORS 
int isMember(int i) const: 

II returns 1 if integer 1 is a member of the set, 
II and 0 otherwise. 

lfendif 

Figure 1-8: A Simple Integer Set Class 

A tiny test driver that exercises this limited functionality is shown in Figure 1-9. Note 
that driver programs in this book are indicated by using the file name suffix . t . c. 

II intset.t.c 
#include "intset.h" 
#include <iostream.h) 

maine) 
{ 

IntSet a; 

a.add(l); a.add(2): a.add(3).; a.add(2); a.add(4); a.add(6); 

for (int i = 0; i < 10; ++i) { 
cout « ' , « i « ' , « (a.isMember(i) ? "yes" : "no"); 

} 

cout « endl: 
} 

II Output: 
II john@john: a.out 
II O-no I-yes 2-yes 3-yes 4-yes 5-no 6-yes 7-no 8-no 9-no 
II john@john: 

Figure 1-9: Trivial Driver Exercising I ntSet Functionality 

Suppose we would like to find out what members exist in the set in order to print 
them. Theoretically, we could write the output function ourselves as shown in Figure 
1-10, but the performance of that implementation would be somewhat lacking. 
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.#include <limits~h> II defines INT_MIN and INT_MAX 
ostream& operator«(ostream& 0, canst IntSet& intSet) 
{ 

a « "{ "; 
for (int i = INT_MIN; i <= INT_MAX; ++i) { 

if (intSet.isMember(i» {. . 
a « i « ' , 

} 

} 

return a « '}'; 
} 

Figure 1-10: Infeasible Implementation of IntSet Output Operator 

An obvious solution is to make the 0 per a tor < < function a friend of class I n t Set in 
order to take advantage of its internal representation. We could do that, but what if a 
client is not happy with the format supplied by this operator's implementation? What 
happens if later we find we need to access the internal members, say, to compare two 
I ntSet objects? 

class IntSet { 
I I ... 

public: 
I I ... 

void reset(); 
II Reset to beginning of sequence of integers. The Current 
II integer will be invalid only if the set is empty. 

void advance(); 
II Advance to the next integer in the set. If the current 
II integer was the last in the set, the current integer 
II will be invalid after advance returns. Note that the 
II behavior is undefined if the current integer is already 
II not valid. 

int current() canst; 
II Return the current integer in the sequence. Note that the 
II behavior is undefined if the current integer is not valid. 

int isCurrentValid() canst; 

} 

II Return 1 if the current integer is valid, and a otherwise. 
II Note that the current integer is valid if the set is not 
II empty and we have not advanced beyond the last integer 
II in the set. 

Figure 1-11: Attempting to Add Iteration Capability to the Container Itself 
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We could keep adding new members and friends, but each time we do, we put both 

our clients and ourselves at risk by increasing the complexity of the class. Repeatedly 
revisiting and extending the functionality of an object is a well-recognized way of 
introducing bugs into software. Also, unless you plan to support multiple versions, 

other clients that do not care about this new functionality will have it forced upon them. 

Instead of dealing with these deficiencies one at a time, we can address most of them 
at once by providing a general and efficient way to access the individual members of 
the set. Suppose we decided to add this capability directly to the I ntSet class itself, 
as depicted in Figure 1-11. It is now possible for a client to iterate through an instance 

of class I n t Set and print out the contents of that object in any format that is desired. 
Figure 1-12 illustrates some of the power of iteration. Regardless of how the imple
mentation of the set may change, the client's code will not be affected. 

ostream& aperator«(ostream& Ot canst IntSet& intSet) 
{ 

0« "{ "; 
for (intSet.resetC): intSet.isCurrentValidC); intSet.advance(» { 

o « intSet.current() « t ': 

} 

return 0 « '}'; 
} 

Figure 1-12: Another Implementation of the IntSet Output Operator 

Unfortunately, there are still problems with the design shown in Figure 1-12. For a 
given object, there can be at most one iteration going on at anyone time. Suppose we 
are trying to implement a comparison function for our I ntSet and decide, for debug
ging purposes, to print out the contents of the sets midway through the comparison 
iteration. The print routine would have the unwanted side effect of corrupting the iter
ation state for the comparison. The problem is that I n t Set allocates enough space to 
hold state information for exactly one iteration. That space remains allocated whether 
or not an iteration is active. If for some reason we want to have a pair of nested for 
loops that iterate over the elements in the same set, we would have to duplicate the 
entire set. 

This problem could be addressed by having the client hold on to the internal state or 
retain some other form of place holder. If the client allocates the state dynamically, 
the client must remember to delete the state to avoid a memory leak. 
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If the place holder is in the form of an integer index, there could be some additional 
practical constraints on the underlying implementation of the set. For example, if the 
set is implemented as a linked list (instead of an array), there is the potential for qua
dratic-Le., O(N2)-behavior during iteration because each iteration of the for loop 

would result in having to traverse the list. 

The standard approach is to supply an iterator class along with each container class 
(in the same header file). The iterator is declared a fri end of the container and 
therefore has access to its internal organization. The iterator class is defined in the 
same header file as the container class to avoid the problems associated with "long
distance" friendship (discussed in Section 3.6). Iterators for concrete containers such 
as IntSet are typically created on the program stack; thus their state is destroyed 
automatically when the iterator goes out of scope. Iterator objects can be more space 
efficient because the space for each iteration need exist only during the iteration 
process itself. Also, any number of iterators can be independently active on a given 
container at any time without interfering with one another. 

As a practical matter, it is common for iterators to assume that the objects on which 
they operate are not modified or destroyed during the course of iteration. It is also 
common for the order in which objects are presented during iteration to be implemen
tation dependent and subject to change without notice. Ideally, iterator developers 
would explicitly state whether or not the order of iteration is defined. To be safe, cli
ents of iterators should not assume an order unless one is specified. 

Figure 1-13 illustrates the design of the standard iterator pattern used throughout this 
book. This iterator object is intended for use with for loops. The syntax of this itera
tor is quite terse. The use of the operators is by no means obvious, especially if you 
have never seen them used this way before. One could easily argue that this style is an 
abuse of operator overloading because readability is reduced. There is more to this 
story, however. 

class IntSetlter { 
II DATA 
IntSetLink *d_link_p; 

private: 

II root of linked list of integers 

II NOT IMPLEMENTED 
IntSetlter(const IntSetIter&): 
IntSetIter& operator=(const IntSetlter&): 
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} ; 

public: 
// CREATORS 
IntSetlter{const IntSet& IntSet); 

// Create an iterator for the specified integer set. 

----IntSetlter(); 
II Destroy this iterator (an unnecessary comment). 

II MANIPULATORS 
void operator++{); 

/1 Advance the" state of the iteration to next integer in set. 

/1 ACCESSORS 
int operator()() canst; 

/1 Return the value of the current integer. 

operator canst void *() canst; 
1/ Return non-zero value if iteration lS valid~ otherwise O. 

Figure 1-13: A Standard Iterator for the I ntSet Container 

Because of the frequency with which iterators can and do occur in large designs, the 
most important consideration for developers must be consistency. If we avoid operator 
overloading and use functions instead, it is important to use the same function names 
every time; otherwise we will find ourselves unwittingly misnaming these functions 
and forever having to revert to header files for the syntactic details. A representative few 
of the many possible equivalent function names are shown in Figure 1-14. 

it 
++it 
it ( ) 

it.more( ) 
it.next( ) 
it. i tern ( ) 

it.isMore() 
it~getNext() 

it.getltemC) 

it.valid() 
it.advance() 
it.element() 

Figure 1-14: Which Names Should We Use? 

it.notDone() 
it.getMore() 
it.value() 

Our experience has shown that adopting the operators indicated in the left column of 
Figure 1-14 for each of these standard iteration methods produces a consistent, easy
to-use, and soon familiar and easily recognized idiom for iteration over concrete 
types. Whatever you decide to use, be sure to be consistent throughout your product 
line. The final implementation of the I ntSet output operator is shown in Figure 1-15; 
the terse iterator notation affords a succinct implementation. 
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ostream& operator«(ostream& 0, const IntSet& intSet) 
{ 

o « "{ "; 
for "ClntSetlter it(intSet); it: ++it) { 

o « i t() « t t 

} 

return 0 « '}t: 

} 

Figure 1-15: I ntSet Output Operator Using Succinct Iterator Implementation 

The choice of pre-increment (++it) over the post-increment (it++) in Figure 1-15 is 
deliberate; the post-increment version requires a second dummy argument and is not" 
universally available. 12 Furthermore, the semantics of increment for an iterator more 
closely pattern those for pre-increment when applied to the fundamental types (see 

Section 9.1.1). 

1.6 Logical Design Notation 

Object-oriented design lends itself to a rich set of notations. 13 Most of these notations 

denote relationships between the logical entities of a design. 

DEFINITION: 

NOTATION 

C __ x _) 

I x I 

B IsA 

U ses-In -The-Interface BO---------------------A 

MEANING 

X is a logical entity (e.g., class). 

x is a physical entity ( e.g., tile). 

B is a kind of A. 

B uses A in B's interface. 

Be Uses-In-The-Implementation A B uses A in B's implementation. 

12 See ellis, Section 13.4.7, pp. 338-339. 
13b ooch, Chapter 5, pp. 171-228. 
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Throughout this text, we consistently identify logical entities (e.g., classes, structures, 
and unions) with an ellipse-like bubble: 

( Car) 

as opposed to a rectangle for physical entities: 

car.c 

class Car { 
I I ... 

} ; 

II car.c 
/finclude "car.hl! 
II 

For our purposes, three logical notations will suffice: 

class Car: publiC Vehicle { 
( Car )J-.--_____ I_sA ___ ~ ...... ( Vehicle) }; / / ... 

( h Uses-In-The-Interface ( ) Car f---------f Ga~ 

( Car )_~_U_s_e_S-_In_-_T_he_-_Im _____ pl_e_m_e_n_ta_ti_o_n ----f( Engine) 

class Car { 
I I ... 

public: 

} ; 

void addFuel(Gas *); 
/ I ... 

class Car { 

} ; 

Engine d_motor; 
I I ... 

If there is ever a need for additional logical notation, a labeled arrow that explicitly 
identifies the relationship will suffice. 

1.6.1 The IsA Relation 

Suppose a Message is a kind of Stri ng. That is, an object of type Message can be used 
wherever a S t r i n g object is required. 
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class String { 
I I ... 

public: 
I I ... 

} ; 

class Message: public String { 
I I ... 

The IsA Relation 49 

( String) 

pub 1 i c: Message 
I I .,. 

} ; 

(a) Elided Class Definitions (b) Notational Representation 

Figure 1-16: The IsA Relation 

As we can see from the definitions of Figure 1-16a, class Message inherits from class 
Stri ng, and an arrow is used to denote this relationship in Figure 1-16b: 

D IsA 

That is, D-----1.~B means that "D is a kind of B" and that "D inherits from B." 

The direction of the arrow is significant; it points in the direction of implied depen
dency. Class 0 depends on B because 0 is derived from B. B must come first in order 
for 0 to name B as a base class: 

class B { 1* ... *1 }; 
class 0 public B { 1* .0. *1 }; 

Often you will see the arrow pointed in the opposite direction, which can be mislead
ing. An arrow shows an asymmetric relationship between two entities denoted by its 
label (in this case "IsA"). To draw the arrow the other way, we would logically have to 
call.the relation something else, such as "Derives" or "Is-A-Base-Class-Of": 

( D ) ........ ~----...;D~e~riv..;......;;;..es~--tC B ) (less useful) 

This alternative notation is less desirable because the arrow points in the direction 
opposite to that of implied dependency. 
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Because analyzing physical dependencies is essential to good design, we adopt the 
notation assuming the IsA label and point our arrows in the direction of implied 
dependency. Figure 1-17 provides one last illustration of inheritance notation using 
the classic shape example. 

Shape Shape 

IsA 

Square (Square ) 

(a) Incorrect Notation (b) Less Useful Notation 

Shape 

IsA 

Square 

(c) Correct Notation 

Figure 1-17: Notations Used to Indicate Derivation 

1.6.2 The Uses-In-The-Interface Relation 

Whenever a function names a type in its parameter list or names a type as a return value, 
that function is said to use that type in its interface. That is, a type is used in the interface 
of a function if the type name is part of the function's return type or signature.14 

DEFINITION: A type is used in the interface of a function if the type 
is referred to when declaring that function. 

14 Exclude the possible use of typedefs, which are just synonyms. 
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For example, the free function 

int operator==(const IntSet&, const IntSet&); 

clearly makes use of class I n t Set in its interface. This function happens to return an 
i nt, so i nt also would be considered part of this function's interface. However, fun
damental types are ubiquitous and omitted from such consideration in practice. 

DEFINITION: A type is used in the (public) interface of a class if the 
type is used in the interface of the (public) member function of that 
class. 

There are three levels of logical access for classes in C++: pub 1 i c, protected, and 
pr i va teo The public interface of a class is defined as the union of the interfaces of the 
public member functions of that class. The protected interface of a class is defined 
similarly_ In other words, when a (pub 1 i c) member function of class B uses class A in 
its interface, we say that class B uses class A in B's (pub 1 i c) interface. IS For example, 
the constructor for c las sIn t Set I t e r, I n t Set I t e r ( con s tIn t Set &) uses clas s 
I ntSet in its interface; therefore I ntSet is used in the interface of I ntSet Iter. 

The Uses-In-The-Interface relation is one of the most common and is denoted by 

o Uses-In-The-Interface 

That is, BO A means "B uses A in B's interface." We will sometimes be 
sloppy and say "B uses A in its interface," but we will always mean that B uses A in 
B's interface, and never that B uses A in A's interface. 

You can think of the 0 symbol as an arrow with its tail at the bubble and the 
head missing (or as a conductor's baton pointing at a member of the orchestra). The 
direction of the implied arrow is important-it points in the direction of implied 

dependency. That is, if B uses A, then B depends on A and not vice versa. (We will talk 
more about implied dependency in Section 3.4.) 

15 The interaction between friendship and the U ses-In-The-Interlace relation is discussed in Section 3.6.1. 
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Figure 1-18 shows the logical view of the i ntset component, including the Uses-In
The-Interface relation among the logical entities (classes and free operator functions) 
defined there. The figure reflects that I n t Set I t e r and both free operators use I n t Set 

in their respective interfaces. 

IntSet 

intset 
Logical View 

Figure 1-18: The Uses-In-The-Interface Relation within the i ntset Component 

The U ses-In-The-Interface relation is a valuable tool for both logical and physical 
design. This notation is most useful when confined to logical entities (classes and free 
operators) at file scope. Free operators are frequently omitted from logical diagrams 
in order to reduce notational clutter. 

The actual logical interface for a class can be quite large and complex. Often the prop
erty we are most interested in exhibiting is one of intrinsic dependency rather than 
detailed usage. The set of types used in the interface of a class is more stable (i.e., less 
likely to change during development and maintenance) than the set of types used by 
any particular member function. The more abstract usage characteristics of the class 
taken as a whole are, therefore, more resilient to small changes in the logical interface 
than are the usage characteristics of its individual member functions. 

1.6.3 The Uses-In-The-Implementation Relation 

The U ses-In-The-Implementation relation augments a designer's ability to express 
logical dependencies abstractly. The notation that one logical entity will make use of 
another in its implementation (even though it is not used in its interface) can be very 
helpful in analyzing the underlying structure of a design. Like its counterpart, U ses
In-The-Implementation suggests a physical dependency between two logical entities. 
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Architects can make good use of this information as they refine high-level designs and 

cast them into discrete physical components. 

DEFINITION: A type is used in the implementation of a fQnction if 
the type is referred to in the definition of that function. 

Consider the following implementation of the free function operator==, which 
assumes that the members of equivalent I n t Set objects are always returned by the 

iterator in the same order:' 

. 

int operatar==(canst IntSet& left, canst IntSet& right) 
{ 

} 

IntSetlter lit(left); 
IntSetlter rit(right); 
for (; lit && rit; ++lit, ++rit) { 

if (lit() != rit()) { 
return 0; 

} 
} 

II At least one of lit and rit now evaluates to o. 
return lit == rit; 

In the above implementation, two iterators are created: one for each In t Set argument. 
The body of the for loop is entered only while both iterators refer to valid set 
elements. With each iteration through the loop, integers at corresponding positions in 
the sets are compared. If any such comparison fails, then the sets are immediately rec-_ 
ognized as being not equal. On exit from the for loop, both of the following condi
tions must be true: 

1. At least one of the iterators has reached the end of its set and is now 
invalid. 

2. No corresponding entries of the set have been found to be unequal. 

The two I ntSet objects are equal if and only if both iterators are now invalid. 

Note that operator==(const IntSet&, const IntSet&) isnota friend of class 
I ntSet. Therefore any efficient implementation of this operator must take advan
tage of class I n t Set I t e r. The Uses relationship between the implementation of 
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operator== and class IntSetlter produces an implied dependency of operator== 
on class In t Se tIt e r. Because IntSetIter is used in the implementation of this opera
tor but not in its logical interface, we employ a slightly different symbol to denote the 
relationship: 

• U ses-In -The-Implementation 

That is, B -e--- A means that A is used in the implementation of B. 

intset 
Logical View 

Figure 1-19: Both Kinds of Uses Relations Within the; ntset Component 

Figure 1-19 again shows us the logical view of the ; ntset component along with both 
kinds of uses relationships. In particular we see that 

int aperatar==(canst IntSet&, canst IntSet&) 

uses class I n t Set in its interface and class In t Set I t e r in its implementation. 
Although 0 per a tor! = is shown implemented symmetrically to 0 per at 0 r==, _ 
ope rat 0 r ! = would probably be implemented in terms of 0 per at 0 r== in practice. 

If an object is used in the interface of a function, it is automatically considered to be 
used in the implementation of that function. We can therefore conclude from seeing 
the • symbol that the indicated usage is not in the interface. For example, 
we can infer directly from Figure 1-19 that ope ra tor! = does not use I ntSet I te r in 
its interface. 
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DEFINITION: A type is used in the implementation of a class if that 
type (1) is used in a member function of the class, (2) is referred to in 
the declaration of a data member of the class, or (3) is a private base 
class of the class. 

A class can use another type in its implementation in several ways. As we will see in 
Section 3.4,- the particular way in which our class uses a type will affect not only how 
our class depends on that type but also to what extent clients of our class will be 
forced to depend on that type. For the time being, we simply exhibit the ways in 
which a class can use a type in its implementation: 

DEFINITION: 

Specific kinds of the Uses-In-The-Implementation Relationship: 

Name Meanin& 

Uses The class has a member function that names the type. 

HasA The class embeds an instance of the type. 

HoldsA The class embeds a pointer (or reference) to the type. 

WasA The class privately inherits from the type. 

1.6.3.1 Uses 

If any member function of a class (including a private member) names a type in either 
its interface or its implementation, that type is considered to be used in the logical 
implementation of the class. 

/' 
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class Crook { 
private: 

} ; 

va; d bribe(); 
/ / ... 

class Judge; 

voi d Crook:: bri be() { 
Judge *bad = 0; 
/ / ... 

} ; 

( Crook )_....--u_s_e_s-_In_-_T_h_e-_I_m-=..p_Ie_m_e_ll_ta_ti_o_n--f( Judge) 

Figure 1-20: Crook Uses Judge 

Chapter 1 

Figure 1-20 illustrates that since type J u d 9 e is named in the body of a member func
tion (bri be) of class Crook, Judge is used in the implementation of Crook. In other 
words, class Crook uses Judge. 

1.6.3.2 HasA and HoldsA 

Another form of usage occurs when a class, X, embeds a (private) data member of 
type T. This kind of internal usage is commonly referred to as HasA. Even if,class X 

contains a data member whose type is merely derived (in the C-Ianguage sense) from 
T (e.g., T* or T &), T is still considered to be used in the logical implementation of X. 

We will occasionally refer to this kind of internal usage as HoldsA. 

class Tower { /* ... */ }; 
class Cannon; 

class BattleShip { 
Tower d_controlTower; 

II declaration only 

Cannon *d_replaceableForward8attery_p; 
Cannon& d_fixedAftBattery; 
/ / ... 

} ; 

Battleship 

(RasA) (Holds A) 
U ses-In-The-Implementation Uses-In-The-Implementation 

Cannon 

Figure 1 .. 21: Battl eshi p HasA Tower and HoldsA Cannon 
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Figure 1-21 shows a class definition for Tower and a class declaration for Cannon. 

Both of these types are used in the implementation of class Bat t 1 e s hip. In particular, 
Ba ttl es hip RasA Towe rand Ba ttl es hip RoldsA Ca n non. We make no distinction in 
the symbolic notation we use: both HasA and HoldsA are indicated with the usual 

• notation . 

1.6.3.3 ~as)l 

Inheriting privately from a type is yet another way to use that type in the logical 
implementation of a class. Private inheritance is an implementation detail of the 
derived class. From a logical point of view, a private base class (like a private data 
member) is invisible to clients. Private inheritance is a technique that can be used to 
propagate only a subset of the attributes of its base class. This seldom-used relation 
has been affectionately termed WasA, and is illustrated in Figure 1-22. 

class Battleship { 1* ... *1 }; 
class Shop { 1* ... *1 }; 
class Exhibit: II declaration only 

class ArizonaMemorial : private Battleship { 
Shop d_giftShop; 
Exhibit *d_current_p; 
Exhibit& d_default; 
I I ... 

} ; 

Battleship 

(Was A) 
U ses-In-The-Implementation 

ArizonaMemorial 

(HasA) (HoldsA) 
U ses-In-The-Implementation U ses-In-The-Implementation 

Shop 

Figure 1-22: Ar; zonaMemo r; a 1 WasA Bat t 1 es hi P 

Figure 1-22 shows a class definition for Bat t 1 e s hip that acts as a private base class 
for Ar i zan a Memo ri a 1 . Once in active service, the battleship Arizona was one of the 
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casualties of the 1941 bombings of Pearl Harbor. The Arizona is now a museum with 
a gift shop and exhibits. 

Although private inheritance is an implementation detail, public and protected inherit
ance are not. Inheritance increases the set of types that are compatible with the base 
type. Nonprivate inheritance therefore introduces information that is programmati
cally accessible by clients. The unique properties of public and protected inheritance 
make them worthy of their own notation, as presented in Section 1.6.1. 

We have now reviewed all of the logical notation we need to get down to the serious 
business of physical design. The logical and physical aspects of design are tightly 
coupled. Each of the logical relations-IsA, Uses-In-The-Interface, and Uses-In-The
Implementation-implies a physical dependency between logical entities. As we will 
see in Chapter 3, it is ultimately these logical relations that dictate the physical inter
dependencies within our system. 

1.7 Inheritance versus Layering 

In the context of object-oriented design, when someone mentions the word hierarchy, 
many people think inheritance. Inheritance is one form of logical hierarchy-layer
ing is another. By far, the more common form of logical hierarchy in object-oriented 
design results from layering. 

DEFINITION: A class is layered on a type if the class uses that type 
substantively in its implementation. 

Layering is the process of building on smaller, simpler, or more primitive types to 
form larger, more complex, or more sophisticated types. Often layering occurs 
through composition (e.g., RasA or HoldsA), but any form of substantive use (i.e., 
any use that would induce a physical dependency) qualifies as layering. 

Instances of a layered type are often not programmatically accessible to clients via the 
interface of the higher-level object. The connotation is that the primitive type is at a 
lower level of abstraction. For example, a person has a heart, a brain, a liver, and so 
on, yet these layered organ objects are not part of the public interface of most healthy 
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people. An object as simple as a list is often implemented as a collection of links, yet 
the Lin k class itself is not used in the interface of most well-written Lis t classes. 

Inheritance, along with dynamic binding, distinguishes object-oriented languages 
(such as C++) from object-based languages (such as Ada) that support user-defined 
types and layering but not inheritance. 16 The semantics of inheritance are quite differ
ent from those of layering. For example, the public functionality of both base and 
derived classes is accessible by clients. 17 With inheritance, the more specialized or 
concrete class depends on the more general or abstract class(es). With layering, the 
class at a higher level of abstraction depends on the class(es) at a lower level of 
abstraction. 

Brain Brain) Liver 

(Bad Idea) 

(a) Layering (b) Multiple Inheritance 

Figure 1-23: Layering versus Multiple Inheritance 

Layering is an important and often underdeployed weapon in the arsenal of the object
oriented designer. It is not uncommon for novice programmers to attempt to use 
inheritance where layering is indicated. Figure 1-23 shows two examples of logical 
hierarchy. In both cases, Per son implicitly depends on He art, Bra in, and L i ve r in 
order to do its job. Layering is clearly the correct approach here because a Person is 
not a Hea rt, a Bra in, or aLi ver. Instead, a Person has a Hea rt, a Bra in, and a 
Liver. Furthermore, these organs must not be exposed in the interface of a Person. 
With layering, a client need not be subjected to the interfaces of these internal details. 

1.8 Minimality 

Some class authors want their classes to be all things to all people. Such classes 
have been referred to, affectionately, as Winnebago classes. This very common and 
seemingly noble desire is cause for concern. As developers, we must remember that 

16 See hooch, Chapter 2, p. 39. 
17 Note: private inheritance is a fonn of layering. 



60 Preliminaries Chapter 1 

just because a client asks for an enhancement doesn't mean that it is appropriate for 
our class. Suppose you are the author of a class and each of 10 clients asks you for a 
different enhancement. If you agree, two things will happen: 

1. You will have to implement, test, and document 10 new features that you 
did not originally consider part of the abstraction that you were trying to 
implement (which in itself is a symptom of a problem). 

2. Each of your 10 clients will be given 9 new features that they did not ask 
for and probably don't need or want. 

Every time you add a feature to please one person, you disrupt and potentially annoy 
the rest of your client base. It has happened that classes that were originally light
weight and very useful have, over time, become so bloated that instead of being good 
for everything, they have become, quite literally, good for nothing. 

Notice that in Section 1.5 we chose to disallow explicitly the possibility of initializa
tion or assignment for instances of both I n t Set and I n t Set I t e r by declaring the 
respective member functions private. Making a copy of a collection can result in non
trivial development effort, and such functionality for iterators is rarely needed in prac
tice. We can defer the implementation and testing of superfluous functionality unless 
or until a need for that functionality presents itself. Deferring implementation is also 
one way to keep our options open. Not only does it require less work to implement, 
test, document, and maintain software, but by deliberately not supplying functionality 
prematurely, we commit to neither its behavior nor its implementation. In fact, not 
implementing functionality can improve usability. For example, making the copy con
structor private prevents inadvertently passing an object by value-a technique used 
in the iostream package. 18 

This minimalist approach of making components sufficient but not necessarily com
plete applies to large projects under development where the users of the component 
are "in-house" or in a position to request and receive additional functionality quickly 
should it tum out to be needed. The most extreme case occurs where the component is 
highly specialized and the author is the only intended user. In that case, implementing 
any unneeded functionality is probably unwarranted. Of course,omitting the imple-

18 Passing user-defined types by value is a common cause of unnecessary performance degradation 
(see Section 9.1.11). 
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mentation of functionality intrinsic to an abstraction would not make sense for, say, a 
commercial component library where the users are paying customers and will expect 
robust and fully functional objects. This issue is not black and white; between the two 
extremes lies a spectrum that corresponds to how widely a component will be used. In 
evaluating the trade-offs, remember to consider that functionality is invariably easier 
to add than to remove. 

1.9 Summary 

Large C++ programs reside in more than a single source file. Partitioning programs 
into separate translation units makes recompilation more efficient and reuse possible. 

Although most C++ declarations can be repeated in a given scope, there must be 
exactly one definition of every object, function, or class used in a C++ program. 

Definitions with internal linkage are confined to a single translation unit and cannot 
affect other translation units unless placed in a header file. Such definitions can exist 
at file scope in . c files without affecting the global (symbol) name space. 

Definitions with external linkage can be used to resolve undefined symbols in other 
translation units at link time. Placing such definitions in header files is almost cer
tainly a programming error. 

Typedef declarations are only aliases for types and provide no additional compile
time type safety. 

Assert statements can be used effectively to detect coding errors during development 
without affecting program size or runtime performance in the production version of a 
product. 

In this book we adopt the following style conventions: 

• Type identifier names begin with an uppercase letter. 

• Functions and data begin with a lowercase letter. 

• Multi-word identifier names capitalize the first letter of the second and 
subsequent words. 
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• Constants and macros are all uppercase (with words separated by a single 
underscore) . 

• 
• Class data members are prefixed by d_ (or s_ for static members). 

• Class member function will be organized according to creator, manipulator, 
and accessor categories. 

• Private details will precede the public interface in class definitions (primarily 
to emphasize their presence in the header file). 

The iterator design pattern is used to sequence over the parts, attributes, or sub
objects of some primary object. An iterator is declared to be a f r i end of the primary 
object, and its definition should reside in the same header file as that object. The 
iterator notation used in this book tersely conforms to a for-loop model. 

Object-oriented design lends itself to a rich set of logical notations. In this text, 
however, we will limit ourselves to three: 

IsA o U ses-In-The-Interface • Uses-In-The-Implementation 

The orientation of each symbol (shown here from left to right) should be consistent 
with its label and point in the direction of implied dependency. There are a few special 
names for some particular kinds of Uses-In-The-Implementation (Uses, RasA, 
HoldsA, and WasA); however, the notation used to represent each of these variations 
is the same. 

Inheritance and layering are two forms of logical hierarchy. Layering is by far the 
more common, often involving an implementation-only dependency. Layering, spe
cifically composition, is preferable to derivation when the class in question cannot 
sensibly be thought of as a kind of the proposed base class(es). Finally, extending the 
functionality of a single class in response to several clients often results in a class that 
is overweight and undesirable. For classes that are not widely used, implementing 
excessively complete functionality can unnecessarily increase development time, 
maintenance cost, and code size. Deferring the implementation of functionality that is 
not yet needed reduces development time while keeping options open. On the other 
hand, commercial component libraries are expected to be fully functional and robust. 



Ground Rules 

. This chapter describes a modest collection of fundamental design rules that have 
proved useful in practice and that serve as framework for discussing the material sur
rounding more advanced rules presented later in this book. These fundamental rules 
address basic practices such as restricting member data access and reducing the num
ber of identifiers in the global name space. In particular, we examine what types of 
constructs can safely be placed at file scope in a header file. The need for both internal 
and redundant external include guards will be established. This chapter concludes 
with a discussion of what constitutes adequate documentation (such as explicitly iden
tifying behavior that is undefined), followed by a short list of identifier-naming con
ventions. 

Overview 

The beauty of any fine art comes not only from creativity but also from discipline. So 
it is with programming. C++ is a large language, and there is ample room to be cre
ative with it. However, the design space is so big that without discipline-that is, 
without some modest constraints on the design structure-large projects can easily 
become intractable and unmaintainable. These constraints are presented in the form of 
design rules, guidelines, and principles. 

Design Rules: Experience tells us that certain coding practices that are perfectly legal 
in C++ simply should never be used in a large-project environment. Recommenda
tions that flatly proscribe or require a given practice without exception are referred to 
in this book as design rules. Verifying adherence to these rules cannot be a subjective 
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process. Design rules must be sufficiently precise, specific, and well defined so that 
complying with these rules can be verified objectively. To be effective, design rules 
must lend themselves to impersonal, mechanical verification via automated tools. 

Guidelines: Experience also tells us that certain other practices should be avoided 
wherever possible. Suggested practices of a more abstract nature for which exceptions 
are sometimes legitimately made are called guidelines. Guidelines are like rules of thumb 
to be followed unless other, more compelling, engineering reasons dictate otherwise. 

Principles: There are certain observations and truths that have often proved useful 
during the design process but must be evaluated in the context of a specific design. 
These are referred to as principles. 

Gaining consensus on software coding standards among independent programmers 
can be quite challenging. Every programmer has his or her own extended set of con
ventions. I impose many more rules on myself than I could possibly share with you, 
but they mostly involve style, not substance. If we can agree on the 10 percent of the 
rules that buy us 90 percent of the real benefit, we will be doing very well indeed. 

This book contains many recommendations. In this chapter I present a set of very 
basic design rules that I call ground rules, explaining and (I hope) justifying each rule 
as I go. You may not agree with all of them at first, but over time they have proved 
both workable and effective for very large projects. 

I have subdivided design rules into two distinct categories: major and minor. Major 

design rules refer to practices that must always be followed. Deviating from a major 
design rule is likely to affect the quality not only of the offending component, but also 
of other components within the system. Even infrequent violations could undermine 
the success of a large project. Throughout this book, I have assumed that major design 
rules are never violated. As always, never never means NEVER. If extraordinary cir
cumstances and common sense dictate that one or more major design rule'S be vio
lated, it is incumbent upon developers to fully understand and appreciate the 
implications and possible consequences of their actions. Minor design rules refer to 
practices that are strongly recommended but not necessarily critical to a project's 
overall success-for example, issues involving constructs that are used only in the 
implementation, are unlikely to affect other developers, and are otherwise relatively 
contained and easy to fix in isolated instances. Draconian adherence to minor design 
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rules is not critical because (unlike adherence to major rules) the cost of a project 
increases only incrementally with each minor rule violation. 

Because it is not expected that there will ever be an engineering reason to violate any 
design rule (major or minor), any design rule that proscribes one approach must offer 
a suitable alternative that will work in all cases. 

2.2 Member Data Access 

Encapsulation is a term used to describe the concept of hiding implementation details 
behind a procedural interface. Comparable terms include information hiding or data 
hiding. Directly accessing a data member of a class violates encapsulation. 

Major Design Rule , 

Keep class data members private. 

Consider the definition of class R e eta n 9 1 e in Figure 2-1. This R e eta n 9 1 e is defined 
by providing two Poi nt objects (see Figure 1-1) that identify its lower-left and upper
right comers. Since this particular implementation of R e eta n 9 1 e stores these Poi n t 
values internally, we might be tempted to make the data members public to avoid sup
plying manipulator (i.e., set) and accessor (i.e., get) functions for each. 

II rectangle.h 
#ifndef INCLUDED_RECTANGLE 
#define INCLUDED_RECTANGLE 

class Rectangle { 
public: 

Point d_lowerLeft; 
Point d_upperRight; 

public: 
II CREATORS 

II bad idea (public data) 
II bad idea (public data) 

Rectangle(const Point& lowerLeft, canst Point& upperRight); 
Rectangle(const Rectangle& rect); 
,...,Rectangle(); 

II MANIPULATORS 
Rectangle& operator=(const Rectangle& rect); 
void moveBy(const Point& delta); 
II 
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} ; 

II 

II ACCESSORS 
int area() const; 
I I .... 

inline 
void Rectangle::moveBy(const Point& delta) 
{ 

} 

II 

d_lowerLeft += delta; 
d_upperRight += delta; 

ffendif 

Figure 2-1: Poor (Unencapsulating) Rectangl e Class Interface 

Chapter 2 

Now consider the impact on clients when we discover that Rectangl e objects are fre
quently moved. To improve performance, we might try changing the representation of 
Recta ng 1 e objects. For example, instead of storing the absolute location of the upper
right comer, we might represent that value implicitly by storing its position relative to 
the lower-left comer: 

class Rectangle { 
public: 

Point d_lowerLeft; 
Point d_upperRightOffset 

II same purpose as in Figure 2-1 
II new "relative" representation 

With this new representation, the moveBy member function can be implemented in one 
line instead of two because the relative position of the upper-right comer with respect 
to the lower-left is not affected by the move: 

inline 
Rectangle::moveBy(const Point& delta) 
{ 

d_lowerLeft += delta; 
} 

The location of the upper-right comer is no longer stored in the Rectangl e object and 
therefore must be calculated when needed: 

void clientCconst Rectangle& rect) 
{ 

} 

Point upperRight - rect.d lowerLeft + rect.d_upperRightOffset; 
/ / ... 
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Any clients who previously accessed the d_u p per Rig h t data member directly will 
now be forced to rework their code. Component reuse compounds this problem. If a 
class defining public data is shared among executables, then changing the data repre
sentation of a single class could necessitate modifying the source code for any number 

of separate programs. 

DEFINITION: A contained implementation detail (type, data, or 
function) that is not accessible or detectable programmatically 
through the logical interface of a class is said to be encapsulated by 
that class. 

Encapsulation is an important tool of object-oriented design. 1 By encapsulation we 
mean that a collection of low-level information is brought together, potentially to 
interact in a tightly coupled, intimate way. Information hiding is then applied to limit 
the external world from interacting with details that are not germane to the abstraction 
the class is supposed to help implement. 

Keeping all data members private and providing the appropriate accessor and 
manipulator functions, as shown in Figure 2-2, leaves us free to change the internal 
representation without forcing our clients to rework their code. The implementation 
of getUpperRi ght() could have been modified to compute that value on demand 
without changing its logical interface. 

Besides maintainability, there are reasons not to have public data members. For exam
ple, the values of data members in a class are rarely independent. Direct (writable) 
access to data (such as d_a rea in Figure 2-2) could easily leave an object in an incon
sistent state. Providing only a functional interface grants class authors the level of 
control necessary to ensure the integrity of their objects. Providing manipulator and 
accessor functions also affords developers the opportunity to insert temporary code 
(e.g., print statements for debugging, reference counts for performance tuning, and 
assert statements for reliability).2 

1 booch, Chapter 2, pp. 49-54. 
2 For a further discussion of why to avoid public data, see meyers, Item 20, pp. 71-72. 
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II rectangle.h 
#ifndef INCLUDED_RECTANGLE 
#define INCLUDED_RECTANGLE 

Chapter 2 

II Yet another representation! 
class Rectangle { 

Point d_lowerLeft; 
int d_width; II Fortunately, these data members are private. 

} ; 

int d_height; 
int d_area; II Store this redundantly to improve performance. 

publ ic: 
I I CREATORS 
RectangleCconst Point& lowerLeft, const Point& upperRight); 
RectangleCconst Rectangle& rect); 
-RectangleC); 

II MANIPULATORS 
Rectangle& operator=(const Rectangle& rect); 
void moveBy(const Point& delta); 
II 

II ACCESSORS 
int area() const; 
Point getLowerLeftC) canst; 
Point getUpperRight() const: 

I I ... 

inline 
void Rectangle::moveByCconst Point& delta) 
{ 

d_lowerLeft += delta; 
} 

I I ... 

inline 
Point Rectangle::getUpperRight(const Point& delta) canst 
{ 

return d_lowerLeft + PointCd_width, d_height); 
} 

II 

Figure 2-2: Better (Encapsulating) Rectangl e Class Interface 

Note that public access to data members of a 5 t rue t (or class) that itself is entirely 
hidden (either privately within another class or locally within a . c file) is a separate 
matter not covered by the above rule (see Sections 6.4.2 and 8.4). When data 
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members are not private, it is preferable to denote the deliberate lack of encapsulation 

by using the keyword 5 t rue t instead of c 1 ass. 

Some people advocate the use of protected data to facilitate arbitrary access from a 
derived class. But from a maintainability perspective, pro tee ted access is like pub-
1 i c access because anyone who wants to get at protected data can do so with only the 
modest additional effort of deriving a class. Unlike friendship, which explicitly 
denotes who has access to private details, making class data protected results in an 

unbounded breach of encapsulation. 

The same arguments that applied to the public interface also apply to the protected 
interface. Base-class authors can preserve maintainability by treating their protected 
and public interfaces as separate but equally important. Keeping all member data pri
vate and supplying the appropriate protected functions will enable the base-class 
implementation to change independently of any derived classes. 

2.3 The Global Name Space 

For projects of even moderate size involving more than a single developer, there is a 
danger of name collisions when independently developed parts are integrated into a 
single program. The severity of the problem grows exponentially with system size, 
and is exacerbated when the collisions result from integrating software provided by 
third-party vendors. 

There are various ways to pollute the global name space, some more onerous than 
others. All of them are counterproductive in a large system environment. We now 
address several of these issues independently and conclude this section with a design 
rule that describes what kinds of declarations and definitions may exist safely at file 
scope in C++ header files. 

2.3.1 Global Data 

It has been said that global variables are like a cancer: you can't live with them, but 
once established, they are often impossible to cut out. We can always get away with
out using external global variables in a new C++ project. Exceptions to this rule might 
involve access in a baroque program (such as Lex or YACC) that communicates via 
global variables or perhaps within embedded systems. 
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Major Design Rule 

Avoid data with extemallinkage at file scope. 

File scope data with extemallinkage risks collision with global names in other trans
lation units (whose authors were egocentric enough to believe that they, too, owned 
the global scope). But name pollution is only one of the many ways in which global 
variables damage a program. Global variables tie objects and code together in ways 
that make it virtually impossible to reuse translation units selectively in other pro
grams. Debugging, testing, and even understanding systems that make liberal use of 
global variables can become overwhelmingly costly in large projects. 

Provided that you are not forced to use a system that already requires using global 
variables in its interface, there are a couple of simple transformations that can unglo
balize these variables: 

1. Put all global variables in a structure. 

2. Then make them priva~e and add static access functions. 

Suppose you had the following global variables: 

int size; 
double scale; 
canst char *system; 

These variables can be removed from the global name space by enclosing them in a 
s t rue t and making them s tat i c members of that structure:3 

struct Global { 

} ; 

static int s_size; 
static double s_scale; 
static const char *s_system; 

3 meyers, Item 28, pp. 93-95. 

II bad idea (public data) 
II bad idea (public data) 
II bad idea (public data) 
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Remember, of course, to define these static data members in the corresponding . c file. 
Now, instead of accessing the global variables using 

s i z e, sea 1 e, or s y s tern 

you would use 

G lob a 1 : : S _ S i z e, G lob a 1 : : S _ sea 1 e t or G lob a 1 : : S _ S Y s t em 

, 

respectively. The probability of collisions is now reduced to the probability of colliding 
with a single class name (and it is easy to address even that possibility using the 
techniques discussed in Section 7.2). 

Although we have solved the global name space problem, we have not done all that 
we should. Experience shows that just as with non-static (Le., instance-specific) mem
ber data, directly accessing static (Le., class-specific) member data makes large sys
tems profoundly more expensive to maintain. If we were to change the exported data 
type of a member (e.g., s_s i ze) from i nt to daub 1 e, that would be an interface 
change; all clients would be affected regardless of what we do. But we may decide to 
change the implementation of s_s i ze to a computed value based on other, more prim
itive values (such as s_wi dth and s_hei ght). Providing static function members to 
access (and manipulate) static data members allows us to make such local changes 
without perturbing clients of the global scope. 

The next step is to eliminate the public data by making G lob a 1 a class and providing 
static manipulator and accessor methods, as illustrated in Figure 2-3. Class G 1 a b a 1 

now acts as a logical module accessible from anywhere in the program. Because all 
the interface functions are static, there is no need to instantiate an object in order to 
use this class. Declaring the default constructor private and leaving it unimplemented 
enforces this usage model. 

To achieve a flexible design, we should be careful not to overuse global state informa
tion. The mere fact that we expect to have only a single instance of an object is not suffi
cient reason to make it a module instead of an instantiatable class. Globally accessible 
modules make sense when they correspond to inherently unique entities (such as a sys
tem console) or for system-wide constants (such as those found in 1 i mi ts . h) that are 
not dictated by a particular application (see Section 6.2.9). Global modules are best 
avoided when other, more localized (e.g., object-based) implementation will suffice.4 
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class Global { 
static int s_size; 
static double s_scale; 
static const char *s_system: 

private: 
II NOT IMPLEMENTED 
Global(); II prevent inadvertent instantiation 

public: 
II MANIPULATORS 
static void setSize(int size) { s size = size; } 
static void setScaleCdouble scale) { s_scale = scale; } 

Chapter 2 

static void setSystem(const char *system) { s_system = system; } 

} ; 

II ACCESSORS 
static int getSize() { return s_size; } 
static double getScale() { return s_scale; } 
static canst char *getSystem() { return s_system; } 

Figure 2-3: Logical Module Containing Global State Information 

2.3.2 Free Functions 

Free functions, too, can be a threat to the global name space, especially when they do 
not involve any user-defined type in their argument signature. If a free function is 
defined with internal linkage in a . h file or with external linkage in a . c file, it may 
collide with another function definition with the same name (and signature) during 
program integration. Operator functions are an exception. 

l\tlajor Desigll Rllie . 

Avoid free functions (except operator functions) at file scope in . h 

files; avoid free functions with extemallinkage (including operator 
functions) in . c files. 

4 See the Singleton design pattern in gamma, Chapter 3, , pp. 127-134. 
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Fortunately, free functions can always be grouped into a utility class (s t rue t) con
taining only static functions. The resulting cohesion is not necessarily optimal, but it 
does reduce the likelihood of global name collisions. Here's an example: 

int getMonitorResolution(): 
void setSystemScaleCdouble scaleFactor); 
int isPasswordCorrectCconst char *usr, canst char *psw); 

I I bad idea 
I I bad idea 
II bad idea 

The above free functions could always be replaced by the following static methods: 

struct SysUt i 1 { 
static int getMonitorResolutionC); 
static vaid setSystemScaleCdouble scaleFactor); 
static int isPasswordCarrect(canst char *usr, canst char *psw); 

} ; 

The only symbol at risk would be the class name Sy s Uti 1 . 

Unfortunately, free operator functions cannot be nested inside classes. Thisis not a 
serious problem because free operators require at least one of their arguments to be a 
user-defined type. Hence the likelihood of free operators colliding is remote, and such 
collisions are typically not a problem in practice. 

2.3.3 Enumerations, Typedefs, and Constant Data 

Enumerations, typedefs, and (by default) file scope const data all have intemallink
age. People often declare constants, enumerations, or typedefs at file scope in header 
files. This is a mistake. 

Major Desigll Rule 

Avoid enumerations, typedefs, and constants at file scope in· . h files. 

Because C++ fully supports nested types, enumerations can be defined (and typedefs 
declared) within the scope of a class without conflicting with other names in the 
global name space. By choosing a more limited scope in which to define an enumer
ation, you ensure that all enumerators of that enumeration become similarly scoped 

and thus will not conflict with other names defined outside that scope. 
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Consider the following enumerations: 

II paint.h 
enum Color { RED, GREEN, BLUE, ORANGE, YELLOW}; II bad idea 

II juice.h 
enum Fruit ( APPLE, ORANGE, GRAPE, CRANBERRY}; II bad idea 

These two enumerations were probably not written by the same developer, yet it is 
quite possible that they could someday be included in the same file, resulting in an 
ambiguity, ORANGE, that cannot be resolved! 

II picture.c 
#include "picture.h" 
#include "paint.h" 
#include "juice.h" 

If these two enumerations are instead defined within separate classes, one can easily 
use scope resolution to resolve the ambiguity: Pai nt: : Orange or Jui ce: : Orange. 

For similar reasons, typedefs and constant data should also be placed within class 
scope in header files. Most constant data is integral, and nested enumerations work 
well to provide integral constants within the scope of a class. Other constant types 
(e.g., doubl e, Stri ng) must be made static members of the class and initialized 
within the. c file: 

II array.h 
#ifndef INCLUDED_ARRAY 
#define INCLUDED_ARRAY 

class String; 

class Array { 

} ; 

enum { DEFAULT_SIZE = 100 }; 
static canst double DEFAULT_VALUE; 
static canst String DEFAULT_NAME; 

II 

#endif 

II array.c 
#include "array.h" 

#include "str.h" II class String 

double Array::DEFAULT_VALUE = 0.0; 
String Array::DEFAULT_NAME = ""; 

I I ... 

In large projects, aside from the global name collisions, there is a very real problem 
with even finding enumerations, typedefs, and constants at file scope. Nesting a 
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typedef within a class forces the name to be fully qualified (or the declaration to be 
inherited), making it relatively easy to find. The same reasoning applies to enumera
tions, but even stronger arguments for nesting enumerations within classes have 

already been presented. 

2.3.4 Preprocessor Macros 

There is almost no need for macros in C++. They are useful for include guards (see 
Section 2.4), and in a very few cases their benefits outweigh their problems in a . c file 
(most notably, when used to achieve conditional compilation for portability or debug
ging). But in general, preprocessor macros are inappropriate for production software. 

Major Design Rule 

Avoid using preprocessor macros in header files except as include 
guards. 

The preprocessor is not part of the C++ language; its basis is completely textual, mak
ing macros painfully hard to debug. Although macros can make code easier to write, 
their free form often makes code much harder to read and understand. Consider the 
following code fragment: 

#define glueCX,Y) X/**/Y 
glueCpri,ntf) (IiHello World"); 

How would you tell your debugger, browser, or other automated tool to deal with the 
above at the source level? 

As bad as macros are in . c files, there are even stronger software engineering reasons 
for keeping macros out of header files. Take the case of defining a preprocessor con
stant using #defi ne in a header file. Since macros are not part of C++, they cannot be 
placed inside the scope of a class. Any file that includes a header file with a #defi ne 
will take on that definition. 
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Suppose thei rcode. h defines a constant value GOOD as a preprocessor constant: 

II theircode.h 
#ifndef INCLUDED_THEIRCODE 
#define INCLUDED_THEIRCODE 

I I ... 

#define GOOD 0 II bad idea 

I I ... 

#endif 

II ourcode.c 
#include "ourcode.h" 
#include "theircode.h" 

I I ... 

int OurClass::aFunction() 
{ 

enum { BAD = -It GOOD = 0 } status - GOOD; 

I I ... 

return status; 
} ; 

II 

When file ou rcode. c is compiled, the compiler first calls the preprocessor. Even 
though GOOD is defined within the protective scope of a function, it is not safe from the 
preprocessor, which mercilessly replaces the enumerator GOOD with the literal integer 0: 

I I ... 

int OurClass::aFunction 
{ 

enum { BAD = -It 0 = 0 } status - 0; 

I I ... 

return status; 
} : 

When the compiler encounters the enumeration, it spits out Synta x E r ro r, but you won't 
know why until you have spent an eternity "grepping" through . h files looking to see 
who has IFdefi ne'd one of your enumerators. Notice that this problem would not have 



section 2.3.5 Names in Header Files 77 

occurred if the preprocessor symbol had instead been either a canst or an enum at file 
scope (which, by the way, are also design-rule violations according to Section 2.3.3): 

II theircode.h 
#ifndef INCLUDED_THEIRCODE 
#define INCLUDED_THEIRCODE 

I I ... 

canst int GOOD = 100; II bad idea 
II file-scope constant data 

I I ... 

#endif 

II theircode.h 
#ifndef INCLUDED_THEIRCODE 
#define INCLUDED_THEIRCODE 

I I ... 

enum { GOOD = lOa}; II bad idea 
II file-scope enumerated value 

I I ... 

#endif 

Preprocessor macros can also be used to implement templates in cases where that 
C++ language feature is missing or inadequately implemented. If macros are used for 
this purpose, then macro functions will appear in header files. There are ways to 
approach this problem, other than resorting to macros, that may be better suited for 
large projects. In any event, template-related issues should be addressed early in the 
development process. 

2.3.5 Names in Header Files 

A name declared at file scope in a header file has the potential to collide with any file
scope name in any file in the entire system. Even names with internal linkage 
declared at file scope in a . c file are not safe from file-scope names in a . h file. 

Major Desigll RIlle 

Only classes, structures, unions, and free operator functions should 
be declared at file scope in a . h tile; only classes, structures, unions, 
and inline (member or free operator) functions should be defined at 
tile scope in a . h file. 

The only things we expect to find at file scope in a header file are class declarations, 
class definitions, free operator declarations, and in line function definitions. Nesting 



78 Ground Rules Chapter 2 

all other constructs within class scope eliminates most of the trouble associated with 
name collisions. 

To help illustrate this rule, an otherwise meaningless header file containing several 
constructs is provided with commentary in Figure 2-4. Note that a static instance of 
user-defined type is a special case, which is discussed in Section 7.8.1.3. For now, 
avoidance of these static user-defined objects in . h files may be treated as a guideline 
and not a rule. 

II driver.h 
#ifndef INCLUDED DRIVER 
#define INCLUDED_DRIVER 

#ifndef INCLUDED NIFTY 
#include "nifty.h" 
#endif 

II fine: 
II fine: 
II fine: 

II fine: 
II fine: 
II fine: 

comment 
internal include guard 
(see Section 2 .4) 

redundant include guard 
Cpp include directive 
(see Section 2.5) 

:l~oef~i~'~i:~I~I~~1i~'mUtWT41'-~'j··"'·'I·, ' ••• :!.~ .' '.~ ,.,~ •. ,i ,.~ ;~:~!I~;!;1;1±:~!'i·l~il!iJ'~ri]J~[j1i,tffi~~iffi~:~jil:;iiiT i;ml';,:[liI-I!~11Ii;;I,'iIM9 
• .•••• '·#fa·.~' •• -f.i ••••• Q:e •• '· •• ·iJM'~,i~!.,.~ •••• ·~.· •• ·~ ••.•• '·· ••• (. ',(" "I.·' •• i·~ •• ,~.[·II.·"I·.!·~ .• -!:~ ~;f~l!,t,,~;i~_'~ijf;!~~~!!ji 

class ostream; 
struct Driverlnit; 
union Uaw; 

ii~i~tern jnt:glQ6~lVa ria b le; '. \ ii .. C, 

statf¢iilt-tileScOpeVa r i.·ahl 
Cbtrst i n tBUFFERS lZ E = 2 ... 

II fine: class declaration 
II fine: class declaration 
II fine: class declaration 

............. ".:": ::":: .. : ...... " 

x.t errlal··· ••• ·· •• ·OaEa··· 
i n te rn~l·d~t~· 
constdata .defi ni ttoh><·· 

:~hlJ m Boo 1 e ahl.ZER 0, 0) ~Nj~E',:.' ,J}' ;; , ••• :.i.: ••••••••••••.• · .• ti,:!itil:ll!~:i.il,i:lliil<ilj8l1 •. i.:.·.: ••• : •• · ••• :. i:~~ 
!~'yp~d efl 0 n 9 Big I n t ;'" 

class Driver { 
enum Color { RED, GREEN}; 
typedef int (Driver::*PMF)(); 
static int s_count; 
int d_size; 

private: 
struct Pnt { 

} ; 

short int d_x, d-y; 
Pnt(int x, int y) 
: d_x ( x), d-y ( y) {} 

friend DriverInit; 

II 
II 
II 
II 

fine: 
fine: 
fine: 
fine: 

enumeration in class scope 
typedef in class scope 
static member declaration 
member data definition 

II fine: private struct definition 
II fine: friend declaration 
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public: 
int static roundCdouble d); 

void setSizeCint size): 
int cmp(const Driver&) canst; 

} ; 

static classDri verIni t{ 
I I ... 

} driver'Init; 

inline 
void Driver::setSize(int size) 
{ 

d size = size; 
} 

ostream& operator«Costream& 0, 

canst Driver& d): 

inline 
int operator==Cconst Driver& lhs, 

canst Driver& rhs) 
{ 

return compare(lhs, rhs) -- 0; 
} 

inline 
int Driver::round(double d) 
{ 

} 

return d < 0 ? -intCO.5 - d) 
intCO.5 + d); 

#endif 

Names in Header Files 79 

II fine: static member 
II function declaration 
II fine: member function declaration 
II fine: const member 
II function declaration 
II fine: class definition 

.-. :. : ... ::.. : : .. :: :::: .. : ~ ::::-...... :. 

17 s p e c ial c as e . ( see Sec t ion 7. 8 . 1 .3 ) .... 

II fine: inline member 
II function definition 

II fine: free operator 
II function declaration 

II fine: free inline operator 
II function definition 

II fine: inline static member 
II function definition 

II fine: end of internal include guard 

Figure 2-4: Va"rious Constructs at File Scope in a Header File 
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2.4 Include Guards 

If we follow the above recommendation that only class, struct, union, and inline func

tion definitions appear at file scope in header files, we will still have a problem if the 

same header file gets included twice in a single translation unit. This problem could 

occur with the simple include graph shown in Figure 2-5. 

When component c. 's .c file is compiled, the preprocessor first includes the corre

sponding header file, c. h, which in tum includes the contents of a. h. Next c. h 

includes file b. h, triggering a second inclusion of a . h. If a . h has any definitions at all 

(and in C++ it almost surely does) the compiler will complain about multiple defini

tions. 

Bad idea: also missing 
redundant include guards 
(see Section 2.5) 

// b.h 
Bad idea: missing + /linclude 
include guards // 

b.h 

II C.c 
/ I '" 
#include "c.h" 

C.C 

1/ c.h 
Hinclude !la.hl! 
#include Ilb.hl! 
/ I .,. 

c.h 

"a.h" 

II a.h 
II 

a.h 

+ Bad idea: missing 
include guards 

/-"'-... 

Includes 

+ Bad idea: missing 
include guards 

Figure 2-5: Reconvergent Include Graph Causing Compile-Time Error 
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lVlajor Desigll Rllle 

Place a unique and predictable (internal) include guard around the 
contents of each header file. 

The time-honored, traditional way of solving this problem is to require an internal 
protective wrapper around the contents of each header file. This wrapper ensures that 
class and inline function definitions are seen only once in a given translation unit 
regardless of the include graph. Note that we are not trying to stop cyclic inclusion 
(which is probably a design error); we are trying to stop any repeated inclusion that 
might come from reconvergence in an acyclic include graph. A solution to the compil
ing problem in the previous example is shown in Figure 2-6. Note that we are still 
missing redundant (external) include guards (discussed in Section 2.5). 

II a.h II b.h II c.h 
#ifndef INCLUDED_A #ifndef INCLUDED_B iii fndef INCLUDED_C 
#define INCLUDED_A #define INCLUDED_B #define INCLUDED_C 

II . . . #include "a.h" #include "a.hl! 
II . . . /linclude "b.h" 

II ... 

1fendf Ilendf #endf 

a.h b.h c.h 

Figure 2-6: Accommodating Repeated Inclusion Using Include Guards 

For example, when a. h is included in a translation unit, the preprocessor will first 
check to see if the preprocessor symbol INC L U 0 E D_A is defined. If not, the guard sym
bol INCLUDED_A will be defined once and for all (for this translation unit), and then 
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preprocessing will proceed by reading the definitions contained within the rest of the 
header file. The second (and any subsequent) time this header file is included, the 
contents inside the preprocessor 1f i f n d e f conditional (i.e., the rest of the file) will be 
ignored. 

The actual symbol used for the include guard is not important so long as it does not 
match any other symbol in the entire system. Since the include guard is tied to a given 
header file, and that header file name must be unique in the system, incorporating that 
name in the guard symbol can ensure that no two guard symbols are the same. 

The preprocessor knows nothing of c++ scoping rules. We must therefore ensure that 
the include guard symbols do not match any other symbols at all-even those within 
functions defined in a . c file. 

Adopting a standard naming convention of prefixing the root name of the header file 
in upper case (e.g., STACK) with a globally reserved prefix (e.g., INCLUDED_) ensures 
unique and predictable guard names: 

II stack.h 
#ifndef INCLUDED STACK 
#define INCLUDED_STACK 
I I ... 
#endif 

II iccad_transistor.h 
#ifndef INCLUDED_ICCAD_TRANSISTOR 
#define INCLUDED ICCAD TRANSISTOR - -
I I ... 
#endif 

The need for predictability will be made clear in Section 2.5. 

2.5 Redundant Include Guards 

Practical isn't always pretty, and this is one of those cases. Theoretically, unique inter
nal include guards are sufficient. With large projects, however, it can be very costly 
not to consider a bit further. 

A well-designed system consists of layers of abstractions. Where possible, it is desir
able to create a small number of primitive object types and then compose them to 
form objects at higher levels of abstraction. A scientific application might model the 
various different kinds of atoms as classes. There are 100 some odd kinds of atoms in 
the periodic table. Instances of these relatively few primitive types are composed (via 
layering) in various ways and proportions to create all the different types of molecules 
in the universe. 
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Another example of this type of layered design might be an object-oriented window 
system. Suppose we have a collection of N primitive widgets (such as buttons, dials, 
slide switches, displays, etc.). We'll name these primitive widget classes WI, W2, ... , 
Wn for short. Each widget, Wi, exists in its own separate translation unit, wi . c, with 
its corresponding header file wi . h. New screen types are created by composing the 
various types of widget objects. We'll call these M screen classes S 1, S2, ... , Sm, 
and each S i lives in its own translation unit with header file s i . h. . 

Typically, each screen uses a substantial number of the available widgets. For the pur
poses of this discussion, assume each screen type uses all (or most) of these primitive 
types in a substantive way that prompts the implementors to include all of wI . h, w2 . h, 

... , wn . h files in each s i . h file. The header file for a typical screen, S 13, is shown in 
Figure 2-7. 

II sl3.h 
#ifndef INCLUDED_513 
#define INCLUDED_513 

#include "wl.h" 
#include "w2.h" 
#include "w3.h" 
I I ... 
#include t'wn.h" 
#include <math.h> 

class 513 { 
WI d_wla; 
WI d_wlb; 
W2 d_w2; 
W3 d_w3; 
II 
Wn d_wn; 

} ; 

#endif 

Figure 2·7: Typical Screen Composed of Many Widgets 

Do you see a potential problem? Let's continue. Suppose you have developed a good 
number of screens, and in some translation unit of your system, c k . c, you need to 
include all of the screen headers (say to create them). The include graph for a window 
application with N = 5 widgets and M = 5 screens is shown in Figure 2-8. 
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II ck.c 
#include 
#include 
#include 
#include 
#include 
#include 

I c1.c I I c2.c I . .. ck.c 

. 
"ck.htt 
"sl.h ll 

IIs2.h" 
"s3.hl' 
"s4.hl! 
"s5.hl' 

. . . 

Chapter 2 

c9.c Imain.cl 

(N= 5) 

Figure 2-8: Include Graph for One Component in Window System of Size N = 5 

When the preprocessor sees that c k . c has included s 1 . h, it also includes wI. h 

through w5. h. Upon encountering s2. h, each of the widget header files must still be 
reopened and reprocessed line by line in its entirety searching for the trailing He n d i f 

(only to find that there is nothing else to be done). This redundant preprocessing 
occurs with s3. h, 54. h, and again with 55. h. Although this program will compile and 
work properly, we had to wait for 25 widget header files to be processed when 5 
would have done the job! 

Unless care is taken to ensure otherwise, C++ tends to have large, dense include graphs 
(much more than C). Although inheritance and layering contribute to this problem, the 
underlying cause is often the misguided belief on the part of c++ developers that they 
are somehow doing their clients a favor by including in their header file every other 
header that a client might need. 

Avoiding dense include graphs is part of the topic of Insulation, covered in Chapter 6. 
What follows is a practice that will minimize the impact of such reconvergent inclu
sion, even in a poor design. Note that some development environments are smart 
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enough to keep track of previously included header files, but many common environ
ments are not. If portability is an issue, it is better safe than sorry. 

Wir .6i."I,!I.,rcr,~,.;,i. 
... . ..... 

Place a redundant (external) include guard around each preprocessor 
include directive in every header file. 

Place a redundant (external) include guard around each include directive that occurs in 
a header file. This technique, applied to a typical screen header file, is shown in Figure 
2-9. Processing file s 13. h for the first time will still cause files wI . h, w2 . h, ... , wn . h 

to be included. Including another screen, however, will not lead to any redundant 
parsing of widget headers. 

Notice that the redundant include guard for the math standard library header is differ
ent from the rest. Although math. h does have its own internal include guard, it proba
bly doesn't follow our standard. The runtime libraries supplied with different 
co~pilers are likely to have different naming conventions for the include guards they 
use, and these guard names may not always be consistent. Components supplied by 
third-party vendors may use yet another convention. For all components that are not 
guaranteed to follow our include-guard naming convention, it will be necessary to add 
a line that defines the appropriate include guard symbol after the corresponding 
include directive (a~\y'as done for ma t h . h). 

Using redundant include guards is admittedly unpleasant. It now takes not one but at 
least three lines to include a header in a header file-four lines if the included header 
came from outside our sphere of influence. Redundant include guards not only make 
headers take longer to write, they make headers harder to read. Using redundant 
include guards also requires following a consistent and predictable naming conven
tion. Is it worth it? 

Experience with truly large projects that have dense include graphs shows that the 
answer is a resounding YES! Initial builds of projects consisting of several million 
lines of C++ source code were taking on the order of a week to compile using a large 
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network of work stations. Inserting redundant include guards reduced compile time 
significantly, with no substantive change to the code. 

II s13.h 
#ifndef INCLUDED_513 
#define INCLUDED_513 

#ifndef INCLUDED_WI 
#include "wl.hll 
lIendif 

#ifndef INCLUDED_W2 
11 inc 1 u de" w 2 . h 11'-\,/-

Hendif 

1Iifndef INCLUDED_W3 
#include "w3.h" 
#endif 

/ I ... 

#ifndef INCLUDED_WN 
Hinclude "wn.h" 
lIendif 

#ifndef INCLUDED_MATH 
#include <math.h> 
#define INCLUDED_MATH 
#endif 

class 513 { 
WI d_wla; 
WI d_wlb; 
W2 d_w2; 
W3 d_w3; 
I I ,., 
Wn d_wn; 

} ; 

#endif 

II extra line 

Figure 2-9: Typical Screen Component with Redundant Include Guards 

What we have just discussed is typically not an issue for a small or even a medium~"'" 
size system. But what would happen if we were dealing with systems that contained; 
the equivalent of hundreds of primitive widgets with hundreds of primitive screens? 
To provide quantitative information demonstrating the benefits of using redundant 
include guards, I tried the following experiment. 
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I let N be number of widgets as well as the number of screens. I then generated sub
systems and measured the compile time (which is dominated by the C preprocessor 
time) for a single translation unit, including all of the screen header files with and 
without redundant include guards. I tried the experiment with header files having 10 
lines each and again with header files of 100 lines each. I defined the speedup factor 
to be the compilation time without redundant include guards divided by the corre
sponding compilation time with redundant include guards added. The results are 
shown in Figure 2-10. 

10 lineslheader 100 lineslheader 

CPU seconds Speedup CPU seconds Speedup 
N Without With Factor Without With Factor 

1 0.2 0.2 1.00 0.2 0.2 1.00 
2 0.2 0.2 1.00 0.2 0.2 1.00 
4 0.3 0.3 1.00 0.4 0.3 1.33 
8 0.5 0.3 1.67 0.7 0.4 1.75 

16 0.7 0.4 1.75 1.7 0.5 3.40 
32 1.5 0.5 3.00 5.8 0.9 6.44 
64 5.8 1.1 5.27 22.1 2.0 11.05 

128 25.9 3.5 7.40 89.5 5.2 17.21 
256 126.5 13.6 9.30 376.5 17.1 22.02 
512 702.3 61.6 11.40 1697.4 68.6 24.74 

1024 4378.5 306.6 14.28 8303.8 330.6 25.12 

Figure 2-10: Preprocessor Times with/without Redundant Include Guards 

For systems with fewer than eight widgets and eight screens, the speed-up is either 
non-existent or minimal, but given that the total compile time was less than 1 CPU 
second, it hardly matters. 

Header files in C++ are seldom only 10 lines long; 100 lines is still small but more 
typical. For systems with 32 widgets, the time spent in the C preprocessor compiling 
each client component on my machine can be reduced by a factor of more than 6 
(from 5.8 to 0.9 CPU seconds). For systems with 64 widgets, the speedup is a factor of 
over II! Redundant include guards are ugly, but do no real harm. Not using redundant 
guards runs the risk of quadratic (i.e., O(N2)) behavior at compile time. 
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Note that redundant guards are not necessary in . c files. Short of deliberately duplicating 
=/Ii n elude directives in the. c file, the (pathological) worst-case behavior, 2N remains 
linear (i.e., O(N» with respect to the number of distinct . h files, N. 

The data in this section reflects CFRONT running on Unix-based workstations. Other 
development environments may have somewhat different characteristics. In Chapter 6 
we will see that ne~ting =/Ii ncl ude directives in header files is not only undesirable but 
often unnecessary. The ugliness of the redundant include guards, if nothing else, 
reminds us that we want to avoid placing #i ncl ude directives in header files when
ever it makes sense to do so. 

2.6 Documentation 

The examples in this book do not set a good example for what are sufficient comments 
for production code (otherwise this would be three books, not one). But comments, 
especially in the interface, are an essential part of the development process. 

Guideline 

Document the interfaces so that they are usable by others; have at 
least one other developer review each interface. 

To see why it is valuable to have another developer review your interface, try to put 
yourself in the position of a client or a test engineer trying to understand your class. 
You know very well how to use your interface-after all, you designed it! The terse 
names you supplied as member functions are "obvious" and "self-explanatory." But 
unless you have taken the time to have someone else review your interface and docu
mentation, chances are that there is significant room for improvement-particularly in 
its usability. 

A big part of usability is being able to pick up an unfamiliar header and just start 
using it. In practice, header file comments are often the only documentation (or at 
least the only up-to-date documentation) that exists for an interface. If clients are 
forced to peek at the implementation in order to figure out how to use your compo
nent, then it is not documented properly. 
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Guideline 

Explicitly state conditions under which behavior is undefined. 

Another important aspect of documentation is explicitly identifying conditions under 
which behavior is not defined. Consider the following declaration: 

struct MathUtil { 
I I ... 
static int fact(int n); 

II Returns the product of consecutive integers between 1 and n. 
} ; 

What do you think about the comment for function fact? We might guess that fact is 
supposed to be the common mathematical functionJactorial (n!), and that fact (0) is 
actually 1 and not 1 • 0 = 0 or undefined. However, that is not what the comment says. 
What the comment fails to say is what is supposed to happen when n is non-positive! 

A factorial is not defined for negative integral values. It may be that our particular 
implementation returns 0 in these cases. What fact ( n) returns when the value of n is 
negative is an artifice of the implementation and not part of the specification; clients 
should be told explicitly not to rely on this behavior. Another implementation replac
ing this one could easily provide different behavior for negative values of n (including 
causing your program to crash). 

Unless explicitly stated in our comments, clients and test engineers will, in general, 
have no way to distinguish between what is intended or required behavior and what is 
simply coincidental behavior resulting from the particular implementation choice. A 
better, more usable interface is presented below: 

struct MathUtil { 
I I ... 

} ; 

static int factorial (int n); 
II Returns the product of consecutive integers between 1 and n 
II for positive n. If n is 0, 1 is returned. 
II Note that the behavior is not defined for negative values 
II of n nor for results that are too large to fit in an into 
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Failing to specify explicitly the conditions under which behavior is undefined 
inadvertently commits the software to support irrelevant behavior that could affect 
performance or limit implementation choice. If a test engineer is not on the ball, you 
may find irrelevant behavior produced by your implementation choice inexorably cast 
in stone by a suite of regression tests that explicitly test for that behavior. Even worse, 
clients, through improper (unintended) use, may come to depend on this coincidental 
behavior. ;' 

/ - / , 

The use of assert statements can help to document the assumptions 
you make when implementing your code. 

Error checking throughout every level of a system in order to detect logic errors can 
become expensive, especially for large systems. Good documentation can be a viable 
alternative to writing excessive code. For example, some software developers feel that 
it is necessary to handle every pointer that comes into a function, even if that pointer 
is null. If this function is part of a widely used interface, favoring robustness might 
well prove to be a good decision. Alternatively, it can be sufficient to make it clear to 
clients that passing a null pointer will result in undefined behavior, backing that up 
with an assert statement at the beginning of the function implementation: 

II stdio.c 
#include <stdio.h> 
#include <assert.h> 
1* ... * I 
int printf(const char *format ... ) 
{ 

} 

assert(format); 
1* 
*1 

... 

The effective use of both documentation and assert statements can lead to lighter
weight code that is still quite usable. If someone misuses the function, it is their own 
fault-and they'll find out about it soon enough! 
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It would be laudable if every developer always made it clear when, for example, a 
pointer argument to functions cannot be null. Responsible cl~ents, however, should 
not assume that a pointer argument can be null unless the resulting behavior is 
explicitly stated. 

2.7 Identifier-Naming Conventions 

Distinguishing data member, type, and constant names from other identifier names in 
a consistent and objectively verifiable way can be a significant advantage when main
taining a large system. Section 1.4.1 presented a collection of naming conventions 
that we tersely punctuate here with three design rules and two guidelines. 

The practice of lexigraphically identifying class data members can be stated 
concisely, and its value transcends issues of me~e style. This practice is therefore pre
sented as a design rule. 

Use a consistent method (such as a d_ prefix) to highlight class data 
members. 

You may also elect to use s_ to distinguish static from instance data. The above prac
tice is a minor design rule because clients will never have to deal with this issue 
(since, according to Section 2.2, data members should always be private). 

Use a consistent method (such as an uppercase first letter) to distin
guish type names. 

The above practice is presented as a rule and not a guideline because it is a widely 
accepted and objectively verified standard that improves readability in general, 
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making interfaces easier to understand and code easier to maintain. It is a minor rule 
because an isolated lapse is not the end of the world. 

Use a consistent method (such as all uppercase with underscore) to 
identify immutable values such as enumerators, canst data, and pre
processor constants. 

The above practice helps to distinguish constant (and therefore "stateless") variables 
from both local variables and member (state) variables. It is presented as a design rule 
and not a guideline because it helps to improve maintainability, it is objectively verifi
able, and it requires no exceptions. 

Guideline .... , . ./: 

Be consistent about identifier names; use either uppercase or under
score but not both to delimit words in identifiers. 

The above practice is also objectively verifiable, but not everyone can be convinced o( 
its virtue, and it is largely a matter of style. Its utility is in making identifier names 
somewhat easier to remember and in exhibiting a more professional image to most 
customers. It is presented here as a guideline (particularly for the interface), but toler
ates some degree of individuality in the implementation. (In this book we have' 
adopted the uppercase standard.) 

Guideline 

Be consistent about names used in the same way; in particular adopt 
consistent method names and operators for recurring design patterns 
such as iteration. 
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Attaining consistency across the interface of a large system can enhance usability and 
can also be surprisingly difficult to accomplish. Empowering a group of top-notch 
developers to act as "Interface Engineers" has proven effective in achieving consis
tency across development groups in large projects. Container classes, along with their 
iterators, also lend themselves to template implementations (see Section 10.4) that can 
be effective at enforcing consistency across otherwise unrelated objects. 

2.8 Summary 

C++ is a large language, giving way to an even larger design space. In this chapter we 
have described a modest set of fundamental design rules and guidelines that have 
proven themselves to be useful in practice. 

Major design rules are presumed never to be violated. Even infrequent violations 
could compromise the integrity of a large system. Throughout this text, we will 
assume that all major design rules have been followed consistently. 

Minor design rules are also presumed t~'be followed but perhaps not with draconian 
adherence. Deviating from a minor rule in isolated instances is unlikely to have a 
severe global impact. 

Guidelines are presented as rules of thumb, and should be followed unless there is a 
compelling engineering reason to do otherwise. 

Exposing the member data of a class to its clients violates encapsulation. Providing 
non-private access to member data implies that local changes in representation may 
force clients to rework their code. Furthermore, by allowing writable access to data 
members, there is no way to prevent accidental misuse from leaving data in an incon
sistent state. Protected member data is like public member data in that there is no limit 
to the number of clients that might be affected by a change to that data. 

Global variables pollute the global name space and warp the physical structure of a 
design in ways that can make independent testing and selective reuse virtually impos
sible. There is no need to use global variables in new C++ projects. We can systemat
ically eliminate global variables by placing them in class scope as private static 
members, and then provide public static function members to access them. Excessive 
dependency on such modules, however, is a symptom of a poor design. 
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Free functions, particularly those that do not operate on any user-defined type, are 
likely candidates for collision with other functions during integrations. Nesting such 
functions in class scope as static members all but eliminates the danger of collision. 

Enumerations, typedefs, and constant data also threaten the global name space. By 
nesting enumerations within class scope, any ambiguity can be resolved via scope res
olution. A typedef at file scope can look suspiciously like a class, and be surprisingly 
difficult to find in a large project. By nesting typedefs in class scope, they become rel
atively easy to track down. An integral constant defined in a header file is often best 
expressed by an enumerator in class scope. Other types of constants can be scoped by 
making them static const members of some class. 

Preprocessor macros are difficult to understand for both human beings and machines. 
Since macros are not part of the C++ language, they are irreverent of scope, and, if 
placed in a header file, they can collide with any identifier in any file in the system. 
Consequently macros should not appear in header files except as include guards. 

All things considered, we will avoid introducing anything into file scope in a header 
file other than classes, structures, unions, and free operators. We will, of course, allow 
inline member function definitions in headers. 

Including a definition twice results in a compile-time error. Since most C++ header 
files contain definitions, it is essential that we protect against the possibility of a 
reconvergent include graph. Wrapping the definitions inside a header with internal 
include guards ensures that the contents of each header will be incorporated at most 
once in any translation unit. 

Redundant (external) include guards, although not strictly necessary, ensure that we 
avoid potentially quadratic behavior at compile time. By wrapping include directives 
in header files with redundant guards, we ensure having to open a header file at most 
twice per translation unit. 

Good documentation is an essential part of development. A lack of documentation 
degrades usability. An important part of documentation involves stating what is 
undefined; otherwise clients may come to depend on coincidental behavior resulting 
solely from the particular implementation choice. 
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Not all code must be robust. Redundant, runtime program-error checking at every 
level of the system can have an unacceptable impact on performance. A combina
tion of documentation and assertions can serve the same purpose, but with superior 
runtime performance in the final product. 

Finally, providing a consistent set of naming conventions to distinguish data 
members, types, and constants can improve readability across development groups. 
We suggested using a d_ prefix for data members (5_ if static); using an uppercase 
first letter to denote a type and a lowercase one to denote a variable or function; using 
all uppercase (including underscore) to denote enumerators, con 5 t data, and prepro
cessor constants; and using an uppercase first letter to delimit words in multi-word 
identifiers. We also recommended using consistent names for recurring design patterns 
such as iterators. 



PART II: 
P Y I AL DE 

N EPT 

Developing a large-scale software system in c++ requires more than just a sound 
understanding of logical design issues. Logical entities, such as classes and functions, 
are like the flesh and skin of a system. The logical entities that make up large C++ 
systems are distributed across many physical entities, such as files and directories. 
The physical architecture is the skeleton of the system-if it is malformed, there is no 
cosmetic remedy for alleviating its unpleasant symptoms. 

The quality of the physical design of a large system will dictate the cost of its mainte
nance and the potential it has for the independent reuse of its subsystems. Effective 
design requires a thorough grasp of physical design concepts that although closely 
tied to many logical design issues include a dimension with which even expert profes
sional software developers may have little or no experience. Part II of this book pre
sents a thorough introduction to the fundamental concepts of good physical design. 

Chapter 3 introduces the component as the fundamental unit of design. Several 
physical design rules are presented to ensure that all our designs have certain impor
tant desirable properties. The many logical design relationships (e.g., IsA, HasA, 
Uses) collapse into a single physical relationship: DependsOn. We see how our logi
cal design decisions can potentially affect physical dependency. We also see how to 
extract physical dependencies efficiently from a collection of existing components. 
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Chapter 4 describes the importance of physical hierarchy (i.e., layering) with respect to 
development, maintenance, and testing. In this chapter we explore how to characterize 
individual components, subsystems, and entire systems in terms of their physical depen
dencies. We see how to exploit the hierarchical structure of sound physical designs to 
achieve higher reliability at lower cost through isolation, incremental, and hierarchical 
testing. We also measure how the physical dependencies in a system contribute to the 
cost of maintenance and regression testing in terms of link time and disk space. 

Chapter 5 explores many common causes of excessive link-time dependencies. This 
chapter catalogs several techniques and transformations for reducing the link-time 
dependencies within a system-a process referred to in this book as levelization. We 
use many examples taken from various applications to illustrate these techniques. 

Chapter 6 addresses the maintenance cost associated with excessive compile-time 
coupling. Several common language constructs that force clients to depend on 
encapsulated implementation details are identified. Techniques for mitigating or elim
inating compile-time dependencies on individual details as well as wholesale tech
niques for distancing clients from the implementation are presented-a process 
referred to in this book as insulation. Finally, the runtime cost associated with insula
tion is characterized to identify situations under which insulation is not appropriate. 

Chapter 7 extends the concept of levelization to very large systems. Additional physical 
structure beyond that of individual components is needed to support the complex 
functionality of such systems. Packages represent a physically cohesive collection of 
cooperating components and provide a higher level of physical abstraction than can be 
achieved with components alone. In this chapter we revisit the concepts of levelization 
and insulation in the context of packages as a whole. We also touch on issues pertaining 
to the process of developing and releasing stable snapshots of a very large system. 
Finally, we discuss the role of rna i n ( ) in object-oriented systems and the relative advan
tages of various strategies for initialization. 



Components 

This chapter introduces the notion of physical ,design in contrast to the more popular 
topic of logical design. The component is presented as the fundamental unit of design. 
Next we explore a small collection of physical rules that ensure important desirable 
properties in large designs. We then discuss the DependsOn relation among compo
nents and see how to infer this relation from abstract logical relationships at design 
time. We also see how to track physical dependencies efficiently by examining the 
#i nc 1 ude graph among components. Finally, we explore the subtle physical implica
tions of granting friendship both inside and outside components. 

3.1 Components versus Classes 

Logical design emphasizes the interaction of the classes and functions defined within 
a system. From a purely logical point of view, a design can be thought of as a sea of 
classes and functions where no physical partitions exist-every class and free 
function resides in a single seamless space. Interactive object-oriented languages such 
as Smalltalk and CLOS with their rich, runtime environments geared toward a single 
developer have no doubt helped to foster this monolithic perspective. 

Logical desigp., however, looks at only one side of the design process. Logical design 
does not take into account physical entities such as files and libraries. Compile-time 
coupling, link-time dependency, and independent reuse are simply not addressed by 
logical design. For example, whether or not a function is declared i n 1 i n e does not 
affect what it does, but can greatly affect readily measurable characteristics such as 
runtime, compile time, link time, and executable size. Without considering the physical 
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view of a design, it is not possible to consider the organizational issues that become 
important when developing very large systems. 

Logical design addresses only architectural issues; physical design 
addresses organizational issues. 

Physical design focuses on the physical entities in the system and how they are 
interrelated. In most conventional C++ programming environments, the source code 
for every logical entity in the system must reside in a physical entity, commonly 
referred to as aftle. Ultimately, the physical structure of every C++ program can be 
described as a collection of files. Some of these files will be header (. h) files and 
some of them will be implementation files ( . c) files. For small programs, this descrip
tion is sufficient. For larger programs, we need to impose additional structure in order 
to create maintainable, testable, and reusable subsystems. 

DEFINITION: A component is the smallest unit of physical design. 

A component is not a class and vice versa. 1 Conceptually, a component embodies a 
subset of the logical design that makes sense to exist as an independent, cohesive unit. 
Classes, functions, enumerations, and so on are the logical entities that make up these 
components. In particular, every class definition resides in exactly one component. 

Structurally, a component is an indivisible, physical unit, none of whose parts can be 
used independently of the others. The physical form of a component is standard and 
independent of its content. A component consists of exactly one header (. h) file and 
one implementation ( . c) file. 2 

1 The notion of a component is presented in stroustrup, Section 12.3, pp. 422-425. In this chapter, 
we expand on that discussion by introducing physical design concepts that make the definition of a 
component in C++ concrete. 
2 We will ignore extraordinary circumstances that might justify a component having more than a 
single . h or . c file. 
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A component will typically define one or more closely related classes and any free 
operators deemed appropriate for the abstraction it supports. Basic types such as 
Point, String, and Biglnt will each be implemented in a component containing a 
single class (Figure 3-1 a). Container classes such as In tSet, S ta c k, and Lis twill 
typically be implemented in a component containing (at least) the principle class and 
its iterator (Figure 3-1 b). More complex abstractions involving multiple types such as 
Graph can embody several classes in a single component (see Figure 3-lc). Finally, 
classes that provide a wrapper for an entire subsystem (see Section 5.10) may form a 
thin encapsulating layer consisting of one or more principle classes and many iterators 
(Figure 3.1d). 

Each of the components in Figure 3-1 (like every other component) has a physical as 
well as a logical view. The physical view consists of the . h file and the . c file, with 
the . h file included as the first substantive line of the . c file. The physical implemen
tation of a component always depends on its interface at compile time. This internal 
physical coupling contributes to the need to treat these two files as a single physical 
entity. 
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Logical View 

point 

intset 

graph 

(d)~~~~~~~~~~ 

simulator 

Chapter 3 

Physical View 

point 

intset.h intset.c 

intset 

graph.h graph.c 

graph 

simulator.h ~~~~ simulator.c 

simulator 

Figure 3-1: Logical versus Physical View of Several Components 
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A component is the appropriate fundamental unit of design. 

A component (and not a class) is the appropriate fundamental unit of both logical and 
physical design for at least three reasons: 

1. A component bundles a manageable amount of cohesive functionality 
that often spans several logical entities (e.g., classes and free operators) 
into a single physical unit. 

2. Not only does a component capture an entire abstraction as a single 
entity, but it also allows for consideration of physical issues not addressed 
by class-level design. 

3. An appropriately designed component (being a physical entity unlike a 
class) can be lifted as a single unit from one system and reused effectively 
in another system without having to rewrite any code. Throughout this 
book, the need to consider physical as well as logical design issues will 
become increasingly evident. 

As a concrete example, Figure 3-2 shows the header file for a stack component con
taining two classes defined at file scope, namely, S t a c k and S t a c kIt e r. We can also 
see that there are two free (i.e., not member) operator functions implementing == and 
!= between two Stack objects. Peeking at the implementation, we would discover 
that operator== uses Stacklter, and that operator!= is implemented in terms of 
operator==. The complete set of logical entities at file scope in component stack is 
pictured in Figure 3-3a. The physical entitles (s t a c k . hand s t a c k . c) along with their 
canonical physical relationship are depicted in Figure 3-3b. 
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II stack.h 
#ifndef INCLUDED_STACK 
#define INCLUDED_STACK 

c1 ass StackIter; 

class Stack { 
int *d_stack_p; 
int d_sp; 
int d_size; 
friend StackIter; 

public: 

, } . , . 

II CREATORS 
Stack(); 
Stack(const Stack& stack); 
""'Stack(); 

II MANIPULATORS 
Stack& operator=(const Stack& stack); 
void pushCint value); 
int pope); 

II ACCESSORS 
int isEmpty() const; 
i n t top () c,o n s t ; 

Chapter 3 

II pointer to array of int 
II stack pointer (index) 
II size of current array of in! 
II (no comment needed) 

II create an empty Stack 
II (no comment needed) 
II (no comment needed) 

II copy Stack from Stack 
II push integer onto this Stac~ 
II pop integer off this Stack 
II undefined if Stack empty . 

II 1 if empty else a 
II integer on top of this Stack 
II undefined if Stack empty 

int operator==(const Stack& lhs, const Stack& rhs); 
II 1 if two stacks contain identical values else 0 

int operator!=Cconst Stack& lhs, const Stack& rhs): 
II 1 if two stacks do not contain identical values else 0 

class Stacklter { 
int *d_stack_p; 
int d_sp; 
StacklterCconst Stacklter&); 
Stacklter& operator=(const StackIter&); 

public: 
II CREATORS 
Stacklter(const Stack& stack); 
-StacklterC); 

II MANIPULATORS 
void operator++(); 

II. ACCESSORS 
operator canst void *() const; 
int operatorC)() const; 

} ; 

#endif 

II iter order: top to bottom 
II points to orig. stack array 
II local stack pOinter (index) 
II not implemented 
II not implemented 

II initialize to top of Stack 
II (no comment needed) 

II advance state of iteration 
II undefined if done 

II non-zero if not done else 0 
II value of current integer 
II undefined if done 

Figure 3-2: Header File stack. h for a stack Component 
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.. . 

..... ·operator=/) ...... 

stack.h stack.c 

stack stack 

(a) Logical View (b) Physical View 

Figure 3-3: Two Views of a s t a c k Component 

We have chosen a simple stack to ensure that the application functionality does not 
obscure the points we want to illustrate. In this example, almost every member is 
commented (which is a bare minimum for production code). A stack is a kind of con
tainer. Access to other than the top element of a stack is not nonnally thought of as 
part of a stack abstraction. We have provided the iterator to make the functionality 
defined in this stack component more generally extensible by clients, while preserv
ing encapsulation (see Section 1.5). We make no mention of a maximum stack size 
because a stack abstraction has no maximum size. Providing functionality such as 
i s Full or a return status that exposes artificial limitations imposed by a substandard 
implementation not only violates the abstraction but also complicates its use. Such 
unexpected, implementation-based limitations are better treated as exceptions. Some
times, however, we will allow a client to "help" an object to anticipate future events, 
potentially improving performance. In order to avoi~ exposing a particular implemen
tation choice, such "help"-like regi ster in C or i nl i ne in c++ should be only a 
hint and have no programmatically detectable effect (see Section 10.3.1). 

DEFINITION: The logical interface of a component is that which is 
programmatically accessible or detectable by a client. 
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The logical interface of a component is the set of types and functionality defined in 
the header file that are programmatically accessible by clients of that component. 
Private implementation details that for organizational reasons reside in the . h file are 
encapsulated and not considered part of the logical interface. 

DEFINITION: A type is Used-In-The-Interface of a component if the 
type is used in the public (or protected) interface of any class defined, 
or any free (operator) function declared at file scope in the . h file for 
that component. 

In the same sense that the public interface of a class consists of the union of the inter
faces of the public members of that class (Section 1.6.2), the "public" interface of a 
component consists of the collection of all public member functions, typedefs, enu
merations, and free (operator) functions declared in the component's. h file. 

For example, the public member functions of both S t a c k and S t a c kIt e r contribute to 
the logical interface of component stack. The free operator function 

aperator==(const Stack&, canst Stack&) 

is not a member of S t a c k and therefore is not considered as part of the logical inter
face of class Stack. Nonetheless, this operator does extend the set of programmati
cally accessible functions defined in component stack and therefore does extend the 
component's logical interface. The somewhat subtle issues surrounding friendship are 
discussed in Section 3.6. 

Figure 3-4 shows a tiny driver program, s t a c k . t . C, that creates a S t a c k object, 
pushes a few integers onto it, and then prints out its contents in order, from top to bot
tom. The driver can access the logical interface of the stack component, but not its 
organizational structure. However, there is more information present in the s ta c k 
component's. h file than is programmatically accessible. 
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II stack.t.e 
#include "stack.h" 
#include <iostream.h> 

rna i n ( ) 
{ 

Stack stack; 
stack.push(III); 
stack.push(222); 
stack.push(333); 
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for (StackIter it(stack); it; ++it) { 
cout « itC) « endl; 

} 

} ; 

II Output: 
II 333 
II 222 
II 111 

Figure 3-4: Driver s t a c k . t . c for Component s t a c k 

DEFINITION: The physical interface of a component is everything in 
its header file. 

The physical inteiface of a component consists of all of the information available in 
the. h file (regardless of access privilege). The more information contained within its 
. h file, the more likely that changes to a component's implementation will affect its 
clients and cause them to recompile. 

Any programmer can tell merely by looking at s t a c k . h that this is an array-based 
stack (it is not implemented, for example, as a linked list). For a compiler to do its job, 
it must look at s t a c k . h in its entirety. The compiler must consider even private infor
mation (e.g., d_stack_p) that, from a logical point of view, is strictly an implementa
tion detail. A consequence of this physical exposure is that an implementation change 
that leaves the logical view of the stack component's interface untouched can still· 
make it mandatory for all clients that include s t a c k . h to recompile. 

As programmers, we observe that none of the functions in s t a c k . h have been 
declared i n 1 i n e. Modifying the bodies of any of the functions in this component 
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therefore will not alter the physical interface, thus forcing clients to recompile. The 
downside is that for a lightweight object such as S t a c k, removing inline functions 
could result in an order-of-magnitude loss in runtime performance (see Section 6.6.1). 

DEFINITION: A type is Used-In-The-Implementation of a compo
nent if that type is referred to by name anywhere in the component. 

From a logical point of view, what is and is not used in the implementation of a com
ponent is an encapsulated detail and unimportant. From a physical point of view, such 
usage can imply physical dependencies on other components. It is these physical 
dependencies that will affect maintainability and reusability in large systems. 

Good design requires that the developer understand the issues involved in both logical 
and physical design. Logical design is the natural place to start. We must consider 
what logical entities either naturally belong together or are sufficiently interdependent 
that they cannot reasonably be separated. We must also consider how much of the 
implementation detail we want to expose in the physical interface. Furthermore, we 
need to decide on what other components our component will depend, and what impact 
changes in these components will have on both our own component and its clients. A 
component has not been designed properly until all of these issues have been 
addressed. 

3.2 Physical Design Rules 

This section considers the fundamental rules of physical design. These rules are 
necessary if our other practices and techniques are to be effective. It is virtually 
impossible to correct a large design that has not followed these practices in essence 
from the start. 

Major Desigll Rllie 

Logical entities declared within a component should not be defined 
outside that component. 
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It may seem obvious, but this rule should be stated clearly once. For a component to 
be reusable it must be reasonably self-contained. A component may have dependen
cies on other components. However, any logical constructs (apart from class declara
tions) that a component declares within its own header file-if defined at all-should 
be defined entirely within that component. 

Figure 3-5 is an example of how not to partition logical entities into physical units. 
Class S t a c k has been defined in component s t a c k, but its implementation is not con
fined to the s t a c k component. S t a c k: : pus h is defined in set. c, and S t a c k: : pop is 
defined in m a in. c ! 

II intset.h 
#ifndef INCLUDED_INTSET 
#define INCLUDED INTSET 
class IntSet { 

I I ... 
public: 

II 
II 
II 

} ; 
#endif 

intseth 

II stack.h 
#ifndef INCLUDED STACK 
#define INCLUDED STACK 
class Stack { 

I I ... 
public: 

I I ... 
void push(int i); 
int pope); 

} ; 

1Iendif 

stack.h 

II intset.c 
#include "intset.h" 
I I ... 

II stack.c 
#include "stack.h" 
II 

II main.c 
#include "intset.h" 
#include "stack.h" 
int Stack::pop() Stack: :push(int i) 

{ 

I I ... 
} 

II 

intset.c 

II 
II 
I I .. . 
I I .. . 

I I ... 

stack.c 

{ 

I I ... 
} 

II 
• maln.c 

Figure 3-5: Illegal Physical Partitioning of Logical Entities 

In addition to causing a maintenance nightmare, failing to adhere strictly to the above 
design rule can result in the loss of many desirable physical properties of a design (in 
particular, the ability to pick up and reuse translation units in other programs). Following 
this rule meticulously will improve both the modularity and maintainability of a 
project of any size. 
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The root names of the . c file and the . h file that comprise a component 
should match exactly. 

It is important for maintainability that the root names of a component's files match 
exactly. Knowing, for example, that s t a c k . c and s t a c k . h comprise a single compo
nent not only facilitates manual maintenance but also opens the door to simple object
oriented design automation tools (see Appendix C). 

Unfortunately, some existing object code archivers place relatively low character lim
its (e.g., 13) on object file names. Hence it is not always possible to have the name of 
the component's. c file mirror the name of its principal class. Worse, some operating 
systems limit file names to only eight characters (plus a three-character suffix), which 
can be a significant burden when developing very large systems. 

l\:Jajor Desigll Rlile 

The . c file of every component should include its own . h file as the 
first substantive line of code. 

We must include the . h file of a component in its . c file because the compiler must 
see the declaration of a class member before it can compile its definition. This practice 
is required by the language and also by many common dependency-analysis tools. The 
reason for placing this 11 inc 1 u d e directive at the top of the file is somewhat subtle. 
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Latent usage errors can be avoided by ensuring that the . hfile of a 
component parses by itself-without externally-provided declara
tions or definitions. 

Including the . h file as the very first line of the . c file ensures that no critical piece of 
information intrinsic to the physical interface of the. component is missing from the 
. h file (or, if there is, that you will find out about it as soon as you try to compile the 
. c file). 

Consider the following header file for component wi 1 dthi ng: 

II wildthing.h 
#ifndef INCLUDED_WILDTHING 
#define INCLUDED WILDTHING 

class WildThing { 
I I ... 

public: 

} ; 

WildThing(); 
I I ... 

ostream& aperator«(canst astream& a, canst WildThing& thing); 
II Note: uses class astream in the interface 

1tendif 

Notice that we have overloaded the left-shift operator « <) in the way that is normal 
and customary for stream output. Next consider the implementation: 

II wildthing.c 
#include <iostream.h> 
#include "wildthing.h" 
I I ... 

astream& operator«(const astream& a, canst WildThing& thing) 
{ 

I I ... 
} 
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We try to compile the implementation, and it compiles just fine. Next we create a test 
file for wi 1 dthi ng: 

II wildthing.t.c 
#include <iostream.h> 
#include "wildthing.h" 

int maine) 
{ 

WildThing wild; 

II 
I I ... 

cout « wild « endl; 

return 0; 
} 

File wi 1 d t hi n 9 . t . c compiles and links. The program runs perfectly, and we go tell 
all our friends that we are done. But there is a bug and a physical bug at that! The fol
lowing program will not compile. Why? 

II product.c 
#include "wildthing.h" 
#include <iostream.h> 

int maine) 
{ 

WildThing wild; 

II 
I I ... 

cout « wild « endl; 

return 0; 

The problem is that we did not declare class 0 s t rea m before we tried to use it in the 
interface of opera tor< < that is declared in wi 1 dth i ng . h. The order of the #i n elude 

directives was reversed in the client code, and now the header itself doesn't parse 
because the 0 s t rea m identifier is not yet declared. How do we fix the problem? 
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When you figure out the bug, the fix is simple: add the declaration "c 1 ass 

as t ream;,,3 to wi 1 dt hi ng . h at file scope before the first use of ostrearn: 

II wildthing.h 
#ifndef INCLUDED_WILDTHING 
#define INCLUDED_WILDTHING 

class ostream; 

class WildThing { 
I I ... 

public: 

} ; 

WildThing(); 
I / ... 

II was missing before, oops! 

ostream& operator«(const ostream& 0, const WildThing& thing); 

#endif 

The more important question is How do we prevent the problem? The answer is 
equally simple. Always make the . c file of each component include the . h file for that 
component before including or declaring anything else. In this way each component 
ensures that its own header file is self-sufficient with respect to compilation. 

Guideline 

Clients should include header files providing required type defini
tions directly; except for non-private inheritance, avoid relying on 
one header file to include another. 

Whether or not one header file should include another is a physical, not a logical, 
issue. In cases where the header file itself needs a definition in another header file in 
order to compile (see Section 6.3.7), it is correct to place the appropriate #i nc 1 ude 

directive in that header file (surrounded, of course, by redundant external include 
guards as described in Section 2.5). 

3 And not the preprocessor directive /I inc 1 u d e < i os t rea m . h> (as explained in Section 6.3.7). 
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Except for public and protected inheritance, however, the need to include a type's def
inition rather than forward declare it in the header file is almost always dictated by 
encapsulated logical implementation details. 

For example, if class My T y P e uses class S t a c k in its implementation, it may be necessary 
to include s t a c k • h in my ty p e . h to ensure that my t y p e • h compiles. If I decide to change 
the implementation of MyType to use Lis t instead of Sta c k, I would no longer need the 
Hi n c 1 ude "s ta c k . h" directive in mytype . h. Any client that depended on mytype • h to 
include s t a c k . h would now have to be changed to include s t a c k . h directly. 

How we layer one type on another will affect the degree of compile-time coupling. 
Incrementally r~ducing compile-time coupling is the topic of Section 6.3. For exam
ple, whether My T y P e HasA (embeds) S t a c k or HoldsA (pointer to) S t a c k could deter
mine whether my ty p e . h includes s t a c k . h or simply forward-declares class S t a c k 

(see Section 6.3.2). If I alter the implementation of MyType so that it now HoldsA 
(instead of HasA) Stack, the Hi ncl ude directive may no longer be needed in 
mytype. h. If I remove that directive, then clients who depended on how St a c k was 
used in the implementation of MyType would also be forced to change. Even if Stack 
were used in the logical interface of MyType, there might still be no need for mytype . h 

to include stack. h (see Section 6.3.7). It is up to each client that uses Stack substan
tively to include its definition directly. 

Inheritance is an exception because it always implies a compile-time dependency and 
is also part of the logical interface of the deriv~d class. Altering the inheritance hierar
chy in any way that would permit component authors to remove Ifi n c 1 u de directives 
from component header files would also change the logical interface, forcing clients 
to be revisited regardless of physical issues. It is therefore reasonable for clients to 
include only a derived class definition and rely on the derived classts header file to 
include the base class definition. 

For similar reasons, it would be unwise for a client to rely on the header of some com
ponent to forward declare a class used only in that component's logical implementation. 
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lVIajor Desigll Rule 

Avoid definitions with external linkage in the . c file of ~ component 
that are not declared explicitly in the corresponding . h file. 

For analysis, maintenance, and particularly testing, it is important that someone (or 
some tool) be able to look at only the physical interface of a component and under
stand the complete logical interface of that component. Requiring a component to 
declare its entire logical interface in its header file serves to improve 

1. Usability-by making it possible to fully understand from the interface 
alone the entire abstraction a component supports. 

2. Reusability-by ensuring that all supported functionality supplied by the 
component is equally accessible to all. 

3. Maintainability-by avoiding unsupported "backdoor" interfaces that 
would violate the abstraction the component supports. 

Suppose someone defined an external free function (or vari~ble) in the. c file of com
ponent foo and failed to declare it as external function (or variable) in foo. h. Another 
component, ba r, that happened to link with foo could obtain access to that function 
(or variable) by creating the appropriate external declaration locally. This unfortunate 
scenario is depicted in Figure 3-6. Note that this example illustrates a poor design (the 
kind of example I have tried to avoid presenting in this book). 

As the figure shows, the. c file of ba r is dependent on the definitions supplied by the 
physical implementation of foo but is independent of foo's physical interface. There 
is a "backdoor" usage of foo and an implicit physical dependency of bar upon foo 

that cannot be detected easily. Automated dependency generators for makefiles 
(mkmf, gmake, etc.) that take into account only the iii ncl ude graph would have no 
clue of this subtle dependency. Moreover, to the maintainers of this code there is no 
immediate evidence that these two components are coupled. Yet, when we go to reuse 
ba r, the link phase will fail because the definition of function f (and global variable 
size) will be missing. 
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Bad idea: Free functions and global variables are design-rule violations. 

II bar.h 
#ifndef INCLUDED BAR 
#define INCLUDED_BAR 
I I ... 

#endif 

bar 

II foo.h 
#ifndef INCLUDED FOD 
#define INCLUDED_FOD 
I I ... 

Note: neither s i zenor f 
is declared in this 
file. 

lIendif 

foo 

II bar.c 
#include "bar.h" 

extern int size; 
void feint x, int y); 

int Bar: :g() 
{ 

size = f(x. y); 

} 

II foo.c 
#include "foo.h" 

int size; 

illegal "backdoor" 
physical dependency 

void f(int x, int y) 
{ 

I I ... 
} 

Figure 3-6: Poor Physical Design Where ba r. c Depends on foo. c Directly 
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bar 

II bar.h 
#ifndef INCLUDED BAR 
#define INCLUDED BAR 
/ / ... 

4fendif 

foo 

II bar.c 
4finclude "bar.h" 
#include "foo.h" 

int Bar::g() 
{ 

size = f(x, Y); 
} 
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legal physical dependency 

II foo.h 
#ifndef INCLUDED_FDD 
#define INCLUDED_Faa 

extern int size; 

void f(int x, int y); 

#endif 

II foo.c 
#include "foo.hl! 

int size; 

void f(int x, int y) 
{ 

I / ... 
} 

Figure 3-7: (Somewhat) Better Physical Design Where ba r. c Depends on foo. h 
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Had the complete interface been specified in f 0 0 . h, the client component, bar, could 
simply have included the foo. h file in its own. c file, making the dependency of the 
implementation of ba r on the interface of foa explicit. This new and somewhat; 
improved implementation is illustrated in Figure 3-7. However, the use of an external 
global variable or an external free function is still a violation of the design rules pre
sented in Section 2.3.1 and 2.3.2, respectively. 

Classes defined at file scope entirely within the . c file of a component could easily 
violate this rule, since non-inline class member functions and static member data have 
external linkage. If we impose the same restrictions on classes defined entirely in a . c 
file that the C++ language itself imposes on local class definitions (i.e., classes 
defined entirely within a single function),4 we can avoid creating external definitions 
and thereby avoid violating this rule. 

Though technically a rule violation, defining a class entirely within a . c file is rela
tively harmless in practice because name mangling will tend to discourage one from 
trying to make direct use of the external symbols. The only real danger is that the 
external definition may collide with some other identical definition (which would still 
be the case if that class were defined in its own separate component). A more compel
ling reason to avoid defining classes entirely in a . c file might be that it cannot then 
be tested directly (see Section 8.4). 

Avoiding backdoor usage is critical to good physical design and effective reuse. It is 
not enough to put the burden solely on the author of a component. To close all the 
loopholes, we must make a reciprocal requirement that no client attempt to make use 
of any construct with external linkage via local declarations. Instead, clients are 
required to include the . h file of a component in order to access any definitions that 
the component provides. 

4 ellis, Section 9.8, pp. 188-189. 
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l\/{ajor Desigll Rllle 

Avoid accessing a definition with external linkage in another 
component via a local declaration; instead, include the . h file for that 
component. 

Our reason for following this rule is primarily to make the dependency on external 
definitions in other components explicit. 

Including the header as opposed to supplying a local function declaration has 
advantages for clients as well. Occasionally headers change. How will your local dec
larations change to reflect these header changes? An incorrectly declared function 
with C++ linkage can at least be caught at link time,5 but incorrect local declarations 
of functions from the Standard C Library (with C linkage) could go undetected until 
runtime. 

For example, the following will compile and link: 

II foo.c 
#include "foo.h" 
extern de" double pow{double, int); II bad idea: local extern declaration 

double Foo::func(double x, double ~) 
{ 

return pow(x, y) + pow(y, x); 
} 

However, we will get incorrect results at runtime because the local ext ern declaration 
does not match the actual definition of pow:6 

extern "(" double pow(double, double) 
{ 

1* *1 
} 

5 See Type-Safe Linkage in ellis, Section 7.2c, pp. 121-126. 
6plauger, Chapter 7, p. 138. 
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The mismatched declarations will cause the second argument of pow to become 
garbled. We can avoid such problems and make the dependency explicit by including 
the . h file instead: 

II foo.c 
Hinclude "foo.hl! 
#include <math.h> II pow() 

double Foo::func(double x, double y) 
{ 

return pow(x, y) + pow(y, x); 
} 

By including the header files, inconsistencies with functions having either linkage 
characteristic will be caught at compile time, which is eminently preferable to either 
link time or runtime. 

It is important to mention that class declarations of the form 

class QueueLink; II forward declaration of class QueueLink 

are an entirely different matter because class definitions have internal linkage. Such 
declarations are not only common but desirable, especially where they can eliminate 
preprocessor Hi n c 1 u de directives in header files. This use of class declarations is dis
cussed with respect to link-time dependencies in Section 5.10 and again with respect 
to compile-time dependencies in Section 6.4.3. 

3.3 The DependsOn Relation 

Physical dependencies among the components that make up a system will affect its 
development, maintenance, testing, and independent reuse. The logical relations 
among classes and free (operator) functions will imply physical dependencies among 
the components in which they reside. We can define implementation dependency for 
functions loosely by saying that a function depends on a component if that component 
is needed in order to compile and link the body of that function. We can define imple
mentation dependency for classes in a similar way. More generally, we can define pre
cisely a central and purely physical relation among components. 
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DEFINITION: A component y DependsOn a component x if x is 
needed in order to compile or link y. 

The DependsOn relation is quite different from the relations we have already seen. 
IsA and Uses are logical relations because they apply to logical entities, irrespective 
of the physical components in which those logical entities reside. DependsOn is a 
physical relation because it applies to components as a whole, which are themselves 
physical entities. 

The notation used to represent the dependency of one physical unit on another is a 
(fat) arrow. For example, 

implies that component pl ane depends on component wi ng. That is, component 
p 1 an e cannot be used (i.e., it cannot be linked into a program or possibly even com
piled) unless component wi ng is also available. 

As has been our convention, logical entities are represented by ellipses, and physical 
entities are represented by rectangles. Notice that the arrow used to indicate physical 
dependency is drawn between components and not individual classes. The (fat) arrow 
notation used to denote physical dependency should never be confused with the arrow 
notation used to denote inheritance. An inheritance arrow always runs between two 
classes (which are logical entities); a DependsOn arrow connects physical entities 
(such as files, components, and packages). 

To illustrate the DependsOn relation in action, consider the following skeleton header 
file for a string component. By the way, don't try to name your component "string"; it 
may not work well in the presence of the standard C library header s t r i n 9 . h. 
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II str.h 
#ifndef INCLUDED STR 
#define INCLUDED_STR 

#ifndef INCLUDED_CHARARRAY 
#include "chararray.h" 
#endif 

class String { 

} ; 

II 

CharArray d_array; II HasA 
I / ... 

public: 
I I ... 

#endif 

Chapter 3 

There is just enough information visible for us to see that class S t r i n 9 has a data 
member of type CharArray. We know from C that if a struct has an instance of a 
user-defined type as a data member, it will be necessary to know the size and layout of 
that data member even to parse the definition of the s t rue t. 

DEFINITION: A component y exhibits a compile-time dependency on 
component x if x. h is needed in order to compile y . c. . 

More specifically, it is not possible to compile any file that needs the definition of 
S t r i n 9 without first including c h a r a r ray. h. For that reason we are justified in 
nesting #i ncl ude "cha ra rray. h" in the header file of component str along with 
the concomitant, redundant include guards. 
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str.h chararray. h 1«>iN 

str.c chararray.c ~i;ulm!fiil 

str chararray 

Figure 3-8: Indirect Compile-Time Dependency of s t r . c on c h a r a r ray. h 

Figure 3-8 illustrates the physical dependency of component str on component 
cha ra rray. A component's. c file must always depend on its. h file at compile time. 
Since s t r . c will not compile without s t r . h, and s t r . h will not compile without 
c h a r a r ray . h, s t r . c has an indirect compile-time dependency on c h a r a r ray . h. 

Notice again that the arrow used to indicate the physical dependency is drawn 
between two physical entities (in this case, files). A more abstract representation of 
physical dependency at the component level is shown in Figure 3-9. 

sOn 

str chararray 

Figure 3-9: Abstract Representation of Component Dependency 
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A component need not be dependent on another at compile time to be dependent on it 

at link time. Consider the following implementation for component word and an alternate 

implementation of component str: 

II word.h 
#ifndef INCLUDED_WORD 
#define INCLUDED_WORD 

#ifndef INCLUDED_STR 
#include "str.h" 
#endif 

class Word { 

} ; 

String d_string; II HasA 
I I ... 

public: 
Warde); 
I I ... 

#endif 

II ward.c 
#include "ward.h" 

I I ... 

II str.h 
#ifndef INCLUDED_STR 
#define INCLUDED_STR 

class CharArray: 

class String { 

} ; 

CharArray *d_array_p; II HoldsA 
I I ... 

public: 
String(); 
II 

#endif 

II str.c 
#include "str.h" 
#include "chararray.hll 

I I ... 

Compiling c h a ra r ray. c of course requires c h a r a r ray. h. Both s t r . hand 
chararray.h are needed to compile str.c. Finally, both word.h and str.h are 
needed to compile w 0 rd. c. Notice that c h a r a r ray. h is not needed in order to compile 
word. c. There is no compile-time dependency of component word on component 
chararray. However, word still exhibits a physical dependency on chararray, which 
will become obvious as soon as we try to link word to a test driver. 

DEFINITION: A component y exhibits a link-time dependency on 
component x if the object file y. a (produced by compiling y. c) con
tains undefined symbols for which x. a may be called upon either 
directly or indirectly to help resolve at link time. 
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Recall that, except for inline functions, all class member functions and static data mem
bers in C++ have extemallinkage. For all practical purposes we can say that if a compo
nent needs to include another component in order to compile, it is going to depend on 
that component at link time to resolve undefined symbols at the object-code level. 

A compile-time dependency almost always implies a link-time 
dependency. 

word.h str.h chararray. h 

word.c str.c 

word str chararray 

word.o str.o chararray.o 

Figure 3-10: Link-Time Dependency of word on cha ra rray 

As Figure 3-10 shows, word.o depends on external names. defined in str.o. Even if 
word.o does not directly use names defined in chararray.o, it does use names 
defined in s t r . o. The names used in s t r . 0 to resolve these undefined symbols will 
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probably introduce new undefined symbols whose definitions must be supplied by 
c h a r a r r ay . o. Given the above, we come to an interesting and important conclusion. 

The DependsOn relation for components is transitive. 

For example, assume x, y,and z are components. If x depends on y, and y depends on 
Z, then x depends on z. The transitive property of dependency among components 
makes no mention of which file in one component is dependent on which file in the 
other. Any such file-level dependency is sufficient to produce an implementation 
dependency for the components as a whole. 

The abstract, component-level dependency diagram for the previous example is 
shown in Figure 3-11. The compile-time dependencies of wo rd on s t r and of s t r on 
cha ra r ray have produced the indirect (link-time) dependency of wo rd on cha ra r ray. 

implied by transiti vi 

String 

word str chararray 

Figure 3-11: Abstract, Component-Level Dependency Diagram 

The DependsOn relation is important to physical design because it indicates all the 
components required for the functionality supplied by a given component to be main
tained, tested, and reused. We have just seen how to infer physical dependency from 
the source code itself. As we will see in Section 3.4, it is possible to infer physical 
dependency directly from abstract logical relationships such as IsA and Uses. Infer
ring physical dependencies at the design stage will help us to achieve a sound physical 
architecture early in the development process. 
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3.4 Implied Dependency 

Logical designs imply certain physical characteristics. We would like to be able to 
take full advantage of known logical relationships in order to predict the physical 
implications of our logical design before it is implemented. Resulting undesirable 
physical characteristics will often force us to alter or even entirely rework our logical 
designs. In this section we focus on the implications of logical design on physical 
dependency, beginning with the Uses relation. 

1 
•. 1.· •. • ••.•. · •. : .••..•••.. ~i-illill~ I . . ..•....••.....•. 

A component defining a function will usually have a physical depen
dency on any component defining a type used by that function. 

Unless otherwise stated, we will assume that if a function uses a user-defined type, it 
does so in a substantive way. To explain what we mean by substantive, let us assume 
for the moment that if a function uses a type in its interface, it will be necessary for 
the component defining that function to include the . h file for the component defining 
that type. 

II two.c 
#include "two.h" 
#include "one.h" 
I I ... 
int Two::getlnfoCconst One& one) 
{ 

} 

II 

return one.infoC); 

II one.h 
#ifndef INCLUDED_ONE 
#define INCLUDED_ONE 
I I ... 
class One { 

} ; 

I / ... 
int infoC) const; 
II 

II 
#endif 

Figure 3-12: The Uses Relation Often Implies a Compile-Time Dependency 

Figure 3-12 illustrates our assumption that if function Two: : getlnfo uses class One in 
its interface, then it likely does something with One in its implementation that would 
require having seen One's definition. In this example, Two: :getlnfo invokes the 
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con s t member function i n f 0 of class 0 n e, which requires the compiler to see the 
definition of One in order to compile two. c. 

The assumption that the Uses relation implies a compile-time dependency is too 
strong. However, this assumption predicts physical implementation dependencies 
fairly accurately. It is not necessary for the Uses relation to cause a compile-time 
dependency in order to induce an indirect physical dependency. To see how an indi
rect link-time dependency can occur, consider adding another component, th ree, and 
two more files, two. hand three. c, to those of the previous example. 

II three.c 
#include "three.h" 
#include "two.h" 
I I ... 
int Three::x2info(const One& one) 
{ 

} 

II 

return 2 * Two::getlnfo(one); 

II two.h 
#ifndef INCLUDED_TWO 
#define INCLUDED_TWO 
class One; 
I I ... 
class Two { 

} ; 

I I ... 
public: 

static int getInfo(const One& one); 
I I ... 

II 
1Iendif 

Figure 3-13: Uses Relation Almost Always Implies a Link-Time Dependency 

As shown in Figure 3-13, three.c defines a member function, x2info, which uses 
class One in its interface. However, the argument to x2i nfo is passed by reference and 
x2 i n fa makes no substantive use of One '8 definition before passing its argument off to 
Two's static member function getlnfo, which also accepts a One object by reference. 
The x2i nfo function in component three treats class One opaquely and does not 
know anything about One other than that it is a c 1 ass, s t ruct, or un ion. 

Suppose that no other function in class Th ree uses One (substantively), and also that 
there is no other compile-time dependency of component three on component one. 
That is, th ree. h and two. h alone are sufficient to compile th ree. c, even though One 

is used in the interface of three. But function x2i nfo does depend on One indirectly. 
If we try to test th ree, we will not be able to link until we have written and compiled 
two. c. To do that, two. c will have to include one. h. 
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As Figure 3-14 illustrates, implementation dependency brought on by using an object 
is transitive. That is, if Three uses Two and Two uses One, then the component that 
defines Three (almost always) DependsOn the component that defines One. In this 
case, function x2i nfo in component three used One (trivially) but also used function 
getlnfo defined in component two. Function getlnfo also uses One in its interface, 
but this time get I n f 0 uses 0 n e substantively in its implementation. 

U ses-In -Interface 

three two 

ends On 

(Implied Indirect Link-Time Dependency) 

Figure 3-14: Logical Uses Relation Implying Component Dependency 

It is possible to use another object without inducing either a compile-time or link-time 
dependency on that object. In practice, such limited usage sometimes occurs by design, 
but almost never by chance. We will explore this design technique in Section 5.4. 

A component defining a class that IsA or RasA user-defined type 
always has a compile-time dependency on the component defining 
that type. 

Certain logical relationships have strong physical implications. For example, deriving 
from a type (IsA) or embedding an instance of a type (RasA) always implies that a class 
will depend on that type at compile time. In fact, these logical relations imply a com
pile-time dependency not only for, the class itself, but also for any client of the class. 

Figure 3-15 illustrates the physical implications of IsA and RasA for the example in 
Figure 3-11. This time Wo rd is reimplemented as a kind of S t ring, and St ring has a 
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CharArray data member.7 The definitions for both String and CharArray must be 
available in order for W 0 rd. c to compile. Moreover, every client of W 0 r d will also 
require the definitions both S t r i n g and C h a r A r ray in order to compile. These same 
strong physical implications hold for private derivation and for inline functions that 
make substantive use of a type. In all of these cases we are justified in nesting the 
required Hi ncl ude directives in the component's. h fi 1 e. 

RasA 

chararray 

D dsOn 

(Implied Indirect Compile-Time Dependency) 

Figure 3-15: Logical IsA and HasA Relations Implying Component Dependency 

Such strong physical coupling is not necessarily implied if a class HoldsA type (that 
is, if it has a pointer or reference to that type as a data member), nor is it implied if the 
type is used substantively in the body of a non-inline function. Such usage does not 
justify forcing clients of the component to depend at compile time on its implementa
tion types as would result from nesting the IIi ncl ude directive in the component's 
header. These subtle but important distinctions will be exploited to reduce compile
time coupling in Chapter 6. 

So far we have dealt with only two or three classes at a time. Now we will infer, from 
a given abstract logical representation, the physical dependencies among a somewhat 
larger collection of components. The diagram in Figure 3-16 depicts a small sub
system used to support an online glossary. 

7 This form of structural inheritance is potentially unsound from a logical design stand point. 
Suppose the semantics of Word require it to hold a proper subset of the arbitrary data supported by 
the Stri ng base class (e.g., no space, punctuation, or control characters). Using public Inheritance, 
there is no way to prevent base class functionality (e.g., Stri ng: : operator= from being used by 
clients to violate this requirement (see meyers, Item 37, pp. 130-132). 
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str chararray 

alias wordlist 

Figure 3-16: Intercomponent Logical Relationships 

At the upper right of Figure 3-16, we see class C h a r A r ray in its own separate 
component. The St ri ng class (to its left) uses Cha rArray in its implementation, so 
we infer a likely physical dependency of component str on component cha ra rray: 

str chararray 

In this design, a Word is (perhaps inappropriately) implemented as a kind of Stri ng. 

An arrow from class Word to class Stri ng is used to denote this relationship. We also 
know that the IsA relationship always implies a compile-time physical dependency 
between the defining components (in the same direction as the inheritance arrow). 
Hence wo r'd definitely depends on s t r. 

word str 
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As we can see from Figure 3-16, Ali a s not only IsA Wo rd but also Uses Wo rd in its 

interface. Notice, however, that the implied dependency of the Uses relationship and 

the arrow denoting the IsA relationship point in the same direction (from Ali a s to 

Wo rd). Consequently, there is no implied cyclic dependency between Wo rd and Ali as. 

It would therefore be possible to use wo rd in a program without including or linking 

to ali as. 

(implied) 

alias word 

Now consider the wordl i st component of Figure 3-16, which defines two presumably 

template classes Link<Word> and List<Word>. Within component wordlist we see 

that there is a logical Uses-In-The-Implementation relationship between L i st<Word> 

and Lin k < W 0 r d >. Since these classes are already defined within the same component, 
logical relationships between them cannot affect physical dependencies. 

Both L i nk<Word> and L i st<Word> use Word in their respective interfaces. Either one 

of these logical relationships alone would be sufficient for us to infer a likely physical 

dependency of the entire wordl i st component on word. Notice again that component 

wo rd can exist in a program without including or linking to wo rd 1 i 5 t, but not vice 
versa. 

wordlist 

A component dependency diagram produced by inferring physical dependencies from 
the abstract logical relationships of Figure 3-16 is shown in Figure 3-17. Actually, this 
diagram does not show a complete component dependency graph. For example, it 
does not explicitly show the indirect dependency of word on chararray, or of 
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wordl i st on str. The complete dependency diagram is obtained if we draw each 
indirect dependency as if it were a direct dependency. Such a graph is called a 
transitive closure. 

chararray 

alias word list 

Figure 3-17: Component Diagram Showing Only Direct Dependencies 

The transitive closure of the dependency graph in Figure 3-17 is shown in Figure 3-
18a. All of the edges in this graph labeled with a t are called transitive edges because 
their existence is implied by other edges that represent "direct" dependencies. Remov
ing these redundant transitive edges does not lose essential information, but it does 
reduce clutter and make the graph easier to understand. 

t 

.· •••• ·8Ii.al •• :·:.::;:!!· •• :~ •• ·:.· l~t!~lll!ll 
(a) Complete Graph (b) Graph with Redundant Edges Removed 

Figure 3-18: Transitive Closure of Direct Dependency Graph 
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It is easy to tell from Figure 3-18b that word depends indirectly on chararray and 
that wordl i st depends indirectly on word. In general, a component x DependsOn 
component y if and only if there is path in the dependency graph from x to y. 

To recap: logical relationships imply physical dependencies. Relationships such as 
IsA and HasA between logical entities will always imply compile-time dependencies 
when implemented across component boundaries. Relationships such as HoldsA and 
Uses are likely to imply link-time dependencies across components. By considering 
implied dependencies at design time, we can evaluate the physical quality of our 
architecture long before any code is written. In Chapter 4 we discuss the characteris
tics of component dependencies that both improve testability and promote reuse. In 
the following section, we see how to extract the actual physical dependencies from 
source code more efficiently. 

3.5 Extracting Actual Dependencies 

Suppose now that we are designing a large project, guided by implied dependencies. 
After the design stage is largely complete and development is under way, we would 
like to have a tool that could extract the actual physical dependencies among our com
ponents. We could then track the actual component dependencies and compare them 
with our initial design expectations. 

Although it is possible to parse the source for an entire C++ program to determine the 
exact component dependency graph, doing so is both difficult and relatively slow. 
However, provided the design rules presented in Section 3.2 have been followed, it is 
possible to extract the component dependency graph directly from the components' 
source files by.parsing only the C++ preprocessor Hi n c 1 u d e directives. Such process
ing is relatively fast as and is done by a number of standard, public-domain depen
dency analysis tools (such as gmake, mkmf, and cdep). 

The include graph generated by C++ preprocessor Iii ncl ude direc
tives should alone be sufficient to infer all physical dependencies 
within a system provided the system compiles. 
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To see why this claim is true, consider the following line of reasoning. If component x 
makes direct substantive use of component y, then in order to compile x, the compiler 
will have to see the definition supplied in y . h. The only way this can happen is for 
component x to directly or indirectly include y . h. As a result of the design rules in 

Section 3.2, any such direct substantive use is synonymous with a compile-time 
dependency. 

A compile-time 

dependency of 
x on y (other 

than an include 
directive) 

IMPLIES 

The directive iii n c 1 u d e fly . h" 

appears somewhere in x 
or in a header file included 

either directly or indirectly 

by x. 

The contrapositive (that if x does not include y . h, then x does not have a compile-time 
dependency on y) is certainly true, provided x compiles. . 

Going the other way, the only reason component x would legitimately include the 

header file of component y is if component x did in fact make direct substantive use of 

component y. Otherwise the inclusion itself would be superfluous and introduce 

unwanted compile-time coupling. 

The directive iii n c 1 ud e "y. h" 

appears somewhere in x 
or in a header file included 

either directly or indirectly 

by x. 

IMPLIES 

A compile-time 

dependency of 
x on y (other 

than an include 

directive). 

The contrapositive (that if x does not have an intrinsic compile-time dependency on y, 

then x does not include y. h) should always be true-but occasionally, through human 
oversight, it is not. 

Guideline 

A component x should include y . h only if x makes direct substantive 
use of a class or free operator function defined in y. 
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The very fact that one component includes the header of another forces a compile
time dependency whether or not one previously existed. If we assume that all 
#i ncl ude directives in a component are necessary, then it is likely that the compile
time dependency will be accompanied by a link-time dependency (which we already 
know is transitive). In other words, "substantive use" should equate to "header file 
inclusion," and that substantive use almost always implies a kind of physical depen
dency that is transitive. 

The # inc 1 u d e graph for a set of components is just another relation that happens to 
reflect the dependency among components quite accurately. If we interpret "x 
Includes y. h (either directly or indirectly)" as "x DependsOn y directly," then the 
relation resulting from the Hi n c 1 u de graph accurately reflects compile-time physical 
component dependencies. 

The design rule stating that all substantive use of a component must be flagged by 
including its header file (rather than via local ext ern declarations) guarantees that the 
transitive closure of the Includes relation indicates all actual physical dependencies 
among components. 

These extracted dependencies occasionally err on the side of being too conservative. 
The dependency graph extracted in this manner may indicate additional, fictitious 
dependencies brought on by unnecessary if inc 1 u de directives (which should be 
removed). But, provided that all the major design rules are followed, the graph will 
never omit an actual component dependency. 

The ability to extract actual physical dependencies from a potentially large collection 
of components quickly and accurately allows us to verify throughout the development 
process that these dependencies are consistent with our overall architectural plan. A 
physical dependency extractor/analyzer tool is described in Appendix C. 

3.6 Friendship 

We now digress to discuss the subtle issues regarding friendship and how granting 
friendship affects the logical interface of a class and of a component. The interaction 
between friendship and physical design is surprisingly strong. Although ostensibly a 
logical design issue, friendship will influence the way in which we collect logical con
structs into components. The desire to avoid friendship across component boundaries 
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can even induce us to restructure our logical design. We refer to the material presented 
in this section frequently throughout this book. 

Guideline 

Avoid granting (long-distance) friendship to a logical entity defined 
in another component. 

According to the Annotated c++ Reference Manual, "A friend is as much a part of 
the interface of a class as a member is."g In making this claim, there is an implicit 
assumption that the friend is inseparably tied to an object granting it friendship. 

From a purely logical point of view, if a class makes a declaration of friendship, then, 
according to the definition of Encapsulation (Section 2.2), that declaration is not an 
encapsulated detail of the class. Anyone who defines a function whose declaration 
exactly matches that of a fri end declaration within a class can gain programmatic 
access to the private members of that class, provided no other function matching the 
fri end declaration is defined in the same program. In that very precise sense, the 
f r i end declaration itself is part of the interface of the class-the actual function defi
nition is not. 

Friendship within a component is an implementation detail of that 
component. 

By treating the component and not the class as the fundamental unit of design, we 
gain an entirely different perspective. As long as friendship is granted locally (i.e., as 
long as it is granted only to logical entities defined within the same component), the 
friends are, in fact, inseparably tied to the object granting friendship. 

8 ellis, Section 11.4, p. 248. 
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DEFINITION: A contained implementation detail (type, data, or 
function) that is not accessible or detectable programmatically 
through the logical interface of a component is said to be encapsu
lated by that component. 

By definition, it must be possible to detennine what is in the logical (public) interface 

programmatically. Consider the equality operator defined within component stack: 

int operator==(const Stack&. const Stack&); 

If this operator were suddenly declared a fr i end of class Sta c k, allegedly placing the. 
operator itself in the (public) interface of S t a c k, then it should be possible to detect 

this change programmatically-right? But, provided that the operator is defined 

within the same component, granting the operator friend status has absolutely no. 

effect on the logical interface of that component. In fact, from any client's point of 

view, whether operator== is or is not a friend of class Stack is an encapsulated 

implementation detail of this component! 

To illustrate this point further, consider briefly a St ri ng class that defines (among 

other things) member 0 per a t 0 r+= to implement concatenation to itself. 

String { 
I I ... 

} ; 

public: 
I I ... 
String(const String& string); 
I I ... 
String& operator+=(const String& rhs); 

II copy constructor 

II concatenate to me 

We can now choose to implement nondestructive concatenation (+) in the same com
ponent, without making the operator a friend: 

String operator+(const String& lhs, const String& rhs) 
{ 

return String(lhs) += rhs; 
} 
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If after analysis we find it necessary to improve the performance of oper'ator+, we 
can extend the encapsulation of class Stri ng by declaring operator+ a friend of 
String: 

String { 
I I . . . 
friend String operator+(const String&, const String&): 

public: 

} ; 

I I ... 
StringCconst String& string); 
I I ... 
String& operator+=(const String& rhs); 

II copy constructor 

II concatenate to me 

Declaring operator+ to be a fri end of Stri ng allows for a more efficient implemen
tation and potentially increases the cost of maintenance, but does not affect the logical 
interface of the component: 

String operator+(const String& lhs, const String& rhs) 
{ 

II clever, more efficient implementation using private members 
} 

There is simply no programmatic way for a client of a component to tell whether a 
given logical entity defined within the component is declared a fri end of a class 
defined withi~ that same component.9 

Granting (local) friendship to classes defined within the same 
component does not violate encapsulation. 

Granting local friendship does not threaten to expose the private details of an object to 
unauthorized users. Because classes that are declared friends are defined (locally) 
within the header file of the same component, anyone who tries to use the object 
granting friendship will have the valid definitions of all friend classes thrust upon 

9 The C++ language makes no distinction based on the location of the friend declaration within a 
class. However, placing the declaration in a private area of the class reflects the component's 
semantics with respect to local friendship. . 



140 Components Chapter 3 

them. Any attempt to redefine these friend classes will be prevented by the compiler, 
which will promptly issue the error: . 

MULTIPALLY DEFINED CLASS. 

Defining an iterator class along with a container class in the same 
component enables user extensibility, improves maintainability, and 
enhances reusability while preserving encapsulation. 

Locally, within a single component, friendship should be granted where necessary to 
achieve proper encapsulation for the component as a whole. As with the Container/ 
Iterator pattern, we would always like to keep logical entities with access to our 
implementation physically close to reflect the high degree of logical intimacy. 
Granting friendship to logical entities outside a component, referred to in this book as 
long-distance friendship, is an entirely different matter. 

Granting (long-distance) friendship to a logical entity defined in a 
separate physical part of the system violates the encapsulation of the 
class granting that friendship. 

Granting private access to another physical piece of the system leaves a hole in the 
encapsulation that could be abused by plugging in a counterfeit component to obtain 
access. For example, suppose the S t a c kIt e r class from Section 3.1 were declared in 
component stack; ter, separate from class Stack. Then there would be nothing to 
stop a user of the s t a c k component from substituting his or her own component 
defining a customized S t a c kIt e r, and thereby obtaining private access to the S t a c k 

class. Once this happens, the class granting the long-distance friendship has no pro
tection against access to its private members-its encapsulation has been violated. 
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Beside being a violation of encapsulation, long-distance friendship is a symptom of a 
poorly structured design. Having physically separate logical entities intimately depen
dent on one another subtly degrades maintainability. Specifically, long-distance 
friendships reduce modularity by allowing local changes to private implementation 
details to affect physically remote parts of the system. 

Excessive use of even local friendship affects maintainability. Granting friendship 
extends the "interface" of a class itself. The more functions that have access to the 
encapsulated details of an object's implementation, the more code that will have to be 
revisited (and possibly reworked) in the event of an implementation change. The 
fewer the lines of code that directly access private information, the easier it is to 
experiment with alternative implementations. 

3.6.1 Long-Distance Friendship and Implied Dependency 

Although discouraged, the possibility of granting friendship outside of a component 
leads us to establish whether functions matching a fri end declaration of a class 
should themselves be considered when determining the Uses relation involving that 
class. The answer to this subtle question is important, but only when it comes to infer
ring physical dependency based on the Uses relation where friendship transcends a 
single component. 

Friendship affects access privilege but not implied dependency. 

A class is an indivisible logical unit. A free function is a distinct logical unit. Whether 
the free function is or is not a friend of a class never affects any implied physical 
dependency in the system. 

Consider the free operator function 

II barop.h 
class Bar; 
int operator==(canst Bar&, canst Bar&); 
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defined in its own component, barop. Figure 3-19 shows this operator along with 
class Stack and class Stacklter (now shown in separate components as well). This 
free operator is neither a member nor a friend of S t a c k, and therefore it clearly does 
not extend the interface of class S.tack. But what exactly changes when we declare 
this operator a fri end of Stack? 

barop bar 

Stack 

stackiter stack 

Figure 3-19: Related Logical Entitiesjn Distinct Components 

Would 0 pe r a to r== ( con s t Bar &, con s t Ba r&) now be considered part of the inter
face of class S t a c k? If so, then S t a c k uses Bar in its interface, and there is an erroneous 
implied dependency of component stack on component ba r as shown in Figure 3-20. 

Bar 

barop 

stackiter stack 

Figure 3-20: Erroneously Inferred Dependency of sta ck on ba r 

The physical dependencies of Stack do not suddenly assume those of barop just by 
granting the operator friendship. Using a type implies a dependency on all of its mem
bers but not necessarily on any of its friends. In particular, 0 per at 0 r== ( con s t Bar & , 
con s t Bar &) is a friend of S t a c k. S t a c kIt e rUses S t a c k, but this in no way implies that 
Stacklter Uses operator==( canst Bar&, const Ba r&) either directly or indirectly. 
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Notice the direction of the arrow used to indicate the IsFriendOf relation in Figure 3-20. 
The arrow indicates that ope ra to r==( can s t Ba r&, con s t Ba r&) is now permitted to 
depend on S t a C k in a more intimate way than before, but it does not guarantee any 
actual dependency. There is no physical dependency whatsoever in the opposite direc
tion-as would be implied by treating ope ra to r==( cons t Ba r&, can s t Ba r&) as if 
it were part of the Stack's logical interface. To summarize, only access privilege and 
not physical dependency is altered by granting friendship. 

The importance of this principle is illustrated by the following pair of free operators 
used to compare objects of type Stack and type Foa (symmetrically): 

int operator==(const Stack&, const Foo&) 
int operator==(const Foo&, const Stack&) 

We do not need to look inside the header file for either S t a c k or F 00 to know that 
these operators are not members and therefore are not part of the logical interface of 
either class. Since these operators are not part of either class, we could define them in 
an entirely separate component that could then be included by clients only when 
needed. Regardless of the access privilege, the U ses-In-The-Interface relation points 
in one direction, from operator to class, as shown in Figure 3-21. 

foostackop stack 

Figure 3-21: Acyclic Dependency of Free Operators on Classes 

Now consider the highly questionable decision to add instead the following two 
operator== member functions: 

int Stack::aperator==(const Foo& rhs) const; 
int Foo::operator==(const Stack& rhs) canst; 
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As members, these operator functions are clearly part of the interfaces of their respec
tive classes. Each member operator uses the other class in its interface. The presence 
of these operators introduces an undesirable, cyclic Uses-In-The-Interface relation
ship between Foo and Stack as shown in Figure 3-22. No such cyclic dependency was 
induced when the operators were free and defined in a separate component. Adding 
free (operator) functions never affects the logical interface of any class regardless of 
access because free operators, unlike members, are not an intrinsic part of any class. 
(Note that making operator== a member is a poor decision in terms of purely logical 
design considerations, as discussed in Section 9.1.2.) 

Figure 3-22: Cyclic Dependency of Member Operators on Classes 

Although granting friendship in itself never directly affects implied dependencies, 
friendship can indirectly affect physical coupling. In trying to avoid the problems 
associated wit~ long-distance friendships, we may find ourselves grouping several 
intimately dependent logical entities into a single component, thus physically cou
pling them (see Section 5.8). 

3.6.2 Friendship and Fraud 

Protecting one's implementation from unauthorized use is important for large 
projects, which may span several levels of management as well as several geographi
cal locations. In such cases, just saying, "I'm leaving a hole, but please keep out!" 
doesn't work. People (particularly customers) who have access to your code at the 
source level will do what they need to do to get their programs working. If using one 
of your private data members will solve their problem, given half a chance they will 
probably use it. If users are able to access your implementation directly, you may 
meet with unwanted resistance should you try to improve it in the future. 

An unscrupulous developer can gain access to private details simply by defining the 
friend class locally (at file scope). The developer can then exploit these details via 
inline functions, which do not have external linkage and hence will not collide with 



Section 3.6.2 Friendship and Fraud 145 

the legitimate function definitions, even if they are linked into the program. For the 
same reason, declaring an individual non-inline free (operator) function a fri end
even locally-is not immune to fraud via inline replacement. People actually do this 
in production code. You have been warned! 

Figure 3-23 illustrates the highly questionable practice of taking deliberate advantage 
of the hole in encapsulation left by employing long-distance friendships. Class J ail 

defines a private member rel ease() and befriends a class named Jai 1 Key, defined 
outside the j ail component. The authorized J ail Key is defined within component 
j ail key, which is linked into the program. A malevolent vis ito r component 
declares a local version of class J ail Key hidden entirely within the vis ito r . c file. 
Since this illicit version of J ail Key has no members with external linkage, it is able to 
coexist silently in a program and still take advantage of the friendship afforded by 
J ail. The constructor for the Vi s i to r object named "bugsy" defined in rna i n ( ) cre
ates an instance of its own J ail Key, which on construction calls the private 
r e 1 e as e ( ) method of Jail. Escape is inevitable. 

Sadly, there are even easier and more heinous ways to violate encapsulation: 

II felon.c 
#define private public 
#include "jail.h" 

II capital offense 

void Felon: :breakOutCJail *jail) 
{ 

jail->releaseC); 
} 

II 

However, writing headers such as 

II jail.h 
#if !definedCINCLUDED JAIL) && !defined(protected) && !definedCprivate) 
#define INCLUDED JAIL 

class Jail { 
I I ... 

lIendif 

is probably going too far. 

II maximum security 
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II main.c 
Hinclude "jail.hl! 
Hinclude "jailkey.h" 
#include "visitor.h" 

maine) 
{ 

} 

• maln.c 

Jail jail; 
JailKey key(jail): 
Visitor bugsy(jail): 

II visitor.h 
#ifndef INCLUDED VISITOR 
#define INCLUDED VISITOR 
class Jail; 
class Visitor { 

I I ... 
public: 

II Output: 
II john@john: a.out 
II Escape! 
II john@john: 

II visitor.c 
1foinclude "visitor.h" 

Chapter 3 

struct JailKey { II local class 
JailKey(const Jail& jail) 
{ 

jail.release(); 
} II no external linkage 

Visitor(const Jail& jail); 
... } ; 

} : 

~~_~~~~ . #endif 

II jail.h 
#ifndef INCLUDED_JAIL 
#define INCLUDED_JAIL 
class JailKey; II not defined locally 
class Jail { 

} ; 

friend JailKey; II long distance 
void releasee) canst; 
I I ... 

# endif 

jail 

Visitor::Visitor(const Jail& jail) 

J ail Key key ( j ail ) ; J ailKey 

II jail.c 
#include "jail.h" 
#include <iostream.h> 

void Jail: :release() canst 
{ 

cout« "Escape!"« endl; 

Figure 3-23: Example of Abusing Friendship 
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3.7 Summary 

Developing maintainable, testable, and reusable software demands a thorough knowl
edge of physical as well as logical design. Physical design addresses organizational 
issues, beyond the scope of the logical domain, that affect readily measurable charac
teristics such as runtime, compile time, link time, and executable size. 

A component is a physical entity consisting of a . c file and a . h file, which embodies 
the concrete realization of a logical abstraction. A component will typically contain 
one, two, or even several classes, along with appropriate free operators needed to sup
port the overall abstraction. A component and not a class is the appropriate unit of 
both logical and physical design because it enables 

1. several logical entities to represent a single abstraction as a cohesive unit, 
2. consideration of both physical and organizational issues, and 
3. selective reuse of translation units in other programs. 

The logical interface of a component is limited to that which can be accessed 
programmatically by clients, while the physical interface involves its entire header 
file. Using a user-defined type, T, in the physical interface of a component, even if T is 
an encapsulated logical detail, can force clients of that component to depend on the 
definition of T at compile time. 

Components are self-contained, cohesive, and potentially reusable units of design. 
Logical constructs declared within a component should not be defined outside that 
component. A component's . c file should immediately include its . h file to ensure 
that the . h file will parse on its own. Consistently including the header file for each 
required type definition, rather than depending on one header file to include another, 
avoids problems when an encapsulated change to a component allows a Hi ncl ude 

directive to be removed from its header file. To improve usability, reusability, and 
maintainability, we should avoid placing constructs with extemallinkage in a compo
nent's . c file that are not declared in its . h file. By the same reasoning, we should 
avoid employing local declarations to access definitions with extemallinkage. 

The DependsOn relation identifies physical (compile-time or link-time) dependencies 
among components. A compile-time dependency almost always implies a link-time 
dependency, and the DependsOn relation among components is transitive. 
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We can infer a guaranteed compile-time dependency from a logical IsA or HasA 
relationship across component boundaries. The logical HoldsA and Uses relations 
suggest a likely link-time dependency in such cases. By taking advantage of abstract 
logical relationships to infer the physical ramifications of our design decisions, we 
can predict and correct physical design flaws before any code is written. 

We would like to track actual physical dependencies throughout development to 
ensure consistency with our initial design. Parsing all of the source code in a large 
C++ system is time consuming. Provided that we have followed the major design 
rules in this book, however, it is possible to infer all physical dependencies among 
components from their include graph alone. A description of such a tool is provided in 
Appendix C. 

Finally, friendship, although ostensibly a logical issue, influences physical design. 
Within a component, friendship (local) is an encapsulated implementation detail of 
that component. It is common for a container class to befriend an iterator within the 
same component in order to improve both usability and user extensibility, without 
violating encapsulation. 

Across component boundaries, friendship (long-distance) becomes part of the inter
face of a component and results in a violation of that component's encapsulation. 
Long-distance friendships further affect maintainability by allowing intimate access 
to physically remote parts of a system. 

Friendship directly affects access" privilege but not implied dependency. Indirectly, 
however, our desire to avoid long-distance friendships will force us to package inti
mately related logical entities within a single component, thereby coupling them 
physically. Ignoring " these physical considerations invites clients to exploit the breach 
of encapsulation caused by all long-distance friendships, and even by local friend
ships, to individual, non-inline free (operator) functions. 



Physical Hierarchy 

Physical hierarchy among components as defined by the DependsOn relation is analo
gous to the logical hierarchy implied by layering. Avoiding cyclic physical dependencies 
is central to effective comprehension, maintainability, testing, and reuse. Well-designed 
interfaces are small, easy to understand, and easy to use, yet these kinds of interfaces 
make user-level testing expensive. 

In this chapter we explore how to exploit physical hierarchy to facilitate the effective 
testing of "good" interfaces. We introduce the notion of level numbers to help charac
terize components in terms of their physical dependencies. Using a complex example, 
we demonstrate the value of testing in isolation as well as testing hierarchically and 
incrementally. Finally, we derive an objective metric for quantifying the degree of 
physical coupling within an arbitrary subsystem. This metric will help us to evaluate 
the impact of various design alternatives by making the notion of physical design 
quality more objective and concrete. 

4.1 A Metaphor for Software Testing 

When a customer test-drives a car, he or she is looking to see how well the car 
performs as a unit-how well the car handles, comers, brakes, and so on. The cus
tomer is also interested in subjective usability-how "nifty" the car looks, how com
fortable the seats are, how plush the interior is, and, in general, how satisfying the car 
would be to own. Typical customers do not test the air-bags, ball-joints, or engine 
mounts to see whether they will perform as expected in all circumstances. When 
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buying a new car from a reputable manufacturer, the customer simply takes for 
granted this important low-level reliability. 

For the car to function properly, it is important that each of the objects on which the car 
depends works properly as well. Customers do not test each part of the car individu
ally-but somebody does. It is not the responsibility of the customer to "QA" the car. 
The customer is paying for a quality product, and part of that quality is the satisfaction 
of knowing that the car works properly. 

In the real world, each part of a car has been designed with a well-defined interface 
and has been tested in isolation under extreme conditions to ensure that it meets its 
specified tolerances long before it is ever integrated into a car. In order to maintain a 
car, mechanics must be able to gain access to its various parts from time to time in 
order to diagnose and fix problems. 

Complex software systems are like cars. All of the low-level parts are objects with 
well-defined interfaces. Each part or component can be stress tested in isolation. 
These parts can then be integrated, via layering, into a sequence of increasingly com
plex subsystems-each subsystem with a test suite to ensure that the incremental inte
gration has occurred properly. This layered architecture enables test engineers to 
access the functionality implemented in the lower levels of abstraction without expos
ing clients of the product to these lower-level interfaces. The final product is also 
tested to ensure that it meets customer expectations. 

To summarize: a well-designed car is built from layered parts that have been tested 
thoroughly by the manufacturer: 

1. in isolation, 
2. within a sequence of partially integrated subsystems, and 
3. as a fully integrated product. 

Once assembled, these parts are easily accessible by mechanics to facilitate proper 
testing and maintenance. In software, the concepts remain essentially the same. 
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4.2 A Complex Subsystem 

As a concrete example of a software subsystem, consider a point-to-point wire router 
for a computer-aided electronic design application. This subsystem solves a fairly 
complex problem with a relatively simple description: 

Figure 4-1 illustrates an instance of the point-to-point routing problem. 1 The enclos
ing region contains three holes that a successful path may touch but not overlap. The 
starting point is indicated by s and the ending point is indicated bye. One of the many 
possible shortest rectilinear paths of specified width is defined by the center line, 
shown in the figure connecting sand e. 

1 We present this authentic example in all its detail. It is not necessary, however, to understand every 
aspect of this example in order to benefit from the discussions that follow. A cursory reading will be 
sufficient. 
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Figure 4-1: Example Problem for a Point-to-Point Router 

Chapter 4 
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The logical interface for a component solving this complex problem can be decep
tively simple. The header file p2p_router. h describing the client's interface for the 
point-to-point router subsystem is shown in its entirety in Figure 4-2. The (registered) 
class prefix p2p_ identifies this component as belonging to the p2p package as well as 
eliminating the possibility of identifier name collisions among classes belonging to 
distinct packages (see Section 7.2). 

II p2p_router.h 
#ifndef INCLUDED_P2P_ROUTER 
#define INCLUDED_P2P_ROUTER 

class geom_Point; 
class geom_Polygon; 
class p2p_Routerlmp; 

class p2p_Router { 
p2p_Routerlmp *d_data_p; 

II NOT IMPLEMENTED 
p2p_Router(const p2p_Router&); 
p2p_Router& operator=(const p2p_Router&); 

public: 
II CREATORS 
p2p_Router(const geom_Polygon& enclosingRegion); 

II Create router for specified enclosing region. 
II The region must be a simple, closed polygon. 

-p2p_Router(); 
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II MANIPULATORS 
int addObstruction(const geom_Polygon& hole); 

II Add obstruction; obstruction must be a simple, closed polygon. 
II If obstruction overlaps another obstructi~n or the perimeter 
II of the enclosing shape, return non-zero with no effect and 0 
II otherwise. Note: Regions are allowed to touch but not overlap. 

II ACCESSORS 
int findPath(geom~Polygon *returnValue, const geom_Point& start, 

} ; 

#endif 

const geom_Point& end, int width) const; 
II Determine whether a rectilinear path of specified width exists 
II in the current obstructed region between specified start and 
II end points. Return 1 if such a path exists and 0 otherwise. 
II If a path exists and returnValue is not O. store the center 
II line of any shortest path in (*returnValue). 

Figure 4-2: Complete Header File for p2p~Router 

There are two user-defined types used in the logical interface of the point-to-point 
router subsystem. These types (geom_Polygon and geom_Poi nt) are part of a public 
package (geom) of geometric types used widely throughout the entire system. For ref
erence purposes, the respective interfaces of geom_Poi nt and geom_Po 1 ygon are 
sketched in Figure 4-3. 

class geom_Point { 
I I ... 

} ; 

public: 
geom_Point(int x, int y); 
geom_Point(const geom_Point& point); 
,....geom_Poi nt () {}; 
geom_Point& operator=(const geom_Point& point); 
void setX(int x); 
void setY(int y): 
int x() const; 
int y() const: 

class geom_Polygon { 
I I ... 

public: 
geom_Polygon(); 
geom_Polygon(const geom_Polygon& pgn); 
-geom_Polygon() I}; 
geom_Polygon& operator=(const geom_Polygon& 
void appendVertex(const geom_Point& point); 
I I ... 
int numVertices() const; 

pgn) ; 

const geom_Point& vertex(int vertexlndex) const; 
I I ... 

} ; 

Figure 4-3: Sketch of geom_Poi nt and geom_Po 1 ygon Class Interfaces 
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An actual implementation of this subsystem involves some 5,000 lines of C++ source 
code (not including comments), yet using the point-to-point router component is very 
easy. A straightforward driver that runs the example of Figure 4-1 is given for 
completeness in Figure 4-4. Note that the advantage of this long, linear style is its 
simplicity. It is typical of drivers actually used during development and testing. 

II p2p_router.t.c 
II inc 1 u d e It p 2 P _ r 0 ute r . h If 
#include "geom_polygon.h" 
#include IIgeom_point.h" 
#include <iostream.h> 

maine) 
{ 

geom_Polygon enclosingRegion; 
enclosingRegion.appendVertex(geom_Point(O, 1000)); 
enclosingRegion.appendVertex(geom_Point(O, 600)): 
enclosingRegion.appendVertex(geom_Point(700, -100)); 
enclosingRegion.appendVertex(geom_Point(2l00, -100)); 
enclosingRegion.appendVertex(geom_Point(2100, 100)); 
enclosingRegion.appendVertex(geom~Point(3000. 100)); 
enclosingRegion.appendVertex(geom_Point(3000, -200»); 
enclosingRegion.appendVertex(geom_Point(3200, -400)); 
enclosingRegion.appendVertex(geom_Point(4500, -400); 
enclosingRegion.appendVertex(geom_Point(5000, 100)); 
enclosingRegion.appendVertex(geom_Point(5000, 1000)); 
enclosingRegion.appendVertex(geom_Point(O, 1000)); 

geom_Polygon holel; 
holel.appendVertex(geom_Point(800. 900»); 
holel.appendVertex(geom_Point(800, 700)); 
holel.appendVertex(geom_Point(1400, 700)); 
holel.appendVertex(geom_Point(1400. 900)); 
holel.appendVertex(geom_Point(800. 900)); 

geom_Polygon hole2; 
hole2.appendVertexCgeom_Point(600. 300)); 
hole2.appendVertex(geom_Point(800. 100)); 
hole2.appendVertex(geom_PointC1600, 100»); 
hole2.appendVertex(geom_Point(1400, 300)); 
hole2.appendVertex(geom_PointC600, 300)); 

geom_Polygon-hole3; 
hole3.appendVertex(geom_Point(2600, 900); 
hole3.appendVertex(geom_Point(2900, 600)); 
hole3.appendVertex(geom_Point(3800, 600)); 
hole3.appendVertex(geom_Point(380Q, 300)); 
hole3.appendVertex(geom_Point(4200, 300)); 
hole3.appendVertexCgeom_Point(4200, 600)); 
hole3.appendVertexCgeom_Point(4500, 900)); 
hole3.appendVertexCgeom_PointC2600. 900)); 
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p2p~Router router(enclosingRegion); 
router.addObstruction(holel); 
'router.addObstruction(ho1e2): 
router.addObstruction(hole3): 

geom_Polygon centerline; 
geom_Point start(400, 800), end(4600, 500); 
int width = 400; 

if (router.findPath(&centerLine, start. end, width» { 
cout « centerline « endl; 

} 

e 1 s e { 
cout « IICoul d not fi nd path. II « endl; 

} 

II Output: 
II john@john a.out 
II { (400, 800) (400, 500) (3400, 500) (3400, 200) (4600, 200) (4600, 500) } 
II john@john 

Figure 4-4: Straightforward Driver for Point-To-Point Routing Problem 

4.3 The Difficulty in Testing "Good" Interfaces 

A truly effective use of object-oriented technology is to hide tremendous complexity 
behind a small, well-defined, easy-to-understand, and easy-to-use interface. Yet it is 
precisely these kinds of interfaces that, if naively implemented, can lead to the devel
opment of subsystems that are exceedingly difficult to test. 

For example, the p2p_router component (Figure 4-2) contains only four public 
functions: 

1. a constructor that establishes the enclosing region, 

2. a destructor, 

3. a function to accumulate a collection of obstructions within the enclosing 
region, and 

-

4. a function to determine the shortest rectilinear path of specified width 
between any two points inside the region (excluding the interior of the 
obstructions accumulated so far). 
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The output at the end of Figure 4-4 tells us that this component produced an answer.· 
Now stop for a moment and imagine that you are a quality assurance test engineer 
assigned to this project. How would you go about thoroughly testing such an interface? 

First consider that in general there will be many equally good solutions for an instance 
of this problem. Verifying that a solution is a rectilinear path of a given width that 
connects two points in a region with obstructions is not trivial, but it can be done with
out extraordinary effort. Verifying that a solution to this problem is optimal is, in gen
eral, as difficult as finding the solution in the first place. 

You could verify the output by trying several test cases and inspecting them by hand. 
Although time consuming, manual inspection can be effective during development.· 
Consider what happens when the development phase has ended and the subsystem· 
moves into the maintenance/tuning phase. It would be impractical to think that you or 
the developers would be willing or even able to manually review the output of every 
subsystem on every release. 

DEFINITION: Regression testing refers to the practice of comparing 
the results of running a program given a specific input with a fixed 
set of expected results, in order to verify that the program continues 
to behave as expected from one version to the next. 

One approach commonly used to help automate regression testing involves running a 
large number of test cases through the system at the top level and capturing the results. 
These results are then inspected once by hand to verify their accuracy. Before each 
release, new results are obtained and compared with the original results. Presumably, 
if the new output matches the old output exactly, the subsystem is correct. 

A significant drawback with regression tests for many complex problems, including this 
one, is that there may be multiple correct solutions. Although each of the components of 
the point-to-point router subsystem may have completely predictable behavior, there is 
room in the specification for the developer to alter p2p_Router's implementation in 
ways that produce a different (but equally good) final result for a given input. 

On a much smaller scale, consider the specification for a simple iterator on some 
collection. Typically there is no constraint on the order in which the elements must be 
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presented. The requirement is that each element in the collection be presented exactly 
once. Verifying that an iterator is behaving properly in isolation is not difficult. But 
when the iterat"or is embedded in the implementation of a complex subsystem (such as 
that headed by the p2p_router component), the ability to test that iterator effectively 

may be lost. 

Although the point-to-point router is guaranteed to produce an optimal result if one 
exists, many complex problems are too difficult to solve optimally in a reasonable 
amount of time. In such cases, heuristic methods are employed that produce a good 
(but not necessarily a best) solution. Heuristic te.chniques often take the form of an 
intelligent trial-and-error strategy and are, by their nature, unpredictable. Experimen
tation is used to determine which heuristic techniques tend to produce the best solu
tions. Software that depends on heuristic methods is resistant to high-level regression 
testing, since any improvement in the heuristics would invalidate the regression data. 

Testing complex, heuristic-based software at a high-level interface is made even more 
difficult because failures in the more predictable underlying components may not 
cause the entire subsystem to fail outright. Instead, these insidious errors silently 
degrade the quality of the subsystem's output. Since it is not always possible to verify 
that the result is optimal, this degradation could easily go undetected. 

Even worse than the pseudo-random behavio.-2 of heuristic-based systems is the com
pletely unpredictable behavior associated with systems that employ asynchronous 
communication. Such systems produce results that are generally not repeatable. In 
these cases, high-level regression testing could be virtually useless. 

Minimizing the "surface area" in our designs (i.e., providing sufficient but minimal 
interfaces) is a cornerstone of good software engine~ring. Yet there is a cruel irony in 
knowing that the very interfaces we strive so hard to achieve can present a formidable 
barrier to conventional testing techniques. Fortunately there are techniques that we can 
use to overcome these testing problems. The proverb about an ounce of prevention 
being worth a pound of cure especially pertains here. 

4.4 Design for Testability 

A major component of designing in quality is design for testability (DFT). The impor
tance of DFT is well recognized in the integrated circuit (Ie) industry. In many cases 

2 For more on pseudo-random functionality, see rand() in pJauger, Chapter 13, p. 337. 
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it is impractical to test IC chips, some with over a million transistors, from the outside 
pins alone. 

When an IC chip is fabricated, it acts as a "black box" and can be tested only from the 
external inputs and outputs (pins). Figure 4-5a illustrates the process of trying to test a 
hardware subsystem w using only the interface provided to regular clients of the chip 

. itself. In order to test w, it is necessary not only to figure ~ut v/hat would make a good 
test suite for w, but also how to propagate that test suite through the chip to reach the 
inputs of w. As if that weren't bad enough, each result that w produces must then be 
propagated from the output of w to some output of the chip itself in order to observe 
and verify that w has behaved correctly. Ensuring propagation of this information 
requires detailed knowledge about the entire chip-knowledge that has nothing to do· 
with the correct functionality of w. 

a 

A ---11 ..... -..1 

B ---II~---' 

c ---..,... ... 
c 

(a) Testing a Component from the System Level (b) Testing a Component Directly 

Figure 4-5: Design for Testability in Integrated Circuits 

One form of DFT for IC chips called SCAN is accomplished with extra pins and 
additional internal circuitry provided solely for testing purposes. Using these special 
features, test engineers are able to isolate the various subsystems within the chip. In 
so doing they are able to gain direct access to the inputs and outputs of internal sub
systems and to exercise their functionality directly_ In other words, this DFT 
approach attempts to grant the tester direct access to a subsystem, thereby eliminating 
the cost of propagating signals through the entire chip. In this way, the full functionality 
of the subsystem can be explored efficiently as illustrated in Figure 4-5b, without 
regard to the details of how the subsystem is used in the larger system. 

When first employed, DFT was great for improving quality; however, Ie designers 
did not appreciate having this additional design requirement. Not only was this an 
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extra consideration, but it made their designs bigger and therefore much more expen
sive to produce. Many designers were frustrated, considering this disciplined 
approach to be an infringement on their creativity. 

Today DFT is an Ie industry standard. No competent hardware engineer would con
sider designing a complex chip without directly addressing the testability issue. By 
comparison, the functionality of large software systems can be orders of magnitude 
more complex than would be found in even the largest integrated circuit. Surprisingly, 
there is often no plan in place to ensure that the software is testable. Attempts to man
date software testability are frequently met with the saine frustration felt in the Ie 
industry over a decade ago. Often it is people rather than the technology itself who 
pose the greater challenge to solving an otherwise technical problem. 

With respect to testing, a software class is analogous to a real-world 
instance. 

Like I~ design, object-oriented software involves the creation of a relatively small 
number of types, which are then instantiated repeatedly to form a working system. For 
example, a S t r i n 9 class is a primitive type in many software systems. Many instances 
of this class may be created during a typical invocation of the system. 

Both disciplines require that the functionality in these types be tested thoroughly to 
ensure correct behavior when instantiated. But, unlike Ie design where each individ
ual instance of a type must be tested for physical defects, software objects are immune 
to such defects. If a class is implemented correctly, then, by definition, all instances of 
that type are correctly implemented as well. 

I··· •. ·.·.······.······.···.··.p··········· · I I _i_ •• rILl~~;P~ , ..•.•.•• 

Distributing system testing throughout the design hierarchy can be 
much more effective per testing dollar than testing at only the higbest
level interface. 



160 Physical Hierarchy Chapter 4 

From the point of view of testing, each, software type is like a real-world instance. 
Testing the functionality of a S t r i n 9 class is easiest and most effective if done 
directly, rather than by attempting to test it as part of a larger system. And, unlike Ie 
testing, we automatically have direct access to the. interface of the software sub
system-the S t r i n 9 class. 

Put another way, if we have only X dollars to spend on testing, we can achieve more 
thorough coverage if we distribute the testing effort throughout the system, thus test
ing individual component interfaces directly, than we can by testing from the end 
user's interface alone. 

Consider again the p2p_router component of Figure 4-2. Even assuming entirely 
predictable behavior, it would be ineffective to attempt to test this component entirely 
from the highest level, especially given its tiny interface. In analogy to IC testing (see 
Figure 4-6), this would be like trying to test a one-million-transistor microprocessor 
chip with only two pins!3 

Software testing is inherently easier than hardware testing because instances of a class 
created within a system are no different from instances of the same class created inde
pendently, outside that system. If a complex software subsystem were truly analogous 
to an IC chip, the implementation would reside entirely within a single physical com
ponent. If the functionality declared in p2p_router. h were implemented entirely 
within p2p_router. C, we would probably be forced to violate encapSUlation by pro
viding extra functionality in the public interface-just to enable effective testing. 

3 Other kinds of Ie testing strategies such as Build-In Self Test (BIST) place additional circuitry on 
the chip that can be enabled to verify that the chip is working properly without having to propagate 
specific information to the interface. BIST is somewhat analogous to the use of assert statements in 
software. Adding public functionality, such as testMe(), would be a more accurate analogy, but the 
physical hierarchy in our software architecture allows us to achieve the same result without adding 
any test-specific functionality to the interface of a component. 
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. 
In out 

Figure 4-6: Fictitious Highly Test-Resistant IC Chip with Only Two Pins 

Fortunately, the implementation of the point-to-point router does not live in a single 
component. Instead, this implementation is deliberately distributed throughout a 
physical hierarchy of components. Even though the client of a p2p~Route r object has 
no programmatic access to the layered objects that make up the router, it is still possi
ble for test engineers to identify subcomponents with predictable behaviors that can 
be tested and verified much more efficiently in isolation. 

4.5 Testing in Isolation 

In a well-designed modular subsystem, many components can be tested in isolation. 
Consider a very real situation involving the point-to-point router subsystem that will 
eventually support all-angle geometry. For the time being, the system is still in the 
prototype stage and handles only manhattan (90-degree) angles. The point-to-point 
router is object based, and so it is layered on many objects, most of which currently 
support all angles. Since some of the components have not yet been upgraded to all
angle, the p2p~router itself can accept only manhattan test cases. 

Independent testing reduces part of the risk associated with software 
integration. 

Consider the physical architecture for the p2p~router shown in Figure 4-7. By 
designing the p2p_router so that each of its subsystems can be developed and tested 
individually, we can ensure that each of their upgraded functionalities is in place even 
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though they cannot be verified through the completed routers interface until some 
future date. If programming errors occur, they can be detected and fixed in parallel. 

Figure 4-7: Physical Dependency for a p2p_route r Implementation 

An alternative, less disciplined but widely used "method" of integrating software is to 
wait until all the software is in place before trying it. This is commonly referred to as 
the big bang approach. The name is somewhat misleading: the anticipated "bang" is 
all too often a fizzle. 

Integration is where most specification errors are detected. When the integrated sys
tem fails to perform as anticipated, the development team must scramble to diagnose 
the problems. Inevitably, they will find many coding bugs not intrinsically related to 
the integration itself. Independent testing could have at least allowed these coding 
errors to have been diagnosed and fixed much earlier in the development process. 

DEFINITION: Isolation testing refers to the practice of testing an 
individual component or subsystem independently of the rest of the 
system. 

Testing a component in isolation is an effective way to ensure 
reliability. 
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At the lowest levels of a complex system, components are often heavily optimized, 
increasing the likelihood of subtle errors and the need for detailed regression tests. For 
example, carefully designed, object-specific memory management can often double 
runtime performance. However, custom memory managers are quite error prone, and 
these errors are among the most difficult to detect and repair. Instrumenting global 
operators new and del e t e in an isolated component test driver can ensure that the 
memory-management scheme is functioning properly under a wide variety of condi
tions, including those encountered only infrequently in practice. 

Not all programs use all functionality in reusable components. For example, if a pro
gram does not call the pop ( ) member of a Sta c k class, there is no way that pop ( ) can 
be tested just by testing that program. Even if a particular program calls every func
tion, there may be states in which objects are supposed to behave properly, but which 
the surrounding software does not allow them to attain. 

Consider a S t r i n 9 class that is developed as part of an interpreter. The interpreter 
never sees a zero-length identifier, so it never tries to create an empty Stri ng to repre
sent one. (This boundary condition would certainly be addressed by a thorough test 
designed specifically for the stri ng component.) As our system evolves, we may at 
some later point reuse the S t r i n 9 class in other parts of the same system, but in new 
ways (e.g., to hold St ri ng variables). At this point an instance of an empty String can 
occur within this system. The enhancement may have been made at a fairly high level 
in the system, but the potential bug exists at the lowest level-in the S t r i n 9 class
which has been working "perfectly" for quite some time! 

In a large project, the author of the S t r i n 9 class is probably not the same individual 
as the one whose valid enhancement exposes the problem. Detecting and then repair
ing such bugs, not to mention the frustration that ensues, is far more expensive than 
simply avoiding them in the first place through early, component-level testing in 
isolation. 

It would be redundant and unnecessarily costly for every system that uses a library 
facility such as i ostream to have tests to verify that the needed i ostream functional
ity is working properly. People have come to assume that i ostream does work as 
intended. For large systems, there will probably be many application libraries devel
oped in house. No single executable will make use of all of this functionality, yet all 
of it should be tested thoroughly in isolation. 
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We can avoid the redundancy by grouping the testing effort with the components them
selves. In so doing, one extends the notion of object-oriented design to include, as a 
single unit, not only the component but also the supporting tests and documentation. 
Furthermore, well-written component-level tests can facilitate reuse by providing pro
spective users with a suite of small but comprehensive examples. The functionality 
supplied by each component can now be tested thoroughly in a single place; clients 
who depend on these components may reasonably assume they are reliable. 

Isolation testing is ideal for identifying low-level problems that result from enhance
ments and is especially useful for porting a system to new platforms. These low-level 
tests ensure the preservation of basic functionality and make it easy to track down any 
discrepancies. Occasionally defects escape local detection and are caught by tests at 
higher levels. The low-level component test should be updated to expose the errant 
behavior before the defect is repaired. Doing this will both facilitate the repair and 
preserve modularity by making the testing of this component independent of any 
particular client. 

There is a point of diminishing returns to testing in isolation. For example, placing the 
definition of aLi n k class for a simple Lis t object in a distinct component so that it 
may be tested in isolation is absurd for two reasons: 

1. The normal operation of aLi s t object will thoroughly exercise the 
Lin k's functionality. 

2. The additional component will unnecessarily increase the physical com
plexity of the system, making it more difficult to understand and maintain. 

Determining this point for component-level isolation testing should be done objec
tively, based on a costlbenefit analysis, not solely by how much a given developer 
loathes ( or enjoys) testing. 

4.6 Acyclic Physical Dependencies 

For a design to be tested effectively, it must be possible to decompose the design into 
units of functionality whose complexity is manageable. A component is ideal for this 
purpose. Consider the header files for three components cl, c2, and c3 depicted in 
Figure 4-8. Note that we have declared class C1 in component headers c2. hand c3. h 

without providing its definition because it is not necessary to define a class that is 
returned by value in order to declare that function. 
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II c1.h 
#ifndef INCLUDED_C1 
#define INCLUDED_C1 
class C1; 

class C1 { 
I I ... 

public: 
C1 f(); 

} ; 

4fendif 

c1.h 
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II c2.h 
#ifndef INCLUDED_C2 
#define INCLUDED_C2 
class C1; 

class C2 { 
I I ... 

public: 
C1 g(); 

} ; 

#endif 

c2.h 

II c3.h 
#ifndef INCLUDE_C3 
#define INCLUDE_C3 
class C2; 

class C3 { 
I I ... 

public: 
C1 h(const C2& arg); 

} ; 

#endif 

c3.h 

Figure 4-8: Components with Acyclic Implied Dependencies 

We can observe (Section 3.4) that there are no implied dependencies of clan any other 
component. Class C 2 uses class C 1 in its interface. Therefore it is likely that component 
c2 depends on component cl, but, we hope, not on c3. Class C3 uses both C2 and (1 in 
its interface, and so c3 is likely to depend on both c2 and cl. The implied dependen
cies in this system form a directed acyclic graph (DAG) as shown in Figure 4-9a. 

Component dependency graphs that contain no cycles have very positive implications 
for testability, but not all component dependency graphs are acyclic. To see why, con
sider what would happen if we changed the return type of (1 : : f from a C 1 to a (2 as 
follows: 

class C1 { 
I I ... 

public: 

} : 

II C1 f(); 

C2 f(); 
II old 
II new 

Now (1 uses (2 in its interface and (probably) depends on it. The implied component 
dependency graph for this modified system now has a physical cycle, and is shown in 
Figure 4-9b. 
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(a) Acyclic Dependencies (b) Cyclic Dependencies 

Figure 4-9: Acyclic versus Cyclic Physical Dependencies 

Systems with acyclic physical dependencies (such as the one shown in Figure 4-9a) 
are far easier to test effectively than those with cycles. Whenever the component 
dependencies in a system are acyclic, there is (at least) one reasonable order to go 
about testing the system. Since component c 1 depends on nothing else, tests to verify 
its functionality in isolation can be written first. Next we see that component c2 

depends only on component cl. Because we were able to write effective tests for cl, 

we may presume c 1 to be functioning properly. We can now write tests for the func
tional value added by c2. We need not retest the contribution of cl since that function
ality is already covered. Then we look at c3 which depends on both cl and c2. 

Because we presumably have already written tests to verify the functionality supplied 
by both cl and c2, we need address only the additional functionality implemented in c3. 

4.7 Level Numbers 

In this section we introduce a method for partitioning components based on their 
physical dependencies into equivalence classes called levels. Each level is associated 
with a non-negative integer index, referred to in this book as the level number. The 
next few paragraphs describe the origins of level numbers and how they were used in 
their original context. Then we apply these well-established concepts in a new con
text: software engineering. 
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4.7.1 The Origin of Level Numbers 

The notion of level numbers is borrowed from the field of digital, gate-level, zero
delay circuit simulation.4 Here, a gate implements a low-level block of Boolean func
tionality. Each gate has two or more connection points called terminals. A circuit 
consists of an interconnected collection of gates. Like a gate, a circuit has both input 
terminals and output terminals. Primary inputs are inputs to the circuit itself. These 
inputs are connected to the inputs of some of the gates within the circuit by pair-wise 
terminal connectors called wires. The outputs of these gates are connected by wires to 
the inputs of still other gates, and so on. A simple circuit with four primary inputs 
(a, b, c, and d) is illustrated in Figure 4-10a. 

".A--+--Y 

(a) Circuit Without Feedback (b) Circuit With Feedback 

Figure 4-10: Logic Circuits Without and With Feedback 

Simulating a circuit involves setting its primary inputs with logical values and then 
evaluating each of the (layered) gates in tum. But before any particular gate can be 
evaluated, we must make sure that its inputs are valid by ensuring that all gates that 
feed this particular gate have already been evaluated. 

A circuit is a kind of graph. Here, gates and primary inputs are treated as vertices of a 
graph, and wires are treated as (directed) edges.5 The level number in this context 

I 

4 The zero-delay approximation is used primarily in a special kind of circuit simulator known as a 
fault simulator. The discovery of this analogy between hardware and software arose, in part, from 
the author's Ph.D. research at Columbia University with Professor Stephen H. Unger. 
5 The gates themselves impose the edge direction, which reflects the dependency of the gate on its 
input source (e.g., either a primary input or the output of another gate in the circuit). 
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indicates the longest path from a particular gate to a primary input. Primary inputs are 
defined to have a level of O. By evaluating these gates in order of increasing levels, we" 

can guarantee that every gate's inputs will be valid. 

Primary input values are assumed, and do not require evaluation. During simulation, 
level-l gates are fed only by primary inputs. These gates are evaluated first, in arbi
trary order. Next to be evaluated are alllevel-2 gates. Since level-2 gates are fed only 
by one or more level-l gate (and possibly also by primary inputs), we are assured at 
this point that all inputs for level-2 gates have been evaluated. Since a gate at level N 
depends only on levels [0 ... N-l] for its inputs, evaluating gates in levelized order 
guarantees a successful simulation. 

In Figure 4-10a, a level-l OR-gate feeds the only input of the NOT-gate, making it a 
level-2 gate. The AND-gate is fed both by a level-l OR-gate and a level-2 NOT-gate. The 
longest path from the AND-gate to a primary input is 3 (through the NOT-gate to primary 
input c or d). The AND-gate belongs to the highest level, 3, and is evaluated last. 

Every directed acyclic graph can be assigned unique level numbers; a 
graph with cycles cannot. 

Notice that, with the pair of cross-coupled NOR-gates in Figure 4-10b, the longest path 
from either gate to either primary input (r or s) is unbounded. This circuit cannot be 
levelized-that is, it cannot be assigned unique level numbers. The property that 
makes a circuit levelizable is that it has no feedback. This lack of feedback makes the 
circuit qualitatively easier to understand, develop, analyze, and test. For these reasons, 
feedback is used in large systems only under very restricted circumstances. For com
pletely analogous reasons, a "lack of feedback" is exactly the property we would like 
our software designs to possess. 

DEFINITION: A physical dependency graph that can be assigned 
unique level numbers is said to be levelizable. 
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4.7.2 Using Level Numbers in Software 

Turning back to software engineering, if the component dependencies in a software 
system happen to form a DAG, we can define the level of each component. 

DEFINITION: 

Level 0: A component that is external to our package. 

Levell: A component that has no local physical dependencies. 

Level N: A component that depends physically on a component 
at level N-l, but not higher. 

In this definition, we assume that all components outside our current package6 (e.g., 
i ostream) have already been tested and are known to function properly. These com
ponents are treated as "primary inputs" and have a "level" of O. A component with no 
local physical dependencies is defined to have a level of 1. Otherwise, a component is 
defined to have a level one more than the maximum level of the- components upon 
which it depends. 

Figure 4-11 shows the component dependency diagram from Figure 3-17 of Section 
3.4, which happens not to have any cycles, and hence is levelizable. The level number 
is shown in the upper right comer of each component. Component c h a r a r ray does 
not depend on any other components locally but does depend on the standard library 
components (which are all assumed to be at level 0), so chararray has a level of 1. A 
level-l component (such as cha ra rray) that depends only on compiler-supplied 
libraries is called a leaf component. Leaf components are always testable in isolation. 

6 Assume for now that package means the current project directory. 
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2 

alias 

o 
(external or C++ 
standard library 

components) 

chararay 

wordlist 

Figure 4-11: Levelized Component Dependency Diagram 

Chapter 4 

Component str depends only on chararray. The level of str is 2, one more than that 
of chararray. Component word depends on str (and indirectly on chararray). Since 
s t r has a level of 2, wo rd has a level of 3. Since wo rd is at level 3, and the only com
ponent on which ali a 5 depends directly is wo rd, ali a 5 is at level 4. The wo rd 1 i 5 t 

component also depends directly on word but does not depend on al i as, so wordl i st 
is also at level 4. 

DEFINITION: The level of a component is the length of the longest 
path from that component through the (local) component dependency 
graph to the (possibly empty) set of external or compiler-supplied 
library components. 

With a levelized diagram it is easy to tell what components in this system are testable 
in isolation. In the example of Figure 4-12 there is only one independently testable 
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component: chararray. By starting at the lowest level (i.e., 1) and testing all compo
nents on the current level before moving to the next higher level, we are assured that 
all the components on which the current component depends have already been tested. 
In the example of Figure 4-11, we can test either wo r d 1 i 5 t or ali a 5 last, but the rest 
of the testing order is implied by the level num
bers. 

In most real-world situations, large designs must be levelizable if they 
are to be tested effectively. 

Notice that the term levelizable applies to physical, not logical, entities. Although an 
acyclic logical dependency graph might imply that a testable physical partition exists, 
the level numbers of (physical) components, along with our design rules, imply a via
ble order for effective testing. Moreover, Figure 4-11 identifies what subsystems can 
be reused independently. Figure 4-12 indicates the other components that must 
accompany the reuse of any of these components. 

To test or reuse 
cha ra rraYl: 
string2: 
word3: 
alias4: 
wordl i st4: 

You also need 

chararraYl 
string2 chararraYl 
word3 stri ng2 chararraYl 
word3 st ri ng2 cha ra rraYl 

Figure 4-12: Independently Reusable Subsystems 

Another significant advantage to levelizable designs is that they are more easily 
comprehended incrementally. The process of understanding a levelizable design can 
proceed in an orderly manner (either top down or bottom up). Not all subsystems 
formed by hierarchical designs are reusable. But, to be maintainable, each component 
must have a well-defined interface that can be readily understood, regardless of how 
general its applicability. 
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Of course, not all designs are levelizable. Sometimes whether or not a design is level
izable is not immediately obvious from a logical diagram. Consider the diagram of 
Figure 4-13. Can you tell from this diagram whether or not the components in this 
design are levelizable? 

Figure 4-13: Is This Design Levelizable? 

The indicated logical relationships in this design do not imply cyclic physical depen
dencies among any of the components. In fact, our design rules ensure that there can be 
no hidden physical dependencies (e.g., on external global variables). Figure 4-14 shows 
the implied component dependencies and the resulting component level numbers for 
this design. 
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Figure 4-14: Component/Class Diagram 

The component/class diagram is cluttered and contains more information than needed 
to understand the physical structure of the system. If we rearrange the placement of 
the components and eliminate the logical detail, we obtain the strikingly lucid compo
nent dependency diagram of Figure 4-15. 

There is one redundant edge in the diagram of Figure 4-15. Component wordexbui 1 der 
depends directly on components di rectory, fi 1 e, and node. As we know from Section 
3.3, the DependsOn relationship is transitive. Since di rectory (and fi 1 e also) depends 
on node, the dependency of wordexbui 1 der on node is implied and can be removed 
without affecting level numbers. The diagram in Figure 4-15 is clearly acyclic and 
typical of those for subsystems that address a specific application. At this level of 
abstraction, the design appears to be sound. 
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J 

Level 5: 

Level 4: 

Level 3: 

Level 2: 

Levell: 

*redundant transitive edge 

Figure 4-15: Component (Direct) Dependency Diagram 

One of the great values of this ~alysis is that, after untangling the component depen
dency diagram, we were able to make a substantive, qualitative comment about the 
integrity of the physical design without even the tiniest discussion of the application 
domain. Simple tools to help automate this process are easy to write, and have proven to 
be invaluable for large projects. Appendix C describes a simple component-dependency 
analyzer. 

4.8 Hierarchical and Incremental Testing 

Components are the fundamental building blocks of a system. Every component is 
different. Each is an "instance" of the physical design pattern: "component.." Out
wardly, they all have the same basic physical structure-a physical interface (. h file) 
and a physical implementation (. c file). 

In this sense, implementing and testing a software system is like building a house. 
After the overall architectural design is complete, the bricks (i.e., the components, not 
objects) are put in place one by one. The successful addition of each brick depends 
not only on its own integrity but also on the integrity of the mortar used to integrate 
the brick with the lower-level bricks on which this brick depends. It is easy enough to 
inspect each brick for defects along the way. But once complete, the house is often 
large and complex, presenting too many barriers to inspect each detail. 
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DEFINITION: Hierarchical testing refers to the practice of testing 
individual components at each level of the physical hierarchy. 

In the house-building analogy, a brick represents a unique component (i.e., one or 
more classes), not individual instances. In practice, thorough testing requires testing 
the integrity of each component before putting it in place. Exercising a component 
before installation in no way precludes the possibility of more thorough testing in iso
lation later. Testing component interfaces at each level of the physical hierarchy is 
referred to in this book as hierarchical testing. 

Hierarchical testing requires a separate test driver for every component. 

In this approach, a separate test driver for each component is created by the developer 
concurrently with the component itself to exercise and verify functionality imple
mented in that component. Not only is this test driver used extensively during devel
opment, but it is later ~ade available to quality assurance (QA) in order to help 
describe the intended behavior of the component that it verifies. 

Each component can be tested using an individual test driver that exercises the func
tionality implemented in that particular component. Physical dependency governs the 
order in which tests are developed and run. Level numbers serve both to characterize 
the relative complexity of a component locally within a package and to provide an 
objective strategy for testing. 

Individual drivers are necessary in order to ensure that physical design rules are fol
lowed-otherwise we will be unable to demonstrate that functionality declared within 
a component is available solely within the subset of components indicated by that 
component's dependency graph. To illustrate why this is so, consider the design-rule 
violation (shown in Figure 4-16), where component a defines a class A with member 
function f ( ), and a component b (layered on a), which illegally implements A: : f ( ). 
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As illustrated in Figure 4-16a, a single test driver that links to both a and b is inca-,. 
pable of detecting this major design rule violation. As far as anyone can tell from the: 
dependency graph, component a is independent of component b and therefore can be 
reused independently of b. If someone tries to reuse component a independently of b 

and calls f ( ), A: : f will show up as an undefined symbol at link time. 

In Figure 4-16b, distinct drivers are provided to exercise the functionality in each 
component. When linking the driver for component a, component b is deliberately 
excluded from the link process. If the driver for a is at all thorough (i.e., calls each 
function at least once), then if A: : f is not defined, the error will be caught at link time 
-that is, without even having to run the driver. This same technique also serves to 
detect components that are not levelizable. 

DriverAB DriverB 

ab.t.c b.t.c 

DriverA 

a.t.c 

a a 

(a) One Driver for Many Components (b) One Driver per Component 

Figure 4-16: The Need for Individual Component Drivers 

Another compelling reason for insisting on individual drivers is that a single compo
nent typically provides ample functionality for a test driver to exercise thoroughly. 
Lumping tests for several components within a single driver would lead to excessively 
large (or, more likely, inadequate) tests. 
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Figure 4-17 illustrates the abstract physical structure of the hierarchical testing 
strategy. Each component at level 1 can depend on only external components (all of 
which are at level 0). Therefore each component at level 1 can be tested independently 
of all other (local) components. 

• • • 

Level 3: 

Level 2: 

driver2 driver4 

Levell: 

Level 0: components from other packages 

Figure 4-17: Hierarchical Testing Strategy 

As we proceed to higher levels of the physical design hierarchy, the complexity of the 
subsystems will grow, often exponentially. This explosive growth implies that we will 
soon reach the point where tests designed to cover the complete behavior of a high
level interface will be too difficult to write or take too long to run. 

DEFINITION: Incremental testing refers to the practice of deliber
ately testing only the functionality actually implemented within the 
component under test. 
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Our hierarchical approach makes it unnecessary to retest the internal behavior of 
lower-level components. If instead we attempt to test only the functional value added 
by a given component, the test complexity for each component is more likely to be 
kept to a manageable level. The practice of targeting only the new functionality added 
by a given component is referred to in this book as incremental testing. 

Testing only the functionality directly implemented within a 
component enables the complexity of the test to be proportional 
to the complexity of the component. 

Since we can assume that the components at lower levels are supplying objects that • 
are working properly, the task of incremental testing is often reduced to testing the 
way in which these lower-level objects combine to form higher-level objects. Writing 
incremental tests is not always easy in practice, and requires intimate knowledge of 
the implementation of the component. 

For example, suppose a user-defined type X is layered upon three other types, A, B, and 
C, each of which lives in a separate component. Figure 4-18a shows part of the defini
tion for class X. From this partial header we can observe the logical uses relationships 
of Figure 4-18b. Now, given that each class resides in a separate component, we can 
infer the component dependencies shown in Figure 4-18c. 

In this highly simplistic example, testing functions f and 9 of class X amounts to veri
fying that functions X : : f and X : : 9 are properly hooked up to the appropriate underly
ing functions c : : U and C: : v, respectively. Since component c is at a lower level than 
component x, we can assume that c has already been tested and is internally correct, 
making it unnecessary to retest C : : u or c: : V in the driver for component x. By con
trast, the implementation of X: : h is substantial, and therefore is where most of the 
testing effort for this component should be focused. 
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class X { 
Ad_a; 
B d b· - , 

} ; 

C d_c; 
public: 

/ / ... 
int f() { return d_c.uCd_a); } 
i nt 9 () { ret urn d_c. v (d_a, d_b); } 
int hC); 

(a) Definition of Class X 

x 

A 

b 

(b) Logical Relationships 
Among Classes 

(c) Physical Relationships 
Among Components 

Figure 4-18: Analyzing a Layered Object for Testing Purposes 

DEFINITION: White-box testing refers to the practice of verifying 
the expected behavior of a component by exploiting knowledge of its 
underlying implementation. 

Exploiting knowledge of the implementation of the component is a genre of testing 
known as white-box testing. White-box testing allows the tester to approach nearly 
complete internal code coverage with a much smaller test driver by carefully choosing 
test cases that exercise all of an object's internal functionality. 
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·White-box tests are effective at helping the developer flush out low-level program
ming errors such as simple coding errors, and often even basic algorithmic errors 
resulting in memory leaks and even forced program terminations. Since white-box 
tests are implementation dependent, a complete reimplementation of an underlying 

object may render such tests ineffective. 

White-box testing and 100 percent code coverage are necessary but are not sufficient 
to ensure high-quality components. For example, if, as a developer analyzing a prob
lem, I miss a special case that requires extra processing, it is not likely that the omis
sion would be uncovered through white-box testing alone. 

DEFINITION: Black-box testing refers to the practice of verifying 
the expected behavior of a component based solely on its specification 
(i.e., without knowledge of its underlying implementation). 

Unlike the white-box test that verifies that the code works as the developer intended, 
the black-box test verifies that the component satisfies its requirements and complies 

with its specification. 

Black-box testing is driven directly from the component's requirements and specification. 
Black-box testing is, for the most part, independent of implementation. Black-box testing 
is also appropriate for an independent tester, say from a QA department, who must under
stand the behavior and proper use of the component from its documentation alone. 

As suggested by Figure 4-19, black-box and white-box testing are complementary 
techniques with some degree of overlap. Both are important, and each addresses 
separate aspects of quality. White-box testing tends to ensure that we have solved a 
problem correctly, and black-box testing helps to make sure that we have solved the 

correct problem. 

Development will tend to emphasize white-box testing to ensure reliability. QA will 
. probably use white-box testing to ensure coverage, but will also employ black-box test

ing to verify the accompanying specifications and documentation. Moreover, black-box 
tests may be given to clients as acceptance tests in order to demonstrate functionality, 
whereas white-box tests, being implementation dependent, would probably remain in
house. Thorough tests of complex components will make effective use of both strategies. 
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Black-Box Testing White-Box Testing 

Figure 4 .. 19: Defects Detectable Through Testing 

One of the appealing properties of incremental testing is that the difficulty of testing 
any given component is roughly proportional to the functional value added by that 
component itself rather than to the combined complexity of the lower-level compo
nents on which that component depends. Regardless of how extensive the functional
ity in components a, b, and c might be, it may be possible to write a relatively short 
but thorough incremental test for component x because X : : f and X : : 9 merely propa
gate information to and from a working C subobject. 

To summarize this section: we want the complexity of the test to correspond to the 
complexity of the component under test. We want to test all leaf components in isola
tion. All higher-level components are tested assuming the lower-level components on 
which they depend are internally correct. This incremental, hierarchical strategy 
allows us to focus our testing effort where it can do the most good, and to avoid the 
redundancy of retesting already tested software. 

4.9 Testing a Complex Subsystem 

Let us- return once again to the point-to-point router example of Figure 4-2. As dis
cussed earlier, the interface for p2p_router is difficult to test effectively. It is pre
cisely for these kinds of interfaces that hierarchical testing is most needed to ensure 
quality. 

An actual implementation of this· example is distributed throughout the levelizable 
hierarchy shown in Figure 4-20. Some but not all of the components in this subsystem 
are reused by other components at higher levels. Both the geom_poi nt and 
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geom_po 1 ygon components belong to a separate package, geom, and are assumed by 

the p2p package implementor to be internally correct. These reusable library compo
nents account for a nontrivial portion of the router's implementation. 

C++ Runtime Library External geom Package 

Component 
level 

4 

3 

2 

o 

Figure 4-20: Component Dependency Diagram for Point-to-Point Router 

Let us assume that in our p2p_router subsystem, each of the lowest-level compo
nents has predictable behavior and is eminently testable. The level-l components are, 
as ever, testable in isolation-independently of any other p2p components. Each of 
the level-2 components in this subsystem depends on at most two level-l components. 
Each of the level-2 components implements an appropriate amount of additional func
tionality that, in combination with the already-tested lower-level functionality, is not 
difficult to understand and verify. 

The p2p_router component insulates its clients of the router from all details of its 
implementation, pushing much of its implementation down into the p2p_routerimp 

component. In tum, p2p-,-routerimp serves to expose to test engineers subfunctional
ity that would otherwise be inaccessibly defined within p2p_router. c. 

In the actual implementation, p2p_router implements less than 10 percent of the solu
tion; its job is primarily to coordinate the functionality implemented in the lower-level 
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components of the p2p subsystem. We have improved maintainability by carefully 
distributing the implementation of the functionality of this complex component 
across a hierarchy of some 10 other local subcomponents, each with independent, 
well-defined interfaces, and each implementing a manageable amount of predictable 
functionality. 

To summarize: we have designed in testability for a component that is potentially dif
ficult to test by factoring its implementation into a levelizable hierarchy of indepen
dently testable (and perhaps reusable) components. Distributing the testing effort 
throughout the router subsystem will exponentially reduce the amount of regression 
testing that would be needed at the highest level to achieve the same degree of quality. 
Human validation is expensive and prone to error, and is frequently omitted due to 
lack of time and resources. However, the levelized hierarchy enables the predictable 
behavior of the subcomponents to be tested using more robust methods that do not 
require human intervention. 

In short, hierarchical physical implementations of complex subsystems can be both 
more reliable and less costly to test than non-hierarchical alternatives. 

4.10 Testability versus Testing 

Testability and testing are not the same thing. In fact, they are largely independent 
aspects of quality. By testable, we mean that there is an effective test strategy that will 
allow us to verify that the functionality indicated by the interface (along with support
ing documentation) is realized by the implementation. By tested, we are saying that 
the product has demonstrated that it now conforms to its specifications. Testable is 
something we strive to make our products from the moment we start our design. 
Tested is a state our product must attain before we release it to our customers. Testing 

is something we do all along the way. 

Thorough regression testing is expensive but essential; the appropriate 
time to create thorough regression tests is tied to the stability of the 
subsystem to be tested. 
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Knowing when and how much to test is an engineering trade-off. The more thorough 
the developer is at testing the code as it is being implemented, the less likely it will be 
that unforeseen bugs will affect the development schedule down the road. 

On the other hand, developing thorough tests is time consuming and can significantly 
increase the up-front cost of development. Often this extra effort is more than 
compensated by reduced time spent in maintenance, future enhancements, and even 
current development. 

Unfortunately, it is inevitable that the interfaces of many components will change sub
stantially during the early stages of the development process. Some components will 
split apart, others will merge together, and still others will disappear entirely. Conse
quently, developing thorough regression tests at the preliminary stages of a project 
may in some cases tum out not to be cost-effective. 

As a project progresses, various components will become mature. The interfaces to 
these components will become more stable-they will change less frequently than, 
say, once a month. It is at this point that it may be appropriate for QA to make a sec
ond pass at writing thorough, systematic regression tests to validate these components 
and report any missing or ambiguous documentation. 

As long as developers design their components to be testable and provide sufficient 
and appropriate documentation, it should be fairly straightforward for test engineers 
to write detailed systematic tests to verify the functionality supplied by each component.7 

If developers do not consider testability when designing their systems, then the testing 
process may not be straightforward or effective. In order to facilitate efficient testing, 
the testability of a system must be in place long before its components are ever tested. 

4.11 Cyclic Physical Dependencies 

Often designs begin with acyclic dependencies and then, as they evolve, cyclic depen
dencies creep in during enhancements. For example, consider adding to class C 1 in 
Figure 4-8 of Section 4.6 the member 9 ( ) returning a C2 by value as follows: 

7 See marick for a thorough treatment of systematic testing. 
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class (1 { 
I I ... 

public: 

} ; 

Cl f(); 

C2 g(); 
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II new 

Member 9 ( ) introduces an additional dependency, resulting in the cycle of Figure 4-
9b. With the addition of this function, components c 1 and c 2 must "know about" each 
other (i.e., their respective components must include each other's header files) and are 
therefore mutually dependent. It will no longer be possible to test or use either C 1 or 
C2 without the other. 

Cyclic physical dependencies among components inhibit understanding, 
testing, and reuse. 

Having cyclic physical dependencies among components is undesirable, not only 
because it makes them hard to test and impossible to reuse independently, but also 
because it makes them much more difficult for people to understand and maintain. 
Once two components are mutually dependent it is necessary to understand both in 
order to fully understand either. 

Guideline 

Avoid cyclic physical dependencies among components. 

It is not uncommon for closely related classes to be mutually dependent; however, 
these classes will properly reside in a single component. If we find that two (or more) 
components c1 and c2 are mutually dependent, we have three alternatives: 

1. Repackage c1 and c2 so they are no longer mutually dependent. 
2. Physically combine c1 and c2 into a single component, c12. 

3. Think of eland c 2 as if they were a single component, c 12. 
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The best solution is to correct cyclic dependencies before they happen; or, if they do 
creep in, to detect and correct them as soon as they occur. Chapter 5 addresses tech
niques for restrtlcturing a cyclically dependent design to eliminate the cycles while 
preserving the intended behavior. 

Merging components into a single component is the right solution when the objects in 
the combined abstraction are naturally tightly coupled and other issues -do not over
ride. If one class befriends another, this -would further suggest that the classes belong 
in the same component (see Section 3.6.1). Merging tightly coupled, cohesive compo
nents also has the welcome benefit of reducing the number of components, and hence 
the physical complexity of the system, without further compromising testability or 
independent reuse. 

Occasionally a single, tightly coupled abstraction will be deemed too large to fit in 
one component and will be split into mutually dependent components. Most of the 
time, however, the tightly coupled part of the abstraction can be isolated from the rest 
of the implementation and placed in a single component, which in tum depends on 
other independent components. These independent components can now be tested 
thoroughly in isolation (see Section 5.9). 

Level 2 

r- - - - - - - - - - - - - ., 
I I 

c12 Levell 
I I 
L - - - - - - - - - - - - - - .J 

Figure 4-21: Two Mutually Dependent Components Treated as One 

If no other solution is forthcoming, we can mentally treat mutually dependent components 
as if they were just one big component, as illustrated in Figure 4-21. This approach is 
easy in the short term but is the least desirable alternative for the long term. These 
physically separate yet tightly coupled components must artificially be treated as a: 
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single physical unit, which detracts from the uniformity of a maintainable design. 
Although such dependencies are undesirable, the overall testability of a system will 
not be lost so long as the number and size of such "blobs" are kept to a minimum. 

4.12 Cumulative Component Dependency 

We now formalize our discussion of designing in quality by providing a metric 
referred to in this book as the cumulative component dependency (CCD) of a sub
system that is closely tied to the link-time cost of incremental regression testing. More 
generally, the CCD provides a numerical value that indicates the relative costs associ
ated with developing and maintaining a given subsystem. 

DEFINITION: Cumulative component dependency (CCD) is the sum 
over all components Ci in a subsystem of the number of components 
needed in order to test each Ci incrementally. 

Linking large programs takes a long time. Typically, developers will need to link a 
single component many times in the process of creating both the component and its 
test driver. After that, the component will need to be linked to its driver whenever 
regression tests are run. For small projects, link times are comparable to the compile 
times of individual components. As projects get larger, the link time grows to be much 
larger than the time needed to compile even the largest of components. 

Most of our development time is spent on low-level components, primarily because 
there are simply a lot more low-level components than high-level ones. These low
level pieces of the system can be intricate and are sometimes selected for performance 
tuning. It is to our advantage to streamline the process of developing, testing, and 
maintaining low-level components. 

For the sake of this discussion, let's say that the dependencies in a design formed a 
perfect binary tree. Just over half of the components would be at levelland could be 
tested in complete isolation. Another quarter would each depend on two leaf compo
nents. If we let L represent the number of distinct levels in the tree, then only one of 
the 2L-l components would actually depend on all the rest. Although real designs are 
not nearly so regular, the advantage of testing a hierarchy of components with acyclic 
dependencies remains clear. 
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Consider the costs associated with developing a set of components. For the moment, 
let's assume that link time is proportional to the number of components being linked 
together.8 For instance, if linking one component to a test driver takes 1 CPU second, 
then linking five components would take roughly 5 CPU seconds. 

In the presence of cyclic dependencies, it may be necessary to link in most or all of 
the components in order to test anyone of them. It is not necessary that every compo
nent depend directly on every other component for a design to be fully interdepen
dent.9 Suppose our system is very tightly coupled and each component is either 
directly or indirectly dependent on all the others. If we let N represent the number of 
components in our system, the cost of linking anyone of these components to its test 
driver is proportional to N. The link cost alone of building all N test drivers for these 
components is then proportional to N2

• This fact explains why linking often dominates 
the cost of running thorough regression tests for large systems. 

Let N be the number of components in the system. 

CCDCyclically (N) 
Dependent 
Graph 

(
total number) ( link-time cost) 

- of components· of testing a 
component 

-- N • N 

8 This assumption is of course only a crude approximation, since link cost will clearly be affected by 
variation in component sizes and by the structure of the function-call hierarchy. 
9 A fully interdependent design has a direct-dependency graph that is "strongly connected" but not , 
necessarily "complete." See abo, Section 5.5, p. 189 and Section 10.3, p. 375 for formal definitions 
of these respective terms. 
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Now consider what would happen if our dependencies were acyclic and formed a 
binary tree. Now, not all components have equal link cost. Components at level 1 
could be linked to their respective test drivers in unit time (e.g., 1 CPU second). Fully 
half of the link cost associated with component testing could be virtually eliminated. 
Each component at level 2 would depend on two components at levelland comprise 
a subsystem of size 3 (it would take 3 CPU seconds to link). That is, another quarter 
of the test cost associated with linking could be reduced dramatically (by a factor of 
N/3). Only one component in this hypothetical system, the root, would require the full 
N CPU seconds of link time previously required by each of the N components. 

Mathematically we can show that the total link cost to incrementally test a system 
whose physical dependencies form a binary tree is proportional to N log (N) instead of 
N2 (see Figure 4-22). For example, in the case with 15 components, 

CC~alanced (15) = (15+ 1) • (log2(15 + 1) - 1) + 1 = 49 
Binary 
Tree 

Acyclic physical dependencies can dramatically reduce link-time 
costs associated with developing, maintaining, and testing large systems. 

The benefits of acyclic dependencies are enormous. The average time to link an indi
vidual test driver for an acyclic design with tree-like dependencies is proportional to 
the log of the number of components, rather than to the number of components itself, 
as is the case for cyclic designs. 
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Number of 
components Units of time 
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1 1 

Let L be the number of levels in the system (depth of the binary tree). 
Let N = 2L - 1 be the number of components in the system. 

CCDBalanced (N) 
Binary 
Tree 

L ( numberof ) 
S components -
i=1 on level i 

L 
- S 2L-i 

i=1 

L L 
- S 2L S 2L-i 

;=1 ;=1 

L L 
- 2L • S 1 Si-1 

i-I i=1 

- 2L • L (2L_ 1) 

_ 2L • (L - 1) + 1 

• 

• 

( link -time cost of ) 
testing a component 

on level i 

(2i - 1) 

{
Useful for comparison with a binary 
dependency tree of integral height L. 

- (N + 1) • (log2(N + 1) - 1) + 1 

- (N + 1) • log2(N + 1) - N 

= O(N • 10g(N) 

{
Useful for comparison with theoretical 
binary tree of arbitrary positive size N. 

{ Asymptotic link-time cost. 

Figure 4 .. 22: Computing Link-Time Cost for a Binary Tree of Dependencies 
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Let N be the number of components in the system. 

CCDcyclically (N) 
Dependent 
Graph 

(N + 1) • (log2(N + 1) - 1) + 1 

Figure 4-23 compares link-time costs associated with testing cyclic and hierarchical 
systems with N = 1, 3, 7, and 15 components. The number shown corresponding to 
each component position in the dependency graph indicates the link cost associated 
with incrementally testing that component. The CCD for each system is calculated 
and shown at the bottom of its dependency graph. The CCD for each tree-like system 
is calculated in two ways: once level by level and once using the equation derived in 
Figure 4-22 

cyclic 
dependency 
structure 

CCDCyclically (N) 
Dependent 
Graph 

tree-like 
dependency 
structure 

CCDBalanced (N) 
Binary 
Tree 

N=3 N=7 N= 15 

3-3 =9 7-7 = 49 IS-IS = 225 

N=1 N=3 N=7 N= 15 

I-I = 1 2 -I + 1- 3 = 5 4 -I + 2 - 3 + 1- 7 = 17 8 -I + 4 - 3 + 2 -7 + 1- 15 = 49 
21_ 0 + 1 = 1- 22-1 + 1 = 5 23.2+ 1 = 17 24 .3+ 1 = 49 
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Figure 4-23: Relative Link Costs Associated with Incremental Testing 

Suppose that you are developing a system that has 63 components, each with its own 
test driver. In a cyclic design, each component would take 63 seconds to relink in 
order to test. Compare this to a hierarchical design (analyzed in Figure 4-24), in 
which fully half of the components can be linked in 1 CPU second, a quarter in 3 CPU 
seconds, an eighth in 7 CPU seconds,. and so on. Only one of the 63 components takes 
the full 63 CPU seconds to link in order to test it. The total cost of linking all 63 test 
drivers is calculated in two ways in Figure 4-24 to be 321 CPU seconds (5.35 CPU 

minutes). Compare this with the 632 = 3,969 CPU seconds (1.1 CPU hours) it would 
take to link all 63 test drivers to a cyclically dependent system. 

Level 
number 

1 
2 
3 
4 
5 
6 

Number of Cost to link Link cost for 
• 

all components components a component 
on this level on this level on this level 

32 • 1 - 32 -
16 • 3 - 48 -
8 • 7 - 56 -
4 • 15 - 60 -
2 • 31 - 62 -
1 • 63 - 63 -

Total - 321 -

CCDBalanced (63) = (63 + 1) • (10g2(63 + 1) - 1) + 1 
Binary 
Tree 

64 • 

= 321 

5 +1 

Figure 4-24: Link Cost for Balanced Binary Tree Hierarchy, N = 63 

If the number of components were even larger, say 1,023 components, then the aver
age cost of linking a component in a tree-like design would be two orders of magni
tude less than for a cyclic design (9 versus 1,023 CPU seconds per component on 
average). We can use the equation derived in Figure 4-22 to predict the CCO of this 



Section 4.13 Physical Design Quality 193 

system. The total link time alone for building component regression tests on a system 
with 1,023 components could range from 1,024 - 9 + 1 = 9,217 CPU seconds (just 
over 2.5 hours) for the hierarchically designed system to 1,023 -1,023 = 1,046,529 
CPU seconds (over 12 days) for the cyclically dependent system. 

It is unlikely that a single project would grow to 1,023 components without being 
further partitioned into what we call packages. The importance of ensuring acyclic 
dependencies among packages is even greater than that for individual components 
(see Section 7.3). 

CCD is also a predictor of the cumulative disk space requirements for incremental 
regression testing. Disk space can become an important consideration when incremen
tally testing a large system concurrently. The size of each independent executable test 
programs on disk will be roughly proportional to the number of components to which 
the test driver must statically link. Consequently, cyclically interdependent systems 
can require significantly more disk space than -do hierarchical designs. 

To summarize: our goal is to be able to build a test driver for each component that 
links with the component to be tested and only the (few) components on which that 
component depends. CCD is a metric that quantifies the coupling of a system in terms 
of the total link-time cost associated with testing each component incrementally. 
Cyclically dependent components exhibit quadratic behavior in terms of the link time 
and disk space required in order to test them incrementally. In contrast, forming an 
acyclic (tree-like) hierarchy of component dependencies reduces the link cost of 
incremental component testing dramatically. 

4.13 Physical Design Quality 

In this section we characterize what makes a design maintainable in terms of its physical 
dependencies. We continue to discuss CCD and how it is used to indicate the overall 
maintainability of a subsystem. We also show how to use CCD to measure incremental 
improvements in physical design qUality. 

Imagine joining a company that is developing a very large system. You are handed a 
subsystem of about 150,000 lines of C++ code and you are asked to understand what 
it does and make suggestions as to how to improve it. Upon examination, you find that 
the components (for the most part) are consistent with the rules and guidelines set 
forth in Chapters 2 and 3. You then discover that most of the components in the sys-
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tern depend (either directly or indirectly) on most of the other components. What do 
you do? Unfortunately there is no happy ending to this story. The best anyone can do 
may be to try to fit the entire design into his or her head, and that may take months. 

Had the same subsystem been designed with an eye toward minimizing CCD, most
if not all-cyclic dependencies would have been eliminated. It would be possible to 
study pieces of the subsystem in isolation, to test, verify, tune, and even replace them, 
without having to involve the entire subsystem either mentally or physically. In other 
words, actively reducing the intercomponent dependencies, as quantified by CCD, 
improves understandability and therefore maintainability. 

Comprehension is one of several hard-to-quantify yet very real advantages of 
minimizing intercomponent dependencies; selective reuse is another. Consider the 
architecture of the subsystem illustrated in Figure 4-25. This system consists of seven 
components, each of which depends either directly or indirectly on every other 
component in the system. Each of the components can be tested directly, but none of 
them can be tested in isolation or reused independently of the rest. Because each inde
pendent test driver is forced to link with the entire system, the amount of disk space 
required just to store these independent drivers will be quadratic as well. 

CCD=49 

Figure 4-25: Cyclically Dependent Subsystem Architecture of Size 7 

Assume now that the cyclic dependencies in the design of Figure 4-25 are removed, 
making it levelizable. Although levelizability is highly desirable, some levelizable 
architectures are more maintainable and reusable than others. Consider the design 
hierarchies shown in Figure 4-26. Each hierarchy contains seven components, and 
each is levelizable. Figure 4-26a shows one extreme version of levelization. Designs 
of this nature are termed vertical. Each component in this system depends on all of the 
components at lower levels. Vertical subsystems exhibit a high degree of coupling, 
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which inhibits independent reuse. Reusing a randomly chosen component in a vertical 
system of size N will on average result in having to link to (N - 1 )/2 additional com
ponents. The average disk space required to hold incremental test driver programs 
will be correspondingly large. 

Level 7: 

Level 6: 

LevelS: 

Level 4: 

Level 3: 

Level 2: 

Levell: 

CCD=28 

(a) Vertical 

CCD = 17 

(b) Tree 

.11_._1I1ll 
CCD=7 

( c) Horizontal 

Figure 4-26: CCD for Various Component Hierarchies of Size 7 

Vertical systems are highly inflexible with respect to both testing and reuse. There is 
only a single order in which to test purely vertical systems, and that order is entirely 
determined by its levelization. Developing a vertical subsystem is also relatively 
expensive in terms of link times. The total link cost (CCD) of 28 units for this system 
is more than half of the 49 units for the cyclically dependent subsystem shown in Fig
ure 4-25. Furthermore, a vertical subsystem will be relatively difficult to partition into 
parallel development efforts, spread across multiple developers. A vertical subsystem 
is, however, acyclic and therefore qualitatively easier to maintain than if it were 
cyclic. 

Figure 4-26b shows a design hierarchy in the form of a binary tree. As we know, over 
half of the components in this design contribute only a single unit each to the CCD. 
Designs will not be perfect binary trees, but the CCD of a binary tree serves as a good 
benchmark against which to compare many typical applications. Tree-like designs, 
with their lower degree of coupling, are much more flexible and suited to reuse than 
vertical designs. At each level there are typically several subsystems that can be tested 
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and possibly reused independently of the rest of the system. The disk space require
ment for holding most of the incremental test driver programs will be relatively low. 

By making the dependency graph flatter rather than taller, we increase flexibility. The 
flatter the design, the greater the potential for independent reuse. Flattening the 
dependencies also helps to decrease the time needed for understanding and mainte
nance. The flatter the design, the more likely a bug can be tracked to a single, isolated 
component or a small independent subsystem, and therefore the less disk space will 
be required by the driver executable to exercise the defect. 

Figure 4-26c shows the other end of the levelization spectrum. This type of design is 
characterized as horizontal because all of the components are entirely independent 
and decoupled from one another. Components belonging to purely horizontal sub
systems may be tested in any order and reused in any combination desired. The disk 
space requirement for every incremental test driver program will be quite low. Such 
dependency characteristics are typical in reusable component libraries but atypical of 
subsystems in generaL 

We can make some objective, quantitative statements about the relative maintainability 
and reusability (but not necessarily the "goodness") of a design of a given size based 
on its CCD. Design dependencies form a continuum that ranges from cyclic to verti
cal to tree-like to horizontal. Even in the presence of cycles, every design can be 
assigned a CCD. All other things being equal, the lower the CCD, the less expensive 
(in terms of link time and disk space) the system will be to develop and maintain. 

There is yet another reason to strive for a hierarchical system with a minimal CeDe 
Requirements are rarely cast in stone and may change during the development of a 
project. By distributing the implementation throughout a hierarchy of components, 
the design becomes more resilient to change. The more horizontal an architecture, the 
less it is likely that any changes in specification will affect the overall system. This 
expected cost due to changes in specification is directly related to the average compo
nent dependency (ACD) in the system. 
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DEFINITION: Average component dependency (ACD) is defined as 
the ratio of the CCD of a subsystem to the number of components N 
in the subsystem: 

ACD(subsystem) = CCD(subsystem) 

Nsubsystem 

For example, changing the specification of a single component in a fully horizontal 
subsystem causes only one component to change. For a tree-like architecture with N 

components, up to roughly 10g(N) components may need to change on average. For a 
vertical structure, we might expect to revisit as many as (N + 1)/2 components as a 
result of having to modify the interface to just one. Finally, for a fully cyclically 
dependent design, all N components could be affected by a single change. 

I 
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The primary purpose of CCD is to quantify the change in overall 
coupling resulting from a minor perturbation to a given architecture. 

As an illustration of reducing CCD, consider the two systems with similar depen
dency structure shown in Figure 4-27. Design A has a cyclic dependency between two 
of its components. Testing either one of these components requires linking to both of 
them, along with all of the components on which either one of them depends; this 
gives each of them an individual component dependency of 7. Notice also that at the 
right of Design A, a portion of the hierarchy is purely vertical. 
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Cyclic 
Dependency 

N= 11, CCD = 39 

(a) Original Design A 

N= 11, CCD = 32 

(b) Modified Design B 

Chapter 4 

Figure 4-27: Dependency Grapbs for Two Alternative Designs of a Subsystem 

Several techniques for reducing link-time dependencies are presented in detail in 
Chapter 5. To improve this design we would first like to try to break the cyclic depen
dency and then examine the vertical section to see if it can be made less serial. In this 
case, it may be possible to break the cycle merely by escalating some code to a higher 
level and/or factoring out a shared resource. As for the vertical section, it may be that 
one or more components in the chain can be removed and made into leaf components, 
independent of the rest. The result of making these modifications is Design B, shown 
in Figure 4-27b. The CCD of 39 for our original Design A is much lower than the CCD 
of 121 for a fully interdependent design. Yet we were still able to reduce the CCD in 
this nearly hierarchical system from 39 to 32-an improvement of about 18 percent. 

CCD is an objective metric that characterizes the physical coupling within a system. 
CCD can flag subsystems with unusually high incremental development and mainte
nance costs. For example, a vertical chain is the levelizable configuration with the 
highest CCD: N(N + 1)/2. Therefore a CCD of greater than N(N + 1)/2 implies that at 
least one cyclic dependency exists. However, CCD is not (by itself) a measure of the 
quality of a subsystem. 

We can conveniently use the alternate equation derived in Figure 4-22 to determine 
the CCD for a (theoretical) binary-tree-like architecture of the same size as those 
shown in Figure 4-27. Figure 4-28 demonstrates that a binary-tree-like architecture 
with 11 components has a CCD of 32.02, which is comparable with that of Design B. 
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CCDBalanced (N) = (N + 1) -Iog2(N + 1) - N 
Binary 
Tree 

CCDBalanced (11) = (11 + 1) - Iog2(11 + 1) - 11 
Binary 
Tree 

= 12 -Iog2(12) - 11 

= 32.02 

Figure 4-28: Computing the CCD of a Theoretical Balanced Tree of Size 11 

DEFINITION: Normalized cumulative component dependency 
(NCCD) is defined as the ratio of the CCD of a subsystem containing 
N components to the CCD of a tree-like system of the same size. 

NCCD(subsystem) = CCD(subsystem) 

CC~alanced(N subsystem) 
Binary 
Tree 

The NCCD of a system can be used to characterize the degree of physical coupling 
within the system relative to a theoretical binary-dependency tree of the same size. 
Referring back to Figure 4-27, the NCCD of Design B was 32/32.02 = 1.00 as com
pared with an NCCD of 39/32.02 = 1.21 for Design A (and 121/32.02 = 3.78 for the 
completely interdependent implementation). 

An NCCD of less than 1.0 can be thought of as more "horizontal" or loosely coupled; 
such a system probably employs little reuse. An NCCD of greater than 1.0 can be 
thought of as more "vertical" and/or tightly coupled; such a system may be making 
extensive reuse of components. An NCCD substantially greater than 1.0 indicates that 
there may be significant cyclic physical coupling within the system. 

The degree of maintainability in terms of the CCD that we are able to achieve depends 

on the nature of the subsystem. We will not always achieve perfect tree-like maintain
ability. For horizontal component libraries, we would expect a much lower CCD. The 
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CCD will be higher for highly interconnected topologies that employ reuse heavily, 
such as the window system shown in Figure 2-8 of Section 2.5. 

NeeD is not a measure of the relative quality of a system. NCCD is simply a tool for 
characterizing the degree of coupling within a subsystem. Increasing the number of 
components in a system could artificially reduce the NCCD. One way to do this is to 
eliminate completely valid reuse; this would likely not be an improvement. 

Figure 4-29 shows two designs with equivalent functionality. Design B is 50 percent 
larger than A with a 25 percent larger CCD. On the other hand Design A, through 
reuse, exhibits more physical coupling for its size than does Design B. Nonetheless, 
Design A may very well be the better engineered and more maintainable design. 

SIZE = 4 
CCD= 8 

NCCD = 1.05 

(a) Design A 

SIZE = 6 
CCD = 10 

NCeD = 0.73 

(b) Design B 

Figure 4-29: lliustrating the Effects of Redundancy 

Minimizing CCD for a given set of components is a design goal. 

Reducing the CCD in a system of a given size is almost always desirable. Reducing 
the size (number of components) of a system is also desirable but not at the cost of 
introducing cyclic dependencies, inappropriately merging components, or creating 
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unmanageably large translation units. When increasing the number of components in 
a system actually reduces the CCD, chances are that the overall quality of the design 
has been improved. 

In conclusion, the CCD metric has been introduced to identify explicitly the kind of 
dependencies we would like to minimize. NCCD gives us a quantitative way of char
acterizing the physical dependencies of a subsystem as horizontal, tree-like, vertical, 
or cyclic. The precise numerical value of the CCD (or the NCCD) for a given system 
is not important. What is important is actively designing systems to keep the CCD for 
each subsystem from becoming larger than necessary. 

4.14 Summary 

High-quality, complex subsystems are composed of many components layered on top 
of each other to form an acyclic physical hierarchy. Thorough testing at the system 
level is not just expensive, but highly infeasible-if not impossible-particularly for 
"good" interfaces. 

A "good" interface encapsulates the complexity of the implementation behind a simple 
facade that is easy to use. At the same time, it makes our ability to test the implemen
tation through this interface exceedingly difficult. 

Much of the testing strategy in this chapter is motivated by the success of Design For 
Testability (DFT) over a decade ago. But, unlike real-world objects, instances of 
classes defined within a software system are no different from instances of the same 
classes defined outside that system. We can exploit this fact to verify portions of the 
design hierarchy in isolation, thereby reducing part of the risk of integration. 

Isolation testing is a cost-effective way of ensuring reliability in complex, low-level 
components. By pushing the testing to the lowest possible level in the design hierarchy, 
we ensure that if the component or subsystem is enhanced, ported, or reused in another 
system, it will continue to adhere to its specified behavior independently of its clients. 

Level numbers characterize components in terms of their physical dependencies on 
other components within a subsystem. Furthermore, level numbers provide an order 
in which systems with acyclic component dependency graphs can be tested effec
tively. Subsystems whose component. dependencies form a directed acyclic graph 
(DAG) are said to be levelizable. A levelized component dependency diagram makes 
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the physical structure of a system easier to understand, and consequently easier to 
maintain. 

Hierarchical testing refers to testing components at each level of the physical hierarchy. 
Each lower-level component should provide a well-defined interface and implement 
predictable functionality that can be tested, verified, and reused independently of 
components at higher levels. 

Incremental testing refers to having individual drivers test only the functionality actu
ally implemented within the component under test; functionality implemented at 
lower levels of the physical hierarchy is presumed at this point to be internally correct. 
Consequently, incremental tests mirror the complexity of the implementation of the 
component under test and not that of the hierarchy of components upon which this 
component depends. Incremental testing is a form of white-box testing, which relies 
on knowing the implementation of the component in order to improve reliability. 
Black-box testing derives from requirements and specifications, and is independent of 
implementation. These two forms of testing are complementary, and both contribute 
to ensuring overall quality. 

Testability is a design goal. Cyclic physical dependencies inhibit testing, understand
ing, and reuse. Cumulative component dependency (CCD) provides a crude numerical 
measure of the overall link-time cost associated with incrementally testing a given 
subsystem. More generally, CCD is an indicator of the relative maintainability of a 
given design. 

Cyclically dependent designs are not levelizable. Such systems are known to be diffi
cult to maintain and have a correspondingly high CCD. Among designs that are level
izable, the more horizontal the hierarchy, the lower the CCD. Flattening physical 
dependencies helps to decrease the time needed for understanding, development, and 
maintenance, while improving the flexibility, testability, and reusability of a system. 
NCCD (normalized CCD) helps to categorize the physical structure of arbitrary 
designs as cyclic, vertical, tree-like, or horizontal. 
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Link-time dependencies within a system (as quantified by CCD) playa central role in 
establishing the overall physical quality of a system. More conventional aspects of 
quality, such as understandability, maintainability, testability, and reusability, are all 
closely tied to the quality of the physical design. If not carefully prevented, cyclic 
physical dependencies will rob a system of this quality, leaving it inflexible and diffi
cult to manage. 

Even revisable designs can be unnecessarily costly to maintain and enhance. Forced 
dependency on large, low-level subsystems can pose a significant development burden 
on higher-level subsystems. Minimizing the impact of such dependencies contributes 
to the physical quality of the system. 

In this chapter, we explore several techniques for eliminating cyclic or otherwise 
excessive link-time dependencies. Escalation and demotion are related techniques that 
move a cyclicly dependent portion of the design to a different level in the physical hier
archy. Opaque pointers and dumb data are used to remove the physical implications of 
conceptual dependency. Redundancy and callbacks are yet two other techniques we 
discuss to prevent unwanted physical dependencies. Finally, a manager class is pre
sented along with two general techniques (factoring and escalating encapsulation) to 
help create efficient, encapsulating hierarchies of testable and reusable components. 

Throughout this chapter we use many examples taken from several application 
domains to illustrate these techniques in a variety of contexts. Occasionally we present 
a substantial body of source code to make the example concrete for reference purposes. 
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5.1 Some Causes of Cyclic Physical Dependencies 

In this section we look at three ways in which cyclic physical dependencies can occur 
in practice. To demonstrate the breadth of this problem, we preset;lt and discuss each of 
these examples in a separate subsection without attempting to resolve them. These spe
cific problems and many others will be solved as appropriate techniques are presented 
throughout the remainder of this chapter. 

5.1.1 Enhancement 

Initial designs are usually carefully planned and often levelizable. In time, the unan
ticipated needs of clients can evoke less-well-thought-out enhancements that induce 
unwanted cyclic dependencies. For example, we sometimes find we have similar 
objects that, for one reason or another (e.g., performance), coexist in a system but that 
contain essentially the same information. 

Figure 5-1 shows a simple but illustrative example consisting of two classes, each rep
resenting a kind of box. A Rectangl e is defined by two points that determine its 
lower-left and upper-right corners. A Wi ndow is defined by a center point, a width, and 
a height. These objects have distinct performance characteristics but contain the same 
logical information. 

II rectangle.h 
#ifndef INCLUDED_RECTANGLE 
#define INCLUDED RECTANGLE 

class Rectangle { 
I I ... 

public: 

} ; 

Rectangle(int xl. 
int yl. 
int x2, 
int y2); 

I I ... 
int lowerLeftX() const; 
II 

#endif 

II window.h 
#ifndef INCLUDED WINDOW 
#define INCLUDED_WINDOW 

class Window { 
I I ... 

public: 

} ; 

Window(int xCenter. 
int yCenter, 
int width, 
int height); 

I I ... 
int width() canst; 
I I ... 

#endif 

Figure 5·1: Two Representations of a Box 
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Each of these objects will be used to facilitate the rendering of very large designs 
interactively on a graphics terminal; draw speed will be critical. For performance rea
sons, we do not even consider employing virtual functions, and most of the functions 
are declared i n 1 i n e. 

Allowing two components to "know" about each other via Iii ncl ude 

directives implies cyclic physical dependency. 

It turns out that clients will occasionally need to be able to convert between these two 
types of boxes, perhaps to obtain the performance characteristics of the other. This is 
one way in which good designs can sometimes start to deteriorate. 

Consider the "solution" set forth in Figure 5-2. We have added to each class a con
structor that takes as its only argument a con s t reference to the other class. We can 
now pass a Wi ndow object to a function requiring a Rectangl e and vice versa, the con
version being performed implicitly. How does that sound to you? 

If it sounded good to you, you are not alone. But it is not a good solution. For one 
thing, any speed benefit that might be realized could be lost by having to construct a 
temporary object of the other type on entry to a function. Since the conversion is 
implicit and automatic, your clients may not even realize that the extra temporary is 
being created (and will blame you for your "slow" class). 

Much more importantly, we have introduced a cyclic physical dependency between the 
header files of two previously independent components. Each of these components 
now must "know" about the other. It is no longer possible to compile, link, test, or use 
either one of these components without the other. Most clients will not be concerned 
about the subtle differences in performance characteristics between these classes and 
would opt to iIse either one, but rarely both. This unlevelizable enhancement forces 
them to take both. 



206 Levelization 

II rectangle.h 
#ifndef INCLUDED_RECTANGLE 
#define INCLUDED_RECTANGLE 

#ifndef INCLUDED_WINDOW 
#include "window.h" 
tFendif 

class Rectangle { 
I I ... 

} ; 

public: 
I I ... 
Rectangle(const Window& w); 
I I ... 

i n 1 i ne 
Rectangle::Rectangle(const Window& w) 
{ 

I I ... 
} 

II 

#endif 

rectangle.h 

rectangle.c 

rectangle 

II window.h 
#ifndef INCLUDED_WINDOW 
#define INCLUDED_WINDOW 

#ifndef INCLUDED_RECTANGLE 
#include "rectangle.h" 
1Fendif 

class Window 
I I ... 

public: 
I I ... 

Chapter 5 

Window(const Rectangle& r); 
II ... 

} ; 

II 

i n 1 i ne 
Window::Window(const Rectangle& w) 
{ 

1/ 
} 

#endif 

window.h 

window.c 

window 

Figure 5-2: Two Mutually Dependent Components 

We can move the preprocessor tf inc 1 u d e directives from the . h files to the . c files (as 
shown in Figure 5-3), but this does not eliminate the physical coupling. Both compo
nents still depend on each other at compile time, and each will potentially depend on 
the other at link time. We need to do something a bit more radical. 
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II rectangle.h 
#ifndef INCLUDED_RECTANGLE 
#define INCLUDED_RECTANGLE 

class Window; 

class Rectangle { 
I I ... 

} ; 

public: 
I I ... 
Rectangle(const Window& w); 
I I ... 

#endif 

rectangle.c 

rectangle 
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II window.h 
#ifndef INCLUDED~WINDOW 
#define INCLUDED_WINDOW 

class Rectangle; 

class Window { 
I I ... 

} ; 

public: 
I I ... 
Window(const Rectangle& r); 
II 

#endif 

window.c 

window 

Figure 5-3: Two Components Still Mutually Dependent 

DEFINITION: A subsystem is levelizable if it compiles and the graph 
implied by the include directives of the individual components 
(including the . c files) is acyclic. 

Suppose a subsystem consists of a collection of components that follow all of the 
major design rules set forth in Chapters 2 and 3. We can make use of the above alter
native definition of levelizable to help us avoid enhancements that cause components 
to become physically coupled. Somehow we must find a way to allow a client to con
vert between rectangles and windows without requiring each component to include 
the other. 
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5.1.2 Convenience 

Often, in an effort to make a system usable, developers are tempted to create designs 
that are not structurally sound. As a second, more involved example of this recurring 
theme, consider a graphical shape editor whose design is depicted abstractly in Figure 
5-4. The Shape class is abstract and defines a protocol that all concrete shapes must 
implement. Every shape has a location that we will assume for now must be manipu
lated as quickly as possible (i.e., via inline functions). Since some of the functionality 
in the Shape class is already implemented, Shape serves not only to define a common 
interface, but also to factor the common part of the implementation. 1 

1 Section 6.4.1 describes how we could reduce compile.:.time coupling between consumers and sup
pliers of the S hap e interlace if we relaxed the speed requirement for the m 0 veT 0 function. 
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Figure 5-4: Unlevelizable Design of a Shape Editor 

The S hap e class could potentially define a large number of pure virtual functions. A 
sparse representation of the header file for the shape component is presented in Figure 
5-5. Clients of the Shape class will need to be able to create actual shapes, but they 
will not need to interact with the derived class interfaces directly. In order to insulate 
clients of S hap e from concrete classes derived from S hap e, the ability to create spe
cific kinds of Shape is incorporated directly into Shape's interface. 
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II shape.h 
#ifndef INCLUDED_SHAPE 
#define INCLUDED_SHAPE 

class Screen; 

class Shape { 

} ; 

int d_xCoord; 
int d-yCoord; 

protected: 
Shape(int x, int y); 
Shape(const Shape& shape); 
Shape& operator=(const Shape& shape); 

public: 
static Shape *create(const char *typeName); 
virtual -Shape(); 
I I ... 
v 0 i d m 0 veT a ( i n t x, i n t y) { d_x = x; d-y = y; } 
I I ... 
virtual Shape *clone() const = 0; 
virtual void draw(Screen *s) canst - 0; 
I I ... 

#endif 

Figure 5-5: Elided. h File for Component shape 

ChapterS 

To make it easy to add new shapes by name, the S hap e class implements the static 
member function create. This method takes the type name of the Shape (as a canst 
cha r *) and returns a pointer to a dynamically allocated, newly constructed Shape of 
the appropriate concrete type derived from S hap e. 2 If no shape corresponding to that 
type name exists, the function returns o. The entire . c file for the s hap e component is 
presented in Figure 5-6. 

2 Returning a pointer to a dynamically allocated object is error prone because it leaves the responsi
bility of deallocation with the client. Failing to catch an exception can easily result in a memory leak. 
Handle classes (as discussed in Section 6.5.3) can be used to reduce the potential for memory leaks. 



Section 5.1.2 

II shape.c 
#include "shape.h" 
#include "circle.h" 
#include "square.h" 
#include "triangle.h" 
#include "screen.h" 
#include "string.hl! II strcmpC) 

Shape: :ShapeCint x, int y) 
: d_xCoordCx) 
, d-yCoordCy) 
{ } 

Shape::ShapeCconst Shape& s) 
: d_xCoord(s.d_xCoord) 
, d-yCoordCs.d-yCoord) 
{ } 

Shape& Shape::operator=(const shape& s) 
{ 

} 

d_xCoord = s.d_xCoord; 
d-yCoord = s.d-yCoord; 
return *this: 

Shape: :---Shape() {} 

Shape *Shape::create(const char *s) 
{ 

} 

i f C 0 == s t r c m p ( S, II C i r c 1 e" )) { 
return new Circle(x, y, 1); 

} 

e 1 s e i f (0 == s t r c m p C s, " S qua r e")) { 
return new Square(x, y. 1); 

} 

else if (0 == strcmp(s, "Triangle")) { 
return new Triangle(x, y, 1, 1, I); 

} 

else { 
return 0; 

} 

Convenience 211 

II unit radius 

II unit side 

II unit side 

II unknown shape 

Figure 5-6: Entire. c File for Component shape 

The Ed ito r class itself is layered upon a number of custom types (E 1, ..., En) used 
solely in the implementation of Ed ito r. Each of these types uses Sh a pe in its interface 
in order to perform various abstract operations on shapes (e.g., move To, sea 1 e, draw, 

and so on). Only one of the implementation components, el, which implements the add 
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command, needs to be able to create a shape from a type name. The rest of these com

ponents can use Shape's virtual functions to access a particular Shape's functionality, 

and do not need to depend on any concrete Shape directly. Does this sound reasonable? 

Although this design may seem appealing from a usability standpoint, it has a design 

flaw that makes it quite a bit more expensive to maintain than it need be. The ere ~ •.. ~ 

ate member function of S hap e uses a constructor of each of the classes derived from 

Shape, which forces a mutual dependency between Shape and all classes derived from 

Shape. It is therefore not possible to test a specific kind of Shape independently of all 

the rest, significantly increasing the link time and disk space required during incre

mental testing. The shape subsystem, which is otherwise horizontal and therefore 
highly reusable, is turned into an all-or-nothing proposition. 

Adding a new kind of shape to this subsystem requires modifying the Shape base 

class, which could produce errors in functionality pertaining to the other indepen

dently derived classes. The high degree of coupling brought on by having a base class 

"know" about its derived classes implies a considerable increase in maintenance cost 

and a considerable loss of flexibility and reuse. 

The maintenance disadvantage worsens when we consider that only component el 

needs to create each of the Edi tor's concrete shapes and therefore only el needs to 

depend on all of the individual concrete shape components. Components e2, e3, ... , 

en merely use these shapes via the virtual functions of the abstract base class S hap e. If 

we can assume that the functionality of each shape is working properly, then we need 
test only that each editor subsystem component is interacting with the S hap e protocol 

properly. There could be dozens or even hundreds of different kinds of shapes, and it 

is neither necessary nor practical to test each editor subsystem component with every 

type of shape all the time. Yet, because of the coupling in the shape subsystem, we are 

forced to link to all shapes whenever incrementally testing anyone of the editor 

implementation components. 

In order to improve the maintainability of this system, we need to find a way to 

repackage the shape subsystem so that it becomes acyclic and therefore levelizable. 
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5.1.3 Intrinsic Interdependency 

Interconnected networks of objects present an engineering challenge for software sys
tem architects. The high degree of inherent coupling, particularly in the interface, 
makes achieving levelization less obvious and intuitive. In this final introductory 
example we examine the difficulty in implementing a graph, which is among the most 
basic of object networks. 

Inherent coupling in the interface of related abstractions makes them 
more resistant to hierarchical decomposition. 

Consider the graph shown in Figure 5-7. A graph consists of a collection of nodes and 
edges. The nodes within this graph are connected by directed edges. In general, the 
edges in the graph will form cycles.3 Each node consists of some data and some infor
mation about how the node is incorporated into the graph. In this example the node's 
data is no more than a name. The connectivity is represented simply as a list of edges 
to or from that node. 

6 
Susan -------I .. ~ Franklin 

Mindy --------1~~ Rick. -----------~~ Cathy 
5 3 

Figure 5-7: Simple Graph Consisting of Nodes and Edges 

Figure 5-8 illustrates the minimal functionality associated with the node component. 
Given a Node, it is possible to ask for its name, find out the number of edges connected 

3 Note: these are cycles among instances, not classes. 



214 Levelization ChapterS 

to it, and iterate over these edges by supplying integer indices between 0 and N-l, 
where N is the current value returned by Node: : n umEdges ( ).4 

II node.h 
#ifndef INCLUDED_NODE 
#define INCLUDED_NODE 

class Edge; 

class Node { 
I I ... 
Node(const Node&); 
Node& operator-(const Node&): 

public: 
Node(const char *name); 
,....Node() ; 
canst char *nameC) canst; 
int numEdges() const; 
Edge& edge(int index) canst; 

} ; 

#endif 

II not implemented 
II not implemented 

Figure 5-8: Public Interface of node Component 

II edge.h 
#ifndef INCLUDED_EDGE 
#define INCLUDED_EDGE 

class Node; 

class Edge { 
I I ... 
Edge(const Edge&); 
Edge& operator=(const Edge&); 

public: 

II not implemented 
II not implemented 

EdgeCNode *from, Node *to, double weight); 
-Edge ( ) ; 
Node& fromC) const; 
Node& toC) const; 
double weight() canst; 

} ; 

#endif 

Figure 5-9: Public Interface for an edge Component 

4 It is a subtle point that supplying an integer index for iteration suggests that the underlying imple
mentation is likely to be an array of some kind and not a linked list of edges. A naive linked-list 
implementation would result in quadratic runtime behavior during iteration. 
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An Edge in this system is used to connect rtodes. Like nodes, edges also contain both 
local and network-related functionality. The network-independent infonnation associ
ated with the Edge in this example is just its weight, and the connectivity information 
is just the two Nod e objects to which the Ed g e is connected. 

Initially we are faced with the unappealing design illustrated in Figure 5-10. Node 

uses Edge in its interface and vice versa. As it stands, it seems as though class Node 

and class Edge must be mutually dependent-otherwise how could a client possibly 
traverse the graph? Furthermore, there is the question of who owns the memory for 
these objects and who is authorized to bring instances of Node and/or Edge into and 
out of existence. 

node edge 

Figure 5-10: Cyclicly Dependent node and edge Components 

Recall from Section 3.6 that friendship does not introduce physical dependencies by 
itself, but in order to preserve encapSUlation it can indirectly cause physical coupling 
to occur. In order to avoid the breach of encapsulation and lack of modularity associ
ated with long-distance friendships, it may be necessary to group severallevelizable 
classes within a single component (as explained at the end of Section 5.9). A common 
example of this kind of coupling can be seen in virtually every container component 
that supplies an iterator. Invariably the iterator will be a friend of the container and 
therefore defined within the same component. 

The above are but a few examples of the kinds of cyclic coupling that commonly arise 
in practice. The remainder of this chapter is devoted to developing various techniques 
and transformations for untangling designs that might otherwise seem to defy an acyclic 
physical implementation. 

5.2 Escalation 

Let's now return to the example involving the two cyclicly dependent components 
(shown in Figure 5-1): rectangl e and wi ndow. Suppose that instead of having 
rectangl e and wi ndow "know" about each other, we decide arbitrarily that rectangles 



216 Levelization Chapter 5 

are more basic than windows. We can move both conversions into class Wi ndow. 

Win d ow now "uses" Re eta n 9 1 e but not vice versa, as is illustrated in Figure 5-11. 

Level 2: 

Levell: 

rectangle 

II rectangle.h 
#ifndef INCLUDED_RECTANGLE 
#define INCLUDED_RECTANGLE 

class Rectangle { 
I I ... 

public: 
I I ... 

} ; 

#endif 

window 

II window.h 
#ifndef INCLUDED_WINDOW 
#define INCLUDED_WINDOW 

#ifndef INCLUDED_RECTANGLE 
#include "rectangle.h" 
#endif 

class Window { 
I I ... 

} ; 

II 

public: 
I I ... 
Window(const Rectangle& r); 
I I ... 
operator Rectangle() const; 
I I ... 

inline 
Window: :aperator Rectangle() canst 
{ 

I I ... 
} 

ifendif 

Figure 5-11: wi ndow Dominates rectangl e 
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This solution requires that we change our point of view somewhat, because the 
Rectangl e and Wi ndow classes are no longer symmetric. Rectangl e lives at levell, 
but Win d ow is now defined at level 2. If we want any old box we can reuse Re eta n 9 1 e 

and not worry about Win d ow or conversions between the classes. If we need a Win dow, 

however, we will have to take Rectangl e also. 

DEFINITION: A component y dominates a component x if y is at a 
higher level than x and y depends physically on x. 

Dominance is a property among components that is roughly comparable to the prop
erty with the same name among virtual base classes within a single derived object.5 

We introduce the concept of dominance among components now and mention that 
Figure 5-11 illustrates an example where component wi ndow dominates component 
rectangl e. We refer to this definition of dominance in later sections. 

As Figure 5-12 illustrates, component u dominates both components rand s. 

Although component v is at a higher level than either component r or component s, it 
dominates only component t. Component w dominates all five components r, s, t, U, 

and v. 

Level 3: 

Level 2: 

Levell: 

Figure 5-12: lliustration of Dominance Property for Components 

The significance of dominance is that it can provide additional information beyond 
simple level numbers. For example, adding a dependency from a higher-level com-

5 ellis, Section 10.1.1, pp. 204-205. 
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ponent to a lower-level component (e.g., from u to t in Figure 5-12) never intro 

duces a cyclic dependency or changes the level numbers (as shown in Figure 5-13a). 

Level 5: 

Level 4: 

Level 3: 

Level 2: 

Levell: 

(b) + '", .. 
~~ 

Figure 5-13: Adding a Dependency Can Cause a Change in Level Numbers 

Adding a dependency between two components at the same level (e.g., from v to u in 
Figure 5-12) also never introduces a cycle but does affect the level number as shown 
in Figure 5-13b. Finally, it may even be possible to add a dependency from a lower
level component to a higher-level one (e.g., from t to u in Figure 5-12 without intro
ducing a cyclic dependency). Adding this dependency without introducing a cycle 
will be possible if and only if component u does not already dominate component t. 
Here, component u does not dominate component t and the result of adding the 
dependency from t to u is shown in Figure 5-13c. 

Of course we could have gone the other way and made Wi ndow the primitive object. In that 

case rectangl e knows about wi ndow but not vice versa. This situation is depicted in Fig
ure 5-14. Notice that in this example we have elected to move the If inc 1 u de" win dow. h" 

directive to the rectangl e. c file, which implies that the conversion routines will not be 

inline. 
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Level 2: 

Levell: 

II rectangle.h 
#ifndef INCLUDED_RECTANGLE 
#define INCLUDED_RECTANGLE 

class Window; 

class Rectangle { 
I I ... 

} : 

public: 
I I ... 
Rectangle(const Window& w): 
I I ... 
operator Window() canst; 
I I ... 

#endif 
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window 

II window.h 
#ifndef INCLUDED_WINDOW 
#define INCLUDED_WINDOW 

class Window { 
/ / ... 

public: 
I I ... 

} ; 

#endif 

Figure 5-14: rectangl e Dominates wi ndow 

Both solutions imply that only one component can be used independently of the other. 
Either solution is an improvement over the original cyclicly dependent design, but we 
can do still better. Many clients who use these components will need one or the other 
but not both. Of those that do need to use both components, only some will need to 
convert between them. To maximize independent reusability, we can avoid having 
either component dominate the other by moving the cycle-inducing functionality to a 
higher level-a technique referred to in this book as escalation. 
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If peer components are cyclicly dependent, it may be possible to esca
late the interdependent functionality from each of these components 
to static members in a potentially new higher-level component that 
depends on each of the original components. 

In corporations, if two employees are not able to resolve a dispute, the common prac
tice is to escalate the problem to a higher level. In the case of objects competing for 
dominance, the same solution is often effective. We can create a utility class called 
Box Uti 1 that knows about both the R e eta n 9 1 e and Win dow classes and then place the 
definition of this class in an entirely separate component, as shown in Figure 5-15. 

Now clients interested in either Rectangl e class or Wi ndow class·are free to use either 
class independently. If a single client happens to use both classes but does not need to 
convert between them, so be it. If yet other clients require the conversion routines, 
they are available. However, note that conversion between Rectangl e and Wi ndow, 

which used to be implicit, must now be performed explicitly. (See Section 9.3.1 for 
more on implicit conversions.) 

Note that, in the previous example, we elected to use the keyword s t rue t instead of 
c 1 ass when defining BoxUt i 1 to suggest that this type merely provides a scope for 
public nested types and public static member functions. In this convention, all mem
bers of a struct are public and hence there are no data members. Although creating 
an instance of such a type is pointless, it does no real harm. We can reduce some 
unnecessary clutter if we suppress our compulsion to declare the unimplemented 
default constructor p r i va teo 
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Level 2: 

Levell: 

boxutil 

rectangle 

I I boxuti 1. h 
#ifndef INCLUDED BOXUTIL 
#define INCLUDED BOXUTIL 

class Rectangle; 
class Window; 

struct BoxUti 1 { 
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window 

static Window toWindow(const Rectangle& r); 

static Rectangle toRectangle(const Window& w); 
} ; 

#endif 

II rectangle.h 
#ifndef INCLUDED_RECTANGLE 
#define INCLUDED_RECTANGLE 

class Rectangle { 
I I ... 

public: 
I I ... 

} ; 

ffendif 

II window.h 
#ifndef INCLUDED_WINDOW 
#define INCLUDED_WINDOW 

class Window { 
I I ... 

public: 
I I ... 

} ; 

#endif 

Figure 5-15: Neither rectangl e Nor wi ndow Dominates the Other 
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Now let's consider again the physical coupling induced by the static create function, 

defined in the base class of the shape hierarchy of Figure 5-4. Suppose we escalate 

ere ate above the level of its derived classes by introducing a new utility class, 

S hap e Uti 1 , whose sole purpose is to create shapes. This new class would be placed in 

its own component and contain the ere ate function from the original S hap e class, as 

shown in Figure 5-16. 

/ / shapeuti 1. h 
#ifndef INCLUDED_SHAPEUTIL 
#define INCLUDED_SHAPEUTIL 

class Shape; 

struct ShapeUtil { 
static Shape *create(const char *typeName); 

}; . 

#endif 

Figure 5-16: Header File for New Component shapeuti 1 

By adding a new component and escalating the Uses relationship to a higher level, we 

have removed the cyclic dependencies among all components in the shape subsystem. 

The levelized diagram for the new system is shown in Figure 5-17. 

It is now possible for each concrete shape to be tested in isolation. Even the partial 

implementation provided by class Shape can be tested modularly by deriving a con

crete "stub" class from S hap e in the test driver for the s hap e component. Each of the 

concrete shapes can now be reused independently of the rest in any combination. For 
example, another system is now able to reuse ci rcl e. and square without having to 

link: in t ria n 9 1 e. 

It is now also possible to test each of E2, ... , En without having to link to every con

crete shape. Since these components require only the shape base class interface, it may 
be deemed sufficient to test the incremental value added by each of the editor compo

nents e2, ... , en on only a representative sample of all available concrete shapes. 

The advantage of this new design over the original is a reduction in coupling that will 

translate directly into reduced development and maintenance costs while amplify

ing the potential for reuse. It may be difficult to appreciate the importance of this 

design approach when the number of implementation components in the editor, and, 
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particularly, the number of concrete shapes, is small. The real advantage is that this 
new design scales up much better than the original as more editor commands and new 
kinds of Shape are added. 

shapeutil fully levelizable shape subsystem 

Figure 5-17: Improved Design for Shape Editor 
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As an objective, quantitative measure of the improvement ~hat levelization brings to 
this design, let us consider four variants of the editor system. In the "scaled-down" " 
version of this system, Figure 5-18a, both the editor and the number of shapes it 
works on are small (three shapes and three editor-implementation components). The 
numbers in the upper left comers of the component rectangles indicate the number of 
components that must be linked in order to test that component incrementally. 

At first glance, this new design may appear to be unnecessarily complicated, but in 
fact it simplifies the job of both developer and client. Even with the additional compo
nent in the new design, the coupling' associated with hierarchically testing the shape 
subsystem as measured by CCD is reduced by a full 25 percent. The coupling associ
ated with incrementally testing the editor subsystem is reduced by 17.4 percent, giving: 
an overall reduction in CCD of 20.5 percent. 

Figure 5-18b illustrates the effect when the editor suqsystem is made large (30 imple
mentation components instead of only 3). Now the reduction in component coupling 
for the editor subsystem is nearly 46 percent, pushing the overall reduction in CCD to 
43.3 percent. 

. Cyclic physical dependencies in large, low-level subsystems have the 
greatest capacity to increase the overall cost of maintaining a system. 

Cyclic coupling at lower levels of the physical hierarchy can have a dramatic effect on 
the cost of maintaining clients. As can be seen in Figure 5-18c, when the shape hierar
chy is made large (30 concrete types instead of only 3), the advantage of the new 
design, as measured by CCD, amounts not only to a reduction in coupling of over 90 
percent in the shape subsystem but also a reduction of over 44 percent in the editor 
subsystem, for a reduction of close to 85 percent overall. When both the shape sub
system and editor are large, the overall percentage reduction in coupling continues to 
improve, as shown in Figure 5-18d. 
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Figure 5-18a: Small Shape Hierarchy (3 Components), 
Small Editor (3 Components) 
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Figure 5-18b: Small Shape Hierarchy (3 Components), 
Large Editor (30 Components) 
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Figure 5-18c: Large Shape Hierarchy (30 Components), 
Small Editor (3 Components) 
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Figure 5·18d: Large Shape Hierarchy (30 Components), 
Large Editor (30 Components) 
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The important lesson to be learned from this analysis is that a high degree of coupling 
associated. with lower-level subsystems can dramatically increase the cost of develop
ing and maintaining clients and subsystems at higher levels. 

To summarize the results of this section: escalating mutual dependencies to a higher 
level can be used to convert cyclic dependencies into welcome downward dependen
cies. The maintenance cost of a subsystem and all of its clients can be reduced signif
icantly by avoiding unnecessary dependencies among components within the 
subsystem itself. At the same time, the subsystem becomes more flexible and there
fore more reusable. The benefits of the improved design may not be as pronounced for 
smaller versions of a system. 

5.3 Demotion 

Until now we have endeavored to eliminate cyclic dependencies by pushing mutually 
dependent functionality higher in the physical hierarchy. In this section we explore the 
technique of pushing common functionality down to lower levels of the physical hier
archy where it can be shared and perhaps even reused. The technique of moving com
mon functionality to lower levels of the physical hierarchy is referred to in this book 
as demotion. 

If peer components are cyclicly dependent, it may be possible to 
demote the interdependent functionality from each of these 
components to a potentially new lower-level (shared) component 
upon which each of the original components depends. ' 

Escalation and demotion are similar in that in either case, cyclic dependencies among 
components are eliminated by moving the cyclicly dependent functionality to another 
level in the physical hierarchy. Let us start by analyzing what happens during a more 
general form of escalation. As illustrated in Figure 5-19, two mutually dependent 
components (a) are factored into four components, (b) two of which may be mutually 
dependent and two of which are independent. The two higher-level components can 
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then be combined (c) if necessary to avoid a cyclic dependency Of, if cohesive, to 

reduce physical complexity. 

( a) Original 
Cyclic 
Subsystem 

(b) Intermediate 
Factored 
Subsystem 

(c) Final 
Levelizable 
Subsystem 

Figure 5-19: Employing Escalation to Break Cyclic Dependencies 

Now contrast this with the general process of demotion. As shown in Figure 5-20, two 
mutually dependent components (a) are again factored into four components (b). Two 
of the components depend on the two other components, which may be mutually 
dependent. The two lower-level components can then be combined (c) if necessary to 
avoid a cyclic dependency or, if cohesive, to reduce physical complexity. 

(a) Original 
Cyclic 
Subsystem 

(b) Intermediate 
Factored 
Subsystem 

(c) Final 
Levelizable 
Subsystem 

Figure 5-20: Employing Demotion to Break Cyclic Dependencies 

Consider the situation shown in Figure 5-21, in which there are two geometric utility 
classes, GeomUt i 1 and GeomUt i 12. Each of these utilities provides a suite of functions 
that operate on points, lines, and polygons. External clients directly use one, the other, 
or both. Unlike geomut; 1 , geomut i 1 2 is complex and depends on many other compo
nents, and even exposes some new types in its interface. Those clients that need only 
the basic geometric functionality provided in GeomUt i 1 need not link with the 
geomuti 12 component. 
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II geomuti12.h 
#ifndef INCLUDED_GEOMUTIL2 
#define INCLUDED_GEOMUTIL2 

class Line; 
class Polygon; 

struct GeomUti12 { 
static int crossesSelf(const Polygon& polygon); 
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static int doeslntersect(const Line& linel. const Line& line2); 
I I ... 

} 

#endif 

II geomutil.h 
#ifndef INCLUDED_GEOMUTIL 
#define INCLUDED_GEOMUTIL 

class Point; 
class Line; 
class Polygon; 

struct GeomUtil ( 

r components 

static int islnside(const Polygon& polygon. canst Point& pOint); 
static int areColinear(const Line& linel, ·canst Line& line2); 
static int areParallel(canst Line& linel, const Line& line2); 
I I ... 

} 

flendif 
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Initially these two components were levelizable, with geomut i 1 2 depending on 
geomut i 1. Unfortunately not all developers are careful about considering the physi
cal implications of their efforts. One fine day it was discovered that, through care
less enhancelnent, these two geometric utility components had become mutually 
dependent. GeomUti 12: : crossesSel f now depends on GeomUti 1: : areCol i near 

and GeomUt i 1 : : i sIns i de now depends on Geomut i 12: : does I ntersect. What 
should we do? 

We have a couple of alternatives. First we could repackage the functionality so that 
there is again a one-way dependency, and this may be the right answer. For example, 
we could move doe sIn t e r sec t to G eo m Uti 1 and i sIn sid e to G eo m uti 1 2. Now there 
is no longer a cyclic dependency among these components, although clients of these 
components could be affected. (A general technique of repackaging components is 
formalized at the end of this section.) 

It may also be the case that the two components have taken on distinct characteristics 
due to the demands of the clients who depend on them. In that case, it might be more 
appropriate to factor out the common functionality and demote it to a lower level in 
the physical hierarchy, as shown in Figure 5-22. That is, we can move both the 
does I nte r sect and a reCo 1 i nea r functions to GeomUt i 1 Co reo 

Notice again that these utility classes are merely scopes in which to declare static 
member functions-they were never intended to be used to create objects. By 
employing the "trick" of making both of the original utilities derive publicly from a 
common core, clients of the original utilities will not need to alter their code if one or 
more of the utility functions they use is demoted. 
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Figure 5-22: Demoting Common Functionality Among (Utility) Classes 

Demotion is a useful tool for reducing the CCD of some designs even when there are 
no cyclic dependencies. Suppose a component x depends on only a part of another 
complex component y with a high CCD as shown in Figure 5-23a. If we can demote 
the common part of y we may be able to spare x some of the physical dependencies 
incurred by y (see Figure 5-23b). 

other components 

other components 

(a) Before Demotion (b) After Demotion 
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-
Demoting common code enables independent reuse. 

Figure 5-24 illustrates a situation in which the enumerated values defined in sub
system A are used throughout the entire system, yet subsystem B is otherwise inde
pendent of subsystem A. 

class SubSystemA { 
I I ... 

} ; 

public 
enum E {/* ... */}; 
I I ... 

class SubSystemB { 
II 

} ; 

II depends on 
II SubSystemAts 
II enum E 

Figure 5-24: Poorly Factored System Architecture 

. Although there is currently no link-time dependency of subsystem B on subsystem A, 
this fact would not be made clear by inspecting an extracted include graph. Instead, 
the graph would indicate that the original architect had allowed components in sub
system B to depend, arbitrarily, on components in subsystem A. In time, normal main
tenance would inevitably cause more substantial, link-time dependencies of B on A to 
take hold, which in tum would affect the link-time cost of maintaining subsystem B. 

By creating a separate class (struct) for scoping the enumeration E originally in 
SubSystemA and moving that scoped enumeration to a separate component, we c~o 
eliminate any physical dependency of subsystem B on subsystem A. As shown 10 

Figure 5-25, demoting enumeration E reduces coupling and simplifies the task of 
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understanding the implementation of subsystem B, which, in tum, reduces the cost of 

maintaining the entire system. 

class SubSystemA { 
I I .. . 
I I .. . 
I I . . . 

} ; 

struct ScopeOfE { 

class SubSystemB { 
II depends on 
II ScopeOfE's 
II enum E 

} : 

enum E { 1* ... *1 }; 
} ; 

Figure 5-25: New System Architecture After Demoting the Enumeration 

It may seem that placing a single enumeration in its own class is overkill. In some 
cases that is so, but not here. Notice that placing this tiny bit of code in its own com
ponent has freed subsystem B from the considerable maintenance burden of having to 
drag around all of subsystem A. 

Escalating policy and demoting the inf~astructure can combine to 
enhance independent reuse. 

Another common example of an architecture that may have an unnecessarily high 
CCD can be found in a system that parses a text file to create a runtime data structure 
and then operates on that data structure to perform some desired computation. 
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In the architecture shown in Figure 5-26, the parser is tightly coupled to the runtime 

data structure in a single subsystem at the bottom of the system hierarchy. Conse
quently, we might expect to see a member function of the form 

RuntimeDB::Status RuntimeDB::read(const char *fileName); 

where Status is an enumeration nested within class RuntimeDB. Presumably this 
read function invokes a parser to load the runtime data structures with information 

based on the contents of the file specified by fi 1 eName. 

I 
system 

I 

.. 
I 

processor 
I 

.. 
I 

parser & 

I runtime-db 

Figure 5-26: Poorly Factored Runtime Database Architecture 

At the next level, the processor, which operates off the runtime database, is forced to 
depend on the combined parser and runtime database subsystem. The system component 
is relatively small and manages both the loading and processing of the runtime database. 

Although the above architecture is levelizable, it portends some potentially severe conse
quences with respect to maintenance and enhancement. The development of a processor 
is coupled to both the parser and the runtime database, even though a parser is not needed 
for processing. As the system expands and we decide to add more processors, each pro
cessor must bear the unnecessary burden of linking to the parser during development. 

Suppose we decide to change the fonnat of the input file or (worse) make use of mul
tiple formats. Now, instead of just a single read command, the runtime database must 
support several: 
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RuntimeDB::Status RuntimeDB::readFormatA(const char *fileName); 
RuntimeDB::Status RuntimeDB::readFormatB(const char *fileName); 
RuntimeDB::Status RuntimeDB::readFormatC(const char *fileName); 

This architecture would require multiple parsers to co-exist in a single subsystem 
along with the runtime database, as illustrated in Figure 5-27. 

system 

processor 1 I I processor 2 II processor 3 

parser A & 
parser B & 
parser C & 
runtime-db 

(-.. / 

Figure 5-27: Result of Enhancing a Poor Design 

The consequence of this subsystem architecture is that all existing parsers must be 
linked in whenever we are: 

• enhancing the runtime database, 
• enhancing or developing a new parser, 
• enhancing or developing a new processor, 
• testing any of the above, or 
• reusing the runtime database in a standalone product. 

In the original architecture, the database depends on the parser to load the informa
tion. However, on closer examination (see Figure 5-28), we realize that there is (or 
should be) an almost acyclic relationship between the runtime database and the parsers. 
The database is a low-level repository for information into which clients (such as 
parsers) deposit information and from which clients (such as processors) access and 
possibly manipulate information. Each parser depends on. the runtime database to 
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store the parsed infonnation. The problem lies in the gratuitous "upward" dependency 
of the runtime database on a parser. 

p1 p2 

r1 r2 

. . . 

pn 
parser subsystem 

rn 

Pn 

runtime database subsystem 

Gratuitous 
Upward 

Dependency 

Figure 5-28: Close-Up of Poor ParserlDataBase Subsystem Architecture 

Escalation and demotion combine to provide an effective solution to this problem. We 
can rearchitect the original system (see Figure 5-29) by first escalating the call of the 
parser's read function from the RuntimeDB to the system level and then demoting the 
common runtime database subsystem. By making the database a "dumb" repository, 
complete with a procedural interface for programmatically loading and retrieving 
infonnation, each parser becomes "just another client" of the database. Now the sys
tem manages which files are parsed and then calls the appropriate parser, passing it a 
writable (non-const) pointer to the Runt i meDB object that is to be loaded: 
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ParserA::parse(RuntimeDB *db, const char *fileName); 

If subsequent processing should not alter the runtime database but, say, merely gener
ate reports, the system can ensure that the database is not overwritten by passing the 
processor a read-only (con 5 t) reference to the loaded Run t i meDB: 

Pracessorl::quarterlyReport(ostrstream *ostr, canst RuntimeDB& db); 

system 

· · · parser B I I parser A I I processor 1 I I processor 2 I ... 

runtime-db 

Figure 5-29: A More Maintainable System Architecture 

With this new architecture, any number of independent processors can be added to the 
system and none of them will depend on any parser. Similarly, parsers can be replaced 
or added without affecting the runtime database, processors, or other parsers in any 
way. With this architecture it is not hard to imagine that the database, parsers, and pro
cessors could be reused in various combinations in other standalone applications (e.g., 
translators, archivers, and browsers). 

As a final example of the power of demotion, consider the subsystem shown in Figure 
5-30, in which three related components are cyclicly dependent. 



240 Levelization Chapter 5 

reporta 

Figure 5-30: Cyclicly Dependent Library Subsystem 

The Lib r a r y contains a database of low-level infonnation as well as a collection of 
heterogeneous Report objects. Almost all kinds of Report supply information that 
depends on aggregate statistics, calculated from the low-level data stored in the 
Lib r a r y. A statistical utility class, S tat uti 1, is supplied to assist in obtaining this 
aggregate infonnation.6 The common functionality implemented in the (abstract) 
Report base class uses StatUtil, which in tum depends on Library, r~sulting in a 
cyclic dependency among the 1 i bra ry, S ta tut i 1, and repo rt components. 

6 Normally a utility class is either just a struct to provide a scope for a collection of related free 
functions or a module (i.e., the class contains only static data members). In either case, it is not 
meaningful to instantiate instances of such a class because they contain no state associated with a 
particular instance. See "Class Utilities" in booch, Chapter 5, pp. 186-187. 
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Factoring a concrete class into two classes containing higher and 
lower levels of functionality can fa.cilitate levelization. 

The problem arises in part because the single Libra ry class serves as both a reposi
tory of low-level infonnation and a collection of (higher-level} reports. Fortunately 
there are a couple of alternative solutions. First, by demoting the low-level repository 
below the rest of the subsystem, we can eliminate the cyclic coupling (as shown in 
Figure 5-31). 

Figure 5-31: Demoting Low-Level Information in the Library Subsystem 

Factoring an abstract base class into two classes-one defining a pure 
interface, the other defining its partial implementation--can facili
tate levelization. 
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Another solution begins by recognizing that a single class, Report, has been used for 
J two distinct purposes: 

1. Providing the interface common to all reports. 
2. Providing the implementation that is expected to be common to all reports. 

Having a single class serve this dual role is also partially to blame for the cyclic 
dependency. The Libra ry depends directly on the interface of the base class, Report, 
but only indirectly on its implementation, through the use of virtual functions. 

Consider what would happen if we split Report into two classes. The first class would 
define the interface specified in the original Report class but would not implement any 
of the functions. That is, every function in class Report would now be declared a pure7 

virtual function. The second class, call it Report Imp, would derive from Repo rt and pro
vide the generic report implementation by overriding the appropriate virtual functions. 

Now it is possible to break the cyclic dependency in the original system (Figure 5-30) 
by demoting only the interface defined in the Repo rt base class below the level of 
Library. Class Reportlmp, which implements common functionality and depends on 
S tat Uti 1 , remains at a higher level in the physical hierarchy, as shown in Figure 5-32. 

Whether we consider these transfonnations to be escalation or demotion is somewhat 
arbitrary and unimportant. What is important is that there are two different ways in 
which we were able to split a single class into two classes that could then attain dis
tinct levels in the physical hierarchy. 

Which solution is better? This first solution (Figure 5-31) of factoring the Lib r a r y 

class is ideal for maintenance, because the low-level repository can be developed 
independently of the report collection, as can the statistical utility component. The 
second solution (Figure 5-32) forces the entire unfactored Library, and therefore the 
low-level repository and statistical utility, to be sandwiched between the interface and 
partial implementation of Report. From this perspective, the first solution is prefera
ble. However, there are other reasons that a single base class should define either the 
interface or the factored implementation but not both. Separating the interface from 
the (partial) implementation of a base class is discussed in detail in Section 6.4.1 

7 The destructor would be declared virtual, but not pure virtual (see Section 9.3.3). 
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Figure 5-32: Demoting "Just" the Interface of the Report Base Class 

Factoring a system into smaller components makes it both more 
flexible and also more complex, since there are now more physical 
pieces to work with. 

An even more flexible architecture would result by adopting both transformations. 
Since a collection of reports makes sense as an independent abstraction, this architec
ture can be further improved by allowing the collection of reports to be tested and 
reused independently of the Repository. 



244 Levelization Chapter 5 

Figure 5-33: Adopting All Three Architectural Improvements 

In this new architecture (shown in Figure 5-33) the physical structure exhibits more 
flexibility than it does in any previous architecture. To avoid unnecessary compile
time coupling, we would want to separate Report from its partial implementation in 
any case. Doing so also allow us to test Report, Co 11 ect i on, and Libra ry by creating 
a very simple test-stub, Repo rtC, that does not use or depend on Sta tUt i 1 (see Figure 
5-34). 
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Factoring the library component is advantageous because it further reduces the physi
cal coupling in the subsystem. The separation is particularly appropriate because 
we've made StatUti 1 depend only on Reposi tory, while Col1 ecti on depends only 
on Report, adding considerable flexibility to the hierarchy. 

(a) ReportC 
subsystem 

(b) Colle c t ion 
subsystem 

(c)Library 
subsystem 

Figure 5-34: Independently Testable and Reusable Subsystems 

Demoting Reposi tory enables it to be tested and reused independently (Figure 5-
35a) or in conjunction with StatUti 1 (Figure 5-35b). Individual, complex reports 
(such as ReportA) can be tested and reused without having to depend on a collection 

that mayor may not eventually hold them (see Figure 5-35c). 
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(c) ReportA 
subsystem 

Figure 5-35: More Independently Testable and Reusable Subsystems 

Escalation and demotion are closely related. What differentiates escalation from 
demotion in character is merely the direction in which a relatively small amount of 
offending functionality is moved. In fact, escalation and demotion are actually both 
just special cases of the more general repackaging technique illustrated in Figure 5-36. 

(a) Original 
Cyclic 
Subsystem 

(b) Intermediate 
Factored 
Subsystem 

Figure 5-36: General Repackaging Technique 

(c) Final 
Levilized 
Subsystem 
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Here, two mutually dependent components (a) are once again factored into four com
ponents (b). Two of these components, x' and y' , may depend only on each other 
while the other two components, x u and y", potentially depend on each of the other 
three components. The two respective pairs of, perhaps, mutually dependent compo
nents may now be recombined into two new components (c). Component u now 
depends on component v, which is independent. This general repackaging technique 
was applied informally to the components geomut i 1 and geomut i 1 2 discussed at the 

beginning of this section. 

To summarize: we can sometimes eliminate mutual dependencies among components 
by factoring commonly needed functionality and moving it lower in the physical hier
archy. Demotion is useful not only for improving cyclicly interdependent designs, but 
also for reducing the CCD in acyclic architectures as well. Demoting common sub
systems improves both maintainability and extensibility. A properly factored system 
is more flexible in th~t its internal physical dependencies allow its components to be 
independently tested and reused in a wider variety of useful ways. 

5.4 Opaque Pointers 

Normally we assume that if a function uses an object of type T, it does so in a way that 
requires knowing the definition of T. That is, in order to compile the body of the func
tion, the compiler needs to know the size and layout of the object it uses. The way a 
compiler learns the size and layout of an object in C++ is for the component using the 
object to include the header file of the component containing the object's class definition. 

DEFINITION: A function f uses a type T in size if compiling the 
body of f requires having first seen the definition of T. 

If a function body can be compiled having seen only the declaration of type T (e.g., 
c 1 ass T ;), then that function itself does not depend on the definition of T. The signifi

cance of using a type in size is that such use induces an immediate compile-time 
dependency on the component defining T. (Avoiding unnecessary compile-time 
dependencies is the topic of C_hapter 6.) The body of a function f using type T in name 
but not in size typically, however, calls one or more functions in other components 
that, in tum, do depend on the definition of T. In this situation there would continue to 

be a link-time dependency of f on T. 
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DEFINITION: A function f uses a type T in name only if compiling f 
and any of the components on which f may depend does not require 
having first seen the definition of T. 

If a function f and all components on which f depends can be compiled and linked, 
having seen only the declaration but not the definition of T, then f is said to use T in 
name only. For example, 

II util.h 
#ifndef INCLUDED_UTIL 
#define INCLUDED_UTIL 

class SomeType; II used In name only 

struct Uti 1 { 
SomeType *f(SomeType *obj); 

} 

#endif 
II util.c 
#include "util.h ll 

SomeType *Uti 1: : f( SomeType *obj) 
{ 

static SomeType *lastType=O; 
return obj ? lastType = obj : lastType; 

} 

illustrates a function f using a type SomeType in name only. The significance of using 
a type in name only is that there is no implied physical dependency by such use
even at link time. Without the physical dependency, the coupling is all but eliminated. 

Similar definitions can be constructed for a class that uses a type in size or in name 
only. Even more useful is that these definitions can be extended to apply to compo
nents as a whole. 

DEFINITION: A component c uses a type T in size if compiling c 
requires having first seen the definition of T. 
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DEFINITION: A component c uses a type T in name only if compiling 
c and any of the components on which c may depend does not require 
having first seen the definition of T. 

We use the first of these two definitions in Chapter 6. For now, we focus on the rami
fication of the second of these two component-level definitions. Note that, as illus
trated in Figure 5-37, a component u that uses a T object in name but also depends on 
another component v that, in tum, uses T in size, by transitivity, does not use T in name 
only. Component.u depends physically on component v and indirectly on component t. 

Depends On 

Uses (In N~me) 

Uses (In Size) 

t 

Figure 5-37: Component u Does Not Use Type T In Name Only 

The dashed-line form of the uses notation "0- - - - " denotes that the use is "in name 
only" and imposes a conceptual but no physical dependency. 
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Here we deviate from the notation for "by-reference" dependencies suggested by 
Booch8 for two reasons: (1) the logical meaning of this new In-Name-Only symbol is 
identical to its In-Size counterpart-it is only the physical implications that differ; and 
(2) use in name only (unlike use by reference) expressly denies any direct or indirect 
compile- or . link-time dependency. For our purposes, three flavors of uses notation 
suffice: 

Our Notation Booch Notation 

0 Uses In The Interface 0 
Uses In The Interface 

0- _ yses !n_1!te Interfa_c~ __ 
(In Name Only) 

• Uses In The Implementation • HasNHoldsA 
( Unspecified) 

HoldsA 
(By Reference) 

• RasA 
0 

(By Value) 

Components that use objects in name only can be thoroughly tested, 
independently of the named object. 

Situations involving using a type in name only rarely arise naturally; they are usually 
contrived to avoid unwanted physical dependencies. Using a type in name only is pos
sible when the component doing the "using" refers to the object only by pointer or ref
erence, and never interacts with the object directly in any way other than to hold its 
address. 

8 booch, Section 5.2, Figure 14, p. 191. 
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II handle.h 
#ifndef INCLUDED_HANDLE 
#define INCLUDED_HANDLE 

class Faa; 

class Handle { 

} ; 

Fao *d_opaque_p; 

public: 
HandleCFoo *foo) 
void set(Foo *foo) 
Foo *get() canst { 

#endif 
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d_opaque_pCfoo) {} 
{ d_opaque_p = foa; } 
return d_opaque_p; } 

Figure 5-38: Handle Class that Uses Faa in Name Only 

A pointer is said to be opaque if the definition of the type to which it points is not 
included in the current translation unit. Figure 5-38 shows a trivial example of a class 
that holds an opaque pointer to an instance of some class named Faa. The client of the 
Han d 1 e class will ultimately have to include the header file of a component that 
defines Faa in order to come up with a Faa object. For testing purposes, any class Foa 

will do, including even a mere class declaration as Figure 5-39 demonstrates. 

II handle.t.e 
#include "handle.hl! 
#include <assert.h> 

rna inC) 
{ 

} 

Faa *pl = CFaa *) OxBAD; 
Foa *p2 = CFoa *) OxBOB; 
Handle handleCpl); 
assertCpl == handle.get()); 
h.setCp2);. 
assertCp2 == handle.getC)); 

Figure 5-39: Trivial Test Driver for handl e Component 

The significance of this example is that it was possible to exercise the functionality of 
the Han d 1 e class completely without having to include or link to any component 
defining class Faa. Such is a litmus test for whether another type has been used not 
only opaquely, but also in name only. 
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If a contained object holds a pointer to its container and implements 
functionality that depends substantively on that container, then we 
can eliminate mutual dependency by (1) making the pointer in the 
contained class opaque, (2) providing access to the container pointer 
in the public interface of the contained class, and (3) escalating the 
affected methods of the contained class to static members of the 
container class. 

When developing a particular application, it is common for a higher-level object to 
store information in objects defined at the lower levels of the physical hierarchy. If 
that information is in the form of a user-defined type, there is the potential for causing 
the subordinate object to depend on that type. As long as the subordinate does not 
need to make any substantive use of the type on its own, there is no need for the sub
ordinate to include the definition of the type. 

Suppose S c r e e n is a container for Wid get objects, and suppose furthermore that 
each Widget holds a pointer, d_parent_p, identifying the Screen to which the 
Widget belongs. Now consider the interfaces for the widget and screen compo
nents suggested in Figure 5-40, and in particular the accessor member function 
numberOfWidgetslnParentScreen of class Widget. 

This function allows a client holding nothing but a Wi dget to find out how many other 
Wi dget objects there are in the Screen to Whi ch the Wi dget belongs. From a pure 
usability perspective, this architecture may seem appealing; from a maintainability 
perspective, it is expensive. 
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II screen.h 
#ifndef INCLUDED_SCREEN 
#define INCLUDED_SCREEN 

class Widget; 

class Screen { 
Widget *d_widgets_p; 
I I ... 

public: 
Screen(); 
I I ... 
void addWidget(const Widget& w); 
/ I ... 
int numWidgets() canst; 
I / ... 

} ; 

#endif 

(a) Container Component screen 
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II widget.h 
#ifndef INCLUDED_WIDGET 
#define INCLUDED_WIDGET 

class Screen; 

class Widget { 

} ; 

Screen *d_parent_p; II Screen to which 
II ... II this widget belongs 

public: -
Widget(Screen *screen); 
II 

II operations involving parent screen 

int numberOfWidgetsInParentScreen() canst; 

I / . . . 

#endif 

(b) Contained Component wi dget 

Figure 5-40: ScreenIWidget Design Causing Cyclic Dependency 

The problem with the maintainability of this design is that in order to implement the 
numberOfWi dgets InPa rentScreen method in the wi dget. c file, we will need to 
"ask" the parent S ere en for this information. Asking S ere e n anything implies having 
seen its definition, which is accomplished by first including s ere en. h in wid get. c. 
But doing so leads to the unlevelizable situation depicted in Figure 5-41. 
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screen 

II widget.c 
#include "widget.h" 
#include "screen.h" 
I I ... 

widget 

int Widget::numberOfWidgetslnParentScreen() canst 
{ 

} 

II 

return d_parent_p-)numWidgets(); 

screen.h widget.h 

screen widget 

Chapter 5 

Figure 5-41: Class Wi dget "Knows About" Container Class Screen 

The fundamental problem here is that a Wid get is trying to do more than it should. A 
Wid get has functionality that makes sense in its own context, but it cannot in general 
know about other,Widget objects without asking its parent Screen. Consider again 
the analogy to a corporation. You can ask any employee, "What are you doing?" and 
the employee should be able to tell you. Similarly, you can always ask the employee, 
"Who is your boss?" In contrast, try asking the employee for the number of employ .. 
ees who work for his or her boss. In general the employee will not know the answer, 
and will need to go to the boss and ask. 

Actually it is none of the employee's business how many other employees work for 
the boss. Consider this alternate approach. Suppose you want to know how many 
employees work for ,my boss. Instead of asking me that question, ask me, "Who is 
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your boss?" I will tell you, and then you can go and ask her yourself how many 
employees work for her. If she wants to tell you, she will. 

The use of opaque pointers (used in name only) can serve to break unwanted cyclic 
component dependencies. Turning back to our programming example, consider the 
alternate definition for the wi dget component shown in Figure 5-42. In this usage 
model, it is possible to ask the Wi dget for its parent Screen. We will then be able to 
ask the parent Screen about its other Wi dget objects (or anything else, for that mat
ter). The principal benefit for this model, however, is that component wi dget no 
longer depends on component screen at either compile or link time. The dependency 
of wi dget on screen is now in name only_ 

II widget.h 
#ifndef INCLUDED_WIDGET 
#define INCLUDED_WIDGET 

class Screen; 

class Widget { 
Screen *d_parent_p; II screen to which this widget belongs 
I I ... 

} ; 

public: 
WidgetCScreen *screen); 
I I ... 

II operations involving parent screen 

Screen *parentScreen() const; 

#endif 
II widget.c 
#include "widget.hl! 
#include "screen.h" II no longer needed 

I I ... 

Screen *Widget::parentScreen() canst 
{ 

} 

Figure 5-42: Modified Architecture for wi dget Component 

The new component dependency graph for screen and wi dget is shown in Figure 5-
43. With this new architecture, it is possible to test all the functionality .of wi dget 
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independently of the screen component. Other components that use widgets but do 

not care about screens need not include screen. h or link to screen. o. 

Level 2: 

Levell: 

widget 

uses in the interface 
(In Name Only) 

Figure 5 .. 43: Levelizable Component Dependency for wid get and s c r e e n 

A small test driver that demonstrates the physical independence of wi dget on screen 

is shown in Figure 5-44. 

II widget.t.c 
#include Itwidget.hlt 
#include <iostrearn.h> 

class Screen; II not necessary when including widget.h 

rna i n ( ) 
{ 

} 

Screen *const screen = (Screen *) Oxbad; 

const Widget widget(screen); 

if (screen != widget.parentScreen(» { 
cout « IIError!" « endl; 

} 

1/ 

Figure 5 .. 44: Test Driver for wi dget Component in Isolation 

An immediate consequence of this architectural change is that clients must perform 
two operations instead of one to retrieve the number of Wi dget objects in the parent 
Screen: 
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widget.parentScreen()-)numWidgets() 

For convenience, these two operations could be combined into a s tat i c member 
function of S ere en or some other, higher-level class. Instead of saying 

widget.numberOfWidgetslnParentScreen() 

you would say 

Screen::numberOfWidgetslnParentScreen(widget) 

to obtain the value. In either case, this interface forces clients to look outside the 
wi dget component's interface in order to obtain the answer to their question. 

Note that when moving functionality from the contained object to the container, the 
first argument of each new static member will be either a can s t reference or a nOD
canst _pointer to the contained object-depending, respectively, on whether the 
original member was a canst or non-canst function. The rationale for this style of 
argument passing is taken up in Section 9.1.11. 

To recap: we were able to achieve an acyclic component dependency graph by making 
class Wid get's internal S c r e en pointer opaque and by moving the part of Wid get that 
made substantive use of class Screen out of Wi dget and into the Screen class itself. 
We also exposed the S ere en type in the public interface of Wid get and made it neces
sary for clients of wi dget to look outside that component for the answers to certain 
kinds of questions. But in so doing, mutual physical dependency was replaced with 

conceptual cooperation: the lower-level object agrees only to hold on to information 
(specified in name only) for use at higher levels. 

5.5 Dumb Data 

The term dumb data refers to a generalization of the concept of opaque pointers. Dumb 

data is any kind of information that an object holds but does not know how to interpret. 
Such data must be used in the context of another object, usually at a higher level. 

Let's consider what might be involved in implementing a simplified subsystem to model 
a racetrack for horses. As a starting point, we would like to be able to ask questions such 

as those illustrated in Figure 5-45. The top-level component should provide the capability 
to iterate over the races and to identify a horse by name. To make this example interest

ing, it should also be possible for a track to accept bets and to redeem wagers. 
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void questions(const Track& track, 
canst Race& race, 
const Horse& horse) 

{ 

} 

II 1. What races do you run here? 
for (RaceIter itl(track); itl; ++itl) { 

cout « itl().number() « endl; 
} 

II 2. What time does a given race start? 
cout « race.postTime() « endl; 

II 3. What horses are running in a given race? 
for (Horselter it3(race); it3; ++it3) { 

cout « i t3(). name() « endl; 
} 

II 4. What is the number of this horse? 
tout « horse.number() « endl; 

Chapter 5 

Figure 5-45: Some Common Questions Asked at a Horse-Racing Track 

An initial cut at the top-level track component is given in Figure 5-46. In this architec
ture, a T rae k holds a collection of Rae e objects and supplies a Ra eel t e r to iterate 
over today's races at the track. The Track takes bets and issues (pointers to) Wager 

objects, which can be redeemed after the race is completed. 

II track.h 
#ifndef INCLUDED_TRACK 
#define INCLUDED_TRACK 

class Horse; 
class Race; 
class RaceIter; 
class Track; 

class Wager { 
const Horse& d_horse; 
double d_amount; 
I I ... 
Wager(const Horse& horse, double amount); 
Wager(const Wager&); 
Wager& operator=(const Wager&); 
friend Track; 

II For track's use only 
II i.e., not for use 
II by the public .. 



Section 5.5 

} ; 

public: 
const char *horseNameC) canst; 
int raceNumber() canst; 
Track& track() canst; 
double amount() canst; 
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class Track { 

} ; 

Race *d_races_p; 
I I ... 
friend Racelter; 

public: 
I I ... 
canst Race *loakupRace(int raceNumber) canst; 
canst Horse *loakupHorse(canst char *horseName) const; 
Wager *betCconst Horse& horse, dauble wagerAmount); 
dauble redeem(Wager *bet) canst; 

class RaceIter { 
I I ... 

} ; 

public: 
Racelter(const Track& track); 
void operator++(); 
operator canst vaid *() canst; 
canst Race& operator()() const; 

#endif 

Figure 5-46: Header for Top-Level Component t r a c k 

Each Ra ce object maintains the number of that race, the post time for that race, and 
the collection of horses running in that race. The race component also provides a 
HorseI ter to iterate over the horses running in a specified Race. Given a Race object, 
it is possible to determine at which track the race will be run. A rough version of the 
race component is shown in Figure 5-47. 

II race.h 
#ifndef INCLUDED_RACE 
#define INCLUDED_RACE 

class Horselter; 

class Race { 
I I ... 
friend Horselter; 
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public: 
Race(const Track& track, int raceNumber~ double postTime); 
/ / ... 

} ; 

int number() const; 
double po~tTime() const: 
canst Track *track() const: 

class Horselter { 
/ / ... 

} ; 

public: 
HarseIter(const Race& race); 
vaid operator++(); 
operator canst void *() canst; 
canst Horse& operator()() const; 

#endif 

Figure 5-47: Header for the Intermediate-Level Component race 

A Horse is defined at the lowest level of the racetrack subsystem's physical hierarchy. 
A Horse maintains its name and number, and it can be used to determine in which 
race it is scheduled to run. A first cut at our leaf-level horse component is sketched in 
Figure 5-48. 

#ifndef INCLUDED_HORSE 
#define INCLUDED_HORSE 

class Race; 

class Horse { 

} ; 

canst Race& d_race: 
char *d_name_p; 
int *d_number; 
/ / ... 

public: 
Horse(const Race& race, canst char *HorseName, int harseNumber); 
/ / ... 
canst char *name() canst; 
int number() canst; 
const Race *race() const; 

1foendif 

·Figure 5-48: Header for the Leaf-Level Component horse 
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In this initial implementation, a Wag e r is implemented with only two data members as 

follows: 

class Wager { 

} ; 

canst Horse& d_horse: 
double d_amount; 
/ / ... 

public: 
/ / ... 

Holding a pointer to a H 0 r s e, it is possible for clients at sufficiently high levels to use 

the uniquely identified Horse to obtain a pointer to the Race, anywhere in the world, 

in which that H 0 r s e will run. The Ra ce pointer can then be traversed, and the resulting 

race object used to obtain a pointer to the track where that race will be held. 

The functionality for the horse racetrack system described above implies maintaining 

a cyclic internal data structure: Each T rae k knows the races that it holds, each H 0 r s e 

knows in which race it runs, and each Ra ce knows both the track in which it is held 

and the horses that will participate in it. However, this data structure can be imple

mented with acyclic physical dependencies by using opaque pointers as shown by the 

component/class diagram of Figure 5-49. 

horse 

Figure 5-49: Component/Class Diagram for Racetrack Subsystem 
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The original architecture presented for the racetrack subsystem has no cyclic physical 

dependencies but is nonetheless cyclicly dependent in name. Although having two com

ponents that each know the names of one or more objects defined in the other compo

nent is not necessarily bad, there are trade-offs to be made that will be discussed shortly. 

Suppose that, instead of identifying the objects in this system by their absolute 

addresses, we identify them in terms of indices into a sequence of objects that has 

meaning only in the context of the parent object. 

The Track would then hold a sequence (array) of Race objects, and each Race would 

have an associated integer "index." The Ra ce index would be meaningful only in the 

context of a T r a c k object. Since the Ra c e indices can be made to correspond to the 

publicly accessible Ra c e numbers, the need for a Ra c e I t e r is reduced, provided we 
supply an accessor for T r a c k to report the total number of races held today. 

By the same argument, each Horse in a Race is naturally assigned a number. Given a 

Race that has a sequence of horses, we can identify the Horse within a Race by sup

plying its index relative to that race. We therefore can also dispense with the 

H 0 r s e I t e r for R ace. 

When it comes to redeeming wagers, the T rae k defines a context that is much smaller 

than the entire address space (accessible via pointers). In the original implementation, 

we used opaque back pointers beginning with H 0 r s e, and moved in a bottom-up fashion 

to arrive at the Race and finally the Track. In the proposed implementation, the limited 

context of the Tra c k is exploited to identify the Ra ce and Ho rs e using a pair of integer 

indices as shown in Figure 5-50. 

class Wager { 

} ; 

canst Track& d_track: 
double d_amount; 
short int d_racelndex: 
short int d_horselndex; 
/ / ... 

public: 
Wager(const Track& track, 

int horseNumber, 
int raceNumber, 
double amount); 

canst Track& track() canst; 
double amount() canst; 
int horseNumber() canst; 
int raceNumber() canst; 
/ / ... 
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class Track { 

} ; 

Race *d_races_p; 
int d_numRaces; 
/ / ... 

public: 
Wager *bet(int race, int horse, double amount): 
double redeem(Wager *bet) const; 
canst Race *lookupRace(int raceNumber) const; 
constHarse *lookupHorse(const char *horseName) const; 
canst .Horse *lookupHorse(const Race& race, int horseNumber) const; 
int numRaces() canst; 
/ / ... 

Figure 5-50: Modifications to Component track 

Observe that, because of the very limited, context, we can safely use 16-bitinstead of 
32-bit integers. This fact could be significant if the' number of outstanding\vagers at 
anyone time becomes very large. For example, on my 32-bit machine, where a double 
is 8 bytes long and naturally aligned,9 the size of the wager objects drops from 24 to 
16 bytes when we make the indices s h 0 r t integers-a savings of 33 percent! 

Figure 5-51 illustrates the revised architecture for the racetrack subsystem. The new 
system is significantly simpler. This system has no cyclic dependencies between com
ponents-not even in name-and significantly fewer classes. The principal change 
was simply the way in which a H 0 r s e is identified. 

Dumb data can be more convenient and occasionally more compact than opaque 
pointers for identifying other objects. Had the new Wag e r object identified the Ra c e 

and H 0 r s e by opaque pointer instead of s h 0 r t integer index, the size of Wag e r would 
again be 24 instead of 16 bytes on my machine. 

Another advantage is that the values stored as dumb data are not machine addresses and 
therefore contain meaningful values that can be tested explicitly. In the horse-racing 
application, the indexed approach is particularly appealing, because the indices 
(which are publicly accessible) do have legitimate utility in the user domain. It is not 
uncommon to hear a frequent patron of the track request of a parimutuel ticket agent 
at the betting window: "Gimme 2 bucks on number 4 in the 9th (to win)!" 

9 Natural alignment is discussed in Section 1 0.1.1. 
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In Name Only 

Figure 5-51: Revised Component/Class Diagram for Racetrack Subsystem 

A disadvantage of the indexed approach is that it does sacrifice a fair degree of type 
safety compared to opaque pointers in that the Race and Horse indices are just inte
gers. Another drawback is that this implementation forces the R ace and H 0 r s e collec
tions to be indexed rather than to remain arbitrary collections. The resulting erosion of 
encapsulation could easily have a negative impact on maintainability if exposed to the 
general pUblic. 

In situations other than our horse-racing example, the dumb-data indices used to iden
tify subobjects in this way might very well be meaningless to clients of the subsystem. 
For these reasons, the use of dumb data is typically an optimized implementation tech
nique encapsulated within a subsystem and not exposed at the higher levels of a system. 

Dumb data can be used to break in-narne-only dependencies, 
facilitate testability, and reduce implementation size. However, 
opaque pointers can preserve both type safety and encapsulation; 
dumb data, in general, cannot. 
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As a similar but more serious example, consider the task of modeling the connectivity 
within a circuit consisting of a heterogeneous collection of electrical components.10 A 
gate-level circuit, such as the one used to introduce levelization in Figure 4-10 of Sec
tion 4.7, can be represented as a graph consisting of nodes (called gates) and edges 
(called wires). Each gate has a collection of electrically distinct connection points 
(called terminals). Conceptually, representing a circuit amounts to maintaining a hetero
geneous collection of gates and a homogeneous collection of bidirectional wires. Each 
wire is attached to two distinct terminals within the circuit, establishing connectivity. 

In a traditional implementation, a circuit might contain a collection of terminals, 
defining the primary inputs and outputs for the circuit. Each gate in the circuit would 
also contain a collection of terminals. Wires are not explicit objects in this model. 
Instead, each terminal contains a collection of pointers to (other) terminals. Pointing 
to another terminal implicitly establishes a connection to that terminal. In the example 
shown in Figure 5-52, the terminal z of gate gO is connected to the terminal x of gate 
9 1; therefore, terminal z of gO would hold a pointer to terminal x of 9 1. By symmetry, 
terminal x of 9 1 is also connected to terminal z of gO, so x of 9 1 would also hold a 
pointer to z of gO. 

a x e 
gO z -

b Y '-- x 

91 z d 

c y 
C 

Figure 5-52: Circuit C Implemented in Terms of1\vo Gates, gO and gl 

In order to traverse the graph, a Te rmi n a 1 must maintain an opaque pointer to its par
ent Ga te or C i rcu it. Note that eire u i t can be treated as just a special kind of Ga te 

10 This example describes the application of dumb data in a very different context. The basic tech
nique, however, is the same as for the racetrack example. 
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that contains instances of other gates. I1 Cyclic physical component dependencies can 

be avoided by using opaque pointers as shown in the partial component/class diagram 

of Figure 5-53 (with collection iterators omitted). 

Here again there is an opportunity to break even the nominal cyclic dependencies by 
defining a connection "in context." If a Circuit contains,an indexed collection (an 

array) of gates, and similarly each Gate contains an array of tenninals, then we can 

identify a connection point in the context of a C ire u i t as a simple pair of integer indices. 

Figure 5 .. 53: Partial Component/Class Diagram for Ci rcu; t Implementation 

11 This example illustrates another instance of recursive composition-a design pattern called 
Composite in gamma, Chapter 4, pp. 163-173. This pattern was seen previously in terms of Node, 

Fi 1 e, and Di rectory in Figure 4-13 of Section 4.7. The Composite design pattern has been used 
effectively to implement hierarchical circuit descriptions. 
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Consider again the example of Figure 5-52. Suppose the implementation of the circuit 
consists of an array of two gates, gO and 9 1, with indices 0 and 1, respectively. The 
tenninals for both gO and gl are x, y, and z, and happen to have indices 0, 1, and 2 

respectively. We can now describe the connection point "terminal x of gate 9 1" as the 
pair of integer indices (1, 0). We can similarly describe the connection point z of gO as 
the coordinate pair (0, 2). 

By convention, we can identify the enclosing circuit by using an index outside the legal 
range for gates indices" (such as -1). If the circuit's terminal a has index 0, its connec
tion coordinates could be represented as the pair of indices (-1; 0). The complete list of 
connections for this circuit, described in terms of integer coordinates, is provided in 
Figure 5-54. 

C.a - ( - 1 , 0) ... .. ( 0, 0) - gO.x 
C.b = ( - 1 , 1 ) ... • ( o , 1 ) = gO.y 
C.c - ( - 1 , 2 ) ... .. ( 1 , 1 ) = gl.y 

gO.z - ( o , 2) ... • ( 1 , 0) = gl.x 
gO.z - ( o , 2) ... • ( - 1 , 4) - C.e 
gl.z = ( 1 , 2 ) ... • ( - 1 , -3) - C.d 

Figure 5 .. 54: Representing Connectivity Using Integer Indices 

A pair of integers has no physical dependency on anything. We can therefore define a 
Connect i on class in a leaf component as follows: 

class Connection { 
int d_gatelndex; 

} ; 

int d_terminallndex; 

public: 
Connectian(int gatelndex, int instancelndex); 
int gatelndex() canst; 
int terminal Index() canst; 

Figure 5-55 illustrates a completely levelizable component hierarchy in which 
Connection, ConnectionCollection, Terminal, TerminalArray, Gate, GateArray, 

-' 

and finally C i r cui t can be tested and verified in order. 

The graph-like nature of Ci rcui t is not evident from the subcomponents. The con
nectivity of the circuit is not established until the level of the component that defines 
the Gat eAr ray class, because it is only at that level that sufficient context exists to 
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understand the implied graph. Users of C ire u i t need not necessarily be exposed to 
the lower-level Ga te and T e rmi n a 1 classes, and may wind up "programming" the cir
cuit by specifying gates and terminals by names that are translated to indices internally. 

Figure 5-55: New Component/Class Diagram for Ci rcui t Implementation 

To conclude this section: dumb data is a generalization of opaque pointers that can 
facilitate the implementation of subsystems, in which low-level objects must implic
itly refer to other low-level objects. This technique is especially indicated where these 
references ne~d not be interpreted at the lower levels of the subsystem, but only in the 
context of some (usually) higher-level object. This restricted context can allow for 
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more compact implementations, though it is at the expense of both type safety and 
encapsulation. The use of dumb data is typically a low-level implementation detail 
and often not exposed in the interfaces of higher-level subsystems. 

5.6 Redundancy 

Reuse of any kind implies some form of coupling. In some cases the coupling may be 
severe. In this book, redundancy refers to the technique of deliberately repeating code 
or data in order to avoid unwanted physical dependencies brought on by reuse. 

The additional coupli~g associated with some forms of reuse may 
outweigh the advantage gained from that reuse. 

Redundancy is indicated when the functionality exists in a separate physical unit, the 
amount of functionality to be reused is relatively small, and the amount of coupling 
that would result is so disproportionately large as to outweigh the benefit of the reuse. 
For cases where the amount of reuse would be substantial, it is often appropriate to 
demote the common code to a lower level where it can be shared. 

Even within a single subsystem there is a threshold below which reuse of external 
functionality may not be advantageous. Consider two large components that are inde
pendent. It is possible that one of these components implements a tiny piece of func
tionality (such as mi n, max, etc.) that the other could reuse. Demoting this tiny piece of 
the implementation to a separate component would unjustifiably increase the physical 
complexity of the subsystem. Causing one of these components to depend on the 
other just for such a small amount of reuse would unjustifiably increase the CCD of 
the subsystem. Allowing one component to dominate the other reduces flexibility for 
adding other dependencies resulting from future enhancements. Sometimes a viable 
alternative to reuse is simply to repeat the code and avoid the coupling. 

As a common, practical example, consider the situation illustrated in Figure 5-56, in 
which some low-level object, Ce 11, has a name. The name is specified when the 
object is constructed, cannot be changed throughout the lifetime of the object, and is 
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destroyed when the object is destroyed. An accessor in the public interface of the 
object supplies the name (as a const char *) on request. Other than the name, there 
is no use made of S t r i n 9 in this object. 

str 

II cell.h 
#ifndef INCLUDED_CELL 
#define INCLUDED_CELL 

#ifndef INCLUDED_STR 
#include "str.h" 
#endif 

class Cell { 
String d_name; 
I I ... 

} ; 

public: 
Cell(const char *name); 
----Cell ( ) ; 
I I ... 
canst char *name() canst; 
II 

1tendif 

(a) Using the Stri ng Class 

cell 

II cell.h 
#ifndef INCLUDED_CELL 
#define INCLUDED_CELL 

class Cell { 

} ; 

canst char *d_name_p; 
j I ... 

public: 
Cell (canst char *name); 
""Cell (); 
I I ... 
canst char *nameC) canst; 
II 

#endif 

(b) Reimplementing S t r i n 9 's Functionality 

Figure 5-56: Two Ways to Implement an Object that Has a Name 

The use of S t r i n 9 here is an encapsulated implementation detail of the Ce 11 class. 
The advantage of using S t r i n 9 is that there is no need to use the new operator 
(directly) in the implementation of the Ce 11 's constructor, to worry about allocating 
the extra byte for the trailing null, or to copy the incoming S t r i n 9 to the newly 
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allocated buffer. Perhaps the biggest benefit is not having to worry about deleting this 
St ring in the Ce 11 's destructor. 

To experienced C programmers, none of the above should present any noticeable main
tenance problem. The disadvantage of depending on S t r i n 9 is that it is extra baggage 
that must follow the ce 11 component around. If s t r is not part of the same subsystem 
or depends on other components, then using S t r i n 9 (instead of just a c h a r *) could 
result in having to drag around other components or even libraries, further increasing the 
burden of using Cell. 

As defined in Figure 5-56a, Cell has a Stri ng and therefore depends on component 
5 t r in size. All clients of Ce 11 will be saddled with not just a link-time but also a 
compile-time dependency on component str. This problem is avoided if Cell is 
defined as shown in Figure 5-56b. (The issues surrounding unnecessary compile-time 
dependencies are the subject of Chapter 6.) 

In cases such as the one shown in Figure 5-56, avoiding coupling to the 5 t r component 
probably outweighs the advantages of reuse. Such would not be the case if the ce 11 

component makes any significant use of St ri ng's capabilities (e.g., concatenation) or 
if S t r i n 9 appeared many times in the definition of Cell. 

Supplying a small amount of redundant data can enable the use of an 
object in name only, thus eliminating the cost of linking to the defini
tion of that object's type. 

Redundancy can be used effectively in a variety of ways and in conjunction with other 
techniques to reduce physical dependencies. In particular, choosing to use objects in 
name only can be effective not only for breaking cyclic dependencies within a sub
system but also for reducing the physical dependency upon other subsystems. Some
times, however, it is necessary to supply a small amount of redundant information in 
order to keep certain objects opaque. 

Consider the scenario illustrated in Figure 5-57. We are trying to implement a shape 
analyzer on top of a large shape subsystem consisting of, say, 1,000 components. 
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CCDAnalyzerSubsystem = 1,001 + 3 • 1,002 + 1,005 = 5,012 

Component 
Dependency 

Component 
Dependency 

Level Number 

analyzer subsystem 

Level Number 

shape subsystem 

Figure 5-57: ShapeAna 1 yzer Forced To Use Highly Coupled Shape Subsystem 
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Fortunately we need to make use of only a small portion of this subsystem, in particu

lar, the shape component. Unfortunately this component is fully dependent on the rest 

of its subsystem, giving shape a disproportionately large link cost (1,000 units as 

measured by its component dependency). The CeD for just the five components of 

the analyzer subsystem (that is, excluding the local link cost of maintaining the shape 

subsystem) is 5,012. 

Often there are sophisticated container objects (such as a priority queue) that hold 

other objects, but that need not depend on the contained object in any substantive way. 

The job of the ShapeQueue is to maintain a heap of Shape objects ordered by area. 

The Shape class supplies a public member function to return its area. Designing 

S ha peQueue to use S h a pe's a rea ( ) member directly would tie the cost of developing 

and maintaining the ShapeQueue (and all of its clients) to the unusually large CCD 
imposed by Shape. 

) 

Figure 5-58 depicts an alternative architecture, motivated entirely by reducing the cost 

of maintenance and testing. Instead of having ShapeQueue get the area data directly 

from a Sh a pe, aSh a peMa n a ge r extracts this value and enters it, redundantly, along with 

each opaque Shape pointer into the ShapeOueue. The rest of ShapeAnalyzer's imple

mentation has been refactored so that all substantive use of class S h a pe now occurs 

only in the shapemanager component, with some additional redundant data (i.e., area) 

being stored in each ShapeOueue entry for use by components x, y, and z). 
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CCDanalyzersubsystem = 1 + 1,001 + 3· 2 + 1,006 = 2,014 

Component 
Dependency 

Component 
Dependency 

Level 
Number 

analyzer subsystem 

Level Number 

shape subsystem 

Figure 5-58: Reducing CCD by Using Redundant Data and Opaque Pointers 
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Packaging subsystems so as to minimize the cost of linking to other 
subsystems is a design goal. 

The reduction in maintenance cost associated with the analyzer subsystem of nearly 
60 percent is not unusual, nor is the relatively large cost associated with linking to a 
large, highly interdependent subsystem. A well-designed subsystem will usually con
tain a substantial proportion of components that do not depend on any other sub
systems, and few components that depend on huge, tightly coupled subsystems such 
as the one containing Shape. 

In short, reuse is rarely without cost, and its benefit must be weighed against the cost 
resulting from increased coupling. Very often that cost comes in the form of increased 
physical dependence. Techniques used to reduce physical coupling, such as opaque 
pointers, occasionally require providing a small amount of redundant information in 
order to be applied successfully. In such cases the amount of savings in terms of cou
pling will dictate the amount of redundancy that is tolerable. 

5.7 Callbacks 

A callback is a function, provided by a client to a subsystem, that allows that sub
system '~o perform a specific operation in the context of the client. 

As a.simple example, consider the C Library function qsort, 12 which is an imple

mentation of the Quicksort algorithm: 

#include <stdlib.h> 

void qsort(const void *base, 
size_t numElements, 
size_t sizeofElement, 
int (*compare)(const void *eleml. canst void *elem2); 

12 plauger, Chapter 13, pp. 357-358. 



276 Levelization Chapter 5 

The first parameter of qsort, base, indicates the starting location of a homogeneous 
array of objects whose type is unknown to the qsort routine. The second parameter, 
numEl ements, indicates the number of objects in the base array. The third parameter, 
s i zeofEl ement, indicates the uniform size of each element (as defined by the s i zeaf 
operator). The fourth and final parameter, compa re, is a pointer to a callback function. 

The qsort function assumes that this callback function, compa re, will correctly deter
mine whether the first of the objects, e 1 eml, implied by its two generic pointer argu
ments should be considered less than, equal to, or greater than the second argument, 
e 1 em2, by returning a negative, 0, or positive value, respectively. 

To illustrate a benign use of callbacks, consider the simple problem of sorting a collec
tion of Cartesian points based on their relative distances from the origin of a two-dimen
sional coordinate system. Figure 5-59a depicts an instance of this problem containing 
six points labeled a through! The definition of a Poi nt is given in Figure 5-59b. 

15 G) 

12 

9 

6 

3 

o CD 
o 2 4 6 8 10 

(a) Set of Points 

II point.h 
#ifndef INCLUDED_POINT 
#define INCLUDED_POINT 

class Point { 
int d x; 

} ; 

i nt d_y; C 

public: 
Point(int x. int y) : d_x(x). d-y(y) {} 
Point(const Point& p) : 

d_x(p.d_x), d-y(p.d-y) {} 
-Point() {}; 
Point& operator=(const Point& p) { 

d_x = p.d_x; d-y = p.d-y; return *this; } 
void setX(int x) { d~x = x; } 
v 0 i d . set Y ( i n t y) { d-y = y; } 
i n t x () con s t { ret urn d_x: } 
int y() const { return d-y; } 

I!endif 

(b) Header for Simple poi nt Component 

Figure 5-59: Using Function qsort to Sort a Collection of Poi nt Objects 
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The qsort function rearranges entries by blindly swapping one region of memory of 
the specified element size with another, based solely on the value returned from the 
callback function. The bitwise copy is performed using a function such as the C 
Library function memcpy. 

In general, copying objects to new locations using memcpy is dangerous (see Section 
10.4.2), because an object may contain a pointer or reference to itself or to other 
objects which it is responsible for deleting. On the other hand, it is always safe to 
copy and move pointers to objects using memcpy. Suppose we create an array of six 
pointers to Poi n t objects and in it store the addresses of six Poi n t objects represent
ing the points in Figure 5-59a. 

static Point aCO,15), bC2,12), c(4,9), d(6,6), e(S,3), feIO,D); 
static Point *array[6] = { &a, &b, &c, &d, &e, &f }; 

In order to use qsort, we wi~l need to give qsort away to compare two opaque 
entries so it can determine their relative order. That is, given the addresses of a pair of 
pointers to points (of type const voi d *), we need a way of determining whether the 
distance from the origin to the Poi nt indicated by the first memory address is less 
than, equal to, or greater than that of the Poi nt indicated by the second address. An 
imperfect implementation of this callback function that suits our immediate needs is 
given in Figure 5-60.13 

static int pointCompare (const void *addrPointIPtr, 
const void *addrPoint2Ptr) 

{ 

} 

II poor implementation 
const Point &pl = **(const Point **) addrPointlPtr; 
canst Point &p2 = **(const Point **) addrPoint2Ptr; 
int dlsq = pl.x() * pl.x() + pl.y() * pl.y(); II bad idea (overflow?) 
int d2sq = p2.x() * p2.x() + p2.y() * p2.y(); II bad idea (overflow?) 
return d2sq - dlsq; 

Figure 5-60: Implementation of Callback Function Comparing 1\vo Poi n t Objects 

13 A better implementation in practice would be to use a d a u b 1 e for the intermediate calculations, in order 
to avoid overflow. This solution is implementation dependent, and may fail on two points that are placed 
nearly the same (large) distance from the origin. A robust but less runtime-efficient solution would be to 
make use of a user-defined type (e.g., Daub 1 e I nt) that is guaranteed to hold at least twice as many bits as 
an i nt. 
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Programmed with the data indicating the starting location, number of entries, size of 
each entry, and a callback function that determines the ordinal positions of two entries 
in context, we can reuse this modular implementation of the Quicksort algorithm to 
solve our problem as shown in Figure 5-61. 

II point.t.c 
#include "paint.h" 
#include <stdlib.h> II qsort() 
#include <iostream.h> 

static int paintCornpare (const void *addrPointIPtr, 
const void *addrPoint2Ptr) 

{ 

II better (more practical) implementation 
const Point &pl = **(canst Point **) addrPointlPtr; 
canst Point &p2 = **(const Point **) addrPoint2Ptr; 
double dlsq - pl.xC) * (double) pI.xC) + pl.y() * (double) pl.y(); 
double d2sq - p2.xC) * (double) p2.xC) + p2.yC) * (double) p2.y(): 
return d1sq < d2sq ? -1 : dlsq > d2sq; II Warning: may fail on 

II points far from origin. 

static ostrearn& operator«(ostream& 0, const Point& p) 
{ 

return 0 « '(' « p.x() « , , « p.yC) « ')'; 
} 

static ostream& printCostream& 0, const Point *const *array. int size) 
{ 

} 

o « '{'; 
for C i n t i-a; i < s i z e; ++ i) { 

o « ' , « *array[i]; 
} 

return 0 « " }"; 

const int SIZE = 6; 

static Point a(O,15), bC2,12), c(4,9), dC6,6), e(8,3), f(IO,O); 

static Point *array[SIZE] = { &a, &b, &c, &d, &e, &f }: 

rna i n ( ) 
{ 

print(cout, array, SIZE) « endl; 
cout « "Now sort by distance from origin:" « endl; 
qsort(array, SIZE, sizeof *array, pointCompare); 
printCcout, array, SIZE) « endl; 

Figure 5 .. 61: Using a Callback to Program qsort Comparison Behavior 
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Realize that q s art was developed, tested, and reused many, many times, long before 
the Poi n t class or this example was written. Most of the work done by the Quicksort 
algorithm is reusable. Only one behavior, campa re, varies from one usage to the next. 
Supplying a callback is what enables us to factor and reuse this functionality. 

The indiscriminate use of callbacks can lead to designs that are 
difficult to understand, debug, and maintain. 

The lack of type safety in the interface of q s art is glaring. But because q so r t is a 
stateless algorithm with a single programmable behavior, the need for a generic sorter 
object is controvertible. There is, howev~r, an implied data structure. If we have rea-

-' 

son to maintain a variety of ordered Poi n t collections, sorted according to various 
comparison routines, then creating an abstract 0 rde red Po i ntCo 11 ect i on base class 
(see Figure 5-62) with a corresponding iterator would prove generally useful. Doing 
so would also catch most type errors at compile time. 

class OrderedPointCollection { 
I I ... 

} ; 

public: 
II CREATORS 
OrderedPointCollection(); 
virtual '-OrderedPointCollection(); 

II MANIPULATORS 
void add(Point *point); 

private: 
II ACCESSORS 
virtual int compare(const Point& pointl, const Point& point2) = 0; 

Figure 5-62: Abstract Base Class for an Arbitrarily Ordered Point Collection 

Specifying the comparison function is accomplished by deriving a simple s t rue t: 

struct MyPoints : OrderedPointCollection { 
compare(const Point& point, canst Point& point); 
~MyPoints(); II empty -- (see Section 9.3.3) 

} ; 
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We can now override the comparison function in a type-safe manner as follows: 

int MyPoints::compare(const Point& pI, canst Point& p2) 
{ 

II better (more robust) implementation 
DoubleInt pIx = pl.x(); II Doublelnt is a type 
Doublelnt ply = pl.y(); II that is at least 
Doublelnt p2x = p2.x(); II twice as big as into 
Doublelnt p2y = p2. y ( ) ; 
Doublelnt dlsq = pIx * pIx + ply * ply; II robust but slow 
Doublelnt d2sq = p2x * p2x + p2y * p2y; II robust but slow 
return dlsq < d2sq ? -1 . d1sq > d2sq; II robust but slow . 

} 

The levelization of this system is shown in Figure 5-63. Notice that the class 
OrderedPaintCollection depends on Point in name only, but MyPoints: :compare 

depends on Poi n t in size. The virtual function is acting as a "callback" because the 
comparison operation must be performed in the context of the Poi nt's actual defini
tion. Unlike the callback function taking two generic pointers, the virtual function 
expects canst references to Poi nt objects. This in-name-only dependency of 

Or de red Poi n teo 1 1 e c t ion on P a i n t provides a welcome degree of type safety, 
improving maintainability while making the component easier to use. 

Level 2: MyPoints 

Levell: 

In Name Only 

Figure 5-63: Using a Virtual Function as a Callback to Enable Factoring 

Callbacks are powerful decoupling tools, but they should be used only if necessary. A 
mutual dependency generated by a pair of classes that call each other's member func
tions is a symptom of a poor -design. Callbacks can sometimes be used to break the 
cycle, but usually this problem is better handled by repackaging the functionality. 
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Consider again the original, poorly factored, runtime database architecture shown in 
Figure 5-27. If the read function of each parser implements a stateless algorithm, we 
could conceivably pass the parsing function to the Runt i meDB as a callback: 

RuntimeDB: :Status RuntimeDB::read( 
RuntimeDB: :Status(*parseFunc)(const char *). 
canst char *filename); 

However, the resulting obfuscation would probably be unjustifiable. Unlike the previ
ous example where OrderedPoi ntColl ecti on did not depend in size on Poi nt, each 
concrete parser would have to know all about the database in order to load it. If parsing 
involves state and/or a multifunction interface, the standard object-oriented approach 
would be to create an abstract parser base class and to derive concrete parsers for use 
with specific formats, as illustrated in Figure 5-64. 

Figure 5-64: Demoting the Interface to Implement a Callback 

This alternative revised architecture is better than the parser design as first presented 
in Section 5.3, because there is no physical coupling among individual parsers, nor is 
there a dependency of any processor on any parser implementation. However, this 
architecture is not optimal because it forces the runtime database to know about the 
interface common to all parsers: 

#include "parser.h" 

RuntimeDB::Status RuntimeDB::read(Parser *parser, canst char *filename) 
{ 

parser-)read(this, filename); II virtual function call 
} 
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The runtime database may be reused by other systems that have no need for parsers. 
Coupling the runtime database to a specific parser interface unnecessarily encumbers 
the subsystem, making it less general, less understandable, and less appealing to reuse. 
This unnecessary coupling could also adversely affect the maintainability of the runtime 
database if the kind of information needed during parsing is frequently updated. 

The best design for this system was the revised architecture presented in Figure 5-29 of 
Section 5.3, which placed the database at the bottom of the system hierarchy with 
absolutely no dependency on parsers. That architecture allowed the database group to 
develop and test its subsystem in complete isolation, rather than being sandwiched 
between the interface and the implementation supplied by the group developing pars
ers. The moral of this story is that the unnecessary use of callbacks is something to be 
avoided. 

Callbacks can also be installed statical1y (i.e., outside of any instance). The new han
dler14 is an example of a static callback function with reasonable initial behavior. Cli
ents can substitute their own function for the default in order to allow them to clean up 
their application in a higher-level context. 

The need for callbacks can be a symptom of a poor overall architecture. 

Sometimes, however, static callbacks can be used to great advantage to eliminate 
dependencies on large subsystems. Consider the subsystems shown in Figure 5-65, 
where we need to implement a heterogeneous list of planets-that is, a list of objects 
that are related to the base class P 1 an e t via inheritance. Since the list is polymorphic, 
each link cannot have a P 1 a net but must instead hold (the address of) a P 1 an e t. The 
actual Pl anet object is allocated dynamically by the client and handed over to the 
list, which assumes ownership of the Pl anet's memory from then on. When the 

P 1 an e t Lis t is destroyed, so are all of the P 1 an e t objects it contains. 

14 stroostrup, Section 9.4.3, pp. 312-314. 
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CCD = 30,005 
(orCeD = 5) 

class SolarSystem { 
Star d_sun; 
PlanetList d_list; 
I / ... 

} ; 

\. 
\. 

(

If this . ndency ) 
were Just 

In Name Only 
class PlanetList { 

/ I .... 

} ; 

public: 
Pl anetL i st(); 
--Pl anetL i st(); 
void addPlanet(Planet *newPlanet); 

II list now owns memory of newPlanet 
II ... 

solar system subsystem 
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\. 

~i"X~~~_~· •• · •••• ·•· •••••• · •• il Link Cost = 10,000 

planet subsystem 

Figure 5-65: A BIG Problem 
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As you might well imagine, P 1 a net is a very large and complex base class object with 
many dependencies and a correspondingly high link-time cost. We would like to avoid 
a physical link-time dependency of Pl anetl i st on Pl anet, especially in this (admit
tedly unusual) case where So 1 a rSy s tern otherwise depends on P 1 a net in name only. 

We could try to implement the Pl anetL i st using only opaque pointers to Pl anet 
objects. The problem with that approach is that our P 1 an e t Lis t will not have seen the 
definition of class P 1 a net and therefore will not know how to destroy one. We could 
change the specification of P 1 an e t Lis t so that it does not itself destroy the planets, 
and escalate that functionality to a higher level (e.g., Sol a rSystem) as suggested in 

Figure 5-66. 

class SolarSystem { 
Star *d_sun_p; 
PlanetList d_list; 

} ; 

static void destroyPlanets(PlanetList *list); 
/ / ... 

public: 
/ / ... 
~SolarSystem() { destroyPlanets(&d_List); } 
/ / ... 

Figure 5-66: Escalating Planet Destruction to a Higher Level 

But in our example, even Sol a r Sy stem uses P 1 an e t in name only. Since the use of the 
Pl anetL i st type is an encapsulated implementation detail of Sol arSystem, it is not 
obvious how to escalate this functionality any higher. 

With complete control over the entire subsystem, a good solution could be to demote the 
interface of P 1 an e t, as shown in Figure 5-67. Now P 1 an e t is just an interface, and all of 
the physical coupling is elevated to a higher level that does not affect Sol arSystem. 
Testing P 1 an e t Lis t will now require deriving a trivial "stub" implementation for 
P 1 a net in the P 1 a net Lis t driver. 
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CCD=8 

In Name Only 

bW •....•.•....• ? ............... ~~~.·· ..... ·· •...• 'i .• 1 Link Cost = 10,001 

\ 
\ 

\ 

solar system subsystem 

planet subsystem 

Figure 5-67: Demoting Pl anet's Interface to a Lower Level 

Unfortunately, we don't control the universe and must live with a poorly factored 
Pl anet. We can still break the physical dependency but it will require the use of a 
redundant callback function. Suppose we add a static member to class P 1 an e t Lis t of 
the following type: 

typedef void DestroyPlanetFunc(Planet *); 



286 Levelization Chapter 5 

The P 1 a net Lis t class now has a static data member that is a pointer to a callback func

tion that potentially has the necessary context to destroy an instance of class Pl anet. 
Before using a P 1 an e t Lis t for the first time, a client (who knows about P 1 an e t) should 

"prime" the class by calling the static method Pl a net Lis t: : setDes t royPl a net Func 

with the address of a suitably defined function as shown in Figure 5-68. When the 

P 1 a net Lis t is destroyed, it can then call the des t roy P 1 a net function on each planet 

that it owns. 

II client.c 
#include "client.h" 
lIinclude "planet.hl! 
#include "planetlist.h" 
I I ... 
static void destroyPlanet(Planet *p) { delete p; } 
I I ... 
Client::initC) 
{ 

} ; 
II 

PlanetList::setDestroyPlanetFunc(&::destroyPlanet); 
II 

Figure 5-68: Installing a Redundant Callback 

A rough sketch of the relevant portions of the p 1 a net 1 i s t component is given in Fig

ure 5-69. Class P 1 an e t Lis t provides a mechanism for a client at a higher level to 

install the callback function to destroy a P 1 an e t. When a P 1 an e t Lis t is destroyed, 

the destructor checks to see if a destroy function has been installed, and if so applies it 
to each P 1 an e t in the list in tum. If no callback function has been installed by the time 

the Pl anetL i st is destroyed, the contained Pl anet objects are not destroyed and the 

dynamic memory associated with each Pl anet is "leaked." (Memory leaks are dis

cussed in Section 10.3.5). 
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II planetlist.h 
I I ... 
class PlanetListlter; 
class PlanetList { 

/ I ... 
friend PlanetListlter; 

public: 
typedef void DestroyPlanetFunc(Planet *); 

private: 
static DestroyPlanetFunc *d_destroyPlanetFunc_p; 

public: 
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static void setDestroyPlanetFunc(DestroyPlanetFunc *func); 
I I ... 

} ; 
II 

""'PlanetList (); 
I I ... 

class PlanetListlter { 
I I ... 

} ; 

public: 
PlanetListlter(const PlanetList &list); 
""'PlanetListlter(); 
void operator++(); 
operator const void *() const; 
const Planet& operator()(). const; 

, 
/ 

I I ... 

II planetlist.c 
#include "planetlist.h" 

PlanetList::DestroyPlanetFunc *PlanetList::d_destroyPlanetFunc_p - 0; 

void PlanetList::setDestroyPlanetFunc(DestroyPlanetFunc *func) 
{ 

d_destroYPlanetFunction_p _ func; 
} 

void PlanetList: :""'Pl anetList() 
{ 

} 

if (d_destroyPlanetList_p) { 

} 

for (PlanetListlter it(*this); it; ++it) { 
(*d_destroyPlanetList_p)(it()); 

} 

else { 
II memory leak! 

} 

Figure 5-69: Using Callbacks to Enable Independent Testing 
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U sing callbacks in this way is not the least bit elegant. Using P 1 an e t Lis t requires 
knowing about low-level details with which a client should not be bothered. This 
approach is not recommended for public interfaces, as it can be assumed that people 
will forget to initialize the container class before they use it. To make matters a bit 
worse, P 1 an et Lis t is not in the public interface of So 1 a rSy s tern. It will therefore be 
necessary for So 1 a rSy stem to provide a static member such as 

class SolarSystem { 
/ / ... 

} ; 

public: 
static void init(void (*)(Planet *)); 
/ / ... 

that must then forward the initialization call to the P 1 an e t Lis t class.·-

To summarize the results of this section, a callback is a function that is supplied by a 
client to allow a (usually) lower-level component to take advantage of a behavior that 
requires a (usually) higher-level context. Virtual functions can be used to implement a 
type-safe callback mechanism. Callbacks are a powerful tool for breaking dependen
cies between cooperating classes. Callbacks are extremely important for graphics and 
event-based programming. 

Used inappropriately, callbacks can blur the responsibility of low-level objects and 
result in unnecessary conceptual coupling. In general, callbacks (like recursion) can 
be more difficult to understand, maintain, and debug than conventional function calls. 
Their (pseudo) asynchronous behavior requires a different type of attention from 
developers. As a rule, callbacks should be treated as a refuge of last resort. 

5.8 Manager Class 

In the name of minimizing complexity and effort, it is easy to become too frugal with 
classes. Trying to implement an integer list with only a single class is a good illustra
tion of this common mistake. One might suggest, as in Figure 5-70a, that a list could 
be just a pointer to aLi n k or, as in Figure 5-70b, that the link operations could be 
merged with the methods associated with the List itself. 

The problem with approach (a) is that the level of abstraction is too low for an appli
cation to use effectively. Approach (b) fails to encapsulate private implementation 
details of Lis t. Clients of a list abstraction will not want to be bothered with the low-



section 5.8 Manager Class 289 

level details of managing the memory of the individual links, or with ensuring that the 
low-level policies of a list implementation are enforced. 

(a) 
Li n k* ... --....ott> - C> -- -

int int 
o 
int 

Link Link Link 

o 
(b) 

? int int int 
List List List List 

Figure 5-70: How Not to Implement ali 5 t Component 

Even in a two-class list architecture, the role of the subordinate class can be abused. 
Normally, a list object itself destroys each of its links directly, but as shown in Figure 
5-71, the destructor for this Lis t deletes only the head Lin k. Each Lin k, in tum, 
recursively deletes its d_next_p pointer. This "elegant" approach (apart from being 
slower and running the risk of overflowing the program stack for long lists) makes it 
less clear which object owns which, primarily because instances of the same type are 
authorized to destroy one another. A better, more hierarchically structured way for the 
Lis t class to clean up when it is destroyed.is to traverse the list of Lin k objects and to 
delete each Lin k in turn, as shown in Figure 5-72. 

class List { 
Link *d_head_p; 

public: 
I I ... 
,.... Lis t () { del e t e d_ he a d_p; } 

I I bad idea 
I / ... 

class Link { 
Link *d_next_p; 
int d_data; 

public: 
I I ... 
~Link() { delete d_next_p; } 

II bad idea 
I I ... 

Figure 5-71: Lis t with Lin k that Recursively Deletes the Next Lin k 
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List: :'"'"'List() 
{ 

} 

while (d_head_p) ( 

} 

Link *p = d_head_p; 
d_head_p = d_head_p->next(); 
delete p; 

Chapter 5 

Figure 5-72: List with Destructor that Iteratively Deletes Each Link 

Establishing hierarchical ownership of lower-level objects makes a 
system easier to understand and more maintainable. 

Again the corporation analogy pertains. Regular employees do not hire and fire each 
other; that job is reserved for managers. The intrinsic problem is in not distinguishing 
between the classes used to implement an abstraction and the manager class used to 
enforce policy, manage memory, and coordinate the implementation classes. Note that 
the manager class knows about its subordinate classes, but not vice versa. 

All too often the cyclic interconnection among instances of classes seems to suggest 
that this cyclic nature should be reflected in the physical design of a system. For small 
cyclicly dependent networks of objects that are inherently tightly coupled and whose 
definitions fit easily within a single component, there may be no reason to eliminate 
such cycles. That is, if it makes sense from a standpoint of usability and reuse to 
present two or more cohesive logical units in a single physical unit, and the functional 
complexity of the combined implementation does not pose an obstacle to effective 
testing, then there may be no problem that requires solving. On the other hand, the 
coupling may also be the result of not knowing how to avoid the interdependenc~es, or 
of not even having considered the issue in the first place. 

As another example where the concept of a manager class proves useful, consider a 
simple graph consisting of nodes and edges. A graph is among the most basic of het
erogeneous class networks; yet a node could be as complex as a workstation on a 
local area network (LAN), or a planet in a solar system. In other words, the size and 
complexity of the graph-independent portion of the node and/or edge might be very 
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large compared to its network-related aspects. It is in these cases that there is consid
erable motivation to decouple nodes from edges. 

Let us start with the situation suggested by Figure 5-10. We can illustrate the princi
ples related to achieving a levelizable interconnected network of heterogeneous 
objects by attempting to develop a simple graph with the premise that Node and Edge 

are complex and should belong to distinct physical components. 

A known effective technique for avoiding cyclic physical dependencies is to make all 
pointers and references to higher-level components be in name only. Perhaps we can 
concoct a levelizable subsystem in which edge dominates node. Our strategy will be 
to have Node hold a collection of opaque Edge pointers, as illustrated in Figure 5-73. 
Taking this approach means that all substantive questions that involve edges cannot be 
answered at the node level. 

Level 2: 

In Name Only 

Levell: 

Figure 5-73: Node Uses Edge In Name Only 

In the process of trying to test component n ad e independently, we immediately realize 
some problems (refer to Figure 5-74). First, clients must not add Edge pointers to a 
Node directly. Otherwise the Node object would know about the newly added Edge but 
the Edge object would remain ignorant of its new connection to a Node, leaving the 
system in an inconsistent state. Therefore, only Edge objects are allowed to add an 
Edge pointer to a Node, but there is no way to enforce this policy with Node and Edge 

defined in separate components (see Section 3.6.2). 

Second, testing Node requires creating a dummy Edge class in order to gain access to 
the private addEdge function-that is, we are not able to test Node from its intended 
public interface alone. 



292 Levelization 

class Node { 
I I ... 

} ; 

friend Edge; 
. void addEdge(Edge *edge); 

.,/ Node (const Node&); 
Node& operator=(const Node&); 

public: 
Nade(const char *name); 
-Node ( ) ; 
canst char *name() canst; 
int numEdges() canst; 
Edge& edge(int index) const; 

ChapterS .' 

II long-distance friend 
II private, set only by edge 

II Who owns the memory for nodes? 
II Who is allowed to destroy them? 

II Reference hampers testing slightly 
II since Edge is used in name only. 

Figure 5-74: Problems Associated with Original Graph Design 

Third, the Node's edge function is correctly designed (from the end-user perspective) 
to return, references and not pointers. A reference (even an opaque one), unlike a 
pointer, must identify the address of a valid object and therefore cannot (portably) be 
null or refer to an illegal address. So if we ask for an Edge of a newly created Node 
(which has no edges) we are in trouble. Incrementally testing Node's public edge 
function at the node component's level requires not only creating a dummy Edge class 
to gain access to the private add Ed g e function of Nod e, but also adding actual 
instances of this bogus Edge class so that their (valid) addresses can be compared later 
against the lvalues returned by edge (i nt). 

Finally, it is not clear who owns the memory for Node instances or who is allowed to 
create and destroy them. For example, what happens if we try to destroy a Nod e before 
we have removed all of its edges? The answer is that nothing unusual happens-at 
least not right away_ Since Node does not know about Edge, it does not know how to 
destroy one. Using an Ed g e to access a deleted Nod e will, of course, result in unpre
dictable behavior. We could pass a callback function to Node that knows how to delete 
an Edge, but then we must ensure that Edge objects are created only on the heap. 

At this point our design has run out of steam. As often happens in practice, we need to 
step back and look at the abstraction we are trying to implement, namely a graph. Just 
as with rectangl e and wi ndow, neither node nor edge inherently dominates the other. 
There is a mutual dependency involving ownership, which we need to escalate to a 
higher level of the system. 
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Figure 5-75 shows the basic architecture of the new design that will serve as a sound 
starting point. Class G rap h will be responsible for managing the memory associated 
with instances of both Edge and Node. Nodes and edges will be added to the graph 
through G rap h 's interface, as opposed to creating them independently. When a Nod e is 
deleted from the graph, G rap h itself will ensure that all Ed g e objects attached to that 
Node will be deleted first. This basic design still suffers from the problem that both 
Node and Edge must declare Graph to be a fri end. Otherwise unruly clients could, for 
example, add an Edge to a Node unbeknownst to either the Edge or the Graph, causing 
the graph subsystem to become internally inconsistent. Since we want Node and Edge 

to be defined in separate components, we are still not satisfied. 

Level 2: 

Levell: 

In Name Only 

Figure 5-75: Basi~ Architecture of Graph Subsystem 
., 

For a simple graph, it may be entirely reasonable to place all three classes within a 
single component. But because our goal here is to use the graph to illustrate how to 
implement much more complex networks, we will not take that approach. There are 
(at least) two other ways to address this problem: 

1. Factor out as much code as possible from the coupled system into inde
pendent components, and place the remaining, mutually dependent 
classes in a single component. 

2. Escalate the level at which encapsulation for the entire subsystem occurs 
to eliminate the need for low-level friendships~~/ 

Each of these techniques is discussed in detail in the following two sections. 
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In summary: establishing clear ownership of cooperating objects is essential to good 
design. If two or more objects share mutual ownership, that functionality should be 
escalated to a manager class. 

5.9 Factoring 

Factoring means extracting pockets of cohesive functionality and moving them to a 
lower level where they can be independently tested and reused. Factoring is a very 
general and highly effective technique for reducing the burden imposed by cyclicly 
dependent classes. Factoring is similar to. demotion except that the act of factoring 
does not necessarily eliminate any cycles; instead it merely reduces the amount of 
functionality that participates in the cycle. Factoring has the effect of escalating cyclic 

" 

dependencies to a higher level where their adverse effects are less pronounced. 

To demonstrate the use of factoring, suppose we are given a design consisting of three 
intrinsically interdependent classes A, B, and C, as illustrated in Figure 5-76a. Suppose 
further that the original logical interface is cast in stone and may not be modified. 
More than likely, not all of the functionality implemented in these three classes is 
inseparably coupled to the rest. We can use the technique of factoring to extract any 
independently testable implementation complexity, and thus reduce the burden of 
maintaining the truly cyclicly dependent portion of the code. As illustrated in Figure 
5-76b, if we are successful in factoring a significant amount of the implementation 
into independent components, the remaining interdependent code may be small 
enough to justify placing it into a single component. 
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(a) Original, Unlevelizable Design (b) Factored, Levelizable Design 

Figure 5-76: Factoring Out Independently Testable Implementation Details 

Factoring out and demoting independently testable implementation 
details can reduce the cost of maintaining a collection of cyclicly 
dependent classes. 

Fortunately, our graph example is less extreme than the hypothetical case above. We 
have some flexibility in our logical design, and it will turn out that the implied physi
cal dependencies are not as severe as the hypothetical ones we are postulating. For 
now, let us continue to assume the worst-that is, that our initial graph subsystem is a 
design consisting of three intrinsically, mutually dependent classes: 

Graph 

Node Edge 
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The first place to employ factoring is to separate the part of Nod e that holds graph
related ,data from the part of Node that holds graph-independent data. Inheritance is 
ideal for this kind of factoring. We can do the same for Edge. The basic idea is shown 
in Figure 5-77. 

Level 2: 

Levell: 

node edge 

Figure 5 .. 77: Factoring Out Network-Independent Data 

In this new design, all of the tightly coupled, graph-related functionality lives in a sin
gle component, implemented using the three classes Graph, Gnode, and Gedge. The 
graph-independent data contained in Node and Edge is now pushed down to a lower 
level, and can be shared with other applications that are not concerned with the graph
related functionality. 

Figure 5-78 illustrates the factored, network-independent portions of node and edge. 
In this trivial illustration a Node is nothing more than a name, and an Edge is just a 
do U b 1 e. But suppose for a minute that the nodes in the graph are actually cities and 
the edges are roads. The network component of a city, implicit in Gnode, is not neces
sary to perform many complex operations on a Node itself. A Gnode is just a special 
kind of Node that participates in Graph operations. Once an instance of Gnode has 
been obtained from Graph, it can be used anywhere in which a Node is required, as 
illustrated in Figure 5-79. 
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// node.h 
#ifndef INCLUDED NODE 
#define INCLUDED_NODE 

class Node { 

} ; 

char *d_name_p; 

public: 
Node(const char *name); 
NodeCconst Node&); 
-Node(); 
Nod~& operator=Cconst Node&); 
const char *nameC) const; 

#endif 

(a) Independent node Component 

Factoring 297 

/1 edge.h 
#ifndef INCLUDED_EDGE 
#define INCLUDED_EDGE 

class Edge { 

} ; 

double d_weight; 

public: 
Edge(double weight); 
EdgeCconst Edge&); 
~EdgeC) ; 
Edge& operator=(const Edge&); 

/ double weight() const; 

#endif 

(b) Independent edge Component 

Figure 5-78: Factored Network-Independent node and edge Components 

class Node; 
class ostream; 

class Census { 

} ; 

static int countPeople (const Node& node) 
I I ... 

#include "graph.h" 
int g(const Gnode& gnode) 
{ 

return Census::countPeopleCgnode); II uses only the Node portion 
} 

Figure 5-79: Reusing the Network-Independent Portion of a Node 

Another advantage in factoring nodes and edges involves a concept called value 
semantics. Saying that a type has value semantics means that a copy constructor and 
(usually) an assignment operator are inherently (Le., semantically) valid operations 
for a type. 15 

/' ... -' 

15 Sometimes we choose not to implement a copy constructor (e.g., for an iterator) even when the 
operation could make sense; however, the abstraction itself has value semantics. 
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For example, consider a condominium complex that contains a fixed amount of land 

on which to build single-family homes. The land is divided into 25 lots, arranged in a 

5-by-5 grid. The rows of lots are labeled A to E, and the columns are labeled 1 to 5 as 

shown in Figure 5-80. 

E~O 0 0 0 
D~O 0 0 
C~O 0 
B 000 

o 
1 2 3 4 5 

CondoComplex 

Model Home 

Figure 5-80: Array of 25 Lots in our CondoComp 1 ex Example 

Each Lot is a separate object that maintains its own list of adjacent lots and is man

aged by the CondoComp 1 ex object. For example, Lot A2 holds pointers to Lot objects 

AI, B2, ~nd A3. A House has value semantics because copy construction makes sense 

for a House. In other words, it makes sense to copy a House from Lot to Lot-that is, 

all houses could look exactly the same. 

Suppose now that a Property consists of both the House and the Lot on which it sits, 

and that the CondoCompl ex object manages an array of Property objects instead of 

Lot objects. Does a Property .. also have value semantics? The answer is no, because 

we cannot copy one lot to another. 

If we tried to assign the Property with Lot location A2 to the Property with Lot 
location C4, we would clobber the adjacency list associated with Lot C4 and invali
date the larger CondoComp 1 ex object. We therefore cannot make arbitrary independent 
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copies of a Property the way we can for a House. A Property therefore does not 

have value semantics. 

Although the network portion of a node (defined by Gnode) does not have value 
semantics, the part that is defined by Nod e probably does. In C++ terms, this means 

- that the copy constructor and assignment operator of both Gnode and Gedge would 
necessarily be disabled (i.e., declared private), but Node and Edge could each define 
meaningful copy constructors and assignment operators, as shown in Figure 5-81. 
(The complete interface for graph is given in Figure 5-86.) 

void fCconst Graph& g) 
{ 

const Gnode& a = g.node("Zurich"); II fine - lvalue returned 
Gnode b = g.nodeC"London"); II error - no value semantics 
Node& c = g.node("Paris"); II fine - modifiable lvalue returned 
Node d = g.node("Tokyo"): II fine - value semantics 
a = b: II error - no value semantics 
c = d; II fine - make Tokyo look like Paris 

} 

Figure 5-81: Illustrating Value Semantics in a Graph 

Where unavoidable, escalating cyclic physical dependencies to the 
highest possible level reduces CCD and may even enable the cycle to 
be replaced by a single component of manageable size. 

Our second opportunity to factor comes from the observation that, in order to manage 
Node and Edge objects properly, Graph will need to keep track of the Gnodes an Gedge 

objects it allocates so that when it is destroyed, all of the memory associated with 
the nodes and edges of this graph can be recovered. Moreover, each Gnode will also 
have to keep track of the Gedge objects adjacent to it (in name only). We have the 
opportunity to factor out all of this functionality from the graph component classes 
by creating a collection of opaque pointers. 

A bag is a kind of container that, unlike a list, does not impose an order on its ele
ments nor, unlike a set, does it require elements to be unique. Because the semantics 
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of a bag are not heavily specified, its implementation is left quite flexible. A Graph 

will maintain a bag of Node pointers and a bag of Edge pointers. Whether or not We 
have an efficient template implementation, we will want to factor this problem further 
by creating a bag of (generic) pointers. 

Figure 5-82 shows our factored implementation of a generic bag of pointers and Spe
cialized components that take advantage of this generic container to implement bags 
of pointers of a specific type. We can use either layering or private inheritance to 
achieve the desired specialization and restore the type safety of the individual opaque 
pointers. Templates would be ideal, but some implementations can be very costly in 
terms of link time (as discussed in Section 10.4.1). For purely pragmatic reasons we 
may be forced to express the specialized types explicitly. Whatever the implementa
tion, all of the function arguments are forwarded to the generic P t r Bag class via 
i n 1 i n e functions in order to avoid incurring any additional overhead due to conven
tional function calls. 

gnodeptrbag gedgeptrbag 

ptrbag 

Figure 5-82: Generic PtrBag Container and Specializations 

Figure 5-83 shows the header for a ptrbag component, consisting of four classes. 
Pt rBa 9 Lin k is a low-level implementation class whose use is an encapsulated 



section 5.9 Factoring 301 

implementation detail of the other three classes in the p t r bag component. We could 
instead have placed PtrBagLink in a separate component, defined it entirely within 
the p t r bag. c file, or nested it within class P t r Bag. (The advantages and disadvantages 
of these and other similar design alternatives are compared and discussed in Section 
8.4.) 

II ptrbag.h 
#ifndef INCLUDED_PTRBAG 
#define INCLUDED_PTRBAG 

class PtrBaglter; 
class PtrBagManip; 

class PtrBagLink { 

} ; 

void *d_pointer_p; 
PtrBagLink *d_next_p; 

private: 
PtrBagLink(const PtrBagLink&); 
PtrBagLink& operator=(const PtrBagLink&); 

public: 
PtrBagLink(void *pointer. PtrBagLink *next); 
---PtrBagLink(); 
PtrBagLink *&nextRef(); II used by manipulator 

'PtrBagLink *nextC) const; 
void *pointerC) const; 

class PtrBag { 

} ; 

PtrBagLink *d_root_p; 
friend PtrBaglter; 
friend PtrBagManip; 

private: 
PtrBagCconst PtrBag&); 
PtrBag& operator=(const PtrBag&); 

public: 
PtrBag(); 
..... PtrBag(); 
void add(void *pointer); 
void removeAll(const void *pointer); 

class PtrBagIter { 
PtrBagLink *d_link_p; 
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} ; 

private: 
PtrBaglter(const PtrBaglter&); 
PtrBaglter& operator=(const PtrBaglter&); 

public: 
PtrBaglter(const PtrBag& bag); 
""'PtrBaglter(); 
void operator++(); 
void *operator()() const; 
operator const void *() const; 

class PtrBagManip { 

} : 

PtrBagLink **d_addrLink_p; 

private: 
PtrBagManip(const PtrBagManip&); 
PtrBagManip& operator=(const PtrBagManip&); 

public: 
PtrBagManip(PtrBag* bag); 
---PtrBagManip(); 
void advance(); 
void remove(): 
void *operator()() const; 
operator const void *() canst; 

II inline function definitions omitted 

#endif 

Figure 5·83: Header File for Generic ptrbag Component 

Chapter ~ 

P t r Bag is a container used to hold generic pointers. For this application, a redundant 
but convenient member function is supplied to remove all pointers with the specified 
value from the Pt rBa g. Pt rBa 9 I te r is part of the logical abstraction of a bag of point
ers, allowing clients to iterate over the bag, returning its contents in some unspecified 
order. P t r Bag Man i p is similar to P t r Bag I t e r except that it allows its client to modify 
the bag by selectively removing entries-a capability punctuated by requiring the client 
to supply the address of the container to be manipulated. 

Most of the functions declared in p t r bag. h would probably be implemented inline, 
simply because the size of the code they ge~erate inline is smaller than that of a func
tion call. The few exceptions are implemented out of line, as shown in Figure 5-84. 
The destructor for PtrBag as well as the removeA 11 function have loops, making 
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them poor candidates for inlining. The add function accesses the global free store, so 
it is useless to try to inline it for speed purposes. The remove function consists of 
enough code that calling a function will probably produce less object code than sub
stituting the source in place. While the remove function call adds some execution 

~ 

overhead, removing edges is not expected to be a frequently executed function. After 
performance analysis, the remove function is the only one of these four that stands a 
chance of improvement by being declared i n 1 i n e. 

II ptrbag.c 
#include "ptrbag.h" 

PtrBag: :-PtrBag() 
{ 

} 

PtrBagManip man(this); 
while (man) { 

man.remove(); 
} 

void PtrBag::add(void *pointer) 
{ 

} 

void PtrBag::removeAll(const void *pointer) 
{ 

} 

PtrBagManip man(this); 
while (man) { 

mane) == pointer? man.remove() man.advance(); 
} 

void PtrBagManip::remove() 
{ 

} 

PtrBagLink *tmp = *d_addrLink_p; 
*(PtrBagLink **)d_addrLink_p = (*d_addrLink_p)->next(); 
delete tmp; 

Figure 5-84: Implementation File for Generic ptrbag Component 

The component-dependency graph for the new subsystem is shown in Figure 5-85. 
Look at all of the functionality that has been extracted from the cyclic group of 
classes buried in the graph component. This functionality can now be tested and 
reused independently of that cycle. The functionality in gedgeptrbag is reused in two 
different ways even within the graph component itself: once in class Graph to keep 
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track of all edges, and once in class Gnode to keep track of connected edges. At this 
point we have reduced the amount of cyclicly dependent code to a manageable level 
of complexity appropriate for a single component-g rap h. The complexity of the 
graph-independent functionality identified by either Node or Edge is now segregated 
into independent components, that are testable in isolation. 

Level 3: 

Level 2: 

Levell: / 

Figure 5-85: Component Dependency for a Factored Graph Architecture 

Figure 5-86 gives the complete header file for the graph component. This implemen
tation is efficient, flexible, and reasonably maintainable. However, using this compo
nent is not so straightforward because some of the interface (along with the 
implementation) has been factored out and placed in reusable components at lower levels. 

II graph.h 
#ifndef INCLUDED_GRAPH 
#define INCLUDED GRAPH 

#ifndef INCLUDED_NODE 
#include "node.h" 
#endif 

#ifndef INCLUDED EDGE 
#include "edge.h" 
#endif 

#ifndef INCLUDED_GNODEPTRBAG 
#include "gnodeptrbag.h" 
4Iendif 

4Iifndef INCLUDED_GEDGEPTRBAG 
#include "gedgeptrbag.h" 
lIendif 

class Graph; 
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class Gnode : public Node { 
GedgePtrBag d_edges; 
friend Graph: 

} ; 

Gnode(const Gnode&); 
Gnode& operator=(const Gnode&); 

private: 
Gnode(const char *name): 
---Gnode() ; 
void add(Gedge *edgePtr): 
void remave(Gedge *edgePtr); 

public: 
const GedgePtrBag& edges() const; 

class Gedge : public Edge { 
Gnode *d_from_p; 

} ; 

Gnode *d~to_p; 

friend Graph; 
Gedge(const Gedge&); 
Gedge& operator=(canst Gedge&); 

private: 
GedgeCGnode,*from, Gnode *to, double weight): 
---Gedge(): 

public: 
Gnode *from() const; 
Gnode *to() canst; 

class Graph { 
GnodePtrBag d_nodes; 
GedgePtrBag d_edges; 
GraphCconst Graph&); 
Graph& operator=(const Graph&); 

public: 
Graph(); 
....,Graph ( ) ; 

Gnode *addNode(const char *nodeName); 
Gnode *findNode(const char *nodeName); 
void removeNode(Gnode *node); 

Factoring 305 

II not implemented 
II not implemented 

II not implemented 
II not implemented 

Gedge *addEdge(Gnode *from, Gnode *to, double weight); 
Gedge *findEdgeCGnode *from. Gnode *to); 
void removeEdgeCGedge *edge): 

canst GnodePtrBag& nodes() const; 
canst GedgePtrBag& edges() const; 

} ; 

lIendif 

Figure 5-86: graph Component Header Defining Classes Gnode, Gedge, and Graph 
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For example, suppose you wanted to iterate over the edges connected to a particular 
node in a graph. You would need to get the bag of Gedge pointers from that Gnode and 

then use that bag to construct an instance of EdgePtrBagIter: 

int sumOfEdgeWeights(const Gnode& gnode) 
{ 

} 

i nt sum = 0; F''-'I,-

for (GedgePtrBaglter it(gnode.edges()); it; ++it) { 
sum += itC)-)weight(); 

} 

return sum; 

Conveniently, the same methodology works for obtaining all of the edges and nodes 
from the graph itself, as illustrated in the implementation of the output operator for a 
Graph given in Figure 5-87. 

ostream& operator«Costream& 0, canst Graph& graph) 
{ 

} 

cout « "Graph: II « endl; 
GnadePtrBaglter nit(graph.nodes()); 
if (nit) { 

a «II Nodes: lI
; 

} 

for (; nit; ++nit) { 
a < <" "< < nit ( ) - ) n a me ( ) ; 

} 

canst char *p =" Edges: " . , 
canst char *q = II "; 

for (GedgePtrBaglter eit(graph.edgesC)); eit; ++eit) { 
o « endl « p « eit()-)fromC)-)name() 

« " ___ (II « eit()-)weight() « ") __ ) " 
« eit()-)ta()-)nameC); 

p = q; 
} 

a « endl « IIEnd Graphll « endl: 
return 0; 

Figure 5-87: An operator« for Graph Using Low-Level Iterators 

A test driver implementing the graph component of Figure 5-86 is given, along with 
its output, in Figure 5-88. Notice that the Gnode pointers returned by both addNode 

and fi ndNode point directly at the corresponding Gnode within the Graph. The only 
publicly available function in Gnode, edges ( ), supplies a const reference to its bag of 
Gedge pointers, which can then be used directly by the client to traverse the graph. 
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The only public functionality available in a Gedge provides access to the two Gnode 

objects to which the Gedge is connected .. 

// graph.t.e 
#inelude "graph.h" 
ifinclude "gnodeptrbag.h" 
ifinelude "gedgeptrbag.h" 
#include <iostream.h) 

ostream& operator«(ostream& 0, const Graph& graph); 

maine) 
{ 

Graph g; 

{ 

} 

Gnode *nl - g.addNodeC"Mindy"); 
Gnode *n2 - g.addNode("Susan"); 
Gnode *n3 - g.addNode("Rick"); 

g.addEdge(n2, nl. 4); 
g.addEdge(nl, n3, 5); 
g.addEdge(n3. n2. 1); 

g.addNodeC"Franklin"); 
g.addNode("Cathy"); 

g. addEdge( g. fi ndNode( "Susan"), g. fi ndNode( II Frankl i nil), 6); 
9 . add E d 9 ,e ( 9 . fin d Nod e ( II Ric k " ), g. fin d Nod e ( II F ran k 1 i nil), 2); 
g. addEdge( g. fi ndNode( II Ri ck "), g. fi ndNode( "Cathy"), 3); 

cout « g; 

1-/ Output: 
john@john: 
Graph: 

Nodes: 
Edges: 

End Graph 
john@john: 

a.out 

Cathy Franklin Rick Susan 
Rick ---(3)--) Cathy 
Riek ---(2)--) Franklin 
Susan ---(6)--) Franklin 
Rick ---(1)--) Susan 
Mindy ---(5)--) Rick 
Susan ---(4)--) Mindy 

-, .. 

Mindy 

Figure 5-88: Simple Test Driver Illustrating Usage of the graph Component 
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Granting friendship does not create dependencies but can induce 
physical coupling in order to preserve encapsulation. 

In this implementation of G rap h, private access via (local) friendship to G nod e and 
Gedge is essential to preserving encapsulation. This design eliminates the problems 
associated with long-distance friendship by physically uniting the parts of the system 
that need to share common implementation details via private access. In other words, 
by combining Graph, Gnode, and Gedge in a single component, the required friend
ships are no longer long-distance ones. 

As illustrated in Figure 5-89, it turns out that Gnode and Gedge depend on each other 
in name only, and have no backward dependency on Graph. Although the three classes 
have no cyclic interdependencies, there is still a need for factoring. Clients of this sub
system will need to interact directly with both Gnode and Gedge. Making the entire 
interface of either Gnode or Gedge public would expose clients to implementation 
details of the 9 rap h component. Worse, doing so would allow clients to violate impor
tant policies enforced by the G rap h manager class. 

Graph 

In Name Only 

Figure 5-89: Actual Relationships Among Graph, Gnode, and Gedge 

For example, making the Gedge constructor public would allow clients to bypass the 
Graph object and create instances of a Gedge on the program stack. There would be 
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nothing to stop a wayward client from adding aGe d 9 e created on the program stack to 
a legitimate Gnode belonging to an otherwise valid Graph. 

To avoid these problems it is necessary to grant class G rap h access to private function
ality defined in both Gnode and Gedge. Avoiding long-distance friendship then forces 
us to place these intimately dependent classes in the same component. Although there 
is no direct physical dependency brought on by granting friendship, modularity and 
encapsulation dictate the effective physical coupling suggested in Figure 5-90. 

graph 

Figure 5-90: Implied Physical Coupling to Avoid Long-Distance Friendship 

The fact that the physical coupling is brought about only by friendship (as discussed in 
Section 3.6) and not hard physical dependencies opens the door to another technique, 
which we will explore in the next section. For completeness, the implementation file 
for the graph component is provided in Figure 5-91. 

To summarize the results of this section: factoring is a general technique that can be 
used to reduce the maintenance cost of designs with inherent cyclic dependencies. By 
relocating some of the implementation complexity to lower-level components, that 
functionality can be tested (and possibly reused) independently of the remaining 
cyclicly interdependent code. Factoring results in more flexible architectures without 
sacrificing runtime efficiency. When factoring the interface of a subsystem, clients 
may be asked to use component interfaces atlower levels of the subsystem hierarchy. 
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II graph.c . 
#include "graph3.h" 
#include <string.h) 

II -*-*-*-*- class Gnode -*-*-*-*-

Gnode: :Gnode(const char *name) : Node(name) {} 

Gnode: : ...... Gnode () {} 

void Gnode::addCGedge *edgePtr) { d_edges.add(edgePtr); } 

Chapters 

void Gnode::remove(Gedge *edgePtr) { d_edges.removeAll(edgePtr); } 

const GedgePtrBag& Gnode::edges() const { return d_edges; 

II -*-*-*-*- class Gedge -*-*-*-*

Gedge::GedgeCGnode *from, Gnode *to, double weight) 
EdgeCweight) 

, d_from_p(from) 
, d_to_pCto) {} 

Gedge: :---GedgeC) {} 

Gnode *Gedge::from() const { return d_from_p; } 

Gnode *Gedge: :toC) canst { return d_to_p; } 

1/ -*-*-*-*- class Graph 

Graph: :Graph() {} 

-*-*-*-*-

G r a -p h : : ""' G rap h C ) 
{ 

} 

for CGedgePtrBaglter eitCd_edges); eit; ++eit) { 
delete eitC); 

} 

for CGnodePtrBaglter nitCd_nodes); nit; ++nit) { 
delete nitC); 

} 

Gnode *Graph: :addNode(const char *nodeName) 
{ 

} 

Gnode *p = new Gnode(nodeName); 
d_nodes.addCp); 
return p; 

Gnode *Graph::findNade(const char *nodeName) 
{ 

} 

for (GnodePtrBaglter it(d_nodes); it: ++it) { 
if (0 == strcmpCit()-)name(), nodeName) { 

return itC); 

} 

return 0; 
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void Graph::r~moveNode(Gnode *node) 
{ 

GnodePtrBagManip nodeMan(&d_nodes); 
while (nodeMan) { 

if (nodeMan() == node) { 
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for (GedgePtrBaglter it(nodeMan()-)edges()); it; ++it) { 
d_edges. removeA 11 (i t ( ) ) ; 

} 

} 

nodeMan.remove(); 
} 

else { 
nodeMan.advance(); 

} 

Gedge *Graph: :addEdge(Gnode *from, Gnode *to, double weight) 
{ 

} 

Gedge *p = new GedgeCfrom, to, weight); 
d_edges.add(p); 
from-)addCp); 
to-)add(p); 
return p; 

Gedge *Graph::findEdge(Gnode *from. Gnode *to) 
{ 

for (GedgePtrBaglter itCd_edges); it; ++it) { 
if (it()-)fromC) == from && it()-)to() == to) { 

return it(); 
} 

} 

return 0; 
} 

void Graph::removeEdge(Gedge *edge) 
{ 

} 

GedgePtrBagManip edgeMan(&d_edges); 
while (edgeMan) { 

} 

if (edgeMan() == edge) { 
edge-)to()-)removeCedge); 
edge-)fromC)-)remove(edge); 
edgeMan.removeC); 

} 

else { 
edgeMan.advance(); 

} 

canst GnodePtrBag& Graph: :nodes() const { return d_nodes: } 

const GedgePtrBag& Graph::edges() const { return d_edges: } 

Fi2ure 5-91: graph. c Implementation File for graph Component 
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5.10 Escalating Encapsulation 

As a C++ programmer, you have no doubt encountered the notion of encapsulation. 
An interface is encapsulating if it makes the details of its implementation program
matically inaccessible to clients. A common misconception is that it is necessary for 
each individual class or component to encapsulate all implementation details and 
present a robust interface to the entire world. Doing so would make large, complex 
subsystems intolerably larger, slower, and more complicated than need be. Instead we 
can hide a number of useful low-level classes behind the interface of a single compo
nent (as was the case with the p2p_router component in Chapter 4.) We will often 
refer to such a component as a wrapper. 16 

Figure 5-92a illustrates a subsystem in which each individual component presents a 
public interface that is appropriate for direct use by clients in the context of using that 
subsystem. The encapSUlation for this subsystem is enforced on a per-component basis. 
Figure 5-92b shows a subsystem in which some of the components defined within the 
subsystem are not exposed in the overall subsystem interface as defined by the wrapper 
component, w. That is, none of the types defined in components u, v, or yare part of 
either the pub 1 i c or protected interfaces of w. Although components u, v, and y are 
individually available for use by anyone, there is simply no programmatic way even to 
detect whether these components are used to implement w. Consequently, there is no 
programmatic way to take any advantage of the objects defined in these components 
when interacting with instances of this subsystem. The encapsulation for subsystem B 
is enforced by the wrapper component at the highest level of the subsystem. 

16 A wrapper is a component-based implementation of a design pattern known as Facade in gamma, 
Chapter 4, pp. 185-193. 
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Clients of Subsystem A 
I 

• 
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• 
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interface component 

:f.:J>i: implementation component 
................ :: .. :::.:.::: .. 
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Clients of Subsystem B 

• 
• 

(a) Per-Component Encapsulation (b) Subsystem-Level Encapsulation 

Figure 5-92: Spheres of Encapsulation 

What is and what is not an implementation detail depends on the 
level of abstraction within the physical hierarchy. 

By analogy, a Spa rkPl ug is an implementation detail of Ca r, but Spa rkPl ug is used in 
the interface of Engi ne, which is encapsulated by Ca r. At the level of abstraction that 
is the inside of Car's subsystem, Spa r k P 1 u 9 is part of the public interface of the hier
archy of components that make up the Ca r's implementation. At the level of abstrac
tion of the Car's client, the Spa r k P 1 u 9 is hidden. 
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When we use a low-level library component (such as qsort) in the implementation of 
our subsystem, we do not think twice about how appropriate that component would be 
in the hands of our client. Whether or not we happen to make use of q so r twill 
remain an encapsulated implementation detail of our subsystem. We cannot stop our 
clients from using qsort on their own; however, we can easily conceal whether or not 
we make use of it ourselves. This same philosophy applies to components we define 
within our subsystem. 

Suppose that component y in Figure 5-92b defines the 0 r de red Poi n t Colle c t ion of 
Section 5.7. Clients of our subsystem may have absolutely no need for ordered point 
collections, yet this component is used by other components within our subsystem to 
implement higher-level functionality. At the lower levels of a subsystem, components 
will be exchanging correspondingly lower-level information. This information, 
although it is an implementation detail to the end user, is well defined, predictable, 
and appropriate for the interfaces of low-level components. 

We could try to hide 0 rde red Po i ntCo 11 ect i on by making all of its interface func
tions private and granting specific, higher-level components, such as u and v, friend 
status-but why complicate matters? There is no harm a client can do with the defini
tion of 0 r de red Poi n t C 0 11 e c t ion so as long as this type is not used in the interfaces 
of the components that define the overall interface to the subsystem. 17 

The subsystem shown in Figure 5-92a is similar in structure to the factored implemen
tation of the graph subsystem presented in the previous section. In that architecture 
(Figure 5-85), clients were asked to make use of lower-level components (such as 
ptrbag) in the normal course of using the subsystem. 

An alternative implementation for a graph would be to provide a wrapper component 
through which all clients of the graph subsystem must interact in order to use the sub
system. This wrapper (like component w in Figure 5-92b) would not only manage the 
other components in the graph subsystem but would also encapsulate several imple
mentation-level objects previously exposed to the user in the factored implementation. 

Recall that in the factored implementation of the graph subsystem, both Gnode and 
Gedge were managed by Graph, meaning that Graph alone was authorized to create 

17 If an implementation class provides functions that alter static variables within the class or . c file, 
this principle may not hold. 
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and destroy Gnodeand Gedge objects. In that implementation, both Gnode and Gedge 

were not encapsulated details of the subsystem; instances of these types, comprising 
the graph's implementation, were readily accessible through the interface of class 

Graph itself. To prevent clients from usurping the manager class's authority, much of 
the interface to both Gnode and Gedge was declared pri vate, and Graph alone was 
granted fri end status. Solely to avoid the breach of encapsulation that would result 

from long-distance friendship, we were compelled to place Graph, Gnode, and Gedge 

within a single component. 

Escalating the level at which encapsulation occurs can remove the 
need to grant private access to cooperating components within a 
subsystem. 

Always trying to force privileged communication to go on within a single component 

could make components ridiculously large and would defeat the advantages of a hier

archical design. If we stop worrying about the encapsulation aspect for a minute and 

make all of the functionality in Gnode and Gedge public, we can move each of these 

three classes to separate components. Because Gnode and Gedge use each other in 

name only, they automatically become testable independent of each other. For exam
ple, it is now easy and convenient to test directly the full functionality of the new 

gnode component shown in Figure 5-93. 

In the factored solution, only Graph had private access to Gnode and both classes were 

defined in the same component. That approach eliminated the potential for improper 

direct use of Gnode by clients, but it precluded direct testing of Gnode as welL 

With this new approach, instead of being forced to test the low-level functionality of 
Gnode (e.g., adding and removing Gedge pointers) indirectly through the interface of 

Gra ph, it is now possible for test engineers to verify this now-pUblic behavior directly. 

However, ordinary clients will now also have direct access to this low-level functionality. 
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II gnade.h 
#ifndef INCLUDED_GNODE 
#define INCLUDED_GNODE 

#ifndef INCLUDED_NODE 
#include "node.h" 
flendi f 

#ifndef INCLUDED_GEDGEPTRBAG 
#include "gedgeptrbag.h" 
#endif 

class Gnode : public Node { 
GedgePtrBag d_edges; 
Gnode(const Gnode&); 
Gnade& aperatar=(const Gnode&); 

public: 
Gnode(const char *name); 
..... Gnode() ; 
void add(Gedge *edgePtr); 
vaid remave(Gedge *edgePtr); 
canst GedgePtrBag& edges() canst; 

} ; 

#endif 

II not implemented 
II not implemented 

ChapterS 

Figure 5-93: New Individual Component gnode Defining Class Gnode 

Originally, Graph was granted private access to both Gnode and Gedge to preserve 
encapsulation. The encapsulation was at risk only because clients of G rap h were 
granted direct access to the Gnode and Gedge objects, which themselves were largely 
implementation details of Graph. If we stop exposing Gnode and Gedge in the inter
face of Graph, we can avoid this problem entirely. 

Private header tiles are not a substitute for proper encapsulation 
because they inhibit side-by-side reuse. 

Failing to publish header files is not the solution-that's cheating. Not granting cli
ents access to one or more header files will make the use of certain types opaque, 
but these types are still programmatically accessible in name and therefore not 
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encapsulated details. For example, an opaque pointer obtained from one part of the 
system could be unexpectedly reintroduced by clients into another part of the system 
in a way that renders the system internally inconsistent. 

As Figure 5-94 illustrates, class N manages a collection of objects of type W and E. 

Each of these two subobjects makes use of an S object in its interface. The object S 

itself is an implementation detail, so clients are denied access to its header file in an 
effort to encapsulate its use. 

Figure 5-94: Ineffective Encapsulation by Concealing Header Files 

Notice how easy it is for a client to extract an opaque S pointer from an instance of 
class Wand use it to influence an instance of class E directly: 

void myFuncCE *e, canst W& w) 
{ 

e - > 9 C *w . f C ) ) ; 

} 

Compare this approach with a design that properly hides its implementation details 
behind an encapsulating interface (i.e., a design where rhere is no exposure of the 
implementation types in the logical interface of the wrapper componen~ for that sub
system). Even with access to all header files, there is still no programmatic way to 
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access the low-level implementation objects hiding behind the truly encapsulating 
interface of the wrapper. 

The advantages of proper encapsulation are many. A clear example is reuse. Trying to 
encapsulate an implementation type by withholding a header file effectively prevents 
public reuse of that implementation component. If encapsulation is done properly, cli
ents can have side-by-side access to both low-level types and the subsystems that use 
them internally, with no fear that private details of the subsystem will be exposed. 

Understandability and maintainability are other advantages of using proper encapsu
lation. Distinguishing what is and what is not a "private" header file is difficult at best. 
For these reasons, providing a single header file per component, which clearly and 
fully defines its (sole) interface, is strongly recommended. It is worth noting that 
withholding header files may be appropriate when the objective is not encapsulation 
but insulation (see Sections 6.5 and 7.4). 

DEFINITION: In hierarchical systems, encapsulating a type (defined 
at file scope within a header file) means hiding its use, not hiding the 
type itself. 

Let us now return to our graph example. Successfully levelizing this new graph archi
tecture will not be achieved by hiding the low-level implementation types of our sub
system from test engineers and/or clients. It makes no difference what others do with 
their own instances of these types. Rather, successful levelization of this architecture 
will be achieved by ensuring that there is no programmatic way to access any instance 
of any implementation type that is part of an instance of our subsystem. 

To implement encapsulation at the subsystem level, we will need to introduce a wrap" 
per component. Figure 5-95 gives a detailed sketch of the new architecture for the 
graph subsystem. The old Graph class has been renamed Graph Imp, but otherwise bas 
been left essentially unaffected. Both Gnode and GraphImp continue to make use of 
the factored implementations and specializations in ptrbag (shown as a single com
ponent in this figure). The new graph (wrapper) component now defines five classes 
to be used by clients of the subsystem. 
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Level 4: 

Level 3: 

Level 2: 

Levell: 

node ptrbag edge 

Figure 5-95: Escalating Encapsulation Using a Wrapper Component 

A wrapper component can be used to encapsulate the use of 
implementation types within a subsystem while allowing other 
types to pass through its interface. 

The Node and Edge classes, containing only network-independent data, are also pro
grammatically accessible from the interface of the new graph compone~~. However, 
from the perspective of users of the graph subsystem, the types Gnode, Gedge, and 
Graphlmp and all types defined in ptrbag are now implementation details that are 
fully encapsulated by the new wrapper comp.onent. 
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To appreciate this solution, consider that a client who has access to 9 nod e . h still can
not affect any Gnode that has been created through the graph component's interface. 
Of course, the user is still free to create and manipulate his or her independent Gnode 

instances (i.e., for testing purposes). 

Figure 5-96 shows the header file of the wrapper component for the new graph sub
system. The four additional support classes (Nodeld, Edgeld, Nodelter, and 
Edge I te r) establish the encapsulation, and either supply or require private access to 
G rap h. All of these classes must therefore reside in the same component as G rap h in 
order to avoid long-distance friendships. 

Because this wrapper is provided only for encapsulation purposes, it is an extremely 
thin wrapper. All of the functions merely forward requests to the appropriate lower
level implementation components. To avoid the additional function call overhead, all 
of the wrapper functions are defined inline, leaving the 9 rap h . c file empty. 

II graph.h 
#ifndef INCLUDED_GRAPH 
#define INCLUDED_GRAPH 

#ifndef INCLUDED_GRAPHIMP 
#include "graphimp.h" 
#endif 

#ifndef INCLUDED_GNODE 
#include "gnode.h" 
#endif 

#ifndef INCLUDED_GEDGE 
#include "gedge.h" 
#endif 

class Edgeld; 
class Graph; 
class NodeIter; 
class Edgelter; 

class Nodeld { 
Gnode *d_node_p; 
friend Edgeld: 
friend Graph: 
friend Nodelter: 
friend Edgelter: 

II forward declaration 
II forward declaration 
II forward declaration 
II forward declaration 
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} ; 

private: 
NodeId(Gnode *node) : d_node_p(node) {} 
Gnode *gnode() const { return d_node_p; } 

public: 
NodeId() : d_node_p(O) {} 
Nodeld(const Nodeld& nid) : d_node_p(nid.d_node_p) {} 
~NodeldC) {} 
Nodeld& operator=(const Nodeld& nid) { d_node_p = nid.d_node_p; return *this; } 
operator Node *() const { return d_node_p; } 
Node *operator-)() const { return *this; } 

class EdgeId { 

} ; 

Gedge *d_edge_p; 
friend Graph; 
friend Edgelter; 

private: 
EdgeldCGedge *edge) : d_edge_p(edge) {} 
Gedge *gedge() const { return d_edge_p; 

public: 
Edgeld() d_edge_p(O) {} 
EdgeId(const Edgeld& eid) : d_edge_p(eid.d_edge_p) {} 
""'EdgeldC) {} 
EdgeId& operator=(const Edgeld& eid) { d_edge_p = eid.d_edge_p; return *this; } 
Nodeld from() canst { return NodeId(d_edge_p-)from()); } 
NodeId toe) const { return NodeldCd_edge_p-)toC»; } 
operator Edge *() const { return d_edge_p; } 
Edge *operator-)C) const { return *this; } 

class Graph { 
Graphlmp d_imp; 
friend NodeIter; 
friend Edgelter; 

private: 
GraphCconst Gra.ph&); 
Graph& operator=Cconst Graph&); 

public: 
Graph() {} 
~Graph () {} 
NodeId addNodeCconst char *nodeName) 
{ 

return NodeIdCd_imp.addNode(nodeName»; 
} 

Nodeld findNode(const char *nodeName) 
{ 

return NodeIdCd_imp.findNodeCnodeName»); 
} 

II not implemented 
II not implemented 
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} ; 

void removeNode(const Nodeld& nid) 
{ 

d_imp.removeNode(nid.gnode(»); 
} 

Edgeld addEdge(const Nodeld& from, const Nodeld& to, double weight) 
{ 

return Edgeld(d_imp.addEdge(from.gnode(), to.gnode(). weight)); 
} 

Edgeld findEdge(const Nodeld& from. const Nodeld& to) 
{ 

return EdgeldCd_imp.findEdge(from.gnode()p to.gnode())); 
} 

void removeEdgeCconst Edgeld& eid) 
{ 

d_imp.removeEdgeCeid.gedgeC)); 
} 

class Nodelter { 
GnodePtrBagIter d_iter; 

} ; 

private: 
Nodelter(const Nodelter&); 
Nodelter& operatar=(const Nodelter&); 

public: 

II not implemented 
II not implemented 

NodelterCconst Graph& graph) : d_iterCgraph.d_imp.nodes(» {} 
voi d operator++C) { ++d_ iter; } 
operator const void *() canst { return d_iter; } 
NodeId operator()() const { return NodeIdCd_iter(»; } 

class Edgelter { 
GedgePtrBaglter d_iter; 

} ; 

private 
Edgelter(const Edgelter&); 
EdgeIter& operator=(const Edgelter&); 

public: 

II not implemented 
II not implemented 

EdgeIterCconst Graph& graph) : d_iter(graph.d_imp.edges(» {} 
EdgelterCconst Nodeld& nid) : d_iter(nid.gnode()-)edges(» {} 
void operator++() { ++d_iter; } 
operator const void *() const { return d_iter; } 
Edgeld operator()C) const { return EdgeldCd_iter(»; } 

1Fendif 

Chapters 

Figure 5-96: Encapsulating Wrapper Component for Graph Subsystem 



Section 5.10 Escalating Encapsulation 323 

Notice that, in this interface, there is no direct access to any Gnode or Gedge. Adding 
or looking up a node returns a surrogate object of type Node I d, which holds a pointer 
to a G nod e, but under no circumstances will a Nod e I d ever let the client have access to 
more than just the Node portion of the Gnode it holds. 

Similarly, Gedge is no longer exposed. Pointers to Gedge are now replaced by 
instances of type Edge I d. When dealing with a Gra ph, you can use an Edge I d just as 
you would have used a Gedge pointer. When communicating Edge information you 
can use an Edgeld as ifit were an Edge pointer-nothing more. 

Modifying the old test driver to accommodate the new wrapper interface requires only 
a few minor changes. In particular, CGnode *) types are replaced by Nodeld types 
and a few unnecessary 1fi ncl ude directives are eliminated. The output is, of course, 
identical. The modified test driver is shown in Figure 5-97. 

II graph.t.e 
/linclude "graph.hl! 
#include <iostream.h> 

ostream& operator«(ostream& 0, eonst Graph& graph); 

ma i n ( ) 
{ 

} 

Graph g; 

{ 

} 

Nodeld nl = g.addNode("Mindy"); 
Nodeld n2 = g.addNode("Susan"); 
NodeId n3 = g.addNode("Riek"); 

g.addEdge(n2, nl, 4): 
g.addEdge(n1, n3, 5): 
g.addEdge(n3, n2, 1): 

g.addNode("Franklin"); 
g.addNode("Cathy"): 

g.addEdge(g.findNode("Susan"), g.findNode("Franklin"), 6); 
g.addEdge(g.findNode("Rick"), g.findNodeC"Franklin"), 2): 
g.addEdge(g.findNode("Rick"), g.findNodeC"Cathy"), 3); 

cout « g: 

Figure 5-97: Driver lliustrating Usage of New graph Wrapper Component 
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Use of the wrapper intetface is in some respects simpler than a factored implementation 
because most, if not all, of the available functionality is presented in a single, mono .. 
lithic header file. For example, to iterate over the edges in a graph or node, we do not 
need to look further than the header for graph itself: 

int sumOfEdgeWeights(const Nodeld& nid) 
( 

} 

int sum = 0; 
for C Ed gel t e r i t C n i d ); it; ++ it) { 

sum += itC)-)weight(); 
} 

Wrapping has the disadvantage of making the interface less flexible and communication 
across it slower. A wrapped subsystem is also likely to be more costly to develop ini
tially. However, wrapping may be the only truly effective way to achieve both level
ization and encapsulation for 'subsystems involving many highly interdependent 
components. 

We have come a long way from the simple two-component example of Figure 5-10 in 
Section 5.1.3, but the seven components in Figure 5-95 lay a strong hierarchical foun
dation for producing a complex yet easy-to-use and highly reliable subsystem. The 
topic of wrappers is continued in Section 6.4.3, where we discuss how to insulate our 
clients from compile-time dependency on the implementation types below our wrapper 
components. 

To summarize this section: trying to encapsulate the implementation of a subsystem 
on a per-component basis can impede low-level communication and/or warp an other
wise viable design. Rather than restricting the functionality that is accessible to clients 
within individual classes, we can instead restrict the subset of classes exposed to cli
ents in the interface of the overall subsystem. Using a wrapper component, we can 
elevate the level of encapsulation to the highest level of a subsystem. In so doing, we 
can eliminate the need for low-level friendships, and thereby eliminate the need for 

merging intimately coupled classes into a single, oversized component. 

5.11 Summary 

By considering the physical implications of our logical design and proactively engi
neering our system as a levelizable collection of components, we create a hierarchy of 
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modular abstractions that can be understood, tested, and reused independently of the 

rest of our design. 

Techniques for achieving levelization include the following: 

• Escalation 

• Demotion 

Moving mutually dependent functionality higher in the 
physical hierarchy. 

Moving common functionality lower in the physical 
hierarchy. 

• Opaque Pointers Having an object use another in name only. 

• Dumb Data U sing data that indicates a dependency on a peer object, 
but only in the context of a separate, higher-level object. 

• Redundancy Deliberately avoiding reuse by repeating small amounts 
of code or data to avoid coupling. 

• Callbacks Using client-supplied functions that enable lower-level sub
systems to petform specific tasks in a more global context. 

• Manager Class Establishing a class that owns and coordinates lower
level objects. 

• Factoring Moving independently testable subbehavior out of the 
implementation of complex components involved in 
excessive physical coupling. 

• Escalating 
Encapsulation 

Moving the point at which implementation details 
are hidden from clients to a higher level in the physical 
hierarchy. 

Using these techniques to create levelizable designs tends to reduce the large, some
times even overwhelming, logical design space, and helps to guide developers in the 
direction of more mainstream, maintainable architectures. Fortunately there is a ser
endipitous synergy between good logical design and good physical design. Given 
time, these two design goals will come to reinforce one another. 
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Avoiding unnecessary compile-time dependencies is another important part of good 
physical design. Excessive compile-time coupling can profoundly impede our ability 
to maintain a system. Programmatically inaccessible implementation details that 
reside in the physical interface of a component cannot, in general, be modified with
out forcing all clients to recompile. For even moderately large projects, the cost of 
recompiling the entire system will inhibit any modification of the physical interface of 
low-level components, limiting our ability to make even local changes to the encapsu
lated details of their implementations. 

In this chapter we present a physical process referred to in this book as insulation, 
which is analogous to the logical process commonly referred to as encapsulation. 
Insulation is the process of avoiding or removing unnecessary compile-time coupling. 

First we establish the need for addressing insulation as part of our overall architectural 
design, providing both theoretical and experimental justification. Next, we identify 
many specific C++ constructs that can cause compile-time coupling without attempt-

, ing to alleviate it. In Section 6.3, we discuss several techniques for insulating individ
ual details of the implementation exposed via the following mechanisms: 

• private base classes, 
• embedded member data, 
• private member functions, 
• protected member functions, 
• enumerations, 
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• compiler-generated functions, 

• include directives, 

• private member data, and 

• default arguments. 

In Section 6.4, we discuss wholesale techniques used for insulating all details of the 
implementation: 

• protocol classes, 
• fully insulating concrete classes, and 

• insulating wrapper components. 

Insulating very large subsystems presents a unique problem for developers. In Section 
6.5, we explore implementing an ANSI C--compliant procedural interface for a very 
large C++ system. 

Finally, in Section 6.6, we explore the conditions under which insulation is indicated. 
The basic runtime costs associated with insulation will be presented, along with specific 
conditions under which insulation is not appropriate. We demonstrate the process of 
applying insulation, and measure the runtime costs associated with various degrees of 
insulation. 

6.1 From Encapsulation to Insulation 

Insulation is a physical design issue: its logical analog is commonly referred to as 

encapsulation. In Section 2.2 we discussed encapSUlation in terms of classes. ~ Sec
tion 3.6, we discussed encapsulation in terms of components. Then in Section 5.10, 
we discussed encapsulation in terms of classes defined at file scope in the header files 

of a hierarchical subsystem. The important aspects in each case are that: 

1. Some detail is part of some entity. 

2. The detail is not programmatically accessible through the interface 

defined for that entity. 

Consider the header file for the stack component shown in Figure 6-1. The logical 
interface of this S t a c k class fully encapsulates its implementation. Programmatically, 
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there is no way to distinguish this implementation from the linked-list implementation 
with the identical interface shown in Figure 6-2. 

II stack.h 
#ifndef INCLUDED_STACK 
#define INCLUDED_STACK 

class Stack { 

} ; 

int *d_stack_p; 
int d_size; 
int d_length; 

public: 
Stack() ; 
Stack(const Stack &stack); 
-Stack(); 
Stack& operator=(const Stack &stack); 
void push(int value); 
i nt pop ( ) ; 
int tope) canst; 
int isEmpty() const; 

#endif 

Figure 6-1: Fully Encapsulated Array-Based Stack Implementation 

II stack.h 
#ifndef INCLUDED_STACK 
#define INCLUDED_STACK 

class StackLink; 

class Stack { 

} ; 

StackLink *d_stack_p; 

public: 
StackC); 
Stack(const Stack &stack); 
""'Stack(); 
5tack& aperator=(const Stack &stack); 
void push(int value); 
int pope); 
int tope) canst; 
int isEmpty() canst; 

{fend; f 

Figure 6-2: Fully Encapsulated Linked-List-Based Stack Implementation 
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Even though both S t a c k classes fully encapsulate their implementations, any experi

enced C++ programmer looking at these header files can immediately determine the 
general implementation strategy of these components. Each of these stack compo

nent headers illustrates the difficulty in concealing proprietary implementations even 
with encapsulating interfaces. Inline functions can exacerbate the problem by expos
ing clients to algorithmic details as well. 

But the desire to keep component implementations proprietary is not the dominant 
problem for large projects. A client has a right to expect that the logical interface of a 
component will not change, and ideally changes made to the logical implementation 
of a component should not affect clients. In reality, however, the C++ compiler 
depends on all information in a header file, including private data. If a human being 
can determine the implementation strategy of a component by inspecting its header, 
then it is likely that clients of the component would be forced to recompile if the 
implementation strategy of that component changes. 

Forcing clients to recompile even when only the implementation of a component 
changes is not a desirable physical property of a component. The more components 
that depend on that component, the more undesirable such compile-time coupling can 
become. Failing to "insulate" clients from changes to our logical implementation can 
have a dramatic impact on the cost of developing large projects. 

Imagine a system with N components in which each component is compile-time 
dependent on all the rest. That is, compiling a component means including and pars
ing the definitions from the header files of all N components. The compile-time cost 
of making a change to any single header file in such a system is staggering. Instead of 
being proportional to the size of the component itself, the cost of compiling any single 
translation unit depends on the size of the entire system! As the size of the entire sys
tem increases, the cost of compiling anyone component grows at a rate that is dispro
portionately high. As more headers are read into each translation unit, the compiler's 
data structures are taxed more and more heavily. That is, doubling the number of lines 
included in a translation unit more than doubles the time it takes to parse it (as demon
strated in Section 6.1.1). 

Even for relatively small systems (say, 50,000 lines total), this type of coupling is burden
some at best; for medium and large systems, it is intolerable. For example, a . c file that 
should take only seconds to compile now takes minutes, and the total compile-time cost 
of a single uninsulated change is now measured not in CPU seconds but in CPU hours! 
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The system illustrated in Figure 6-3 consists of a base class Sha pe, a number of specific 
shapes derived from S hap e, and a number of clients that depend only on the base class 
shape. This system has no cyclic physical dependencies and is therefore levelizable. 

II shape.h 
#ifndef INCLUDED_SHAPE 
#define INCLUDED_SHAPE 

Shape { 
int d_x; 
int d--y; 

II could change to short 
II could change to short 

} ; 

public: 
ShapeCint x, int y); 
virtual void draw() canst; 
int xOrigin() canst; 
I I ... 

#endif 

II circle.h 
#ifndef INCLUDED CIRCLE 
#define INCLUDED_CIRCLE 

#ifndef INCLUDED_SHAPE 
#include "shape.h" 
#endif 

class Circle: public Shape { 
int d_radius; 

} ; 

public: 
CircleCint x, int y, int r); 
void draw() canst; 
I I ... 

1Iendif 

II client3.c 
#include "client3.h" 
#include "shape.h" 

I I ... 

void Client3: :draw() canst 
{ 

} 

II draw each shape 
Shape *p; 
while (p = nextShape()) { 

p-)draw(); 
} 

I I ... 

Figure 6-3: Illustration of a Compile-Time Coupled System 
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Originally the author of class Shape decided to use integers to represent the coordinates 

of the origin. Later the author realized that the integer range afforded by ash 0 r tin t 
was sufficient and that the size of Shape instances could be reduced significantly. The 

fundamental type of a private data member used to store the coordinates is clearly an 
implementation detail of the S hap e class. The interface would not change, and it would 

continue to accept and return normal integers in the valid range (see Section 9.2). In 

fact, this detail is entirely encapsulated by the intetface of Sha pee Yet there is a problem. 

Suppose that the author of S hap e changes the private coordinate data type from i n t to 

short i nt. Which of the components in Figure 6-3 would be forced to recompile? 

Unfortunately, the correct answer is "all of them." Both Ci rcl e and Rectangl e 

inherit from Shape and depend intimately on the internal physical layout of Shape. 

When any of Shape's data members change, the internal layout of Ci rcl e and 

Rectangl e will also have to change accordingly. 

Clients of Shape are no better off. For one thing, the position of the virtual table 

pointer in the physical layout of the Shape object will almost certainly be affected by 
the change from i n t to s h 0 r tin t. Unless the dependent code is recompiled, it sim

ply will not work. More generally, whenever a header file is modified, all clients that 

include that header file must be recompiled. Therefore, whenever any part of the 

implementation resides in the header file of a component, the component fails to 

"insulate" clients from that part of its logical implementation. 

DEFINITION: A contained implementation detail (type, data, or 
function) that can be altered, added, or removed without forcing 
clients to recompile is said to be insulated. 

The term encapsulation conjures up an image of a clear bubble of perhaps infinitesi

mal thickness that surrounds the implementation of a class and protects it only from 
programmatic access. The term insulation connotes instead an opaque barrier of finite 

thickness that eliminates any possibility of direct interaction with the implementation 

of a component. 

When bugs occur between internal releases of the various levels of a large system, 
insulating components (Le., components that insulate clients from their implementa
tions) are much more easily patched than non-insulating components. As long as the 
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interface is not altered, the modified implementation can be dropped in place without 
having to recompile other components or worrying about headers becoming out of 
date. (We revisit this important topic in Section 7.6.2.) 

One final testament to the value of insulation is that it can enable us to replace dynam
ically loaded libraries transparently. Dynamically loaded libraries are not linked into a 
single executable but, rather, are linked on demand into a running program. Suppose 
that you are the vendor of some C++-based application library. If you supply a fully 
insulated library implementation, then you can provide performance enhancements 
and bug-fixes without disturbing your clients at all. Sending them an update does not 
force them to recompile or even relink. All they do is reconfigure their environment to 
point to the new dynamically loaded library, and off they go. 

In the following subsection we take a quantitative look at the cost of compile-time cou
pling. After that, we look at specific ways in which implementation details in C++ can 
become non-insulating, and then discuss transformations that can improve the degree of 
insulation. 

6.1.1 The Cost of Compile-Time Coupling 

To illustrate the severity of the problem, I devised a simple experiment. 1 I mechani
cally generated a varying number of simple header files, each 100 lines long. All 
headers were then included in an otherwise empty . c file. An outline of the generated 
files is shown in Figure 6-4. 

II file.c II headerO.h II headerl.h II . . . 
#include "headerO.h" class Class 0 0 { class Class 1 0 { 

1Iinclude "headerl.h" II . . . II . . . 
lFinclude "header2.h" } ; } ; 
#include "header3.h" class Class 0 1 { class Class 1 1 { 

#include "header4.h" II II . . . 
#include "header5.h" } ; } 

II , . . II II 

Figure 6-4: Experiment to Measure Compile-Time Cost 

I then measured the CPU time needed to compile the . c file. The experiment was 
repeated using headers 1,000 lines long instead of 100 lines. Figure 6-5 provides the 

1 This subsection provides experimental data to corroborate the claims in the main section and may 
be omitted without loss of continuity. 
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results of running this simple experiment using the CFRONT 3.0 compiler running on a 

SUN SPARC 20 Workstation with 32 megabytes of memory. 

The first column represents the relative size of the system where N represents the 
number of components of equal size. The next two columns represent the measured 
compile-time cost for headers on the order of 100 lines and 1,000 lines, respectively. 

System Size: N 
CPU seconds to parse headers 

(number of headers) 100-line headers 1,000-line headers 

1 0.1 0.4 

2 0.1 1.0 
4 0.2 3.4 
8 0.4 11.0 

16 0.8 32.2 
32 2.4 137.7 
64 8.2 497.5 

128 26.5 more than a day 
256 98.1 
512 397.6 

1024 more than a day 

Figure 6-5: Empirical Cost of Compile-Time Coupling 

If the total number of included lines is around 3,000 (30 small components or 3 large 
ones), doubling the number of included lines roughly triples the compile-time cost. 
For projects of this scale, the cost of recompiling a single. c file using CFRONT 3.0 is 
roughly proportional to N 1.6 and gets progressively worse for larger systems. A trans
lation unit that might otherwise take only a few seconds to compile might now take 
several minutes. 

As if this were not bad enough, because each component is compile-time dependent 
on every other component, an uninsulated change to anyone component implies that 
all others must recompile as well. The cost of a single uninsulated change in a large 
compile-time coupled system is not proportional to N2 but more like N3 ! 
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If, when compiling any single translation unit, the amount of included header file 
information causes the compiler to exceed available physical memory, virtual mem- . 
ory swapping will completely overwhelm the cost of compilation, as was the case for 
the last entry in Column 2 and the last four entries in Column 3 of Figure 6-5. That is, 
for a given compiler and system configuration, there can be fairly hard limits to the 
absolute size of any given translation unit. For this particular configuration, 60,000 
lines was practical; 100,000 lines was not. 

6.2 C++ Constructs and Compile-Time Coupling 

Sometimes the logical and physical decompositions of components are naturally con
sistent with each other. Consider a non-inline member function of a class. Its logical 
interface (the declaration) re~ides in the physical interface (the . h file), and its logical 
implementation (the function body) resides in the physical implementation (the . c 
file). In this case, the declaration merely describes the interface without exposing any 
more information than is necessary or desirable. 

C++ does not require that all details regarding the logical implementation exist in the 
. c file. C++ allows this tight compile-time coupling for performance reasons. For a 
small, light-weight component implementing a stack or a list, avoiding compile-time 
coupling by completely insulating its implementation could have too great an impact 
on performance to be practical. Such light-weight components typically reach a stable 
state quickly and then are seldom if ever modified. 

In the case of components that provide higher-level functionality such as a parser or 
simulator, the amount of useful work done per interface function called is often quite 
large. In these situations, the runtime overhead of insulating the implementation is 
usually neither measurable nor relevant. 

It is easy in C++ to inadvertently introduce implementation details into the physical 
interface of a component. Whenever we place any part of the implementation of a 
component in its header file, we fail to insulate clients from that part of our imple
mentation. The logical implementation is made part of the physical interface through 
the use of the following constructs: 

• inheritance, 
• layering, 
• inline functions, 
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• private members, 
• protected members, 
• compiler-generated functions, 
• include directives, 
• default arguments, and 
• enumerations. 

The implications of each of these constructs with respect to compile-time coupling 
are explored individually in the following subsections. Our purpose now is only to 
expose the specific nature of the problem, but not to provide a solution just yet. Insu
lation techniques that systematically address all of these cases begin in Section 6.3. 

6.2.1 Inheritance (IsA) and Compile-Time Coupling 

Whenever one class derives from another, even privately, there can be no way to insu
late clients from that fact. Even though private inheritance is considered an encapsu
lated implementation detail of the derived class, the physical layout of the derived 
object forces every client that includes the definition of the derived class to have 
already seen the definition of the base class. It is therefore appropriate for the header 
file of a derived class to include explicitly the header files containing its base classes. 
Whenever a base class header is modified (even if just to add a comment), UNIX util
ities such as rna ke will feel obliged to recompile any client of a derived class before 
linking that client into any new executable. 

Figure 6-6 illustrates that if any change is made to the physical interface of B, then not 
only 0 but also all clients of 0 (i.e., C1, C2, and C3) will be forced to recompile. 
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private inheritance 

Figure 6-6: Inheritance Cannot Be Insulated from Clients 

6.2.2 Layering (HasAIHoldsA) and Compile-Time Coupling 

When a class embeds an instance of another user-defined type in its definition 
(RasA), the physical layout of the class becomes intimately dependent on the layout 
of that type. As a result, it will not be possible for a client to include the class defini
tion of an object without having already seen the definitions of each of the layered 
subobjects embedded in that object. It is therefore appropriate for the header file of a 
composite object to include explicitly the header files containing the definitions of 
every layered object that is physically embedded within that class. 

In contrast, when a class merely holds the address of an object (HoldsA), the class is 
not necessarily dependent on the physical layout of the held object. If so, it is appro
priate for the header containing the class not to include the header for the held object 
but instead merely to declare its type. 

Figure 6-7 illustrates a situation where class Stooges uses (in its implementation 
only) classes Moe, La r r y, and Cur 1 y. Unlike classes La r r y and Cur 1 y, a Moe is embed
ded in every Stooges object and therefore is not insulated from clients of Stooges. 

Any modification to the header file of Moe will necessitate the recompilation of all cli
ents of Stooges. 
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II stooges.h 
#ifndef INCLUDED_STOOGES 
#define INCLUDED_STOOGES 

#ifndef INCLUDED_MOE 
#include "moe.h" 
#endif 

class Larry; 
class Curly; 

class Stooges { 
Moe d_moe: 

} ; 

Larry *d_larry; 
Curly& d_curly; 

public: 
Stooges(); 
II 

#endif 

Chapter 6 

Figure 6-7: Embedded, Layered Objects Are Not Insulated from Clients 

Every S t a ages object also holds a pointer to an instance of a La r ry and a reference to 
an instance of a Cur 1 y. It is not necessary for a client of class S too 9 e s to know any
thing about the physical layout of either a La r r y or Cur 1 y in order to construct an 
instance of class S t 0 age s. It is therefore possible to modify the header file of either 
La r r y or Cur 1 y and not have to recompile any of the clients of class S too 9 e s. The 
physical layout and functionality of both La r r y and Cur 1 y are insulated details of 
Stooges. 
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6.2.3 Inline Functions and Compile-Time Coupling 

A function declared i n 1 i n e must be defined in the header file if it is to be substituted 
inline outside the current component. That requirement forces the body of the in line 
function to be placed in the physical interface of the component. The body of an inline 
function is encapsulated in that it is not programmatically accessible except by calling 
it via its own logical interface. Yet this part of the object's logical implementation is 
not insulated from clients, which has the following ramifications: 

1. Any programmer that can use the component can look at the inline imple
mentation. 

2. Changing the implementation of an inline function forces all clients of 
the component defining the inline function to recompile. 

3. Changing a function to or from an inline function also forces all clients of 

the component defining that function to recompile. 

4. An object returned by value from an inline function is used in size (see 
Section 5.4) in the header file and is therefore never insulated from cli
ents (although an object returned by value from a non-inline function 

might be). The same applies to an object used in size in the body of an 
inline function. Therefore, when a user-defined object is passed into,2 used 
in, or returned from an inline function by value, it is appropriate to include 
explicitly the header defining the used object in the header file defining the 
inline function.-

Figure 6-8 illustrates ways that inlining can uninsulate otherwise insulated implemen
tation details of class Fred. For example, Fred holds pointers to objects of type 
Wi 1 rna,. Betty, Ba rney, and MrSl ate, and therefore Fred's object layout does not 
depend on the object layout of any of these types. Because member function 

getWi 1 rna returns an object of type Wi 1 rna by value and is declared i nl i ne, it is neces
sary for all clients of class Fred to have already seen the definition of class Wi 1 rna. 

Since member function get Bet ty is not declared i n 1 i ne, clients of F red that do not 
need to call getBetty (and otherwise do not depend on type Betty in size) need not 

2 Passing a user-defined type into a function by value is almost never done (see Section 9.1.11), 
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include the header file for class Betty. In other words, clients that do not use tyd 
Betty are not forced to depend on Betty at compile time. 

II fred.h 
#ifndef INCLUDED FRED 
#define INCLUDED_FRED 

#ifndef INCLUDED_WILMA 
#include "wilma.h" 
#endif 

#ifndef INCLUDED_MRSLATE 
/finclude "mrslate.h" 
41endif 

class Barney; 
class Betty; 

class Fred { 
Wilma *d_wilma_p; 
Barney *d_barney_p; 
Betty *d_betty_p; 
MrSlate *d_mrSlate_p; 

public: 
Fred(); 
Wilma getWilma() canst { return *d_wilma_p; } 
Betty getBetty() canst; II non-inline function 

} ; 

const Barney& getBarneyC) const { return *d_barney_p; } 
double getSalary() { return d_mrSlate_p-)askForRaise(); } 

#endif -, 

Figure 6-8: Ways that Inlining Functions Reduce Insulation 
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An instance of class Ba rney is returned from member function getBa rney by refer
ence, so unless a client depends on class Bar n ey in size, there is no need for that client 
to include the class definition for Ba rney. Again, the client is not forced to depend on 
what it does not need. 

Finally, the member function getSal ary makes substantive use of the encapsulated 
MrS 1 ate object in its implementation. Because get Sal a r y is declared i n 1 i n e, all cli
ents of Fred are required to have seen the definition of class MrSl ate, whether or not 
they call get Sal a r y. Of course, should any of the implementations of these inline 
functions change, all clients of Fred would have to recompile. 

6.2.4 Private Members and Compile-Time Coupling 

Each private data member of a class-although encapsulated-is not insulated from 
clients of that class. We have already seen several examples where modifying the 
implementation will require changing private data members, which in tum will 
require clients to recompile. For example, changing the encapsulated implementation 
of a S t a c k class from linked-list based to array based will force all clients of S t a c k to 
recompile. As we have also already seen, even a trivial code-tuning change, such as 
changing an i n t to ash 0 r tin t, is enough to trigger the recompilation of all clients. 

We are often reminded that private member functions are encapsulated implementation 
details of a class, but they are not insulated implementation details-even when they 
are not declared i n 1 i n e. Altering so much as the signature of a private member func
tion of a class is enough to force all clients of the component defining that class to 
recompile. 

Figure 6-9 illustrates the problem with private members. The d_l ength member is a 
detail that was added presumably because it was felt that keeping track of the length 
was more efficient than calculating it on demand. If this assumption turns out to be 
false, removing d_l ength will cause all clients of this component to recompile. Simi
larly, the copy function was implemented to factor the copy operation for use in both 
the copy constructor and assignment operator. If we now decided to change the signature 
of this private helper function from copy(const String&) to copy(const char *) 

to enable its use in implementing the default constructor as well, all clients would 
again be forced to recompile. 
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II str.h 
#ifndef INCLUDED_STR 
#define INCLUDED_STR 

class String { 

} ; 

char *d_string_p; 
int d_length; 
void copy(const String& string); 

public: 
String(const char *str); 
StringCconst String& string); 
-String(const char *str); 
String& operator=(const String& string); 
II 

#endif 

Figure 6-9: Private Members Are Not Insulated 

6.2.5 Protected Members and Compile-Time Coupling 

Chapter 6 

Whe~ considering protected members, base-class authors must now address two dis
tinct audiences: derived-class authors and general users. Protected functions are in the 
interface specifically for derived classes, but are intended to be treated as implementa
tion details by general users. Note that protected member data is rarely appropriate, 
especially in widely used interfaces for which insulation is a design goal. 

On the surface, the protected interface provides a convenient place for prospective 
derived-class authors to look to determine what will be required of them. However, 
just as with private members, the protected interface is declared in the class definition 
and is therefore not an insulated implementation detail as far as general users are con
cerned. Modifying the protected interface of a base class in any way will force the 
recompilation of (1) all clients of the base class, (2) all derived classes, and (3) all clients 
of the derived classes. 

6.2.6 Compiler-Generated Member Functions and Compile-Time Coupling 

, Certain basic member functions are generated automatically by the compiler, if 
needed, unless they are explicitly declared in a class.3 In particular, unless a copy 

3 See meyers, Item 45, p. 172. 
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constructor is specified, the compiler will generate one with member-wise copy 
semantics. That is, a copy constructor will be generated that copies each member object 
and each base-class object according to its own individual initialization semantics.4 

In a similar way, an implicit assignment operator also is generated if needed, copying 
each member object and each base class part according to its own assignment seman
tics. A destructor will also be generated if needed, to invoke the destructors of layered 
and base-class objects. 

In many cases, compiler-generated constructors, assignment operators, and destruc
tors do exactly what is required. Unfortunately, if the author of a class determines a 
need to diverge from the compiler-generated definition, it will be necessary to intro
duce the appropriate member declaration into the class definition. Any such introduc
tion of a declaration 'cannot be considered insulated, and any clients of the class will 
be forced to recompile. 

class ComplexSymbol public Complex { 

} : 

String d_name; 

public: 
II CREATORS 
ComplexSymbol(const String& name, double ret double im = 0.0); 
II Default copy ctor and dtor are fine. 

II MANIPULATORS 
II Default assignment operator is fine. 
II 

II ACCESSORS 
II 

Figure 6-10: Relying on Compiler-Generated Functions 

As shown in Figure 6-10, class Camp 1 exSymbo 1 implements copy construction, 
assignment, and destruction by default. If we decided to eliminate the implementation 
dependency of our CamplexSymbal on String and use a char * instead, it would be 
necessary to introduce a declaration for the copy constructor, assignment operator, 
and the destructor. In this example, the change in private data alone would force our 
clients to recompile; however, even if we solved that problem (and we can), introducing 

4 See ellis, Section 12.8, p. 295. 
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new declarations into the header file of our component is a change that cannot be 

insulated from clients. 

6.2.7 Include Directives and Compile-Time Coupling 

In the experiment at the beginning of this chapter (Section 6.1.1) that demonstrated 

the high cost of compile-time coupling, we did not even consider the possibility that 

each header might directly include every other header.5 Instead we assumed that each 

. c file explicitly included every header in the system because it needed to do so. In 
practice, this scenario does not happen. 

What is much more likely to occur is that each header file will include one or more 

header files that, in tum, include one or more other header files, until eventually virtu

ally every header file in the system has been included. This is where redundant 

include guards (Section 2.5) help to reduce the cost of compiling by eliminating the 

quadratic behavior we observed in the time spent by the C++ preprocessor. 

Consider the example in Figure 6-11. A Ban k class uses a Ban k Car d .class and a variety 

of currency classes in its interface. The Ban k class does not inherit from any other 

class. Let us assume that Ban k does not have any inline functions that make substantive 

use of class Ban kCa rd or any of the currency classes. Let us further assume that class 

Ban k does not embed instances ot any user-defined class (RasA) in its own definition. 

II bank.h 
#ifndef INCLUDED_BANK 
#define INCLUDED_BANK 

#ifndef INCLUDED_BANKCARD 
#include "bankcard.h" 
#endif 

#ifndef INCLUDED_GERMANMARKS 
#include "germanmarks.h" 
#endif 

#ifndef INCLUDED_JAPENESEYEN 
#include "japeneseyen.h" 
#endif 

5 In some environments, you might encounter a limitation on the number of open source files per
mitted at anyone time. 
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#ifndef INCLUDED_UNITEDSTATESDOLLARS 
1foinclude "unitedstatesdollars.h" 
fIend i f 

#ifndef INCLUDED_ENGLISHPOUNDS 
lfi n c 1 u de" eng 1 ish po u n d s . h II 
/fendif 

I I .., 
I I .,. 
II 

/fifndef INCLUDED LAKOSIANFOOBARS 
Iii n c 1 u de" 1 a k 0 s ian f 0 0 bar s . h" 
#endif 

class Bank { 
I I ... 
Bank(const Bank&); 
Bank& operator=(const Bank&); 

II We don't want to copy 
II or assign banks. 

} ; 

public: 
II CREATORS 
Bank() ; 
,...,Bank(); 

II MANIPULATORS 
GermanMarks 
JapeneseYen 
UnitedStateDollars 
EnglishPounds 
II 
I I .. . 
I I .. . 
LakosianFooBars 

#endif 

getMarks(BankCard 
getYen(BankCard 
getDollars(BankCard 
getPounds(BankCard 

*cashMachineCard, double amount); 
*cashMachineCard, double amount); 
*cashMachineCard. double amount); 
*cashMachineCard, double amount); 

getFooBars(BankCard *cashMachineCard, double amount); 

Figure 6-11: Class Using Many Types in Its Interface 

Now consider a client of an instance of this Ban k in the United States. This person is 
typically interested in going to the bank with his or her bank card and withdrawing 
some amount of money in United States dollars. A simple example of a Person's 
withdraw member function is shown in Figure 6-12. 
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II person.c 
ih n c 1 u de" per son . h I! 
#include "bank.hl! 

II ... 

void Person::withdrawCdouble amount) 
{ 

} 

Chapter 6 

Figure 6-12: Simplified Implementation of Person's Withdraw Function 

Picture the fictitious island republic of Lakos; its national unit of currency, the 

FooBar, is notoriously unstable and subject to change without notice. Today this 

country has again announced its intention to make an uninsulated change to its imple

mentation of FooBar. The world financial community is demanding to know who will 

be forced to recompile. 

Not only will all actual clients of La k 0 S ian F 00 Bar s have to recompile, but so will all 

other clients of Ban k. That is, if you banked at this bank, whether or not you ever cared 

or had even heard about La k 0 s ian F 0 0 Bar s, any change at all to 1 a k 0 s ian f 00 bar. h 

will cause software configuration management tools (such as make) to recompile you 

automatically. 

To add insult to injury, there is no real need for you to be compile-time dependent on 

that currency! None of your code depends on that currency at compile time. So why 

did ban k' s author decide to include all these header files in ban k . h instead of ban k . c? 

The answer you might receive is "for the convenience of our clients." 

The author of the bank component believes that just in case you might need some 

class definition, we'll include it for you. This approach has the relatively small advan

tage that as long as you include ban k . h, you will never need to include the header for 

Un; tedStatesDoll ars or your BankCard. However, this approach also has the rela

tively large disadvantage that you will forever be at the mercy of a potentially large 

number of header files that you neither control nor otherwise care about. 

6.2.8 Default Arguments and Compile-Time Coupling 

Often a single algorithm will depend on several parameters-some with reasonable 
default values. Placing these default values in the header file defining the interface of 
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the function can be more self-documenting simply because they place more informa

tion in the header file: 

class Circle { 
II ... 

public: 
Circle(double x = 0, double y = 0, double radius - I); 
I I ... 

} ; 

Unfortunately, such default values become compiled in along with the interface and 
any modification of those values will force clients to recompile. 

6.2.9 Enumerations and Compile-Time Coupling 

Enumerations, CPP macros, typedefs, and (by default) non-member canst data do not 
have external linkage (see Sections 2.3.3 and 2.3.4). As such, these constructs must 
appear in the header file of a component if they are to be used byotber components (or if 
they appear in the body of any inline functions intended for use outside the component). 

Figure 6-13 illustrates the common practice in small projects of grouping all system
wide definitions into a single component. As more components are added to the sys
tem, these components will typically include this common definitions file. Whenever 
the need for a new definition or return status is encountered, it is added to the 
sysdefs. h file. The more components that are added, the more opportunities there 
are to add to the common definitions. Whenever a common definition is added to 
sysdefs . h, almost all components in the system are forced to recompile. 

Eventually the system reaches the point where making an addition to the global defi
nitions is simply too expensive. Instead of placing a useful definition in this file, they 
are kept local or private. Instead of adding new specific return status values to the enu
meration, preexisting codes (such as UNSPECIFIED_ERROR) are used over and over, 
even though they are vague or even inappropriate. 

II sysdefs.h 
#ifndef INCLUDED_SYSDEFS 

. #define INCLUDED_SYSDEFS 

#ifndef INCLUDED_MATH 
#include <math.h> 
#define INCLUDED_MATH 
#endif 

II bad idea: should be insulated 
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const double PI_BY_4 = M_PI/4; 
const double PI_BY_B = M_PI/8; 

struct SysDefs { 

} ; 

typedef int (*Pfdi)(double); 
typedef double (*Pfid)(int); 

enum ReturnStatus { 
SUCCESS = 0, 
WARNING, 
IOERROR, 
FILE_NOT_FOUND, 
I I ... 
OUT_OF_RANGE, 

} ; 

I I ... 
OUT_OF_MEMORY, 
II .. . 
I I .. . 
INVALID_GEOMETRY, 
II 
I I .. . 
I I .. . 
UNSPECIFIED_ERROR 

#endif 

Chapter 6 

II bad idea: should be class member 
II bad idea: should be class member 

Figure 6-13: Component Containing Common Definitions 

The problem here is that enumerations and typedefs are not implementation details 
but rather are plainly part of the public interface of a component. The interface of this 
component is not a well-organiz.ed, cohesive presentation of a single abstraction. 
Instead it is an eclectic hodgepodge of details. This all too common use of enumera
tions does not scale well as project size increases. 

The compile-time coupling in this system arises because this interface is driven not 
from the lower levels of the physical hierarchy but from the yet-to-be-implemented 
higher levels. This upward dependency imposes an implicit compile-time coupling 
among all clients, even though these clients are in unrelated parts of the system. This 
example is an instance of a more general problem, involving the sharing of ownership 
for a component. 

In the following section we discuss specific techniques for addressing this and other 
problems related to insulation. 
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6.3 Partial Insulation Techniques 

Not every component should attempt to insulate its clients from every implementation 
detail. But, all other things being equal, it is better to insulate a client from an imple
mentation detail than not to do so-even if only to reduce the clutter in the physical 

interface. 

Fortunately insulation need not be an all-or-nothing proposition. Insulating one detail 
of the implementation can be desirable-even when other implementation details 
remain uninsulated. The more insulated the implementation of a component is, the 
less likely that changes to that implementation will force clients of the component to 
recompile. r' 

Sometimes insulating an implementation detail is as easy as not insulating it. As with 
low-hanging fruit, we can often reap significant benefits while expending negligible 
effort. Other times insulation can require considerable and deliberate work. The 
amount of effort worth expending on insulating any given implementation detail 
comes down to the degree to which changes in that detail are likely to affect clients. 

The following subsections provide a collection of specific techniques for selectively 
reducing the number of implementation details exposed in the physical interface of a 
component. 

6.3.1 Removing Private Inheritance 

-

Unlike public (and protected) inheritance, private inheritance is an implementation 
detail. One of the "advantages" of private inheritance over layering is the notational con
venience of selectively exposing some but not all of the functions in the private base 
class to clients of the derived class via access-declarations6 or using-declarations.7 

Figure 6-14 illustrates how a class can privately inherit from another class and then 
selectively publish all members with a given name in its own interface using an access 
declaration. 

6 ellis, Section 11.3, p. 244. 
7 strollstrup94, Section 17.5.2, p. 419. 
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// base.h 
#ifndef INCLUDED_BASE 
#define INCLUDED_BASE 

C' 

class Base { 
/ / ... 

} ; 

public: 
Base(); 
,...,Ba s e ( ) ; 
void fl(int); 
void f2(double); 
int fIe) canst; 
double f2() canst; 

#endif 

(a) Private Base Class Header File 

/1 myclass.h 
#ifndef INCLUDEO_MYCLASS 
#define INCLUDED_MYCLASS 

#ifndef INCLUDED_BASE 
#include "base.h" 
#endif 
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class MyClass : private Base { 
public: 

My C 1 ass () {} 
Base::fl; // access declaratio~ 

} ; 

#endif 

(b) Derived Class Header File 

Figure 6-14: Private Inheritance and Access Declaration 

The usefulness of the access declaration is dubious for a couple of reasons. It exposes 
a set of functions in the public interface, yet in order for a client to know "Yhat those 
functions are, the client must look at the header of the privately derived (implementa
tion) class in order to know the appropriate arguments and return values. Another 
problem is that this class fails to insulate its client from its private base class. The cli
ent is exposed to changes in private (unpublished) functions that may not even be used 
in the implementation of the derived class. 

One reason for using private inheritance instead of layering is to take advantage of 
the virtual table(s) of the base class. By overriding the behavior of the virtual func
tions declared in a private base class, we may be able to "customize" or "program" 
other behaviors that depend on the overridden behavior at the base-class level. It also 
is possible to invent a dummy class for derivation purposes and then proceed with lay
ering using that dummy class. If insulation is not an issue, then private inheritance 
may be appropriate. If, however, this class is to become part of a more generally pub
lic interface, then a transformation from inheritance to layering is in order. 

Figure 6-15 illustrates how the same logical interface as the one in Figure 6-14b can 
be achieved without exposing clients to the details of the implementation class. 
Instead of privately deriving from class Base, the new implementation holds an out
wardly opaque pointer to class Bas e. Whenever an instance of My C 1 ass is created, the 
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appropriate constructor, declared non-i n 1 i ne, dynamically allocates a new instance 
of Base and assigns its address to the d_base_p member of MyCl ass. When this 
instance of My C 1 ass is destroyed, the non- i n 1 i n e destructor will delete this instance. 
The assignment operator will also need to manage this base object pointer appropriately. 

II myclass.h II myclass.c 
#include "myclass.hll 
#include "base.h" 

#ifndef INCLUDED_MYCLASS 
#define INCLUDED_MYCLASS 

class Base; MyClass::MyClassC) : d_base_p(new Base) {} 

class MyClass { 
Base *d_base_p; 

MyClass::MyClass(const MyClass& c) 
: d_base_pCnew BaseC*c.d_base_p)) {} 

} ; 

public: 
MyClass(); 
MyClass(const MyClass& c); 
,..,MyClass(); 

MyClass& operator=(const MyClass& c); 
void fI(int i); 

int fIC) const; 

My C 1 ass: : ""My C 1 ass () { del e t e d_b as e_p ; } 

MyClass& MyClass: :operator=Cconst MyClass& c) 
{ 

} 

if Cthis != &c) { 
delete d_base_p; 
d_base_p = new MyClassC*c.d_base_p); 

} 

return *this; 

#endif v 0 i d f 1 ( i n t i) { d_b as e_p - > f 1 C i ); } 

int fIe) canst { return d_base_p->fl(); } 

(a) Insulating Header File (b) Insulated Implementation File 

Figure 6-15: Using Layering Instead of Private Inheritance 

Instead of using access declarations to publish members of a private base class selec
tively, new member functions of MyCl ass are defined (out-of-line) to forward their 
calls to corresponding functions defined in class Ba s e. Note that all member functions 
of My C 1 ass that depend on Bas e in size must be declared non- i n 1 i n e if clients are to 
be insulated from the definition of Bas e. 

In this way, class My C 1 ass now insulates its clients from all organizational changes to 
class Base. Had class Base been abstract, then d_base_p would point to a dummy 
concrete class derived from Base, perhaps implemented entirely in file myclass.c. 

Note that all of this insulation is not without its cost (e.g., extra function calls and 
dynamic allocation), as discussed in detail in Section 6.6.1. 
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6.3.2 Removing Embedded Data Members 

Even if performance requirements prevent us from fully insulating a class, we can still 
insulate clients from an individual implementation class by converting all embedded 
instances of that implementation class to pointers (or references) to that class and then 
managing those pointers explicitly in the constructors, destructors, and assignment 
operators of the class. 

Figure 6-16 shows how we can selectively insulate clients from implementation 
classes by converting a RasA relationship (Figure 6-16a) to a HoldsA relationship 
(Figure 6-16b). In doing so we must redeclare all inline functions that formerly oper
ated on My C 1 ass data members of type You r C 1 ass to be non-inline. The downside of 
HoldsA is the increased effort required to manage the layered instance; and also the 
additional performance costs associated with indirection, dynamic allocation, and 
non-inline functions. Notice how we can continue to access performance-critical 
member data (such as d_count) via inline functions. 
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II myclass.h 
#ifndef INCLUDED_MYCLASS 
#define INCLUDED_MYCLASS 

#ifndef INCLUDED_YOURCLASS 
#include "yourclass.h" 
#endif 

class MyClass { 

} : 

int d_count; 
YourClass d-yours; 

public: 
/ I ... 
int yourValue() const 
{ 

return d-yours.value(); 
} 

int count() const 
{ 

return d_count; 
} 

4fendif 

( a) Before Insulating You r C 1 ass 

from Clients of MyC 1 ass 

II myclass.h 
#ifndef INCLUDED_MYCLASS 
#define INCLUDED_MYCLASS 

class YourClass: 

class MyClass { 
int d_count: 

} ; 

YourClass *d-yours_p; 

public: 
I I ... 
int yourValue() canst; 

int count() const 
{ 

return d_count; 
} 

#endif 

(b) After Insulating You r C 1 ass 

from Clients of My C 1 ass 

Figure 6-16: Converting HasA to HoldsA to Improve Insulation 

6.3.3 Removing Private Member Functions 

Private member functions, although encapsulated logical implementation details of a 
class, are part of the physical interface of a component. Non-inline private member 
functions have external linkage; this enables functions and classes declared to be 
friends of this class and defined in other translation units to call them. However, as 
discussed in Section 3.6, befriending any function or class defined outside a compo
nent invites undisciplined clients to take advantage of private details of our class. 
Avoiding long-distance friendship implies that only functions and classes defined 
within a single component may have access to private members. Fortunately C++ 
(and even C) supports a more restrictive, component-wide form of access control. 
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Instead of making the function a private member of the class, make it a static free 
function declared at file scope in the . c file of the component. 8 

Sometimes functions are made private members not because they need private access 
but because the private section of the header file is a good place to store these factored 
helper functions. That is, some private helper functions can do all of their work using 
only the public interface of the class. In these cases, the transformation from private 
member to static free functions is easy and quickly accomplished in two steps. 

The first step is to convert each private member function to a private static member by 
adding an appropriate writable pointer or read-only reference parameter to the func
tion. Consider class My C 1 ass, as defined in Figure 6-17 a. Class My C 1 ass contains two 
private member functions, fand g. Member f is a non-canst (manipulator) function 
and member 9 is a canst (accessor) function. The manipulator f potentially alters the 
object, so, in keeping with our policy (see Section 9.1.1), we will pass the instance by 
non-canst pointer along with the o~her arguments to the function. The accessor 9 is 
innocuous and we will pass the instance by con s t reference along with g' s other argu
ments, as shown in Figure 6-17b. 

II myclass.h 
#ifndef INCLUDED_MYCLASS 
#define INCLUOED_MYCLASS 

class MyClass { 
I I ... 

private: 
void f( ... ); 

int g( ... ) canst; 

public: 
II 

} ; 

#endif 

(a) Original Class with 
Private Member Functions 

II myclassoh 
#ifndef LNCLUDED_MYCLASS 
#define INCLUDED_MYCLASS 

class MyClass { 
I I 000 

private: 

} ; 

s tat i c v 0 i d f ( My C 1 ass *my C 1 ass, .. 0 ) ; 

static int g(can"st MyClass& myClass, .0.); 

public: 
I I 00' 

1tendif 

(b) Modified Class with Only 
Private Static Member Functions 

Figure 6-17: Making Private Member Functions Static Members 

8 We will be able to achieve this same effect more elegantly using unnamed namespaces, as dis
cussed in strollstrup94, Section 17.5.3, pp. 419-420, once this relatively new language feature 
becomes more widely available. 
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The second step is to remove these function declarations entirely from the header file, 

remove the member notation from function definitions in the. c file (shown in Figure 

6-18a), and finally precede each of these definitions by the keyword s tat i c, as shown 

in Figure 6-18b. Note that this second step should not require any changes to the 

implementations of the other member functions defined in the . c file. 

II myclass.c 
#include "myclass.h" 
v 0 i d My C 1 ass: : f ( My C 1 ass * my C 1 ass, ... ) { 1* ... * I } 
i n t My C 1 ass : : 9 ( con s t My C 1 ass & my C 1 ass, ...) { I * ... * I } 
I I ... 

(a) Original Class with Private Static Member Functions 

II myclass.c 
#include "myclass.h" 
static void f(MyClass *myClass, ... ) { 1* ... *1 } 
static int g(const MyClass& myClass, ... ) { 1* ... *1 } 
II 

(b) Modified Class with Static Free Functions 

Figure 6-18: Converting Static Member Functions into Free Functions 

Unfortunately, private member functions often operate directly on other private imple

mentation details, which can make these functions more difficult to extricate. Con

sider the 1 i st component defined in Figure 6-19. Class List contains three private 

member functions-copy, c1 ean, and end-that are used repeatedly to help imple

ment the public functionality of class Lis t. 

The copy function is already a static member, but it needs access to the auxiliary 

("slave") class Lin k. Both c 1 e an () and end ( ) depend on access to the private data 

member d_h e a d_p that identifies the head of the list, and there are no public functions. 

that can be used to obtain access to it. Making these three functions non-members of 

Lis t will strip them of their privileged access to the implementations of both Lis t 

and Lin k. Although these functions will no longer have access to the private details of 

either class, the callers of these functions are members with full access, and they are 

at liberty to offer up this information. 
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II list.h 
#ifndef INCLUDED_LIST 
#define INCLUDED_LIST 

class List; 
class Listlter; 
class astream; 

class Link { 
int d_data; 
Link *d_next_p; 
friend List; 
friend Listlter; 
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Link(const Link& link); 
Link& operator=(const Link& link); 

II not implemented 
II not implemented 

II CREATORS 
Link(int data, Link *next = 0); 

} : 

class List { 

} ; 

Link *d_head_p; 
friend ListIter; 

private: 
static Link *copy(const Link *link, Link *end = 0); 

II allocate and return new copy of given list of links 

void clean(); 
II destroy and deallocate entire list of links 

Link *& end(); 
II return a reference to the end of the list 

public: 
II CREATORS 
List(); 
List(const List& list); 
,..,List(); 

II MANIPULATORS 
List& operator=(const List& list): 
void append(int i); 
Y0id append(const List& list); 

","" \/0 i d pre pen d ( i n t i): 
void prepend(canst List& list): 

ostream& operator«(ostream& 0, canst List& list); 

class Listlter { 
/ I ... 

} ; 

#endif 

Figure 6-19a: 1 ; st. h File for L; st Class with Private Member Functions 
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II list.c 
#include "list.h" 
#include <iostream.h) 

II CREATORS 
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II ********** 
II class Link 
II ********** 

Link::Link(int data, Link *next) : d_data(data), d_next_p(next) {} 

II PRIVATE MEMBERS 

II ********** 
II class List 
II ********** 

Link *List::copy(const Link *link, Link *end) 
{ 

} 

Link* linkPtr = end: 
for (Link **addrLinkPtr ~ &linkPtr; link; link = link->d_next_p) 

*addrLinkPtr = new Link(link-)d_data, *addrLinkPtr); 
addrLinkPtr - &(*addrLinkPtr)->d_next_p; 

} 

return linkPtr: 

void List::clean() 
{ 

} 

while (d_head_p) { 

} 

Link *tmp ~ d_head_p; 
d_head_p = d_head_p->d_next_p; 
delete tmp: 

Link *& List: :end() 
{ 

} 

Link **addrLinkPtr = &d_head_p; 
while (*addrLinkPtr) { 

addrLinkPtr = &(*addrLinkPtr)->d_next_p; 
} 

return *addrLinkPtr; 

II CREATORS 
Lis t : : Lis t () : d_h e a d_p ( 0 ) {} 
List::List(const List& list) d_head_pCcopy(list.d_head_p» {} 
List: :-List() { clean(); } 
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II MANIPULATORS 
List& List::operator=(const List& list) 
{ 

} 

if (this != &list) { 
clean(); 
d_head_p = capyC1ist.d_head_p); 

} 

return *this; 

void List: :append(int i) { endC) = new Link(;); } 

void List::append(canst List& 1) {endC) = copYC1.d_head_p): } 

void List::prepend(int ;) { d_head_p = new LinkC;, d_head_p); } 

II FREE FUNCTION 
astream& operator«(astream& a, canst List& list) 
{ 

} 

o « f['; 

for (Listlter it(list); it; ++it) { 
o « ' , « it(); 

} 

return 0 « " ]"; 

II ************** 
II class Listlter 
II ************** 

I I ... 
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Figure 6-19b: 1 i st. c File for List Class with Private Member Functions 

As shown in Figure 6-20, we can modify both the c1 ean and end helper member 

functions so that they, like copy, are declared stat; c and take as arguments the pri
vate infonnation to which they need access. Clients of these two functions must noW 

provide a little more infonnation when they make the call, but these functions will no 
longer have to rely on private access to the Lis t class to do their jobs. The only prob
lem that remains is that these functions still depend on access to the private function
ality of the encapsulated Link class in order to accomplish their tasks. 
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II list.h 

I I ... 

class List { 
I I ... 

private: 
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static void clean(Link *link); 

} ; 

II 

static Link *& end(Link **addrLinkPtr); 
I I ... 

II list.c 

II 

void List::clean(Link *link) 
{ 

} 

while (link) { 

} 

Link *tmp = link; 
link = link->d_next_p; 
delete tmp; 

Link *& List: :end(Link **addrLinkPtr) 
{ 

while (*addrLinkPtr) { 
addrLinkPtr = &(*addrLinkPtr)-)d_next_p; 

} 

return *addrLinkPtr; 
} 

II 

Figure 6-20: Passing Private Information into Static Free Functions 

One solution is to make the needed functionality in the Lin k class publicly accessible. 
Since the use of Lin k is an encapsulated implementation detail of Lis t, there is little 
hann that can come from allowing clients (or test engineers) to play with separate 
instances of the Lin k class. However, a better solution from an insulation point of 
view is to move the trivial definition of the Lin k class to the . c file and make it 
entirely public. Not only does this solution increase the insulation of the 1 i 5 t compo
nent's implementation, but it also eliminates a lot of unnecessary clutter in its header 
file. The improved version of 1 i st is shown in Figures 6-21a and 6-21b. 



360 Insulation 

II list.h 
#ifndef INCLUDED_LIST 
#define INCLUDED_LIST 

class Link: 
class List; 
class Listlter: 
class ostream; 

class List { 

} : 

Link *d_head_p; 
friend ListIter; 

public: 
II CREATORS 
List(); 
List(const List& list); 
''''ListC); 

II MANIPULATORS 
List& operator=(const List& list); 
vo; d append C i nt i); 
void append(const List& list); 
void prepend(int i); 
void prepend(const List& list); 

ostream& operator«Costream& 0, canst List& list); 

class ListIter { 
I I ... 

} ; 

lFendif 
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Figure 6-21a: 1 i st. h File for 1 i s t Component with Static Free Functions 
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II list.c 
#include "list.h" 
#include <iostream.h> 

struct Link { 
int d_data; 
Link *d_next_p; 

Link(const Link& link); 

II ********** 
II class Link 
II ********** 

Link& operator=(const Link& link); 

II CREATORS 
Link(int data t Link *next -0) 

} ; 

II STATIC FREE FUNCTIONS 

II ********** 
II class List 
II ********** 

II not implemented 
II not implemented 

static Link *copy(const Link *linkt Link *end - 0) 
{ 

} 

Link* linkPtr = end; 
for (Link **addrLinkPtr = &linkPtr; link; link = link->d_next_p) { 

*addrLinkPtr = new Link(link->d_data, *addrLinkPtr); 
addrLinkPtr = &(*addrLinkPtr)->d_next_p; 

} 

return linkPtr; 

static void clean(Link *link) 
{ 

} 

while (link) { 

} 

Link *tmp = link; 
link = link-)d_next_p; 
delete tmp; 

static Link *& end(Link **addrLinkPtr) 
{ 

while (*addrLinkPtr) { 
addrLinkPtr = &(*addrLinkPtr)-)d_next_p; 

} 

return *addrLinkPtr; 
} 
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II CREATORS 
Lis t: : Lis t C) : d_h e a d_p ( 0 ) {} 
List::ListCconst List& list) : d_head_pCcopyClist.d_head_p) {} 
Lis t : :,..., Lis t () { c 1 e an C d_h e a d_p); } 

II MANIPULATORS 
List& List::operator=Cconst List& list) 
{ 

} 

if (this != &list) { 
cleanCd_head_p); 
d_head_p = copyClist.d_head_p); 

} 

return *this; 

void List: :appendCint i) { endC&d_head_p) = new Link(i); } 

void List: :appendCcanst List& 1) { endC&d_head_p) = capyCl.d_head_p); 

void List::prependCint i) { d_head_p = new Link(i, d_head_p); } 

II FREE FUNCTION 
ostream& operatar«Costream& 0, canst List& list) 
{ 

} 

II 

o « '['; 
for CListIter it(list); it; ++it) { 

o « ' , « itC); 
} 

return a « " ]"; 

II ************** 
II class Listlter 
II ************** 
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Figure 6-21b: 1 i st. c File for '-i st Component with Static Free ~unctions 

Sometimes private member functions can be converted to static free functions that are 
independent of the types defined in the current component. If these functions are non
trivial, it could be advantageous to attempt to verify them directly_ Instead of creating a 
single component with inaccessible yet non-trivial static free functions, consider mak
ing two components-one with public static members used to implement the other. 

Figure 6-22 illustrates the result of moving independent static functions at file scope 
from the my c 1 ass. c file and making them into publicly accessible static member 
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functions in a separate utility component. This technique makes sense when the func
tions are either reusable or non-trivial, and it is especially useful when the CCD of 
these functions alone is very much smaller than it is for the original component. 

II myclass.c 
#include "myclass.h" 
#include "myclassimputil.h" 

void MyClass::func(int x) 
{ 

} 

i n t z = My C 1 ass Imp Uti 1 : : 9 ( x) ; 
I I ... 
double w = MyClasslmpUtil ::f(ztx); 
I I ... 

(a) Original Component's. c File 

II myclassimputil.h 
#ifndef INCLUDED_MYCLASSIMPUTIL 
#define INCLUDED_MYCLASSIMPUTIL 

struct MyClasslmpUtil { 
static int g(int y); 

} ; 

static double feint a, int b); 
II 

#endif 

(b) New Component's. h File 

Figure 6-22: Moving Static Free Functions to Another Component 

Although static functions are preferable to private members with respect to compile
time coupling, performance can become an issue, especially if there is a lot of private 
state infonnation that must be passed into and out of the static functions at file scope. 
In such cases, other, more general forms of insulation (discussed in Section 6.4) may 
be preferable. 

6.3.4 Removing Protected Members 

What are protected members good for? That is, when is it appropriate to have pro
tected access to class members? The simplistic answer is that protected members are 
appropriate when you wish to distinguish between two distinct audiences: derived
class authors and general users. The protected interface is every bit as important as the 
public interface when it comes to encapsulating private details (see Section 2.2), yet 
the protected interface is often given less attention than the public one. Realize that 
even though the protected interface of an individual instantiated object is not accessi
ble by the pUblic, anyone can derive a class that depends on these protected details. 

The next question is then, "When would someone want to address two distinct audi
ences from within a single class?" More often than not, the answer is, "When some
one is trying to do too much with a single class." 
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Supplying support for derived-class authors in the form of protected 
member functions of a base class exposes public clients of the base 
class to uninsulated implementation details of the derived classes. 

Consider the header for the abstract base class Shape shown in Figure 6-23. Presum
ably each derived-shape object has an origin and an area, and knows how to draw 
itself on a given .Screen. The screen object provides all the functionality needed to 
draw lines and arcs; however, writing the code to achieve this has been found to be 
both tedious and error prone. Knowing this, the author of the S hap e base class has 
provided a suite of protected member functions to aid the derived-class author in 
implementing his or her own specialized d raw function. 

Figure 6-24 illustrates a derived Rectangl e class and the implementation of its draw 
function using protected helper functions provided in the base class. The Rectangl e 
is defined only by its lower-left and upper-right comers, which implicitly forces the 
edges of the Rectangl e to be horizontal and vertical. The derived-class author has 
also defined the lower-left comer to coincide with the origin of the shape. 
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II shape.h 
#ifndef INCLUDED_SHAPE 
#define INCLUDED_SHAPE 

#ifndef INCLUDED_POINT 
#include "point.h" 
#endif 

class Screen; 

class Shape { 
public: 

II TYPES 
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enum Status { 10_ERROR ~ -1, SUCCESS - 0 }: 

} ; 

private: 
II DATA 
Point d_origin; 
Status d_drawStatus; 

protected: 
II DERIVED CLASS SUPPORT 
static double distance(const Point& start, const Point& end): 
void resetDrawStatus(); 
Status getDrawStatus() const; 
void drawLine(Screen *screen. const Point& start, canst Point& end); 
void drawArc(Screen *screen, const Point& center, double radius, 

double startAngle, double endAngle); 
private; 

Shape& operator=(const Shape&); 
Shape(const Shape&); 

public: 
II CREATORS 
Shape(canst Point& origin): 
virtual -Shape(); 

II MANIPULATORS 
void setOrigin(const Point& origin); 

II ACCESSORS 
const Point& origin() const: 
virtual double area() const = 0; 

II not implemented 
II not implemented 

virtual Status draw(Screen *screen) - 0; 

#endif 

Figure 6-23: Shape Class with Protected Support for Derived-Class Authors 
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II rectangl~.h 

#ifndef INCLUDED_RECTANGLE 
#define INCLUDED_RECTANGLE 

#ifndef INCLUDED_SHAPE 
#include "shape.hl! 
Ifendif 

class Rectangle: public Shape { 
Point d_upperRightCorner; 

} ; 

public: 
II CREATORS 
Rectangle(const Point& lowerLeft, canst Point& upperRight); 
RectangleCconst Rectangle& rect); 
---Rectangle(); 

II MANIPULATORS 
Rectangle& operator=(const Rectangle& reet); 
void setUpperRightCorner(const Point& upperRight); 

II ACCESSORS 
const Point& upperRightCorner() const; 
double area{) const; 
Shape::Status draw(Screen *screen); 

#endif 
II rectangle,c 
#include II rec tangle.h ll 

I I ... 

Shape::Status Rectangle::draw(Screen *screen) 
{ 

resetDrawStatus(); 
int xl - origin().x(); 
int y1 - origin().y(); 
int x2 - upperRightCorner().x(); 
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int y2 - upperRightCorner().y(); 
drawLine(screen, Point(x1, y1), Point(x1, y2»; 
drawLine(screen, Point(x1, y2), Point(x2, y2»; 
drawLine(screen, Point(x2, y2), PointCx2, y1»; 
drawLine(screen, Point(x2, y1), Point(x1, y1»; 
return getDrawStatus(); 

} 

Figure 6-24: Derived Rectangl e Shape and the Implementation of Its Draw Member 
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In order to draw a Rectangl e, we will need to draw four lines. If any error occurs we 
will need to return 10_ERROR from the Rectangl e:: draw function. Our first step is to 
clear the draw status. We then identify the appropriate coordinates and make the nec
essary calls to the protected helper functions. If any error occurs along the way, these 
helper functions will internally set the draw status to I O_E RRO R. When we are done, 

we simply return the draw status. 

This is one way of doing business that is convenient for base-class authors and 
derived-class authors alike, but takes its toll on general clients by compile-time cou
pling them to numerous implementation details that they neither need nor want. This 
scenario is illustrated by the component/class diagram in Figure 6-25. 

Figure 6-25: Component/Class Diagram for Original Shape System 

In this case there is little justification for polluting the public interface of class S hap e 

with details that only the derived-class authors care about. Suppose that instead of 
having each of the derived classes depend on services provided in the base class, each 

derived class uses a separate component (if needed) to facilitate drawing. This way, the 
unnecessary coupling associated with the protected members would be eliminated . 

.. 

As Figure 6-26 shows, the new system is now factored so that the derived-class 
authors use a separate scri be component that the general public does not see. 
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In Name Only 

Figure 6-26: Component/Class Diagram for New Shape System 

The header for the scri be component is shown in Figure 6-27. Since the functionality 

provided in this new component is no longer embedded in Shape, we have decided to 

uncouple it completely. The drawing functionality no longer depends on S hap e in any 

way, and now this facility can readily be reused by objects other than those derived 

from Shape that might need to render themselves on a Screen. 

II scribe.h 
#ifndef INCLUDED_SCRIBE 
#define INCLUDED_SCRIBE 

class Screen; 
class Point; 

class Scribe { 
int d_hadError; 
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} ; 

private: 
Scribe& operator=(const Scribe&); 
Scribe(const Scribe&); 

public: 
II STATICS 
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II not implemented 
II not implemented 

static double distance(const Point& start, canst Point& end); 

II CREATORS 
Scribe(); 
"'"'Scribe(); 

II MANIPULATORS 
vaid drawLine(Screen *screen, canst Point& start, const Point& end); 

void drawArc(Screen *screen, canst Point& center, double radius, 
double startAngle, double endAngle); 

II ACCESSORS 
int hadErrar() canst; 

#endif 

Figure 6-27: New Reusable scri be Component to Facilitate Drawing 

Derived-class authors will not find it difficult to use the public members of class 
S c r i be instead of the protected members of the base class. Since the 5 C r i be compo
nent is provided only as a convenience, those who do not find its functionality useful 
need neither include its header nor depend on it at link time. The reimplemented d raw 
function for Rectangl e is shown in Figure 6-28. The new version of the header for 
the Shape base class is given in Figure 6-29. 

Occasionally it is not feasible to remove all of the protected members of a class. Such 
is the case when the derived class needs access to protected services provided by a 
base class in order to override virtual functions. 
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II rectangle.c 
1finclude "rectangle.h" 
#include "scribe.h" 

Shape::Status Rectangle::draw(Screen *screeh) 
{ 

} 

Scribe u; 
int xl = origin().x(); 
int yl = origin().y(); 
int x2 = upperRightCorner().x(); 
int y2 =upperRightCorner().y(): 
u.drawLine(screen, Point(xl, yl), Point(xl,y2»; 
u.drawLine(screen, Point(xl, y2), Point(x2,y2»; 
u.drawLine(screen, Point(x2, y2), Point(x2,yl»; 
u.drawLine(screen, Point(x2, yl), Point(xl,yl»; 
return u.hadError() ? 10_ERROR: SUCCESS; 

Figure 6-28: New Implementation of Rectangl e: : Draw 
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An abstract base class that defines some shared functionality is sometimes referred to 
as a partial implementation. This type of factored implementation allows derived

class authors to share a common implementation, but protected functionality again 
places a burden on general users of the base class by exposing them to uninsulated 

implementation details. 

II shape.h 
#ifndef INCLUDED~SHAPE 
#define INCLUDED_SHAPE 

#ifnde·f INCLUDED_POINT 
#include "point.hl! 
/fendif 

class Screen; 

class Shape { 
Point d_origin; 

private: 
Shape& operato·r=(const Shape&); 
Shape(const Shape&); 

public: 
II TYPES 

II not implemented 
II not implemented 

enum Status { IO_ERROR = -1. SUCCESS = 0 }; 
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} ; 

II CREATORS 
Shape(const Point& origin); 
virtual -ShapeC); 

II MANIPULATORS 
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void setOrigin(const Point& origin); 

II ACCESSORS 
canst Paint& origin() canst; 
virtual double area() canst = 0; 
virtual Status draw(Screen *screen) - 0; 

4rend if 

Figure 6-29: Shape Class with Protected Member Functions Removed 

For example, Figure 6-30 illustrates a simple base class that is used both to provide a 
common interface and to factor the common implementation for cars. All cars have a 
location, yet the public cannot alter that location directly. Instead, clients must call the 
public member function d r i ve that, in tum, will cause the location of the car to 
change in various ways, depending on the implementation of the actual (derived) car. 

II car.h 
#ifndef INCLUDED_CAR 
#define INCLUDED_CAR 

class Car ( 
int d_xLocation; 
int d-yLocatian; 

private: 
Car(const Car&); 
Car& operatar=(canst Car&); 

protected: 
Car(int x. int y); 
int setXLocation(int x): 
int setYLocation(int y); 

II not implemented 
II not implemented 

II Only derived classes can set the location of a car directly. 
void move(;nt deltaX. int deltaY); 
static double distancel(double acceleration, double time): 
static double distance2(double acceleration, double velocity); 
double howFar(int newXlocation, int newYLocation) const; 

public: 
II CREATORS 
virtual -Car(); 
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} ; 

II MANIPULATORS 
virtual void drive(/* ... */) = 0: 

II Public clients alter the location of the 
II car by calling the public function drive. 

II ACCESSORS 
int xLocation() canst: 
int yLocatian() canst: 

#endif 

Chapter 6 

Figure 6-30: Ca r Base Class Containing Protected Member Functions 

Several helper functions have been supplied in the protected interface of this base 
class in order to aid derived -class authors in implementing the d r i ve function of their 
own specific class. For instance, the function move takes relative distances and sets the 
new absolute location of the Car. Static functions dis tan eel and dis tan c e 2 are inde
pendent of instance data and provide support for physical distance calculations. The 
how Far accessor function compares the current position with a specified new position 
and returns the as-the-crow-flies distance between the two points. 

Unlike the S hap e base class, however, Car's interface defines a pure virtual function 
d r i ve that, depending on the actual derived type of Car, must in tum set the value of 
the Ca r's location using protected functions provided by its partial implementation. 

The design of the Car base class couples the interface with at least a portion of the 
implementation. Now if a car manufacturer wants to develop an entirely new design 
for a car, it is forced to carry around the overhead of the partial implementation 
defined in the base class whether or not it is used! 

In the case of Ca r, some of the functionality (e.g., the static functions and the howFa r 
accessor) could certainly be moved to a separate utility class, as was done for Shape. 

But extricating the partial implementation from this base class requires a more com
prehensive effort. 
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(a) Original Car Hierarchy (b) Insulated Car Hierarchy 

Figure 6·31: Extracting a Protocol for Car 

Figure 6-31 a illustrates the component/class diagram for the original uninsulated sys
tem. By factoring the pure interface and partial implementation of Ca r into two sepa-

. rate classes (Car and Carlmp, respectively), we will be able to separate them 
physically. By placing the pure interface in a separate component, we provide an insu
lating interface for public clients of Car, as illustrated in Figure 6-31 b. Note that since 
Car I mp derives from Car, further derived classes that choose to share the common 
implementation may continue to do so. Fortunately, changes made to the physical 
organization of Car I mp cannot affect clients of Car. The extracted protocol for a Car is 
shown in Figure 6-32. 
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II car.h 
#ifndef INCLUDED_CAR 
#define INCLUDED CAR 

class Car { 
public: 

II CREATORS 
vir t u a 1 ---C a r ( ) ; 

II MANIPULATORS 
virtual void drive(/* ... */) = 0; 

Chapter 6 

II Public clients alter the location of the 
II car by calling the public function drive. 

} ; 

II ACCESSORS 
virtual int xLocation() const = 0; 
virtual int yLocation() const = 0; 

#endif 

carimp 

II carimp.h 
#ifndef INCLUDED_CARIMP 
#define INCLUDED CARIMP 

class Carlmp : public Car { 
int d_xLocation; 

} ; 

i n t d-y L 0 cat ion; 
I I ... 

public: 
I I ... 
II ACCESSORS 
int xLocation() canst; 
int yLocation() canst; 

#endif 

Figure 6-32: Protocol and Partial Implementation for a Car 

What we have done in order to insulate the general users from all of the implementa
tion details is to extract a pure interface (referred to in this book as a protocol). 

Extracting a protocol is a very general and powerful technique for simultaneously 
achieving both levelization and insulation. Protocol classes and how to extract them 
are the subject of Section 6.4.1. 



section 6.3.5 Removing Private Member Data 375 

6.3.5 Removing Private Member Data 

As you may recall, in the previous section we were able to eliminate all of the pro
tected members from the S hap e base class by introducing a separate facility to support 
the implementation of draw functions in derived classes. But the base class Shape still 

contained private data. 

II myclass.h 
#ifndef INCLUDED_MYCLASS 
#define INCLUDED_MYCLASS 

class MyClass { 

} ; 

static int s_count: 
I I ... 

public: 
II 

II myclass.c 
#endif #include "myclass.h" 

int MyClass::s~count; 
I I ... 

(a) Original Class with 
Private Static Member Data 

II myclass.h 
#ifndef INCLUDED_MYCLASS 
#define INCLUDED_MYCLASS 

class MyClass 

} ; 

I I ... 
public: 

II 

#endif 
II myclass.c 
#include "myclass.h" 
static int s_count: 
I I ... 

(b) Modified Class with 
Static File-Scope Data 

Figure 6-33: Removing Private Static Member Data 

Removing private static member data is relatively easy. Figure 6-33a shows a private 
static integer data member, s_count, used to track the number of active instances of 
My C 1 ass. As long as inline member functions (or long -distance friends) do not require 
direct access, it is usually possible to move static member data to a static variable 
defined at file scope in the component's. c file.9 Removing non-static member data is 
considerably more involved. 

As we saw in Section 6.3.4, changing this encapsulated private data would force all pub
lic clients of base class S hap e to recompile. As was done with Car in the previous sec-

9 In very rare situations, allowing components to have more than one . c file enables developers of 
reusable libraries to partition member function definitions based on usage patterns in order to reduce 
the runtime size of typical client programs. Allowing functions to communicate via static variables 
defined in the . c file reduces the flexibility to partition the individual member functions of a class 
into separate translation units ( . c files). 
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tion, we can factor S hap e into two classes, one containing the pure interface and the 

other containing the partial implementation (including the definition of the origin data). 

The component/class diagram for the factored S h a pe hierarchy is given in Figure 6-34 . 
There are two distinct advantages to this architecture: 

1. Clients of the S hap e class are insulated from all implementation details of 
the actual object derived from Shape. 

2. It is possible to derive an entirely new sUbtype of S hap e without incurring 

any of the overhead associated with the partial implementation now 
defined in Sha pe Imp. 

Class Shape no longer embeds an instance of Poi nt, so clients of Shape are no longer 

forced to include the definition of Poi nt in order to use a Shape. Derived classes can 

continue to share the partial implementation of Shape by deriving from Shapelmp 

instead of from Shape. As always, there is absolutely no additional runtime cost asso

ciated with extending the depth in an inheritance hierarchy. The only additional cost is 

that the member functions 0 rig i nand s etO ri gin, which were statically bound, must 

now be invoked through the virtual calling mechanism (see Section 6.6.1). 

We may decide to try an alternate partial implementation of Shape, MyShapelmp, that 

makes use of a pair of s h 0 r tin t data members to hold the internal representation of 

the origin instead of a Poi nt. The original architecture simply does not support this 

degree of reimplementation. Even if the ori gi n and setOri gi n member functions 

had been declared virtual, the original architecture would have forced each instance to 

carry around an extra data member of type Poi nt. 

With the new factored architecture, the choice of implementation is unrestricted. We 

can now provide that alternate efficient partial implementation for S h a pe, derived 

directly from Shape. Specific concrete shapes derived from Shapelmp, MyShapelmp, 

or even directly from Shape itself could coexist in the same running system without 

affecting other shapes or clients. 
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Figure 6-34: Component/Class Diagram for Factored Shape Subsystem 

A protocol class for an arbitrary shape is given in Figure 6-35. Even though the Shape 

class now insulates all implementation details from its public clients, we would still 
opt to keep the support for drawing in a separate component for two reasons: 

1. As previously mentioned, maintaining the support for drawing as a sepa
rate screen facility independent of the S hap e hierarchy enables its reuse 
in rendering objects other than those derived from Shape (or Shapelmp). 

Embedding these support functions within Shapelmp would couple a spe-
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cific partial implementation with more generally useful functionality. It 
would not, for example, be possible for My S hap e I mp to take independent 
advantage of the support for drawing if that support were defined in the 
Shapelmp class. 

2. The scri be component provides an optional service and is not an essen
tial property of the partial implementation. Derived-class authors who 
find they have no need for this functionality should not only be insulated 
from it but should not even have to link to it during testing. 

II shape.h 
#ifndef INCLUDED_SHAPE 
#define INCLUDED_SHAPE 

class Point; 
class Screen; 

class Shape { 
public: 

} ; 

II TYPES 
enum Status { lO_ERROR = -1, SUCCESS = 0 }; 

II CREATORS 
virtual ~Shape(); 

II MANIPULATORS 
virtual void setOrigin(const Point& origin) = 0: 

II ACCESSORS 
virtual canst Point& origin() const = 0: 
virtual double area() canst = 0; 
virtual Status draw(Screen *screen) = 0; 

#endif 

Figure 6-35: Protocol for a Shape 

6.3.6 Removing Compiler-Generated Functions 

Changing the definition of any compiler-generated function implies modifying the 
class definition to add the corresponding declaration. Any such modification would 
force all clients of the class to recompile. While it may be convenient to allow the 
compiler to generate a copy constructor, assignment operator, and/or a destructor (if 
needed), a truly insulating class must define these members explicitly. Often these 
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explicitly defined functions will duplicate their default behavior. In particular, 
destructors will often be defined with an empty implementation. Such is the price of 
flexibility. (For other reasons to declare these particular functions explicitly, see Sec
tions 9.3.2 and 9.3.3.) 

6.3.7 Removing Include Directives 

Unnecessary include directives can cause compile-time coupling where none would 
otherwise exist. There are generally three cases where a Hi ncl ude directive should 
appear in the header file of a component: 

1. IsA: A class in this component derives from a class defined in the 
included file. 

2. RasA: A class in this component embeds an instance of a class defined in 
the included file. 

3. Inline: A function declared inline in this component's header file uses a 
class defined in the included file in size. 

Infrequently, a header file that contains a local linkage construct (such as enum or 
typedef in ,class scope) can be another plausible excuse for including one header file 
in another. In general, however, there are few other situations in which placing a 
Hi n elude directive in a header file is justified. 

As we saw earlier in the Bank example (Section 6.2.7), the bank component author's 
decision to include each of the foreign currencies was no favor at all to the clients of 
class Ba n k. The fact that these currencies appeared (in name) in the interface in no 
way implied that Ban k 's clients needed to know their definitions in order to make 
good use of Bank. The artificial compile-time dependency of Person on all these for
eign currencies was solely the result of the nested Hi nc 1 ude directives. 

The transformation is simple: move all unnecessary include directives from the header 
file to the . c file, and replace them with appropriate ("forward") class declarations. 
The class declaration tells the client's C++ compiler that the currency represents some 
user-defined object type but says nothing about its internal layout. Clients of Ban k are 
now insulated from changes made to types they don't use. The easily made insulating 
version of the ba n k component is shown in Figure 6-36. 
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II bank.h 
#ifndef INCLUDED_BANK 
#define INCLUDED_BANK 

class BankCard; 
class GermanMarks; 
class JapaneseYen; 

II class 
II class 
II class 
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declaration instead of #include 
declaration instead of f/include 
declaration instead of #include 

class UnitedStatesDollars; 
class EnglishPounds; 

II 
II 

class 
class 

declaration instead of lIinclude 
declaration instead of #include 

II 
II 
I I ... 

class LakosianFooBars; 

class Bank { 
I I ... 
Bank(const Bank&); 
Bank& operator=(const Bank&); 

II We don't want to copy 
II or assign banks. 

public: 

} ; 

II CREATORS 
Bank(); 
-Bank(); 

II MANIPULATORS 
GermanMarks 
JapaneseYen 
UnitedStateDollars 
EnglishPounds 
I I .. . 
I I .. . 
I I .. . 
LakosianFooBars 

#endif 

getMarks(BankCard *cashMachineCard, 
getYenCBankCard *cashMachineCard, 

getDollars(BankCard *cashMachineCard, 
getPoundsCBankCard *cashMachineCard, 

double amount); 
double amount); 
double amount); 
double amount); 

getFooBars(BankCard *cashMachineCard, double amount): 

Figure 6-36: Insulating Class Using Many Types in Its Interface 

In general, wherever it is feasible to remove an inline function or alter a data member 
so as to make a 1ft inc 1 u d e directive in a header unnecessary, a positive benefit by way 
of reduced compile-time coupling has been realized. If this unnecessary Ifi ncl ude 

directive is removed, however, clients that previously depended on this header file to 

include another will now have to be modified to include that header file directly. 
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6.3.8 Removing Default Arguments 

-

It is easy enough to remove default arguments from an interface and replace them 
with equivalent individual functions: 10 

class Circle { 
I I ... 

public: 
Circle(double x = 0, double y = 0, double radius - 1); 
I I ... 

} ; 

We can change the above interface to the more insulating version as follows: 

class Circle { 
I I ... 

} ; 

public: 
Circle(); 
Circle(double x) II do we really want this? 
Circle(double x, double y); 
Circle(double x, double y, double radius); 
I I ... 

Upon reflection we may decide not to provide the identical functionality and to remove 
one or more of the options created for us automatically with default arguments. 

We can sometimes eliminate the compile-time coupling and yet preserve the factoring 
of default arguments by interpreting an invalid optional value (e.g., a null pointer, a 
zero size, or a negative index) within the body of the function itself. Recall that in the 
interface for the p2p_Router (Figure 4-2) there was a function fi ndPath that took an 
"optional" first argument, which was the address at which to store the result: 

class p2p_Router { 
I I ... 

} : 

public: 
I I ... 
int findPath(geom_Polygon *returnValue, canst geom_Point& start, 

canst geom_Point& end, int width) canst; 

10 eUis, Section 8.2.6, p. 142. 
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By rearranging the order of arguments, we could have made this argument truly 
optional without hard-coding any uninsulating value in the interface: 

class p2p_Router { 
II ... 

} ; 

public: 
II ... 
int findPath(const geam_Point& start. canst geom_Point& end, 

int width, geom_Polygon *returnValue = 0) canst; 

Default parameters are discussed further in Section 9.1.10. 

6.3.9 Removing Enumerations 

Enumerations in the interface by their very nature evoke compile-time coupling. Judi

cious use of enumerations, typedefs, and all other constructs with internal linkage in 
the interface is essential to achieving good insulation. 

Consider the three distinct kinds of enumerations shown in Figure 6-37. The first is a 
private implementation detail of the class, the second is a publicly accessible constant 
value, and the third is a named, enumerated list of return status values. 

II whatever.h 
#ifndef INCLUDED_WHATEVER 
#define INCLUDED_WHATEVER 

class WhatEver { 
enum { DEFAULT_TABLE_SIZE = 100 }; II 1 

public: 
enum { DEFAULT_BUFFER_SIZE = 200; }; 112 

enum Status { A, B, C, 0, E, F, G, H, I, J }; 113 

Status doItC); 
} ; 

Ifendif 

Figure 6-37: A Class Containing Three Distinct Kinds of Enumeration 

The first enumeration in Figure 6-37 is inappropriately placed (unless you need .a 
compile-time constant in the header--e.g., to implement a fixed array bound). ThIs 
enumeration should either be moved to the . c file at file scope or, if necessary, be 
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made a private static con s t member of the class. Representing this number as a static 
class data member gives both inline functions, and functions with friend status 
defined outside this translation unit, programmatic access to its value, without expos
ing a "magic number" in the header file. 

The second enumeration should at least be made a private static can s t class member, 
and a public static (perhaps inline) accessor member function should be defined to 
return this value. As with most insulation techniques (see Section 6.6.1), we pay a price 
in runtime performance for the reduced coupling. In this case, an optimizing compiler 
can take advantage of known compile-time constants, such as fundamental data 
declared canst at file scope, enumerators, and literals. By storing actual values (rather 
than addresses) directly in the instruction stream, an extra level of indirection can be 
avoided. By definition, however, these compile-time constants cannot be insulated 
from clients. Hence, any attempt to change them will inevitably force client recompila
tion. If this level of performance across this interface is an issue, then this component is 
probably at too low a level to be considered a good candidate for insulation. 

I

"""'" , ........................................................................ \),.................... ·······1 

l'~i-ill!·I;JI.ioli, 
...•... . ... ~ 

Granting higher-level clients the authority to modify the interface of 
a lower-level shared resource implicitly couples all clients. 

The third enumeration is clearly part of the interface. It may be that not all of these 
status values are returned by functions in this component, but rather that this compo
nent has been chosen to hold status values for other components as well. However, to 
reduce compile-time coupling, a much preferred approach is to distribute the status 
values to the appropriate components and not to attempt to reuse them. Distributing 
the enumerated status values greatly reduces coupling by allowing the enumeration to 
be independent of higher-levels in the physical hierarchy. Defining return values 
locally has the added value of not trying to coerce subtly different meanings into 
already existing status values. Each status value's meaning is local to the current 
object and exactly suited for its purpose. Reusing status values is but one more case 
where the benefit of reuse is more than offset by the coupling that ensues. A possible 
alternative to the definitions in Figure 6-37 is illustrated in Figure 6-38. 
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II whatever.h 
#ifndef INCLUDED_WHATEVER 
#define INCLUDED_WHATEVER 

class WhatEver ( 
static canst int s_defaultBufferSize; II 2 

public: 
static int getOefaultBufferS;ze(); II 2 
en urn S tat u s { A. B. C }; I I 3 
Status daltC); 

} ; 

inline int getOefaultBufferSize() 
{ 

return d_defaultBufferSize; 
} 

lIendif 

(a) whatever. h Header File 

II whatever.c 
lIinclude "whatever.h" 

II 2 

enum { DEFAULT_TABLE_SIZE = 100 }; 111 

canst int WhatEver::s_defaultBufferS;ze = 200; 112 

WhatEver::Status WhatEver::doltC) { 1* ... *1 }; 

(b) whatever. c Implementation File 

. Chapter6 

Figure 6-38: Alternative Definitions for the Three Enumerations of Figure 6-37 

It is possible to get around the compile-time coupling of enumerations in the interface 
by instead passing integers or character strings. This practice does indeed remove 
compile-time coupling. However, having an enumeration in the interface of a function 
especially as a parameter, can be a useful form of coupling that helps to ensure the con
sistency of the program; it is not this kind of coupling that insulation seeks to eliminate. 

Consider a function that returned a "bad" status value as a character string. Clients 
would be required to know the exact form of the string. Since this value is insulated, 
even determining this string the first time can be challenging for clients. Now, sup" 
pose that one of the returned strings happened to change from i 0 E r ra r to 10_ERROR. 

There would be no compiler support to help clients track down all places where the 
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comparison value in the calling routines would need to change. Even ignoring the 
possibility of change, inevitable spelling errors will surely go undetected. 

In general, the goal of, insulation is to shield clients from the compile-time depen
dency associated with knowing unnecessary, encapsulated implementation details; it 
is not to meant to shield clients from the programmatically accessible interface or to 
compromise type safety. 

6.4 Total Insulation Techniques 

In a well-planned, well-architected system, we will know in advance which interfaces 
are public and which are not. This knowledge will help us to decide which interfaces 
should be insulating and which should not. Designing an interface to be insulating 
from the start is always easier and less costly than trying to insulate it after the fact. 

In practice, developers may fail to consider all of the ramifications of their design 
decisions. Sometimes it will be necessary to insulate a particularly poorly designed 
class from the rest of the system, but applying individual insulation techniques would 
be tedious and unnecessarily costly. 

Fortunately there are wholesale techniques for distancing the implementation of a 
class, a component, or even an entire subsystem from its interface without disturbing 
its working implementation. The physical motivation behind these techniques can be 
found in a few other texts on C++. II Often these techniques are motivated from an 
entirely logical perspective.12 Many of them introduce one or more new components 
that serve as insulating interfaces for what now will become the implementation. 
Using these techniques, we can sometimes improve the quality of a sloppy interface 
so that it reaches the standard it should have met in the first place. 

11 meyers, Item 34,- pp. 111-116; murray, Section 3.3, pp. 72-74. 
12 gamma, Abstract Factory, Chapter 3, pp. 87-96; Facade, Chapter 4, pp. 185-194. 
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6.4.1 The Protocol Class 

In the ideal case, a perfectly insulating interface defines absolutely no implementa_ 
tion; it merely specifies an interface through which clients may access and manipulate 
instances of derived concrete classes.13 

DEFINITION: An abstract class is a protocol class if 

1. it neither contains nor inherits from classes that contain member 
data, non-virtual functions, or private (or protected) members of 
any kind, 

2. it has a non-inline virtual destructor defined with an empty 
implementation, and 

3. all member functions other than the destructor including inher
ited functions, are declared pure virtual and left undefined. 

A protocol class is an abstract class that has no user-specified constructors, no data, 
and only public members. The component itself does not include any other headers 
except for those defining other protocols from which this protocol inherits (see 
Appendix A). All member functions (except the destructor) are declared pure virtual. 
Many compilers will need at least one non-inline function implementation in order to 
know in what translation unit to place the virtual function tables (see Section 9.3.3). 
Since the destructor is the only member function that is not declared pure virtual, it is 
the only viable candidate for implementing out-of-line in a protocol class. 

1
·····.·.:;/ ·i.············ .................••..•..•............ / ............................ < ....••. I 
i,1~ •• III\l:t1iij),i -

A protocol class is a nearly perfect insulator. 
-

13 This requirement is sometimes relaxed to permit extralinguistic support for runtime type infonna" . 
tion (RTf I) as is discussed in Appendix A. 
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Figure 6-39 illustrates a protocol for a simple file abstraction. The . c file for this 
abstraction is nearly empty and contains only the following three lines: 

II file.c 
#include "file.h" 
File::---File() {} II defined empty and out-of-line 

Note that encoding the location as an integer instead of as an enumeration would have 
allowed us to add new integer values without requiring existing clients to recompile. 
In the same vein, we could then also remove or change these values without being 
able to detect the inconsistency at compile time. Removing compile-time coupling at 
the expense of compile-time type checking is typically undesirable. 

II file.h 
#ifndef INCLUDED_FILE 
#define INCLUDED_FILE 

class File { 
public: 

II TYPES 
enum From { START, CURRENT, END }; 

II CREATORS 
virtual ---File(); 

II MANIPULATORS 

II not pure virtual! 

virtual void seekCint distance, From location) = 0; 
virtual int read(char *buffer, int numBytes) = 0; 
virtual int writeCconst char *buffer, int numBytes) - 0; 

II ACCESSORS 
virtual int tell (From location) - 0;· 

} ; 

#endif 

Figure 6-39: Protocol for a File 

Instead we have chosen to define the set of valid location values explicitly in the inter
face. It is therefore appropriate to enumerate them in class Fi 1 e. This enumeration is in 
no wayan implementation detail; it is strictly part of the logical interface of class F i 1 e. 
That is, adding to or changing this enumeration is like adding to or changing the set of 
virtual functions-all derived classes and all clients would be forced to recompile. 
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Class F i 1 e is abstract: it defines a complete interface but no implementation. For 
example, one cannot construct an object of type F i 1 e on the program stack as an auto
matic variable. Somewhere, someone must derive a concrete implementation class 

from Fi 1 e and instantiate it. Perhaps a manager component (such as the one shown in 

Figure 6-40) is used to keep track of files. 

II filemgr.h 
#ifndef INCLUDED_FILEMGR 
#define INCLUDED_FILEMGR 

struct FileMgr { 
static File *openCconst char *filename); 

} ; 

#endif 

Figure 6-40: Header for a File Manager Component 

One or more of the clients in a system may call upon the F i 1 eMg r in order to create an 
instance of F i 1 e I mp-a concrete implementation class derived from the protocol 

class Fi 1 e. Once it is created, a pointer to the implementation object can be passed 

around the system as a pointer to an object of type F i 1 e with no compile-time depen

dencies whatsoever on its implementation. 

Figure 6-41 illustrates a system that uses type F i 1 e, yet is entirely insulated from its 

implementation. Class Sub Sy s 1 is the part of the system that is responsible for instan

tiating new objects of type Fi 1 e, and is therefore link-time, but not compile-time, 

dependent on class Fi 1 elmp. Both SubSys2 and SubSys3 merely use the Fi 1 e proto

col. These components are neither compile-time nor link-time dependent on Fi 1 eMgr 

or even on Fi 1 elmp. As such, both components subsys2 and subsys3 can be tested 

independently of Fi 1 eMgr. These components can even be tested independently of 

F i 1 e I mp if a suitable stub implementation class is supplied for the F i 1 e protocol in 

the test drivers. 



section 6.4.1 The Protocol Class 389 

Figure 6-41: System Using a File Protocol 

A protocol class can be used to eliminate both compile- and link-time 
dependencies. 

As we saw with the library subsystem example in Figure 5-32, extracting a protocol 
can be used to break cyclic link-time d~pendencies.By physically separating the 
Report's interface from its implementation, we allowed StatUti 1 to depend on the 
lower-level Report protocol while only the higher-level Reportlmp partial implemen
tation depended back on S tat Uti 1. What is new and important here is that ~hanges to 
the higher-level implementation component---even in its header file~an have abso
lutely no compile-time effect on any clients on the same or lower level of the protocol. 

Sometimes we will encounter an instantiatable base class that declares some of its 
functions vi rt ua 1. Often this class contains private data. Sometimes this class will 
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contain private or protected functions. Some member functions may be declared 

i n 1 i n e. The class may contain static functions and enumerations intended for use by 
derived classes; it may contain protected (or even private) virtual functions intended 

for precisely that same audience. This class may even derive from or embed instances 

of other classes that are not programmatically accessible through the public interface 

of this class. In short, there may be a whole lot more going on in this class than a pub
lic client needs to know about. 

Consider an instantiatable base class called E 1 em fitting the description of the previous 

paragraph whose usage is suggested in Figure 6-42. The public interface of E 1 em is 

used widely throughout the system by clients to manipulate objects of type El em (or 

derived from E 1 em). The system architect has thoughtfully isolated the creation of 

E 1 em objects to a single client, eli en t 1. 

Figure 6-42: Using a Non-Insulating E1 em Base Class 
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Unfortunately the intrinsic lack of insulation in the E 1 em base class exposes all clients 
of class E1 em to the many unnecessary encapsulated implementation details described 
above. Clearly the design of the El em base class is far from perfect and, ideally, it 
should be reworked. Reworking (like working in the first place) will require signifi
cant thought and effort. For now, we can insulate the general public from unnecessary 
details by extracting a protocol from class E 1 em. 

As illustrated in Figure 6-43, the idea is to create a protocol class at a lower level and 
then to escalate static and constructor functionality to a utility class at a higher level. 
The protocol will contain only the information needed to access and manipulate 
instances of types derived from El em. The utility will support all static methods, 
including insulated support for the creation of concrete instances of types derived 
from E1 em. 

(a) Single Non-Insulating Component (b) Multiple Insulating Components 

Figure 6-43: Extracting a Protocol for Base Class El em 

Consider the original header for class El em shown in Figure 6-44. 

II elem.h 
#ifndef INCLUDEO_ELEM 
#define INCLUDED_ELEM 
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#ifndef INCLUDED_FDa 
lIinclude "foo.hl! 
#endif 

#ifndef INCLUDED_BAR 
ftinclude "bar.hl! 
flendif 

class Elem { 

} ; 

Faa d_fooPart; 
Bar d_barPart; 

private: 
/ / ... 

protected: 
/ / ... 

public: 
enum Status { GOOD = O. BAD. UGLY}; 
Elem(); 
Elem(const Foo& fooPart); 
Elem(const Bar& barPart); 
Elem(const Foo& faoPart. const Bar& barPart); 
Elem(const Elem& elem); 
virtual ----Elem(); 
Elem& operator=(const Elem& elem); 
static double fI() { /* ... */ }; 
static void f2(double d); 
Foo f3() const { /* .,. */ }; 
void f4(const Foo& foo); 
virtual const char *f5() const; 
virtual void f6(const char *name); 
virtual Status f7(); 

#endif 

Chapter 6 

Figure 6 .. 44: Original Header for a Highly Non-Insulating E1 em Class 

We can extract a protocol from class E 1 em as follows: 

1. Copy the existing component e 1 em, containing base class E 1 em, to a neW 

name, elemimp, and rename the contained.class to Elemlmp. Any class 
that previously inherited directly from E 1 em should now be changed to 
inherit directly from E1 emlmp. This modification will require adjusting 

the inheritance portion of the class definition of any derived classes along 
with the #i ncl ude directives of each component containing one or more 
of those classes. Derived-class constructor initialization lists may require 
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some adjustment as well. Note that the El em type arguments and return 
values of all existing non-constructor members of E 1 em I mp should remain 
of type E 1 em (i.e., should not be changed to type E 1 em I mp). 

2. Delete all but the public interface of the original E 1 em class. If enumera
tions or typedefs specified in class scope are types used in the interface of 
one or more non-static, public functions of E 1 em, they should remain. 

3. Remove the constructors and all other static member functions from the 
class, but be sure to leave a virtual destructor, declared non-inline and 
defined empty. 

4. Make all of the remaining member functions in class E 1 em pure virtual 
and remove their definitions. 

5. Remove all #i nc1 ude directives from the el em component. Provide "for
ward" class declarations when a user-defined type is used in the interlace 
of a pure virtual function. The new insulating E1 em class should now 
appear as in Figure 6-45. 

II elem.h 
#ifndef INCLUDED ELEM 
#define INCLUDED_ELEM 

class Faa; 

class Elem { 

} ; 

public: 
enum Status { GOOD = 0, BAD, UGLY}; 
virtual ~Elem(); II defined out-of-line and empty 
virtual Elem& operator=(const Elem& elem) = 0; 
vi rtua 1 Foo f3() const = 0; 
virtual void f4(const Foo& foo) = 0; 
virtual const char *f5() canst = 0; 
virtual void f6(const char *name) = 0; 
virtual Status f7() = 0; 

#endif 

Figure 6-45: New Insulating Protocol Component e 1 em 
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6. Modify class E 1 em I mp to publicly inherit directly from class E 1 em. The 
header for the base class, e 1 em. h, should now be included directly in the 
header for the partial implementation, e 1 emi mp . h. Each of the pUblic 
non-static member functions is now declared vi rtua 1 and should proba
bly (although not necessarily) be declared non-i nl i nee Special consider
ation should be given to the implementation of the virtual assignment 
operator 

virtual Elem& operator=(const Elem& elem) 

now inherited from class E1 em as well as the new non-virtual operator 

Elemlmp& operator=(const Elemlmp& elemlmp) 

defined explicitly for this concrete implementation class. 

7. Remove from E 1 em I mp any redundant interface information such as 
enumerations and typedefs that are already specified in the interface of 
the new protocol class, E 1 em. 

The new E1 emlmp class should now appear as in Figure 6-46. The use of 
/ * vir t u a 1 * / indicates that the vir t u a 1 keyword is optional. The nOll
in line static functions defined in the original E 1 em class were part of its 
interface and could have been left in the base class. However, had we 
done so, we would have been faced with the following unpleasant alterna
tives: 

• If we define the functions in the base class E1 em to forward calls to 
the derived class E 1 em Imp, we would violate levelization (see Sec
tion 4.7). 

• If we implement the definition of the actual E 1 em functions in the 
e 1 em; mp component, we would violate the Major Design Rule 
requiring components to implement the functionality they export 
(see Section 3.2). 

• If we implement the functions directly in the e 1 em. c file, we would 
physically couple our protocol interface to a specific implementation, 
violating the definition of a protocol given earlier in this section. 
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II elemimp.h 
#ifndef INCLUDED_ELEMIMP 
#define INCLUDED_ELEMIMP 

#ifndef INCLUDED_ELEM 
#include "elem.hl! 
#endif 

#ifndef INCLUDED_Faa 
#include "foo.hl! 
#endif 

#ifndef INCLUDED BAR 
#include "bar.h" 
ffoendi f 

class Elemlmp : public Elem { 
Foo d_fooPart; 
Bar d_barPart; 

private: 
I I ... 

protected: 
I I ... 

public: 
Elemlmp(); 
Elemlmp(const Foo& fooPart); 
Elemlmp(const Bar& barPart); 
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ElemImpCconst Foo& fooPart. canst Bar& barPart): 

} : 

ElemlmpCconst Elemlmp& elemlmp): 
1* virtual *1 ~ElemlmpC): 
1* virtual *1 Elem& operator=(const Elem& elem); 
Elemlmp& operator=(const ElemImp& elemImp); 
static double fIC) { 1* ... *1 } 
static void f2Cdouble d); 
1* virtual *1 Foo f3C) const; 
1* virtual *1 void f4(const Foo& foo); 
1* virtual *1 const char *f5() const; 
1* virtual *1 void f6(const char *name); 
1* virtual *1 Status f7(); 

#endif 

Figure 6-46: New Implementation Component e 1 em; mp 

It would be nice if we could retain the original interface; however, none 
of the above alternatives is particularly palatable. 

8. To preserve levelization and to ensure complete insulation, from E1 emImp 
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create yet another component, e 1 em uti 1 , containing the s t r u c tEl emU til. 

Be sure to include e 1 emi mp. h in e 1 emu til. c. Move all of the static 
member functions defined in E 1 em to E 1 em I mp. Now copy all of the public 
static functions formerly defined in E1 em into E1 emUt i 1 and reimplement 
them (out of line) to forward all of the client's requests to the correspond
ing functions now defined in class E1 emlmp. 

9. Since E1 emlmp is not abstract (i.e., since it does not contain any pure vir
tual functions), it will be desirable to provide an insulated mechanism for 
clients so they can instantiate instances of type E 1 em I mp without actually 
including the non-insulating class definition. (A separate component will 
be needed to insulate the creation of every object derived from class 
E 1 em I mp as well.) For each of the constructors defined in E 1 em I mp, define 
a new static member function in class ElemUti1, named createElem, 

taking precisely the same argument signature as the constructor and 
returning a pointer to a dynamically allocated, fully constructed instance 
of class E 1 em I mp as a pointer to a non-c 0 n s tEl em. 

The new insulating ElemUtil class should now appear as in Figure 6-47. 

II elemutil.h 
#ifndef INCLUDED_ELEMUTIL 
#define INCLUDED_ELEMUTIL 

class Elem; 
class Foo; 
class Bar: 

struct ElemUtil 

} ; 

Elem *createElemC); 
Elem *createElem(const Foa& faoPart); 
Elem *createElem(const Bar& barPart); 
Elem *createElem(canst Foa& faaPart, const Bar& barPart); 
Elem *createElem(const Elem& elem); 
static double fIC); 
static void f2(double d); 

#endif 

Figure 6-47: New Insulating Utility Component e 1 emut i 1 
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The modified system is illustrated in Figure 6-48. Public clients of the new E 1 em pro
tocol will now be relieved of all the compile-time coupling formerly associated with 
E1 em. All of this tight coupling has been completely isolated within the element sub
system. 

Figure 6-48: Using the New InSUlating E 1 em Base Class 
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By providing a separate utility component with create functions to instantiate each 

derived class, we can continue to insulate all of our public clients from all of the com .. 

plex implementation details in the E1 em class hierarchy. This insulation applies even 

to clients (such as eli en t 1) that endeavor to create new instances of types derived 

from E 1 em. Derived classes, however, continue to be at the mercy of any uninsulated 

changes in the E1 emlmp base class. Note that clients of derived classes providing 

"extra" functionality (Le., functionality beyond what is accessible through the E 1 em 

protocol) unfortunately will be forced to depend on the derived class (and therefore on 

el emimp) at compile time. 

6.4.2 The Fully Insulating Concrete Class 

A concrete class is more than just an interface-it defines a useful object that can be 
instantiated as an automatic variable on the program stack. Protocol classes (dis

cussed in Section 6.4.1) are consistent with pure object-oriented design; however, 

engineering is anything but pure. Sometimes we would like the insulating benefits of 

having a protocol and yet be able to construct an instance of the object Gust like any 

other concrete class). 

Consider the class E x amp 1 e shown in Figure 6-49. This class contains, as embedded 

data members, the use~-defined types A, B, and C. All member functions are implicitly 

declared i n 1 i n e and the . c file is essentially empty. The implementation of this class is 

clearly not insulated from clients. Suppose we now realize that this class is going to be 
used widely and that the implementation is subject to change. What can we do to insu

late our clients from changes to the implementation details in our example component? 
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I I e x amp 1 e .. h 
#ifndef INCLUDED EXAMPLE 
#define INCLUDED_EXAMPLE 

#ifndef INCLUDED_A 
#include "a.h" 
fIend if 

#ifndef INCLUDED_B 
#include "b.h" 
Ifendif 

#ifndef INCLUDED_C 
#include "c.hn 
ffendif 

class Example { 
A d_a; 
B d_b; 
Cdc' - , 
double value2() canst { return d_a.valueC) + d_b.valueC); } 

} ; 

public: 
Examp 1 e () {} 
Example(canst Example& e) : d_aCe.d_a), d_bCe.d_b), d cCe.d c) {} 
-Examp 1 e () {} 

Example& operatar=(const Example& e) 
{ 

} 

d_a - e.d_a; 
d b - e.d_b; 
d c - e.d_c; 
return *this; 

double value() const 
{ 

return value2() + d_c.valueC); 
} 

#endif 
II example.c 
#include "example.h h 

Figure 6-49: Component Containing a Non-Insulating Concrete Class 
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The fITst step is to replace all embedded data with an outwardly opaque pointer to 
hold that data. By removing the embedded instances, we eliminate the need of Our cli
ents to have seen the definitions of classes A, B, and C. We can therefore remove the 
explicit #include directives from example.h and replace them with class declara
tions. Doing so will often require defining previously inline functions out of line, 
which is entirely consistent with our desire to insulate. 

Figure 6-50 shows how this transform would look for the examp 1 e component. As the 
figure shows, the . h file is smaller and the . c file is no longer empty. Clients of com
ponent examp 1 e are now insulated from all implementation-and even interface
changes to components a, b, and c. 
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II example.h . 
#ifndef INCLUDED_EXAMPLE 
#define INCLUDED_EXAMPLE 

class A; 
class B; 
class C; 

class Example { 
A *d_a_p; 

} ; 

B *d_b_p; 
C *d_c_p; 
double value2C) const; 

public: 
Exampl eC); 
ExampleCconst Example& example); 
,."ExampleC); 

Example& operator=Cconst Example&); 

double valueC) canst; 

trend if 
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II example.c 
#include "example.h" 
#include "a.h" 
#include Itb.h" 
tfinclude "c.hlt 

Example::ExampleC) 
d_a_pCnew A) 

, d_b_pCnew B) 
, d_c_pCnew C) 
{ } 

Example::ExampleCconst Example& example) 
d_a_pCnew AC*example.d_a_p)) 

, d_b_pCnew BC*example.d_b_p)) 
, d_c_pCnew CC*example.d_c_p)) 
{ } 

Example::-ExampleC) 
{ 

} 

delete d_a_p; 
delete d_b_p; 
delete d_c_p; 

Example& Example::aperatar=(const Example& e) 
{ 

} 

if (&example != this) { 
delete d_a_p; 
delete d_b_p; 
delete d_c_p; 

} ; 

d_a_p = new AC*e.d_a_p); 
d_b_p - new B(*e.d_b_p); 
d_c_p = new C(*e.d_c_p); 

return *this; 

double Example::value2() canst 
{ 

} 

double Example::valueC) canst 
{ 

return value2C) + d_c_p->valueC); 
} 

Figure 6-50: Component Containing a Partially Insulating Concrete Class 
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However, our clients are not entirely insulated from changes to the implementation of 

the examp 1 e component itself. Specifically, clients of examp 1 e are not insulated from 
the actual number of outwardly opaque pointers contained in the Exampl e class defi
nition. Adding a single instance of even a fundamental type to the private data of class 
Examp 1 e would force all of its clients to recompile. Modifying the signature or return 
type of any private member function would have the same effect. 

Holding only a single opaque pointer to a structure containing all of a 
class's private members enables a concrete class to insulate its imple
mentation from its clients. 

How can we completely insulate the implementation of class Examp 1 e and still have it 
remain a concrete class? The answer centers around getting rid of the individual pri
vate data members and replacing them with a single opaque pointer to the class's rep
resentation. 14 

. 
DEFINITION: A concrete class is/ully insulating if it 

1. contains exactly one data member that is an outwardly opaque 
pointer to a non-canst struct (defined in the. c file) specifying the 
implementation of that class, 

2. does not contain any other private or protected members of any 
kind, 

3. does not inherit from any class, and 

4. does not declare any virtual or inline functions. 

14 murray, Section 3.3, pp. 72-74. 
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II example.h 
#ifndef INCLUDED EXAMPLE 
#define INCLUDED_EXAMPLE 

class Example_i: II fully insulated implementation 
class Example { 

} 

Example_i *d_this; 

public: 
ExampleC); 
Example(const Example& example): 
-Example(); 
Example& operator=Cconst Example& example); 
double valueC) canst; 

fIend if II example.c 
#include Hexample.h" 
#include "a.hH 
#include nb.h" 
#include "c.h" 

struct Example_i { 
Ada· - . 
B db' . - ~ 

Cdc· _ t 

double value2C) const { return d_a.valueC) + d_b.value(); } 
} 

Example::ExampleC) : d thisCnew Example_i) {} 

Example::ExampleCconst Example& example) 
: d_thisCnew Example_iC*example.d_this» {} 

Example::-Example() { delete d_this; } 

Example& Example::aperator=(const Example& example) 
{ 

} 

*d_this = *example.d_this; 
return *this; 

double Example: :valueC) const 
{ 

return d this->value2C) + d_this->d_c.valueC); 
} 

Figure 6-51: Component Containing a Fully Insulating Concrete Class 
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Figure 6-51 illustrates the result of transforming a class that does not insulate its cli
ents from any of its implementation details to one that is fully insulating. All public 
inline functions are eliminated. All private member data and functio~s are now made 
part of an auxiliary s t ruct, defined entirely within the component's. c file. Note that , 
in this example, the default member-wise copy semantics for the auxiliary s t ruct 
happened to be correct and therefore were not implemented explicitly. 

The physical structures of all fully insulating classes appear out
wardly to be identical. 

The important property of a fully insulated class is that changing its representation 
does not affect how clients perceive the physical layout of an instance, because its 
implementation (object layout) is always just a single opaque pointer. An instance of 
one fully insulating class looks the same as every instance of every other fully insulat
ing class, regardless of its purpose or functionality. It is this property of physical uni
formity that enables the arbitrary reimplementation of the class's interface without 
having to alter its header file in any way. 

Allowing inheritance or virtual funcrions would affect the object layout by introduc
ing additional data and/or additional virtual-function-table pointers. Note that inherit
ing from even an empty s t rue t may affect the size of the derived object. Thus an 
instance of an otherwise fully insulating class that inherits from a base class would 
necessarily appear physically different from an instance of a fully insulated class that 
does not. In other words, inheriting from a base class would increase the size of a fully 
insulating class beyond that of a single pointer, physically distinguishing its instances 
from those of other, fully insulating classes. 

All fully insulated implementations can be modified without affecting 
any header file. 
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Another important property of being fully insulating is that the class has sole control 
over and access to the s t r u c t defining its internal representation. Letting the internal 
data member point directly at an instance of a class defined in a separate component 
would compromise our ability to make independent insulated changes to our own 
implementation. In order to add a private member without affecting our clients, we 
would be forced to alter the interface of an independently accessible, independently 
testable object. 

When writing the implementations of member functions for a fully insulating 
concrete class, instead of relying on the implicit notation: 

d_c to mean thi s->d_c 

val u e 2 () to mean t his - > val u e 2 ( ) 

we must now use the d_thi s pointer explicitly as follows: 

d_c becomes d_this->d_c; 

value2() becomes d_this->value2(); 

The name of the data structure type (e.g., Examp 1 e_ i) and especially the name of the 
instance variable (e.g., d_thi s) are mostly a matter of style and need not be the same 
in all cases. Because the E x amp 1 e_ i s t r u c t ("hidden" in the . c file) may contain 
function or static data members with external linkage, however, there is the possibility 
for unexpected link-time collisions with members of like-named classes defined out
side this component. For this reason, the naming convention for the s t r u c t defining 
the fully insulated implementation should be disjoint from that for naming ordinary 
classes. Adopting the prefix of the publicly accessible class name followed by an 
underscore ensures that an implementation class local to a component will not collide 
with classes defined outside this component. You may find this kind of consistent 
convention helpful for identifying the representation of fully insulating classes when 
working on large projects. 

6.4.3 The Insulating Wrapper 

Wrappers were presented in Section 5.10 as a general encapsulation technique that 
applies not just to individual components but to entire subsystems. Instead of attempting 
to encapsulate within each component what would appear to a user of the subsystem as 
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an implementation detail, we introduced wrapper components to encapSUlate the use 
of these implementation components. 

Because clients of a subsystem were not granted programmatic access to objects 
defined in the lower-level implementation components, we were able to force these 
clients to interact with the subsystem exclusively through the wrapper interface. 

Here we propose to make the wrapper not only encapSUlating but insulating as well. 
We therefore endeavor to eliminate the unnecessary clutter and compile-time coupling 
associated with an interface that contains irrelevant or perhaps even proprietary infor
mation. 

6.4.3.1 Single-Component Wrappers 

One way to produce an insulating wrapper component is to apply the total insulation 
technique of Section 6.4.2 to the individual objects defined in an encapsulating wrap
per. We can do this without affecting any of the lower-level objects used to implement 
the wrapper. 

client code 

clients 

-----t~---
graph 

subsystem 

Figure 6-52: Component Dependency of Graph Wrapper from Figure 5-95 
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Figure 6-52 shows the component dependency for the graph wrapper component of 
Figure 5-95. As you may recall, the clients of graph were not permitted to access the 
objects defined in the implementation components: graphimp, gnode, gedge, and 
ptrbag. However, clients of graph were not insulated from changes to the headers of 
these components. 

Let us consider insulating the graph wrapper component of Figure 5-95. A brute
force conversion of graph using the total insulation technique of Section 6.4.2 pro
duces the header file shown in Figure 6-53. This interface does achieve total insula
tion, but it is at a significant cost in runtime performance due to extra dynamic 
memory allocations. 

II graph.h 
#ifndef INCLUDED_GRAPH 
#define INCLUDED_GRAPH 

class Node: II used in the interface of graph 
class Edge; II used in the interface of graph 

class Node I d_ i ; II should be changed to: class Gnode: 
class Edge I d_ i ; II should be changed to: class Gedge; 
class Graph_i; II fully insulated implementation 
class Nodelter_i: II fully insulated implementation 
class Edgelter_i: II fully. insulated implementation 

class NodeId { 
Nodeld_i *d_this; 
friend Edgeld; 
friend Graph: 
friend Nodelter; 
friend Edgelter; 

II should be changed to: Gnode *d_node_p; 

} ; 

public: 
Nodeld(); 
Nodeld(const NodeId& nid); 
..... Nodeld(); 
Nodeld& operator=(const Nodeld& nid); 
operator Node *() canst; 
Node *operator->() const; 

class Edgeld { 
Edgeld_i *d_this; 
friend Graph; 
friend EdgeIter; 

II should be changed to: Gedge *d_edge_p; 
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} ; 

public: 
Edgeld(); 
Edgeld(const Edgeld& eid); 
-Edgeld(); 
Edgeld& operator=Cconst Edgeld& eid); 
Nodeld from() const; 
Nodeld toC) const; 
operator Edge *() const; 
Edge *operator->() const; 

class Graph { 
Graph_i *d_this; 
friend Nodelter; 
friend Edgelter; 

private: 
Graph(const Graph&); 
Graph& operator=(const Graph&); 

public: 
Graph(); 
-Gra ph ( ) ; 
Nodeld addNode(const char *nodeName); 
Nodeld findNode(const char *nodeName); 
void removeNode(const Nodeld& nid); 

II not implemented 
II not implemented 
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Edgeld addEdge(const Nodeld& from, const Nodeld& to, double weigh·t); 
Edgeld findEdge(const Nodeld& from, canst Nodeld& to); 
void removeEdge(const Edgeld& eid); 

} ; 

class Nodelter { 
Nodelter_i *d_this; 

} ; 

private: 
Nodelter(const Nodelter&); 
Nodelter& operator=(const Nodelter&); 

public: 
Nodelter(const Graph& graph); 
..... NodelterC); 
void operator++(); 
operator const void *() const; 
Nodeld operator()() const; 

class Edgelter { 
Edgelter_i *d_this; 
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} ; 

private: 
Edgelter(const Edgelter&); 
Edgelter& operator=(const Edgelter&); 

public: 
EdgeIter(const Graph& graph); 
EdgeIter(const Nodeld& nid); 
-Edgelter(): 
void operator++(); 
operator const void *() const; 
EdgeId operator()() const; 

#endif 

Figure 6-53: Header for Fully Insulating 9 rap h Wrapper Component, 9 rap h . h 

As Figure 6-54 shows, the fully insulating version of class Node I d now requires 
dynamic allocation whenever a Nodeld is returned by value: 

NodeId Graph::findNode(const char *nodeName) 
{ 

NodeId id; II causes dynamic allocation 
id.d_this-)d_node_p = d_this-)d_imp.findNode(nodeName); 
return id; 

} 
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II (from graph.h) 

class NOdeld_i; II fully insulated 
class Nodeld { 

} ; 

NodeId_i *d_this; 
friend EdgeId; 
friend Graph; 
friend NodeIter; 
friend EdgeIter; 

public: 
NodeId(); 
Nodeld(const NodeId& nid); 
~Nodeld(); 

NodeId& operator=(const NodeId&): 
operator Node *() const; 
Node *operator->() const; 

II (from graph.c) 

struct NodeId_i { 
Gnode *d_node_p; 

} ; 

NodeId::NodeId() 
{ 

} 

d_this = new NodeId_i; 
d_this->d_node_p = 0; 

NodeId::Nodeld(const Nodeld& nid) 
{ 

d_this = new NodeId_i; 
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d_this->d_node_p = nid.d_this->d_node_p; 
} 

Nodeld::~NodeId() 

{ 

delete d_this; 
} 

NodeId& NodeId: :operator=(const Nodeld& nid) 
{ 

} 

d_this->d_node_p = nid.d_this->d_node_p; 
return *this: 

NodeId::operator Node *() canst 
{ 

return d_this->d_nade_p; 
} 

Node *NodeId::operator->() canst 
{ 

return *this; 

Figure 6-54: Fully Insulated Reimplementation of Nod e I d from Figure 5-95 
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Instead of insisting on total insulation for all of the wrapper classes, we can achieve 
most of the advantages of insulation at considerably less runtime cost if we only par
tially insulate the NodeId and Edgeld classes. By exposing just the names of these 
implementation classes in the wrapper header, we give up the flexibility to add inde
pendent members to the wrapper classes; however, we retain the right to modify the 
organization of Gnode and Gedge in any way we see fit. 

II (from graph.h) 

class Gnode; II partially insulated 

class Nodeld { 

} ; 

Gnode *d_node_p; 
friend Edgeld; 
friend Graph; 
friend Nodelter; 
friend Edgelter; 

public: 
Nodeld() ; 
Nodeld(const Nodeld& nid); 
..... Nodeld(); 
Nodeld& operator=(const Nodeld&); 
operator Node *() const; 
Node *operator-)() const; 

II (from graph.c) 

Nodeld: : Nodeld() : d_node_p( 0) {} 

Nodeld::NodeldCconst Nodeld& nid) 
: d_node_pCnid.d_node_p) {} 

Nodeld: : ..... Nodeld() {} 

Nodeld& Nodeld::operator=Cconst Nodeld& nid) 
{ 

} 

d_node_p = nid.d_node_p; 
return *this; 

Nodeld::operator Node *() const 
{ 

} 

Node *Nadeld::aperator-)() canst 
{ 

return *this; 
} 

Figure 6-55: Partially Insulated Reimplementation of Nodeld from Figure 5-95 

Figure 6-55 demonstrates how one can temper total insulation for lightweight classes to 
improve performance. Functions returning Nodeld by value can now do so without the 
cost of allocating dynamic memory-a cost we attempt to quantify in Section 6.6.1: 
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Nodeld Graph::findNode(const char *nodeName) 
{ 

} 

Nodeld id; II no dynamic allocation here 
id.d_node_p = d_this->d_imp.findNode(nodeName); 
return id; 
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Although the runtime performance stands to benefit significantly from the partial 
insulation of Node I d and Edge I d, the remaining three classes-Gra ph, Node I ter, and 
Edge I te r-are an entirely separate matter. In each case, insulating the client of the 
wrapper from the implementation object requires a dynamic allocation anyway. It 
costs no more at runtime to allocate a s t rue t containing the implementation object 
than it does to allocate the implementation object itself. Nor is there any additional 
runtime cost associated with extra indirection. We have to follow exactly one 
pointer-adding a theoretical offset of 0 is removed by standard compile-time optimi
zation. In terms of performance, fully insulating these classes costs no more than par
tially insulating them, so we might as well go for it. 

Notice also that Graph, Nodelter, and Edgelter have each disabled both copy con
struction and assignment. Because the normal use of these objects requires creating and 

destroying them much less frequently than Note I d and Edge I d, they are naturally better 
candidates for insulation. The fully insulated implementations of Gra ph, Node I ter, and 

Edgelter, along with the partially insulated implementations of Nodeld and Edgeld 
corresponding to the suggested changes in the header file of Figure 6-53, are provided 

for reference in Figure 6-56. 

II graph.c 
#include "graph.h" 
#include "graphimp.h" 
Ifinclude "gnode.h" 
#include "gedge.h" 

Nodeld::Nodeld() : d_node~p(O) {} 

Nodeld::Nodeld(const Nodeld& nid) d_node_p(nid.d_node_p) {} 

Nodeld: :'"'"'Nodeld() {} 

Nodeld& Nodeld::operator=(const Nodeld& nid) 
{ 

} 

d_node_p = nid.d_node_p: 
return *this; 



section 6.4.3.1 Single-Component Wrappers 413 

Nodeld::operator Node *() canst { return d_node_p; } 

Node *Nodeld::operator->() const { return *this; } 

Edgeld::Edgeld() : d_edge_p(O) {} 

Edgeld::Edgeld(const Edgeld& eid) 

Edgeld: : ..... Edgeld() {} 

.Edgeld& Edgeld::operator=(const Edgeld& eid) 
{ 

} 

d_edge_p = eid.d_edge_p; 
return *this; 

Nodeld Edgeld::from() const 
{ 

} 

Nodeld id; 
id.d_node_p - d_edge_p->from(); 
return id; 

Nodeld Edgeld::to() const 
{ 

} 

Nodeld id; 
id.d_node_p - d_edge_p->to(); 
return id; 

Edgeld::operator Edge *C) const { return d_edge_p: } 

Edge *Edgeld::operator->() canst { return *this; } 

struct Graph_i { 
Graphlmp d_imp; 

} ; 

Graph: :Graph() : d_thisCnew Graph_i) {} 

Graph::~Graph() { delete d_this; } 

Nodeld Graph::addNode(const char *nodeName) 
{ 

} 

Nodeld id; 
id.d_node_p - d_this->d_imp.addNode(nodeName); 
return id; 
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Nodeld Graph::findNode(const char *nodeName) 
{ 

} 

Nodeld id; 
id.d_node_p - d_this-)d_imp.findNode(nodeName); 
return id; 

void Graph::removeNode(const Nodeld& nid) 
{ 

d_this-)d_imp.removeNode(nid.d_node_p); 
} 
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Edgeld Graph::addEdge(const Nodeld& from, canst Nodeld& to, double weight) 
{ 

Edgeld id; 
id.d_edge_p - d_this-)d_imp.addEdge(from.d_node_p, to. d_node_p , weight); 
return id; 

} 

Edgeld Graph::findEdge(const Nodeld& from, const Nodeld& to) 
{ 

Edgeld id; 
id.d_edge_p - d_this-)d_imp.findEdge(from.d_node_p, to.d_node_p); 
return id; 

} 

void Graph::removeEdge(const Edgeld& eid) 
{ 

d_this-)d_imp.remaveEdge(eid.d_edge_p); 
} 

struct Nodelter i { 
GnodePtrBaglter d_iter; 
Nodelter i(const GnodePtrBag& nodes) 

} ; 

Nodelter::Nodelter(const Graph& graph) 

d_iter(nodes) {} 

: d_this(new Nodelter_i(graph.d_this-)d_imp.nodes(») {} 

Nodelter::-Nodelter() { delete d_this; } 

void Nodelter::operator++() { ++d_this-)d_iter; } 

NodeIter::operator const void *() canst { return d_this-)d_iter; } 

Nodeld Nodelter: :operator()() const 
{ 

} 

Nodeld id; 
id.d_node_p - d_this-)d_iterC); 
return id; 
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struct Edgelter_i { 
GedgePtrBaglter d_iter; 
Edgelter_;(const GedgePtrBag& edges) d_iter(edges) {} 

} ; 

Edgelter::Edgelter(const Graph& graph) 
: d_this(new Edgelter_i(graph.d_this->d_imp.edges())) {} 

Edgelter::Edgelter(const Nodeld& nid) 
: d_this(new Edgelter_i(nid.d_node_p->edges())) {} 

Edgelter::~Edgelter() { delete d_this; } 

void Edgelter::operator++() { ++d_this->d_iter: } 

Edgelter::operator const void *() const { return d_this->d_iter; } 

Edgeld Edgelter: :operator()() const 
{ 

} 

Edgeld id; 
id.d_edge_p = d_this->d_iter(); 
return id; 

Figure 6-56: Almost Fully Insulated Reimplementation of graph (g ra ph . c) 

If designed properly, a single wrapper component can effectively insulate clients from 
the organizational details of many lower-level implementation components. 

6.4.3.2 Multi-Component Wrappers 

Wrapping components individually is also possible, but only when direct interaction 
with the underlying component by clients is not required. As an instructive (but 
unlikely) example, consider creating the fully insulating wrapper component 
pubs tack for a non-insulating, list-based stack component. 

As illustrated in Figure 6-57, the original s t a c k component exposes three classes and 
two operators in its header file. One of these classes, S t a c k Lin k, is an encapsulated 
implementation detail of the other two classes (S t a c k and S t a c kIt e r). The wrapper 
component, pubstack, exposes two classes, two free operators, and none of the 
underlying implementation details. Regardless of how S t a c k and S t a c kIt e r are 
implemented, clients of the wrapper classes are insulated from all implementation 
details. 
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pubstack stack 

Figure 6-57: Complete Component/Class Diagram for stack and Its Wrapper 

Figure 6-58 shows the header file for a fully insulating wrapper for a stack compo
nent. Each of the two wrapper classes holds only a single private opaque pointer to its 
own internally defined implementation structure. There are no other private or pro
tected members of any kind in the wrapper's physical interface. All functions will be 
defined out of line. The friendships necessary to extract the underlying wrapped 
objects from other wrapper objects passed as parameters are the only implementation 
details in the physical interface of this wrapper component. 

II pubstack.h 
#ifndef INCLUDED_PUBSTACK 
#define INCLUDED_PUBSTACK 

class PubStacklter; 

class PubStack_i; 
class PubStack { 

PubStack_i *d_this; 
friend PubStacklter; 
II May want to grant access to improve performance andlor reuse: 
Ilfriend int operatar==(const PubStack&, canst PubStack&); 
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} ; 

public: 
PubStack(); 
PubStack(const PubStack& stack); 
-PubStack(); 
PubStack& operator=(const PubStack& stack); 
void push(int value); 
int pope); 
int tope) const; 
int isEmpty() const; 

int operator==(const PubStack& left, const PubStack& right); 
int operator!=(const PubStack& left, canst PubStack& right); 

class PubStacklter_i; 
class PubStacklter { 

} ; 

PubStacklter_i *d_this; 
PubStacklter(const PubStacklter&); 
PubStackIter& operatar=(canst PubStacklter&); 

public: 
PubStacklter(const PubStack& stack); 
""'PubStacklter(); 
void operator++(); 
operator canst void *() canst; 
int operator()() canst; 

#endif 

Figure 6-58: Fully Insulating stack Wrapper Interface (pubstack. h) 

Figure 6-59 shows how the pubstack component is implemented. Virtually all func
tionality supplied by Pub S t a c k forwards calls out of line to the corresponding func
tions of the insulated implementation object, S t a c k. Each constructor of Pub S t a c k 

merely allocates an instance of its auxiliary structure, Pub S t a c k_ i. Pub S t a c k' s 
destructor destroys this dynamically allocated instance, and all member functions 
simply forward their input to the corresponding members of the S t a c k object embed
ded in the managed instance of Pub S t a c k_ i . 
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II pubstack.c 
#include "pubstack.h" 
#include "stack.h" 

struct PubStack_i { 
Stack d_stack; 

} ; 

PubStack::PubStack() 
d_this(new PubStack_i) {} 

PubStack::PubStack(const PubStack& s) 
d_this(new PUbStack_i(*s.d_this)) {} 

PubStack::~PubStack() { delete d_this; } 

PubStack& PubStack::aperator=(const PubStack& s) 
{ 

*d this = *s.d this· - -, 
return *this; 

} 

void PubStack::push(int v) { d_this->d_stack.push(v); } 

int PubStack::pap() { return d_this->d~stack.pop(); } 

int PubStack::top() canst { return d_this->d_stack.top(); } 
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int PubStack::isEmpty() c9nst { return d_this->d_stack.isEmpty(); } 

int operator==(canst PubStack& left, canst PubStack& right) 
{ 

} 

PubStacklter lit(left); 
PubStacklter rit(right); 
for (; lit && rit; ++lit, ++rit) { 

if (lit() != rite)) { 
return 0; 

} 

} 

II at least one of lit and rit is now 0 
return lit == rit; 

int operatar!=(const PubStack& left, const PubStack& right) 
{ 

return !(left == right); 
} 

struct PubStacklter_i { 
Stacklter d_stacklter; 
PubStacklter_i(Stack &stack) 

} ; 
d stacklter(stack) {} 
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PubSta~klter::PubStacklter(const PubStack& stack) 
: d_this(ne~ PubStacklter_iCstack.d_this->d_stack)) {} 

PubStacklter::-PubStacklter() { delete d_this; } 

PubStacklter::operator canst void *() canst 
{ 

return d_this->d_stacklter.operator canst vaid*(); 
} 

int PubStacklter::aperatar()() const 
{ 

return d_this->d_stacklter.aperator()(); 
} 

Figure 6-59: Implementation of Fully Insulating 5 t a c k Wrapper, pub 5 t a c k . c 

In this example, the free operator== does not absolutely need to have access to the 
private implementation of the underlying subobject in order to implement its func
tionality. Instead ope ra to r== can implement its functionality locally via the public 
version of the iterator, which does have private access to the underlying implementa
tion. If this overhead is deemed excessive, it is easy enough to declare the wrapper 
function 

int operator==Ccanst PubStack& left. canst PubStack& right) 

a friend of class Pub S t a c k. Doing so would grant this free operator private access to 
PubStack's underlying Stack object, enabling it to invoke the corresponding, lower
level operator== directly: 

int op~rator==Cconst PubStack& left. canst PubStack& right) 
{ 

} 

Anticipating the possibility of this optimization, we might choose to declare all 
classes and free operators that use Pub S t a c k in their interface to be friends of 
PubStack, thereby granting them direct access to its underlying representation object, 
S t a c k. For complete wrapper layers that fit within a single component (e.g., 
p2p_router, pubstack, graph), this approach is quite workable. Any implied friend
ships are all local to a single component and therefore neither impose additional cou
pling nor threaten encapsulation. 
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There is no way to determine programmatically from outside a com
ponent whether that component is or is not a wrapper. 

Because a wrapper fully encapsulates its underlying implementation, it is not in gen
eral practical to wrap individual components. If we were to attempt to insulate a large 
subsystem using individual wrapper components in a way that tried to mirror the 
underlying implementation, the need for long-distance friendships would quickly 
become apparent. 

Figure 6-60 illustrates the problem with wrapping components that have to interact 
directly. An E1 emSet is an object that manages a collection of objects of type E1 em. 

E 1 emSet has a member, vo ida dd (con s t E1 em&), that takes an element and adds a copy 
of its value to the set PubE1 emSet has a similar member, voi d add (cons t PubE1 em&), 

which instead takes a PubEl em and adds a copy of its value to the set How would you 
propose to implement pubE1 emSet: : add? The only obvious implementation 

void pubElemSet::add(const PubElem& elem) 
{ 

d_this-)d_elemSet.add(elem-)d_this.d_elem); 
} 

forces the higher-level PubE1 emSet to be a long-distance friend of PubE1 em, which 
(see Section 3.6) is a breach of encapsulation. 

Figure 6-60: The Difficulty with Wrapping Individual Components 
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Forgetting for the moment the inherent problems with long-distance friendships, the 
sheer number of required friendships will quickly prove this strategy to be unwork
able. Each wrapper type that is used as an argument to a wrapper class member (or 
free operator) must declare that class or operator a friend in order to allow it access to 
the underlying representation object being passed. As illustrated in Figure 6-61, two 
wrappers, PubA and PubB, are currently used in the public interface of PubX. PubC, for
merly not used by PubX, is in the signature of a member about to be added to PubX. As 
the figure shows, adding the member function vai d h (canst PubC& c) to a higher
level class, PubX, can force a fri end declaration to be added to a lower-level class 
definition, PubC. This modification in turn forces that class, along with all of its 
clients, to recompile! 

add this? ~clients of PubC ~ 

class PubX; 
class PubA { 

class PubA; 
class PubS; 
Ilclass PubC; 
class PubX { 

} ; 

X *d_imp_p; 

public: 
void f(const PubA& a); 
void g(const PubB& b); 
Ilvoid h(const PubC& c); 

class PubX; 
class PubB { 

A *d_imp_p; 
friend PubX; 

B *d_imp_p; 
friend PubX; 

public: public: 
II ... I I ... 

} ; } ; 

• • • 

if we add these, 
then we'll be 
forced to add 
these too! 

Ilclass PubX; 
·cl ass PubC { 

} ; 

C *d_imp_p; 
Ilfriend PubX; 

public: 
II ... 

Figure 6-61: Two-Way Coupling Caused by the Uses Relation Among Wrappers 
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Whenever a type defined in one wrapper component is passed into a 
type defined in a second wrapper component, that second component 
will be unable to access the underlying wrapped implementation 
object(s); only the public functionality of the wrapper will be available. 

Nonetheless, with careful design it is possible and very useful to create mUlti-compo
nent insulating wrappers. The secret to creating such a wrapper layer is to realize that 
only classes and operators within a single component can legitimately take advantage 
of what goes on below the interface of that component, via friendships. 

Consider the component/class diagram in Figure 6-62. The low-level subsystem 
implementation is not only encapsulated-it is also insulated from the rest of the sub
system's clients by a relatively small number of wrapper components. In this architec
ture, each of the wrapper components respects the privacy of the implementation of 
every other component (wrapper or otherwise), and limits its access to their public 
interfaces. To do anything else would violate the encapsulation that we are trying to 
achieve in this architecture. 

Wrapper objects defined within a single wrapper component are at liberty to employ 
friendship as needed to look below the local interfaces and manipulate the underlying 
representation directly. For example, suppose in Figure 6-62 that (as with E1 emSet 

and E1 em), class E uses class B in its interface and we want to expose a public version 
of both E and B to clients. Class Pub E will need private access to obtain the instance of 
B encapsulated within PubB. We are forced to declare PubE a friend of PubB, making it 
necessary to place both PubB and P.ubE in the same wrapper component to preserve 
encapsulation. 15 

15 This technique should not be construed as a general panacea for avoiding long-distance friend
ships among non-wrapper classes. Since wrapper classes are typically simple in nature, merging 
several of them in a single component does not necessarily threaten effective testability. Merging the 
implementation components, for example, would defeat the goals of designing a hierarchy of indi
vidual components, each with manageable complexity_ 
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The design goal of avoiding long-distance friendship makes it normal for wrapper
layer components to be much larger and define significantly more objects than is typ
ical of components in the underlying, low-level implementation. In particular, the 
component containing the PubG wrapper in Figure 6-62, like the graph wrapper com
ponent of Section 6.4.3, supplies additional iterator classes to provide clients with 
insulated access to lower-level functionality. 

This type of encapsulating and insulating subsystem architecture is extremely power
ful. As with the encapsulating wrapper discussed in Section 5.10, we are able to 
impose policy by reducing direct public access to the underlying functionality. Since 
the insulation also occurs at a higher level, there is no need to insulate the low-level 
subsystem components individually. In these lower-level components, we may feel 
free to take advantage of tight compile-time coupling to improve performance. For 
instance, inline functions are commonly used to access scalar data, and objects are 
often embedded within other objects to avoid the overhead of dynamic allocation. In 
short, the impact of compile-time coupling has been dealt with "upstream" at the 
higher levels of the subsystem. 

Wrapper components themselves are often large in order to enforce encapsulation; 
however, they need not be complex. One important function of a wrapper component 
is to delegate and coordinate complex tasks-not to perform them itself. The complex 
functionality implemented in the lower-level components can be tested and reused 
independently. Testing the wrapper should be little more than verifying that the fully 
tested, underlying components have been hooked up correctly. Although significant 
overhead may be incurred when information is passed between the wrapper layer and 
the low-level subsystem, choosing the appropriate level at which to insulate ensures 
that the bulk of the interobject communication occurs below the wrapper level. If 
done carefully, insulation need not impose a significant performance burden. 

In summary, an insulating wrapper is also encapsulating. There is no place in the logi
cal interface of the wrapper objects where types defined in the implementation compo
nents are used. The encapsulation property of insulating wrappers allows independent 
reuse of the underlying implementation components of a wrapped subsystem in other . 
subsystems without any possibility of compromising the encapsulation of the wrapper. 

If the wrapper insulation is complete, there is no place in the physical interfaces of the 
wrapper components where the types defined in the implementation components are 
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even named. A partially insulating wrapper may hold pointers to objects that are 
themselves "first-class citizens" defined in separately accessible components. These 
objects can be reused independently of the wrapper and are therefore less easily modified. 

In contrast, a fully insulating wrapper merely holds a pointer to a simple s t rue t that 
defines the private implementation in its . c file. Because there is no independent com
ponent, there is no independent way to interact with the representation directly. 
Unlike a partially insulating wrapper, it is possible to add arbitrary private data with
out altering any header file. 

In either case, the objects used to implement the wrapper are free to interact effi
ciently via their own encapsulating (but usually non-insulating) interfaces at the 
lower-levels of a subsystem. 

Because of the potentially large number of interactions among components, it is often 
not feasible to wrap the individual components of a subsystem. With careful planning, 
however, it is possible to construct a multi-component wrapper for a subsystem. As 
with all other components, only the public interface of wrapper components can be 
accessible to other components. That is, only objects and operators defined within the 
same wrapper component can access each other's underlying implementation. 

6.5 The Procedural Interface 

Often large commercial object-oriented systems (databases, frameworks, etc.) find it 
necessary to supply their customers with programmatic access to a subset of the func
tionality available to their own internal core system developers. For example, a data
base may provide a high-level language interpreter (such as SQL or Scheme) to give 
customers interactive access to the information in the database. Often a separate inter
face is also provided to allow programs written by end users in C++ (or possibly even 
ANSI C) to manipulate the database directly. Note that by end users we are envision
ing clients who reside outside our company or organization. 

The requirements of such a programmatic interface typically include the following: 

• The interface must provide the necessary functionality to manipulate the 
underlying system. 

• The interface must not expose proprietary implementation details. 
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• Changes to the underlying organization must be insulated from clients. 

• The overhead associated with this interface must not be excessive. 

If the interface is a C++ interface, then an insulating wrapper compone~t would be 
ideal. Unfortunately, not every system can be wrapped. Some systems are just too 
large for a set of wrapper classes to fit reasonably within a single component, and yet 
are too tightly interconnected to permit a properly encapsulated implementation using 
a multi-component wrapper. In short, if not explicitly designed as a wrapper already, 
it may not be feasible to create an insulating wrapper layer for an existing system 
without substantially altering its architecture. 

If our primary goal is to insulate clients from everything that goes on underneath the 
facade of an insulating layer for a very large and complex system, we will have to com
promise. One such compromise is to give up the true logical encapsulation of a wrap
per and rely on outwardly opaque pointers with unpublished header files to achieve the 
encapsulation. This type of interface is commonly referred to as a procedural interface. 

6.5.1 The Procedural Interface Architecture 

The interface we are providing is typically much more abstract than those developers 
used to create the implementation in the first place. For the same reasons discussed in 
Chapter 4, it would be exceedingly difficult to ensure the reliability of such a system 
by testing it from the procedural interface alone. Fortunately for us, however, the 
complexity lies at the lower levels of the system. Our job as procedural-interface 
authors is to identify an appropriate subset of the types and functionality already 
defined in the lower-level implementation components that will allow end users to 
accomplish their desired application-level tasks. 

Figure 6-63 is an illustration of the way a procedural interface is organized. All of the 
publicly accessible interface functions are independent of each other, and all of them 
are at a higher level than every implementation component. There is no levelization 
issue other than the fact that each individual interface function depends only on the 
underlying implementation; the procedural-interface functions should not depend on 
each other. 
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Figure 6-63: Schematic Illustration of a Procedural Interface 

If we were implementing an encapsulating/insulating wrapper component, then the 
last thing we would want to do would be to expose the implementation types in the 
interface of the wrapper. But independent reuse of our implementation components by 
end users is likely to be irrelevant here. Forgoing independent reuse by customers is 
what enables us to sacrifice the logical encapsulation afforded by wrapping. 

If we decide to insulate using a procedural interface, then we will not incur the over
head of creating new wrapper objects or be compelled to confine ourselves to a single 
component to avoid long-distance friendships. We can simply expose an appropriate 
subset of the underlying type names in the procedural interface without publishing 
their definitions. 

Note that the requirements here are not the same as they were in Section 5.10. There 
our goal was to encapsulate the use of components; here our goal is to insulate clients 
from the definitions of the objects we want them to use. 

U sing the same type names as defined in the underlying implementation gives away 
little information yet preserves the type safety across the interface. End users of this 
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interface will benefit from the compiler-enforced type safety in their own applications 
as well. 

Besides reducing the overhead of additional classes and the compiler-enforced type 
safety, exposing the underlying types in name may have a very appealing benefit for 
marketing. Some customers may want to take advantage of the underlying object-ori
ented organization of the system, and may be willing to pay extra for this privilege. 
By providing these customers with a few key (protocol) base-class header files from 
the underlying system, it is possible to enable them to derive their own special types 
to be used within the system without exposing a single implementation detail. 

Similarly, some customers may want better performance than an insulating procedural 
interface can provide. By publishing the header files of just the lowest-level, concrete 
objects (e.g., Poi nt, Box, Po 1 ygon), preferred customers may create these objects as 
automatic variables and access them directly via inline functions. It is by maintaining 
type-name consistency across the procedural interface that all of this integration is 
made seamless; notice how this would not be possible with an encapsulating wrapper. 

6.5.2 Creating and Destroying Opaque Objects 

For the purposes of this discussion, let's assume we are to create an ANSI C-compat
ible interface. We therefore will be forced to use free functions-a necessary violation 
of a major design rule from Chapter 2. To help avoid collisions in the global name 
space, each of these free functions will begin with a consistent registered prefix (as 

discussed in Section 7.2). The ANSI C language does not support C++ references, but 
does support the notion of canst versus non-canst. Therefore all objects will be 
passed by pointer, and only non-canst objects can be modified or destroyed. 

Figure 6-64 depicts procedural-interface functions for creating and destroying a 
Stack object such as the one defined in Figure 3-2. Once created, the Stack object 
will remain in existence until the client explicitly destroys it with the type-safe 
pi_des t roySta c k function. 

/* CREATORS */ 
Stack *pi_createStack(); 
void pi~destroyStack(Stack *thisStack); 

Figure 6-64: Procedural Interface for Creating an Opaque Stack Object 
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ANSI C does not support the overloading of function names, which makes the naming 
process problematic-particularly for constructors. Since objects created with a pro
cedural interface cannot be automatic variables, their creation and destruction is dis
proportionately more expensive than assignment. For these reasons, we may choose to 
omit access to copy constructors, relying instead on the default constructor and 
repeated use of the assignment operator. 

The type safety afforded by ANSI C goes a long way toward protecting customers 
from shooting themselves in the foot. Because this is a C and not a c++ interface, 
however, there is also a greater danger that they may accidentally try to destroy some
thing they did not allocate (and do not own), or try to destroy something they did allo
cate, but do so more than once. A typical example of a common memory allocation 
error is shown in Figure 6-65. 

void f() 
{ 

} 

Stack *sl = pi_createStack(); 
Stack *s2 = pi_createStack(); 

/* ... */ 

pi_destroyStackCs1); 
pi_destroyStack(sl);. /* Oops! */ 

Figure 6-65: The Ease of Corruption Memory in ANSI C 

These kinds of customer errors are among the hardest to debug, and they· can be a 
costly drain on a customer support organization. Fortunately there is an effective way 
to detect most memory allocation errors. A memory allocator that has proven highly 
effective at detecting and reporting memory allocation-related customer program
ming errors in actual products is presented in Appendix B. 

6.5.3 Handles 

If we are creating a procedural interface to be used by customers writing in C++ (as 
opposed to ANSI C), then there are better ways to handle dynamically allocated 
objects than just returning a pointer. One popular approach to managing dynamically 
allocated objects returned from functions involves a special kind of class commonly 
referred to as a handle. 
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DEFINITION: In this book, a handle is a class that maintains a 
pointer to an object that is programmatically accessible through the 
public interface of the handle class. 

Basically, a handle is an object that is used to refer to another object. 16 Usually, a han
dle holds a pointer to the "held" object but contains little else, as illustrated in Figure 
6-66. Unlike a wrapper, the object to which the handle refers is programmatically 
accessible from the interface of the handle. Handles used in this way are sometimes 
called smart pointers. 17 There are many applications for the handle pattern in C++. 
The Node I d wrapper class of Figure 5-95 acted as a handle for the Node portion of 
Gnode object to which it held a pointer; Edgeld acted similarly. 

d_stack_p C> d_array_p C> 

pi_StackHandle d_size 

d_length 

Stack ,.oJ .. ~ 

int[ d_size] 

Figure 6-66: Object Diagram Dlustrating pi _StackHandl e and Stack Organization 

A common way of managing a dynamically allocated object in C++ is to place its 
address in a separate object whose job is simply to manage it. Such a manager object 
is just a special type of handle object-a manager handle. The header file for a S t a c k 

manager handle is given in Figure 6-67. 

16 stronstrup, Section 13.9, p. 460. 
17 strollstrup, Section 7.9, p. 244. 
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II pi_stackhandle.h 
#ifndef INCLUDED_PI_STACKHANOLE 
#define INCLUOED_PI_STACKHANDLE 

class Stack: 

class pi_StackHandle { 
Stack *d_object_p; 

private: 
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pi_StackHandle(const pi_StackHandle&); 
pi_StackHandle& operator=(const pi_StackHandle&); 

II not implemented 
II not implemented 

} ; 

public: 
c II CREATORS 

pi_StackHandle(); 
""StackHandle(); 

II MANIPULATORS 
void loadObjectCStack *stack); 

II ACCESSORS 
operator Stack *() canst; 

#endif 

II Not intended for public use. 

II Conversion operator to allow use 
II of this object as if this were 
II a writable .pointer to a Stack. 

Figure 6-67: A Manager Handle for Class Stack 

Our overall approach to creating a procedural interface involving handles is illustrated 
in Figure 6-68. Here, pi _S t a c k is just a s t rue t (defining a namespace) containing 
only static member functions. These functions will serve as the C++ procedural inter
face to manipulate S t a c k objects, via outwardly opaque pointers. 

Figure 6-68: Component/Class Diagram for a Procedural Interface with Handles 
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II pi_stack.h 
#ifndef INCLUDED PI STACK - -
#define INCLUDED PI STACK - - / 

., 
I r/ 

class Stack; 

struct pi_Stack { 

} ; 

II CStack Creators) 
static void createCpi_StackHandle *handleToBeLoaded); 

II (Stack Manipulators) 
static Stack *assignCStack *thisStack, canst Stack *thatStack): 
static void pushCStack *thisStack, int value); 
static int pop(Stack *thisStack); 

II (Stack Accessors) 
static int top(const Stack *thisStack) canst; 
static int isEmpty(const Stack *thisStack) canst; 
static int isEqual (const Stack *left, canst Stack *right) const; 

#endif II pi_stack.c 
#include "pi_stack.h" 
#include "stack.h" 

void pi_Stack::createCpi_StackHandle *h) 
{ 

h-)laadObjectCnew Stack); 
} 

Chapter 6 

Stack *pi_Stack::assignCStack *thisStack, const Stack* thatStack) 
{ 

} 

*thisStack = *thatStack; 
return thisStack; 

void pi_Stack::pushCStack *thisStack, int value) 
{ 

thisStack-)pushCvalue); 
} 

II 

Figure 6-69: Procedural Interface Component pi_stack 

Since we plan to use handles to manage memory, we will modify the stack creation 
function Sta c k *pi _c rea teSta c k () that we used in ANSI C. In a handle-base archi .. 
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tecture, an equivalent C++ translation of this function will take a writable pointer to a 
stack handle object as a parameter. We avoid the free functions of the ANSI C version 
by making this function a static member of class pi _S t a c k. The header for the entire 
pi_stack component is given in Figure 6-69. 

Now, instead of returning a pointer to a dynamically allocated object directly, a 
pi_StackHandl e object is first created by the client as an automatic variable. The 
address of this handle is then passed into the c rea t e function, where it is loaded with 
a dynamically allocated S t a c k object, as shown in Figure 6-70. Once the handle is 
loaded, its conversion operator allows the handle (see Figure 6-67) to be used as if it 
were a pointer to a Stack. 

v 0 i d my Fun c ( ) 
{ 

} 

pi_StackHandle h; 
pi_Stack::create(&h); 
for Cint i = 0; i < 10; ++i) 

pi_Stack::pushCh, i); 
} 

int x = pi_Stack::popCh); 
I I ... 

II 
II 

{ 

II 

II 

automatic variable 
load with dynamically allocated object 

push 0, 1 , ... , 9 on the managed stack 

pop 9 from managed stack into x 

Figure 6-70: Usage Model for a Manager Stack Handle 

There is no need to implement a corresponding destroy function in the pi_Stack 

interface. When the handle goes out of scope, the destructor of the handle in tum 
destroys the contained (dynamically allocated) S t a c k object, as shown in Figure 6-71. 

The scoping afforded by c++ classes and the ability to overload function names in C++ 
simplify the task of naming. Although the cosmetics of adding handles and scoping func
tion names does not change the underlying nature of this interface-it is still procedural. 

In particular, trying to make a handle look like a wrapper would be ill-advised. Con
sider what would happen if, instead of the current interface, we implemented the pop 

function as a non-static member of class pi _S t a c kHa nd 1 e (taking no arguments): 

class pi_StackHandle { 
I I ... 

} : 

public: 
I I ... 
int pope); 
I I ... 
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II pi_stackhandle.h 
#ifndef INCLUDED_PI_STACKHANOLE 
#define INCLUDED_PI_STACKHANOLE 

class pi_StackHandle { 
Stack *d_stack_p; 

} ; 

public: 
I I ... 
-pi_StackHandle(); 
I I ... 

#endif 

II pi_stackhandle.c 
#include "pi_stackhandle.h" 
#include "stack.h" 

I I ... 

pi_StackHandle::-pi_StackHandle() 
{ 

} 

II 

Figure 6-71: Destructor for Manager Handle Destroys Its "Held" Object 

The obvious semantics would be that the pop ( ) member should pop and return the top 

element of the S t a c k object managed by this pi _S t a c k Han d 1 e. Suppose, however, we 

are handed a pointer to a non-cons t Stac k that we do not own. How could we pop it? 

If, as customers, all we had at our disposal is a pop ( ) member of class S t a c k Han d 1 e, 

we would be forced to use the loa dO b j e c t ( ) member to put this S t a c k object pointer 

inside a handle before we could manipulate it. But if we did that, we would now have 

two agents managing the memory of the same Stack object! 

The single purpose of the handle in a procedural interface is to manage the memory of 

a dynamically allocated object. Except for the pi _S t a c k: : ere ate function, which 

loads a pi_StackHandl e with a newly allocated Stack object, all of the functionality 

defined in the pi _St a c k procedural interface should refer directly to the underlying 

S t a c k and not the pi _S t a c k Han d 1 e. By following this strategy, customers are never 

forced, or even tempted, to abuse a handle to gain access to the functionality of the 

underlying object. 
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6.5.4 Accessing and Manipulating Opaque Objects 

Let us return to our assumption of ANSI C compatibility. A common hierarchical 
naming convention for the analog of "member functions" in a procedural interface is 
as follows: <prefix>_<Subject><Verb><Object>. 

As a matter of consistency, it is desirable that our subject type (e.g., Stack) always 
appear with an uppercase first letter. Ignoring the prefix, we want the actual function 
name to comply with our design rule from Section 2.7 which suggests that all func
tions begin with a lowercase letter. To lexically distinguish these global functions 
from global types, we have inserted the letter f at the beginning of the actual function 
name. For example, 

i nt Stack:: pop ( ) : ~ i nt pi_fStackPop (Stack *); 

double Angle: :getDegrees() canst; ~double pi_fAngleGetOegrees(const Angle *); 
void List::append(const Elem&); ~vaid pi_fListAppendElem(List *. canst Elem *); 

Although this style of naming is entirely appropriate for the procedural interface 
layer, it does not necessarily translate directly to the underlying objects and member 
functions of the implementation layer. For example, representing the conversion func
tions (see Figure 5-15) 

as 

struct Convert { 

} ; 

static Window toWindow (canst Rectangle& r); 
static Rectangle toRectangle (canst Window& w); 

void pi_fRectangleGetWindow(const Rectangle *thisRect, Window *returnValue) 
{ 

*returnValue = Convert::toWindaw(thisRect); 
} 

void pi_fWindowGetRectangle(const Window *thisWind, Rectangle *returnValue) 
{ 

*returnValue = Convert::taRectangle(thisWind); 
} 

would be intuitive to procedural end users, and therefore an appropriate abstraction. 
There is no levelization issue because each of these function depends only on imple
mentation objects residing at lower levels in thq physical hierarchy. Yet, if realized as 
member functions of the corresponding und~rlying implementation classes, this 
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approach would quickly lead to an unlevelizable architecture. I sus'pect that naively try
ing to map this kind of naming style onto C++ classes and their member functions is a 
primary source of cyclic physical dependencies in many existing systems. 

We now tum our attention to the class S h a pe shown in Figure 6-72. A bounding box is 
a minimal rectangle consisting of horizontal and vertical edges that circumscribe a 
collection of points. Every Shape, among other things, knows how to return (by value) 
a bounding box of type B a x that contains the S hap e. 

Bounding Box 

class. Box; 

class Shape { 
/ / ... 

} ; 

public: 
/ / ... 
virtual Box bBax() canst; 
/ / ... 

Figure 6-72: Returning a User-Defined Type by Value 

Because pointers are opaque, there can be no return by value for user-defined types in 
a procedural interface. The obvious choice is to allocate a new Box and return a 
pointer to it, as shown in Figure 6-73a. One problem with this approach is that objects 
returned by value are typically small objects that do not have associated dynamic 
memory. Dynamically allocating light-weight objects such as Box or Poi nt every time 
one is accessed would create considerable unnecessary overhead. Another problem is 
that returning unmanaged objects would make who owned what memory confusing 
and increase the likelihood of leaks. 
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Box *pi_fShapeGetBboxl(const Shape *thisShape) 
{ 

return new BoxCthisShape-)bBox()); 
} 

(a) Less Efficient, More Dangerous 

void pi_fShapeGetBbox2(const Shape *thisShape. Box *returnValue) 
{ 

*returnValue = thisShape-)bBox(); 
} 

(b) More Efficient, Less Dangerous 

Figure 6-73: Providing a Procedural Interface for Objects Returned by Value 

In a procedural interface, having clients explicitly destroy only those 
objects that they explicitly create reduces confusion over ownership 
and can lead to improved performance. 

We can avoid both the runtime overhead and confusion about ownership by sticking to 
the simple principle that only the objects explicitly allocated by the client of a proce
dural interface can be destroyed by that client-all other objects are owned and man
aged by the system. The preferred procedural interface function is indicated in Figure 
6-73b. 



438 Insulation Chapter 6 

The improvement in runtime efficiency in Figure 6-73b can be significant. Figure 6 .. 74 
shows two implementations of a function that returns the sum of the area of the 
bounding boxes for an array of shapes. For small, lightweight objects, such as Point or 
Box, that are obtained over and over in a single function, the cost of dynamic alloca
tion and deallocation on every iteration of the loop (Figure 6-74a) could easily domi
nate the runtime cost of the function call. Instead, we can do the allocation once 
outside the loop (Figure 6-7 4b) and then reuse the allocated object over and over, 
reSUlting in a dramatic improvement in runtime efficiency. 

double sumArealCconst Shape *shape[], 
int size) 

double sumArea2(const Shape *shape[], 
int size) 

{ 

} 

( 

double sum = 0; 
i nt i; 

double sum = 0; 
Box *box = pi_createBox(); 
i nt 1; for Ci = 0; i < size; ++i) { 

} 

Box *box = pi_fShapeGetBboxl(shape[i]); 
sum += pi_fBoxGetAreaCbox); 
pi_destroyBoxCbox); 

fa r C i = 0; i < s i z e; ++i) { 
pi_fShapeGetBbox2Cshape[i], box); 
sum += pi_fBoxGetAreaCbox); 

} 

return sum; pi_destroyBox(box); 
return sum; 

} 

Figure 6-74: Comparing UsagelEfticiency of Two Procedural Interface Models 

Sometimes the system itself will allocate an object dynamically and return it to the 
client. In such cases, a handle class is usually provided by the underlying system to 
manage the memory for that object. For example, consider a Shape interface that is a 
protocol class for all kinds of S h a pe objects. Now suppose there is a class Poi nt Iter 
that is also a protocol for a variety of specific iterator objects that sequence over some 
collection of points. It is possible to ask an arbitrary S hap e through its protocol to 
allocate a shape-specific iterator (derived from Poi n tIt e r) and return it by loading a 
user-supplied instance of a Poi ntlterHandl e, as shown in Figure 6-75.18 

class Point; 

class Pointlter { 
·public: 

II CREATORS 
virtual ~Pointlter(); 

18 See also the Iterator design pattern in gamma, Chapter 5, pp. 257-71. 
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} ; 
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II MANIPULATORS 
virtual void reset() = 0; 
virtual void operator++() = 0; 

II ACCESSORS 
virtual operator const void *() const = 0; 
virtual const Point operator()() const = 0; 

class PointIterHandle { 
PointIter *d_iter_p; 

} ; 

PointlterHandle& operator=(PointIterHandle&); 
PointIterHandle(PointIterHandle&); 

public: 
II CREATORS 
PointlterHandle(); 
PointlterHandle(PointIter *iterator); 
~PointlterHandle(); 

II MANIPULATORS 
void loadIter(Pointlter *newDynamiclyAllocatedlterator); 

II ACCESSORS 
PointIter& operator()() const; 
operator PointIter&() const; 
PointIter *operator-)() const; 
PointIter& operator*() canst; 

class Shape { 
I I ... 

} ; 

public: 
I I ... 
II ACCESSORS 
virtual void getVertices(PointIterHandle *returnValue) - 0; 
I I ... 

Figure 6-75: Using Handles to Manage Dynamic Memory in·C++ 

In this example, the system is dynamically allocating an iterator object and placing it 
in a user-supplied handle. Since the underlying system itself is allocating the memory, 
the customer is not authorized to delete it. The customer is, however, authorized to 
create and destroy an instance of a Poi n tIt e r Han d 1 e. The customer therefore creates 
a Poi ntlterHandl e and passes it to the getVerti ces function of Shape. The handle 
is then loaded by the system with a dynamically allocated pointer to a Poi n tIt e r. The 
customer uses the object contained in and managed by the handle. When the handle is 
destroyed by the customer, the destructor of the handle in tum destroys the contained, 
dynamically allocated iterator. Reusing a handle to obtain another iterator also 
prompts the handle to destroy any previously installed iterator before loading the new 
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one. An ANSI C-compatible procedural interface for the functionality of Figure 6-75 
is given in Figure 6-76. The usage of such an interface is illustrated in Figure 6-77. 

typedef struct Point Point; 
typedef struct Pointlter Pointlter; 
typedef struct PointIterHandle PointIterHandle; 
typedef struct Shape Shape; 

II ANSI C compatibility 
II ANSI C compatibility 
II ANSI C compatibility 
II ANSI C compatibility 

1***** PointIter *****1 
1* MANIPULATORS *1 
int pi_fPointIterIsValidCconst Pointlter *thisIter); 
void pi_fPointlterGetltem(const PointIter *thisIter, Point *returnValue); 

1* ACCESSORS *1 
void pi_fPointIterResetCPointlter *thislter); 
void pi_fPointlterAdvance(Pointlter *thisIter); 

1***** PointlterHandle *****1 
1* CREATORS *1 
PointlterHa·ndle *pi_createPointlterHandleC); 
void pi_destroyPointIterHandleCPointlterHandle *thisHandle); 

1* MANIPULATORS *1 
1* void pi_fPointlterHandleLoadlter(PointIterHandle *thisHandle, 
* PointIter *newDynamicPointlter); 
* Note: not necessary to expose this dangerous function 
*1 

1* ACCESSORS *1 
Pointlter *pi_fPointlterHandleGetlterCconst PointlterHandle *thisHandle); 
1* Note: for a procedural interface, this one accessor is sufficient *1 

1***** Shape *****1 
1* ACCESSORS *1 
void pi_fShapeGetVerticesCShape *thisShape, PointIterHandle *returnValue); 

Figure 6-76: An ANSI C-Compliant Procedural Interface Involving Handles 

As a procedural-interface author for a large system, you may discover a class interface 
that returns a dynamically allocated object directly, without placing it in a client-sup
plied handle. In such cases, it will be necessary for you to find (or create) such a han
dle of the appropriate type and require your clients to pass a non-con s t pointer to that 
handle into your interface function. You will then have to load the handle with the 
system-allocated object yourself. Doing so will preserve the principle that clients of 
the procedural interface are authorized to delete only what they explicitly allocate. 
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void f(Shape *shape) 
{ 

} 

PointlterHandle *handle = pi_createPointlterHandle(); 
Point *pt' = pi_createPoint(); 
Pointlter *it; 

pi_fShapeGetVertices(shape, handle); 
it = pi_fPointlterHandleGetlter(handle); 

for (; pi_fPointlterIsValid(it); pi_fPointlterAdvance(it)) { 
pi_fPointlterGetltem(it, pt); 
/* do stuff with current pOint */ 

} 

pi_destroyPoint(pt); 
pi_destroyPointlterHandle(handle); 

Figure 6-77: Using an ANSI C-Compliant Procedural Interface Involving Handles 

6.5.5 Inheritance and Opaque Objects 

Converting between types related by inheritance is yet another aspect of writing pro
cedural interfaces for object-oriented designs that must be addressed. The issue at 
hand involves how we present a type-safe, procedural interface that supports the 
notion of pointer conversion implied by inheritance. 

Figure 6-78: Examples of Inheritance Relationships 

Consider the class diagram shown in Figure 6-78. Class B derives publicly from both 
Al and A2, which means that all of the functionality of both Al and A2 is accessible 
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through the public interface of B. Unfortunately, insulation prevents even C++ Cus
tomers of a procedural interface from knowing anything about how types AI, A2, and 
B are related. For example, if we have a pointer to an object of type B and we want to 
call a member function defined in AI, we would be out of luck; this is obviously not 
acceptable. 

Our first thought might be to duplicate the functionality defined in both A 1 and A2 in 
B. Doing so creates a large number of redundant functions and solves only half the 
problem. Suppose we want to use an object of type B in a function that takes an object 
of type A 1. Should we also make duplicates of each function for every combination of 
derived types? I think not. 

The C++ language supports implicit (standard) conversion from pointers of a given 
type to pointers of another type when the first type publicly inherits (either directly or 
indirectly) from the second; it will be necessary to make that conversion explicit in the 
procedural interface. 

Al *pi_convertBAl(B*); 
A2 *pi_convertBA2(B*); 
C *pi_convertDIC(Dl*); 
C *pi_convertD2C(DC*): 

const Al ~pi_convertConstBAl(const B*); 
canst A2 *pi_convertConstBA2Cconst B*); 
canst C *pi_convertConstDIC(const 01*); 
canst C *pi_convertConstD2C(const 02*); 

Figure 6-79: Examples of (Standard) Conversion Functions 

The explicit conversion functions corresponding to Figure 6-78 are shown in Figure 
6-79. In this example, four inheritance relationships induced eight functions. Notice 
that there are two kinds of functions: one for canst objects and one for non-canst 
objects. Although this seems painful, it gets even worse. 
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C ____ A~l _) ( A2 ) 

new inheritance relationship 

Figure 6·80: 'fransitivity of Conversions in Inheritance Hierarchy 

Now consider what would happen if we introduced one more inheritance relationship 
from C to B, as shown in Figure 6-80. In addition to the obvious two additional conver
sion routines 

B *pi_convertCBCC*); 
canst B *pi_convertCanstCB(const C*); 

the transitive nature of the IsA relation potentially introduces the following 16 conver
sions as well: 

B *pi_convertDIB(OI*); 
Al *pi_convertDIAICDI*); 
A2 *pi_canvertDIA2(D1*); 
B *pi_convertD2B(D2*); 
Al *pi_convert02Al(02*); 
A2 *pi_canvert02A2(D2*); 
Al *pi_convertCAl(C*); 
A2 *pi_convertCA2(C*); 
const B *pi_convertConst01BCcanst 01*); 
canst Al *pi_canvertConstDlAl(const 01*): 
const A2 *pi_convertConstOlA2(const D1*); 
canst B *pi_canvertConstD2BCconst 02*); 
canst Al *pi_canvertConst02AI(const 02*); 
canst A2 *pi_convertConst02A2(const 02*); 
canst Al *pi_convertConstCA1(const C*); 
canst A2 *pi_convertCanstCA2(const C*); 

Although it is not absolutely necessary to supply a function to provide direct conver
sion from type 01 to type A2, users of the procedural interface may already be 
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annoyed by having to use one conversion function-let alone three. There is clearly a 
trade-off between the number of conversion-function definitions provided and the 
number of conversion-function calls required at runtime. 

Attempting to maintain and document all of these functions by hand is expensive and 
error prone. Fortunately these conversion functions are trivial, regular, and easy to 
generate accurately using techniques similar to those employed in Appendix C for 
determining level numbers. Note that instead of trying to document all these conver
sion functions, it is far more manageable to show users how to infer the appropriate 
name based on the two type names: 

<Type2> *pi_canvert<Typel><Type2>«Typel>*); 

canst <Type2> *pi_convertConst<Typel><Type2>(canst <Typel>*); 

To summarize: a procedural interface is entirely different from other insulation tech
niques presented in this chapter, and it satisfies an entirely different set of objectives. 
Techniques such as extracting a protocol and creating a wrapper layer serve both to 
encapsulate as well as insulate clients from the low-level organization of a subsystem. 
These other techniques enable the side-by-side reuse of low-level implementation 
components without any possibility of breaching the encapsulation of subsystems that 
use them internally. 

By contrast, the primary purpose of a procedural interface is to insulate clients from 
all organizational aspects below a certain level. There is usually no intention of allow
ing customer reuse of the underlying objects-often for proprietary reasons. The main 
advantage of this insulation technique is that it does not require the up-front design 
effort that accompanies the provision of an encapsulating interface, nor does it impose 
the overhead of additional objects to achieve the encapsulation. The issue of long-dis
tance friendship is eliminated because the underlying types are publicly available in 
name, but the header files that enable direct access to the functionality defined for 
these types are universally withheld from customers. 

Providing a procedural interface has the distinct disadvantage that, in its pure form, 
clients lose the ability to extend the functionality of the system through the use of 
inheritance. With careful design, however, it is possible to provide a procedural inter
face and augment it with a few select header files to mitigate this problem. Procedural 
interfaces require the use of long and tedious function names to do what is nonnally 
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done by members within class scope, operators, and standard conversions. Function 
names become even more tedious when the interface is made ANSI C compliant. 

A procedural interface is neither object oriented nor particularly elegant, but it does 
have one big advantage: a procedural interface can always be used to insulate the 
organization of a large system from clients-even if such an interface was not consid
ered during the early stages of the design. 

6.6 To Insulate or Not to Insulate 

Frequent recompilation due to changing header files is something we would like to 
avoid imposing on the clients of our components. Such "spontaneous" recompilations 
during development are both annoying and expensive. 

There is little we can do to insulate our ~lients from the changes we make to the logi
cal interface of our components-a fact that underscores the importance of getting 
major interfaces correct early in the design process. Batching up such changes and 
publishing them infrequently in the form of a software release (see Section 7.6) can 
reduce but not eliminate their cost. 

As we have seen from the previous sections in this chapter, there are steps we can take 
that will reduce or even eliminate our clients' recompilation costs due to changes in 
the logical implementations of our components. But insulation itself is not without 
cost. Sometimes it will take more development effort to create an insulating interface 
for a component, and in some cases insulation could significantly degrade runtime 
performance. 

In the following subsections we discuss the costs of insulation, when insulation is (or 
is not) appropriate, and what kinds of insulation techniques are best suited for particu
lar situations that arise commonly in practice. 

6.6.1 The Cost of Insulation 

Insulating a class clearly can affect its runtime performance. The degree of impact 
depends on the class itself, the way it is used, and the techniques used to insulate it. 
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Although computer architectures and compilers vary, the following 
rule of thumb may help guide system architects in deciding whether 
and how to insulate at the early stages of a design. 

Access 

By value via inline function 
By pointer via inline function 
Via non-inline, non-virtual function 
Via virtual-function mechanism 

Creation 

Automatic 
Dynamic 

Relative Cost 
of Access Alone 

1 
2 

10 
20 

Relative Cost 
of Allocation Alone 

1.5 
100+ 

Figure 6-81 provides some hard numbers for the relative costs of various forms of 

function calls and object instantiation. As the figure shows, the cost of accessing data 

either directly or through an inline function is statistically identical. Using the 

CFRONT 3.0 C++ Compiler on a SUN SPARC-2 workstation with no optimization, it 

takes about 1/8 of a microsecond to access an integer data member (either directly or 

via an inline function) and assign it to another integer variable (see Figure 6-81a, c). 

Notice that it takes 60 percent longer on a SPARC-2 and twice as long qn a SPARC-20 to 

accomplish this operation if the access must go through a pointer (b, d).19 

struct A { 
int d_d; 

} ; 

inline int i() canst; 
int f() canst; 
virtual int v() canst; 

19 The operation becomes bound by memory-access time on the faster SPARe 20. 



section 6.6.1 

int A::i() canst { return d_d; } 
int A: :f() canst { return d_d; }
int A::v() canst { return d_d; } 

main () 
{ 

A a, *p = &a; 
int j; 

J - a.d d . - , 
J - p->d_d; 
j - a.i(); 
J - p->iC); 
J - a.f(); 
J - p-)f(); 
J - p->v(); 

{ A a } 

{ A *p = new A; 
} 

delete p; } 
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II TIME IN MICROSECONDS 
II SPARC-2 SPARC-20 

II a . 0.124 0.040 
II b. 0.200 0.080 
II c. 0.125 0.040 
II d . o . 199 0.080 
II e. 0.575 0.3.01 
I I ·f. 0.599 0.301 
II 9 . 1.076 0.543 

II h . 0.175 0.060 
II i . 11.757 5.478 

Figure 6-81: Some Relative Costs of Access and Creation 

For a fully insulating class, there can be no inline functions, so eacb access of a pri
vate member requires indirection through a pointer. The cost of accessing a data 
member with a regular function instead of an inline function is increased by almost a 
factor of four (e). Notice that the indirection now adds less than 5 percent to the total 
cost of the operation (f). That is, the added access cost of not declaring a member 
function i n 1 i n e dominates the small additional overhead of the indirection. 

For a protocol class, there can be no non-virtual functions, and the pointer indirection 
is now mandatory. All function calls must go through the virtual function call mecha
nism. The cost of performing this same operation with a dynamically bound function 
instead of a statically bound function again doubles the cost of the operation (g).20 
Although the virtual-function call mechanism is somewhat slower than a direct-func
tion call, for tiny accessor functions it can be significantly slower than accessing the 
data directly, using an inline function. Often, however, if one can afford to make a 
function non-jnline, one can afford to make it virtual as well. Note that as the size of 

20 It is worth reiterating that the depth of an inheritance hierarchy does not affect the runtime perfor
mance of virtual functions. Each class maintains its own virtual table(s), so the cost of dispatching 
any virtual function is independent of the number of derivations in the class hierarchy. 



448 Insulation Chapter 6 

the function grows, the runtime cost associated with executing the body of the func

tion will soon swamp the cost of whatever calling mechanism is used; the speed 

improvement of inline over dynamically bound function calls will then become negligible. 

A distinguishing property of a concrete class is that it can be instantiated. When an 

object with a fully insulated implementation is created as an automatic variable (on 

the program stack), its implementation structure must be allocated separately. As 
shown at the bottom of Figure 6-81, the cost of dynamically allocating a struct (on 

the heap) can be two orders of magnitude slower than automatic allocation (h, i). The 

development effort in object-specific memory management -necessary to defray this 

cost can be significant, and class-based management techniques can lead to undesir

able side effects (see Section 10.3.4.2). Even worse, the cost of dynamic allocation 

typically depends on the size of the application and specifically on the current utiliza

tion/fragmentation of the particular runtime dynamic memory-management system. 

For these reasons, full insulation for tiny, lightweight concrete classes may be con

traindicated, especially for objects that are frequently created on the program stack or 

returned by value from functions. 

6.6.2 When Not to Insulate 

Insulating clients from changes made to encapsulated implementation details of a com

ponent in itself is good; however, not all component interfaces should be insulating. 

The decision not to insulate the implementation of a component may 
be based on the knowledge that the component is not widely used. 

Some components are simply not intended for general use. When the audience of a 
component is limited, insulation is no longer critical. In that case, the impact of 

changes to the uninsulated implementation may not pose any great threat. In fact 
some component may be specific to a subsystem that defines a few interface (wrap
per) components that themselves completely insulate the entire multi-component sub
system from general users. Examples are the p2p_router of Chapter 4 and the graph 

wrapper of Section 6.4.3.1. Heroic efforts to insulate the implementations of each of 
the individual components that make up such a subsystem would be misplaced. 
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Unless performance is known not to be an issue, it may be wise to 
avoid insulating the implementation of low-level classes with tiny 
accessor functions that are used widely throughout the system. 

There are two distinct ways to reduce the frequency of recompilation resulting from 
changes to the implementation: 

1. Insulate the implementation better. 
2. Make changes to the implementation less frequently. 

DEFINITION : Light-weight is a term whose meaning depends on the 
context in which it is used: 

• does not depend on (many) other components, 
• is not expensive to construct/destruct, 
• does not allocate additional dynamic memory, and 
• makes effective use of inline functions to access/manipulate 

embedded data. 

For widely used components, it is especially undesirable that clients be forced to 
recompile as a result of changes to encapsulated details. Yet, as we know, insulation is 
not free of performance cost. Small, light-weight classes such as Poi nt, S t a c k, Lis t, 
and other well-defined concrete data structures in computer science are not good can
didates for insulation, even though they are used widely throughout the entire system. 
Insulating such classes would impose an across-the-board performance burden that, 
for many, would be hard to justify. In fact, for classes such as these with tiny accessor 
functions that are called repeatedly, the overhead of using indirection and non-inline 
functions could make them an order of magnitude slower, as was demonstrated in 
Section 6.6.1. 
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When the runtime cost of work done in a given function call is large relative to the 
cost of the call itself, insulation will not pose a significant performance problem. 
Therefore, if a class is widely used and its member functions are large, the implemen
tation of that class should be insulated, regardless of any supposed performance 
requirements. On the other hand, highly reused, public components21 with tiny acces
sor functions should probably not be insulating unless performance is clearly not an 
issue. These factors are summarized in Figure 6-82. 

Performance Requirement 

high 

low 

I 
(Don't Insulate!) 

. • . • • • • • • • 

III 
(Don't Insulate?) 

• 

• 

• • • 

• 

• 

• 

• 

• • 

II 
(Insulate! ) 

• • • • 

IV 
(Insulate! ) 

Io....-________________ ~ Member Function Size 

small large 

Figure 6-82: When to Insulate a Widely U~ed Component 

Fortunately public, low-level classes are typically developed, tuned, and tested thor
oughly early in the development process. After that, they are seldom if ever modified. 
Such intentionally non-insulating, globally used classes become almost like funda
mental types in the system. Classes such as Poi nt, S t r i n g, and L is t are often used 
both internally and as a "medium of exchange" among the major subsystems. It is 
understood by developers that these highly reused types are not likely to change. 

Insulating lightweight, widely used objects commonly returned by 
value can significantly degrade overall runtime performance. 

21 The term public here implies a low-level component or interface that is used widely throughout an 
entire system. 
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For a tiny object that does not allocate additional dynamic memory at construction, 
the additional cost of returning a fully insulating version of that object by value could 
be so severe as to affect the design of the interfaces that use it. 

canst Paint pt(1,2); 

Point getPointA() 
{ 

return pt; 
} 

void getPointB(Point *returnValue) 
{ 

*returnValue = pt; 
} 

II return by value 

II return via parameter 

Figure 6-83 illustrates the added runtime cost of partially and fully insulating a Poi n t 

class with respect to returning a Poi nt by value from a non-inline function. Using the 
original non-insulating Poi n t class implementation of Figure 5-59, it takes 1.52 
microseconds on a.SPARe 2 for a call to the getPointA function to return a Poi nt by 
value. Moving all of the function definitions out of line while leaving the data mem
bers embedded in the class definition causes this time to more than double (3.39 
microseconds). Fully insulating the class (implying dynamic allocation of the data) 
causes the function call to take 10 times as long as it would have for the non-insulat
ing implementation. For an ultra light-weight class such as Poi nt, the reduction in 
runtime performance incurred by insulating its logical implementation is probably 
unacceptable. 

Return by Value Return via Parameter 

Description of Point Class SPARe 2 SPARe 20 SPARC2 SPARe 20 

Original Point Class 1.52 0.75 1.16 0.52 
Without Inline Functions 3.39 1.67 1.23 0.71 
Fully Insulating Version: 15.82 6.96 1.49 0.73 

(function call time in microseconds) 

Figure 6-83: The Cost of Returning a Fully Insulating Poi n t Object 

Instead of returning an insulating Poi n t by value, we might be tempted to pass in a 
previously constructed Poi n t object and assign to it just to avoid the overhead of the 
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dynamic allocation associated with the construction of a temporary Poi nt object. In 
that case, the cost of fully insulating Poi n t does not exceed 30 percent on either archi
tecture. The cost of creating one reusable instance of Poi nt by the client can now be 
amortized over many repeated calls to functions returning points via the parameter 
list. This interface style is similar to the one proposed for procedural interfaces in Sec
tion 6.5.4, and is discussed further in Section 9.1.8. 

Other reasons not to insulate could result from a shortage of personnel. There may be 
no compelling reason to insulate, and the incremental increase in development time 
necessary to achieve the insulation may not be deemed cost-effective. Creating a 
wrapper requires significant planning and effort; deadlines and a lack of experience 
may prevent potentially wrappable subsystems from getting wrapped properly. 

Insulation may be omitted because the added physical complexity of introducing yet 
another component may be judged not to be worth the potential benefit that would be 
gained through insulation. Both protocols and wrappers involve creating a separate 
component to act as the interface. This separate physical entity contributes to the 
overall complexity of the physical architecture. 

. 

Finally, insulation is an additional, independent constraint on the implementation of a 
component or subsystem. Addressing this requirement leads to a somewhat more 
complex implementation that may be harder for some to understand and marginally 
more difficult to maintain than an uninsulated component or subsystem. For example, 
fully insulating a class requires creating a separate structure in the . c file and remem
bering to dynamically allocate and delete it during construction and destruction, 
respectivel y. 

Added initial development cost, increased component count, and increased complex
ity are at least tenable reasons to resist unnecessary insulation. There are, however, 
clear overall maintenance benefits to be gained from insulation. In the absence of 
compelling reasons one way or the other, keep in mind that insulation is more eco
nomically removed than installed late in the development process. 

For large, widely used objects, insulate early and selectively remove 
the insulation later if necessary. 
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Once a system is complete and performance analysis proves that removing the insula
tion from a few key components significantly improves the overall system perfor
mance, at least the benefits of the insulation will have been realized throughout the 
bulk of the development effort. Waiting until the end of a large project to determine 
empirically which components can be insulating without significant loss in perfor
mance sacrifices much of the initial maintenance b'enefit that insulation provides. 

To summarize: insulating an interface can result in dynamically allocated memory, 
extra indirections, non-inline or virtual-function calls, explicit management of 
dynamically allocated objects, and additional translation units. The cost of insulating 
an interface in terms of performance, development effort, or complexity will some
times outweigh the benefits of the insulation. On the other hand, some components 
are neither lightweight nor stable, and yet are available for general use throughout the 
system. These large, high-level, volatile, and widely used objects are prime candidates 
for' insulation. 

6.6.3 How to Insulate 

In practice, there are two main ways to insulate clients from the logical implementation 
of a class: 

1. Extract a protocol for that class. 
2. Everything else: 

• Use partial implementation techniques. 
• Convert this to a fully insulating concrete class. 
• Create an insulating wrapper for the class . 
.- Create a procedural interface for the class. 

Because a protocol defines a pure interface, clients of the protocol not only do not 
depend on the implementation at compile time, but, unlike with other techniques, they 
need not depend on any particular implementation at link time either. 

Classes that already employ virtual functions are probable candidates for "perfect" 
insulation by extracting a protocol class. These objects are already treated as base 
classes, and they already incur the extra overhead of carrying around a pointer to a 
virtual-function table in every instance of the class. More often than not, base' classes 
with virtual functions are not intended to be instantiated. If a class either declares any 
pure virtual functions or declares all of its constructors non-p u b 1 i c, the base class 
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cannot be instantiated on the program stack by public clients. Therefore, the usage of 

such classes will be left essentially unaffected by insulating them with a protocol. 

For utility classes that act as modules (e.g., GeomUt i 1 in Figure 5-21), there is no need to 

create an instance of the class in order to use its functionality. In that case, declaring all 

member functions s tat i c and non - i n 1 i n e, and moving any static member data to the . c 

file (at file scope), obviates the overhead of instantiation and the virtual call mechanism. 

For a "small" class with mostly non-trivial accessor functions such as a reasonable 

Stri ng class, total insulation might be appropriate. Notice here that the implementa
tion of even simple functions such as equality (==) and assignment (=) potentially 
involves loops, additional dynamic allocation, or at minimum another non-inline 

function call to strcmp or strcpy. Insulating the implementation of this class would 
actually facilitate performance tuning by allowing different implementation strategies 
(e.g., reference counting and caching length) to be profiled and evaluated in the con

text of actual usage without having to recompile the entire system. Again, the insula
tion could always be removed (if necessary) much later in the development process. 

Large, high-level, instantiatable objects (e.g, a circuit siI?ulator or parser) that do not 
make use of inheritance or virtual functions in their interface can usually be "fully 
insulated" or "wrapped" with negligible impact on either size or runtime overhead. 
Insulation is indicated for such objects, especially when the object is intended for 
widespread, general use outside of the local software development group. 

The p2p_Router shown in Figure 4-2 illustrates an ideal example of a fully insulating 
wrapper. The router is not a module; an instance of the router must be created and 
"programmed" before it can be used. The work required to construct an instance of a 
p2p-"-Router is not trivial, nor is the work done by the addObstructi on function used 
to program it. However, the time spent using the router is completely dominated by 

work done in the lower levels of the router subsystem on each call to the fin d Pat h 

function. The added runtime cost of insulating the router is thus completely negligible. 

As a final example, consider how we might go about insulating (someone else's) class 
Sol i d, whose header is shown in Figure 6-84. Sol i d is intended to be a common base class 
for a variety of solids but is not itself instantiatable. This intent is corroborated by observing 
that the constructors and assignment operator for the class are declared pro tee ted · 

II solid.h 
#ifndef INCLUDED_SOLID 
#define INCLUDED_SOLID 



Section 6.6.3 How to Insulate 455 

#ifndef INCLUDED_IOSTREAM 
#include <iostream.h> 
#define INCLUDED_IOSTREAM 
1tendif 

class Solid { 

} ; 

int d_color; 
double d_scale; 
double d_density; 
ostream *d_errorStream_p; 

protected: 
II STATIC MEMBERS 
static double distance(double xl, double y1. double x2. double y2); 

II CREATORS 
Solid(ostream *errorStream, double density. double scale = 1.0); 
Solid(const Solid& solid); 

II MANIPULATORS 
Solid& operator=(const Solid& solid): 
void setColor(int color) { d_color = color; } 

II ACCESSORS 
virtual double surfaceEquation(double x, double y, double z) - 0; 

II Point(x.y.z) is on the surface when function returns 
II approximately 0 (to within some small tolerance). 

ostream& errore) { return *d_errorStream_p; } 
double masse) const { return density() * volume(); } 

public: 
II CREATORS 
virtual,....Solid(); 

II MANIPULATORS 
virtual void setTemperature(int degrees) = 0; 

II Changing the temperature may affect color, depending on the 
II actual object. 

void setScale(int scale) { d_scale = scale; } 

II ACCESSORS 
virtual double temperature() const = 0; 
int scal~() { return d_scale; } 
int color() const { return d_color; } 
double density() const { return d_density; } 
double volume() const; 
double centerOfMassInX() const; 
double centerOfMassInY() const; 
double centerOfMassInZ() canst; 
/ I ... 

#endif 

Figure 6-84: Base-Class So 1 ; d with Public and Protected Interface 
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The scale attribute of a So 1 i d determines the relative size of the object. Users of 
So 1 i d are permitted to access and modify its scale directly. The protected pure-virtual 
sur fa c e E qua t ion function allows a derived class to program the unique behaVior 
necessary to describe its own surface (parameterized by sea 1 e ( )) through an implicit 
equation. For example, the surface of a sphere might be described as 

double Sphere::surfaceEquation(double x. double y, double z) 
{ 

return x * x + y * y + z * z - scale() * scale(); 
} 

Non-virtual functions in the base class use the surface equation to compute, among 
other things, the Sol i d's volume and center of mass in each spatial dimension. Making 
the surfaceEquat i on function protected prevents direct access to surfaceEquati on 

by the pUblic.22 

Since it is up to the derived object to define both the behavior of getting and setting 
the temperature and how that affects the color of the specific object, the public t em

perature and setTemperature functions of Sol id have been declared pure virtual. 
(Notice that the internal representation of the temperature is already insulated from 
clients of the base class.) 

Since all objects have a color (encoded as an integer), a private integer data member 
and a public inline accessor are provided in the base class. General clients of Sol i d 

are not permitted to set the color of an instance directly. Rather, they are required to 
adjust its temperature, which in tum may affect the color of the object. The set Color 
manipulator function is therefore protected, so that only the derived object itself can 
alter the color of this instance directly. 

The public interface provides several accessor functions, some of which (such as 
vol ume) do substantial numerical work when invoked. The protecteq interface pro
vides derived-class authors with several helper functions such as setTemperature 

that may prove useful in implementing required virtual functions. 

Rather than exposing the 0 s t rea m pointer data member directly in the protected inter
face, the protected function err 0 r is supplied to provide a convenient stream refer-

22 The desired effect could also have been achieved by making this virtual function private, but that 
would have made the tasks of the derived-class developer less obvious. 
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ence for reporting errors (such as setting the temperature too low or too high). The 
mass may play a role in determining the color, particularly for a very large, dense 
Sol i d such a black hole. The protected member function mas s, which calculates the 
mass using members supplied in the public interface, is provided for the convenience 
of derived-class authors. Finally, dis tan c e is a function frequently used by derived
class authors. Unlike the mass helper function, di stance does not depend on an 
instance of any class and so is made a protected static member of class So 1 i d. 

Clearly the original author of the Sol i d base class did not consider insulation an 
important design criterion, as evidenced by the casual use of inline functions. Fortu
nately we have several techniques available to improve the insulation of the imple
mentation of So 1 i d. These insulation improvements fall into two basic categories: 
total and partial. 

As an exercise, let us first see what kinds of incremental improvements we can make 
to the class So 1 i d: 

#ifndef INCLUDED_IOSTREAM 
#include <iostream.h> 
#define INCLUDED IOSTREAM 
#endif 

Without needing to think much at all, we can convert the above to c 1 ass 0 s t rea m; to 
eliminate unnecessary compile-time dependence on the i ost ream header and to avoid 
the unnecessary creation at startup of a static dummy object in every translation unit 
that includes sol i d. h (see Section 7.8.1.3). 

protected: 
static double distance(double xl. double ylt double x2, double y2); 

Since dis tan c e is a static function, it does not depend on the S hap e instance data; it 
can easily be moved to a separate utility component. 

protected: 
double masse) const { return density() * volume(); } 

The calculation perfonned by ma s s () depends only on attributes that are accessible 
directly from Sha pe's public interface. A modified, static version of the rna s s function 
can be moved to a separate utility component. 
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class ostream; II already changed from #include <iostream.h> 

private: 
ostream *d_errorStream_p; 

protected: 
ostream& errore) { return *d_errorStream_p; } 

It may be possible that some derived So 1 i d objects can be set to any temperature 
without error. The error stream function, err 0 r ( ), is just a convenience that some 
derived-class authors may find useful. We could simply remove the 
d_errorStream_p data member from the factored implementation (as we did with 
Scri be in the shape subsystem of Figure 6-26) and let derived-class authors imple
ment an error stream only if needed. 

private: 
int d_color: 
double d_scale; 
double d_density; 

protected: 
void setColor(int color) { d_color = color; } 

public: 
int scale() { return d_scale; } 
int color() canst { return d_color; } 
double density() canst { return d_density; } 

If we assume that none of the inline functions of So 1 i d is called so frequently that it 
creates a performance problem, we can convert all inline functions to non-inline func
tions. Doing this will also enable us to collect all of the factored data into one s t ruct 
defined in the . c file. A somewhat more insulating version of the Sol i d base class is 
shown in Figure 6-85. 

II solid.h 
#ifndef INCLUDED_SOLID 
#define INCLUDED_SOLID 

c 1 ass Sol i d_ i ; 

class Solid { 
Solid_i *d_this; 

protected: 
II CREATORS 

II insulated member data 

Solid(double density, double scale - 1.0); 
Salid(const Solid& solid); 
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} ; 

II MANIPULATORS 
Solid& operator=(const Solid& solid); 
void setColor(int color) 

II ACCESSORS 
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virtual double surfaceEquation(double x, double y, double z) - 0; 
II Point(x,y,z) is on the surface when function returns 
II approximately 0 (to within some small tolerance). 

public: 
II CREATORS 
virtual ~Solid(); 

II MANIPULATORS 
virtual void setTemperature(int degrees) = 0; 

II Changing the temperature may affect color, depending on the 
II actual object. 

void setScale(int scale); 

II ACCESSORS 
virtual double temperature() canst - 0; 
int scale():' 
int color(); 
double density() canst; 
double volume() canst; 
double centerOfMassInX() canst; 
double centerOfMasslnY() canst; 
double centerOfMasslnZ() canst; 
I I ... 

lIendif 

Figure 6-85: Somewhat More Insulating Abstract Class Sol; d 

At this point, to do any better we will have to use some form of total insulation tech
nique. We cannot fully insulate the implementation of this class as it stands because of 
the use of virtual functions .. Wrapping this class would preclude general users from 
deriving new kinds of So 1 i d at will. Of the insulation techniques presented in this 
chapter, extracting a protocol is by far the best alternative here. 

As with the Ca r class shown in Figure 6-30, we are unable simply to remove all of the 
protected functions and place them in a separate utility because of their intimate 
interaction with the instance itself. That is, functions in the protected interface (e.g., 
setCol or) were supplied only to implement virtual functions (e.g., setTemperature) 
defined in derived classes. At the same time, these protected functions depend 
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directly on instance information (e.g., d_co lor) that is accessible by clients via pUblic 
functions (e.g., color) defined in this base class. It is primarily because of the virtual 
function dependency on intrinsic instance data that we are forced to extract a protocol 
to achieve total insulation. 

Figure 6-86 shows the result of extracting a protocol from either the original Sol i d or 
the partially insulated version. Notice how extracting a protocol class always enables 
us to avoid exposing the protected members of the base class . 

• 

II solid.h 
#ifndef INCLUDED SOLID 
#define INCLUDED SOLID 

class Solid {. 
public: 

} ; 

II CREATORS 
virtual ~Solid(); 

II MANIPULATORS 
virtual void setTemperature(int degrees) = 0; 

Il'Changing the temperature may affect color. depending on the 
II actual object. 

virtual void setScale(int scale); 

II ACCESSORS 
virtual double temperature() canst - 0; 
virtual int scale(): 
virtual int color(); 
virtual double density() canst; 
virtual double volume() canst; 
virtual double centerOfMassInX() canst; 
virtual double centerOfMasslnY() canst; 
virtual double centerOfMasslnZ() canst; 
I I ... 

#endif 

Figure 6-86: Protocol Class So 1 i d 

6.6.4 How Much to Insulate 

While the implementation of p2p_Router presented in Chapter 4 is insulated, it is not 
"fully insulated" (as defined in Section 6.4.2) because the wrapp~r class holds a 
pointer to another class over which the component does not have sole and complete 
control. We would not, for example, be able to add an insulated data member to the 
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p 2 p_Ro ute r class without disturbing the independently tested implementation com
ponentp2p_Routerlmp. 

Sometimes total insulation is no more expensive at runtime than par
tial insulation. 

In many cases this degree of insulation may be good enough. But if p2p_router 
defines a very public interface, we can do better. A fully insulating p2p_router com
ponent would (forward) declare its own implementation structure (e.g., 
p2p_Router_i). Then, in the p2p_router.c file, struct p2p_Router_i would be 
defined with a single embedded member of type p2p_Router Imp: 

II p2p_router.c 
#include "p2p_router.h" 
#include "p2p_routerimp.h" 

struct p2p_Router_i { 
p2p_Routerlmp d_imp; 

} ; 

// 

Now adding a "private" data member to p2p_Router _i neither affects clients of 
p2p_Router nor requires changes to p2p_RouterImp: 

1/ p2p_router.c 
#include "p2p_router.h" 
#include "p2p_routerimp.h" 

struct p2p_Router_i { 
p2p_Routerlmp d_imp; 
int d_moreData; // added fully insulated detail 

} ; 

/ / ... 

In this case, doing it right requires just a bit more development effort, but achieves 
total insulation without affecting runtime perfonnance at all. 
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Sometimes the last 10 percent of the insulation is attained at the cost 
of a tenfold increase in runtime. 

Sometimes obtaining the last little bit of insulation can be very costly. Recall from 
Section 6.4.3 that we opted not to insulate all of the 9 rap h component class com
pletely. To do so would have caused a disproportionately high cost in terms of runtime 
performance. To illustrate this principle, consider the four related implementations of 
the graph subsystem we have seen in this and the previous chapters: 

System I: Factored Objects. This subsystem corresponds to the factored 
implementation of Section 5.9. In this architecture, the subsystem was 
levelizable but clients had to know about and use lower-level components 
in order to use the graph. 

System II: Encapsulating Wrapper. This subsystem corresponds to the 
encapsulating wrapper implementation of Section 5.10. In this architec
ture, clients can do everything necessary from a single wrapper compo
nent. 

System III: Insulating Wrapper. This subsystem fully insulates the imple
mentations of three of the five wrapper classes presented in Figure 6-53. 
The remaining two classes, Nod e I d and Ed gel d, expose their respective 
implementation class names, Gnode and Gedge, in their physical (but not 
their logical) interfaces. 

System IV: Fully Insulating Wrapper. This subsystem fully insulates the 
implementations of all five of the wrapper classes presented in Figure 6-53. 

System I favored runtime performance over encapsulation. Changes to low-level 
interfaces could cause clients to have to rework their code. System II places a thin 
encapsulating wrapper over the graph subsystem. Clients are logically independent 
of, but not insulated from, changes to these low-level components, and could be 
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forced to recompile. System III transforms the encapsulating wrapper of System II 
into an almost fully insulating wrapper. Changes to any of the underlying components 
cannot affect clients of the wrapper at compile time; however, it is not possible to ar~d 
private data to Nodeld (Edgeld) without affecting either Gnode (Gedge) or cl;.~nts. 
System IV represents a fully insulating wrapper; arbitrary changes to any of the five 
wrapper-class implementations affect neither clients nor the underlying implementa
tion components. 

To illustrate the runtime cost of these various graph architectures under a spectrum of 
operating conditions, I created a small test program to run a series of experiments. In 
this program, the graph subsystem is used to create the arbitrary graph structure 
shown in Figure 6-87. In this graph, each edge happens to have a weight of 1, but the 
particular edge values will not affect the experiment. 

Figure 6-87 Arbitrary Graph Consisting of 15 Nodes, Each of Degree 3 

After creating an instance of this graph, the program invokes a Nod e I t e r to iterate 
over all 15 nodes in the graph, accumulating the values obtained by calling s urn on 
each. The recursive function s urn explores the graph from a specified node to a speci
fied depth, accumulating the weights of the edges it encounters along the way. Since 
sum is exploring a binary tree, the runtime of sum is exponential with respect to the 
depth to which it searches. 

The source for the actual test program is provided in Figure 6-88. The first command
line argument to the test driver indicates the depth to which s urn is to explore the 
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graph. The second command-line argument specifies the number of times to repeat 
the (identical) experiment; this second argument is used to obtain accurate time mea
surements for an average iteration. 

II graph.t.e 
#include "graph.h" 
#include "node.h" 
#include "edge.h" 
#include <iostream.h> 
#include <stdlib.h> 

double sum(const Nodeld& node, int depth) 
{ 

} 

double result = 0; 
if (depth> 0) { 

} 

for (Edgelter it(node); it; ++it) 
if (it().from() != node) { 

continue; 
} 

result += it()-;weightC); 
result += sum(it().toC), depth - 1); 

} 

return result; 

main (int argc, char *argv[]) 
{ 

int depth = 1; int repeat = 1; 
if (argc > 1) depth = atoi(argv[l]); 
if (argc > 2) repeat = atoiCargv[2]); 
cout « "GRAPH: depth - " « depth 

«" repeat = " « repeat « endl; 

double total; 

for (i n t i = 0; i < rep eat; ++ i) { 

Graph g; 
Nodeld n = g.addNode("n"); 

Nodeld nO = g.addNode("nO"); 
Nodeld n1 = g.addNodeC"n1"); 
g.addEdge(n, nO, 1); 
9 . a d dE d 9 e ( n, nIt 1); 
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} 

} 
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NodeId nOD = g.addNode("nOO"); 
Nodeld n01 = g.addNode("n01"); 
Nodeld n10 = g.addNode("nlO"); 
Nodeld nIl = g.addNode("nl1"); 
g.addEdgeCnO, nOO, 1); 
g.addEdgeCnO, nOl, 1); 
g.addEdgeCnl, nl0, 1); 
g.addEdgeCnl, nIl, 1); 

Nodeld nOOO = g.addNodeC"nOOO"); 
Nodeld nOOI = g.addNodeC"nOOlfl); 
Nodeld nOlO = g.addNode("nOIO"); 
Nodeld nOll = g.addNode("nOll"); 
Nodeld nIOO = g.addNode("n100"); 
Nodeld n101 = g.addNodeC"n10l"); 
Nodeld n1l0 = g.addNodeC"n1l0"); 
Nodeld nlI1 = g.addNode("nIll"); 
g.addEdgeCnOO, nOOO, 1); 
g.addEdgeCnOO, nODI, 1); 
g.addEdge(nOl, nOlO, 1); 
g.addEdgeCnOl, nOll. 1); 
g.addEdge(nlO, nIOO, I); 
g.addEdge(n10, nI01, 1); 
g.addEdgeCn11, n110, 1); 
g.addEdgeCnll, nIll, 1); 
g.addEdge(nOOO, n, I}; 
g.addEdgeCn001, n, 1); 
g.addEdge(nOIO, n, 1); 
g.addEdge(nOll. n, 1); 
g.addEdge(nlOO. n, 1); 

g.addEdge(nI01, n. 1); 
g.addEdge(n110, n, 1); 
g.addEdge(nl11, n, 1); 
g.addEdge(nOOO, n, 1); 
g.addEdgeCn001. n, 1); 
g.addEdge(nOIO, n, 1); 
g.addEdgeCnOl1, n, 1): 
g.addEdge(nIOO, n, 1); 
g.addEdge(nl0l, n, 1); 
g.addEdge(nl10, n, 1); 
g.addEdgeCn1Il, n, 1); 

total = 0: 
for CNodelter it(g); it; ++it) { 

total += sum(itC), depth); 
} 

cout « "total - " « total « endl; 

Figure 6-88: Test Driver for Measuring Runtime Efficiency of Graph Subsystems 
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Running Time on SUN SPARe 20 (in CPU Seconds) 

Encapsulating 
Mostly Fully 

Factored Insulating Insulating 
(Original) Wrapper Wrapper Wrapper 

Depth System I System II System III System IV 

0 0.0018 0.0018 0.0020 0.0033 

(100%) (100%) (111 %) (183%) 

1 0.0019 0.0020 0.0026 0.0115 
2 0.0022 0.0024 0.0050 0.0381 
3 0.0026 0.0031 0.0086 0.0675 
4 0.0033 0.0043 0.0144 0.1023 
5 0.0046 0.0063 0.0248 0.1438 

(100%) (137%) (539%) (3,126%) 

6 0.009 0.014 0.063 0.334 
7 0.016 0.025 0.120 0.609 
8 0.027 0.044 0.213 1.054 
9 0.048 0.078 0.380 1.836 

10 0.121 . 0.202 0.998 4.895 

(100%) (167%) (825%) (4,045%) 

11 0.23 0.38 1.91 9.37 
12 0.41 0.68 3.40 16.42 

13 0.74 1.22 6.06 28.94 

14 1.92 3.22 15.95 77.87 
15 3.69 6.15 30.51 148.44 

(100%) (167%) (827%) (4,023%) 

16 6.6 10.9 54.4 262.2 

17 11.8 19.4 97.0 462.4 

18 30.7 51.5 255.1 1245.5 

19 58.9 98.5 488.1 2374.4 

20 105.8 175.2 870.6 4194.8 

(100%) (166%) (823%) (3,965%) 

Figure 6-89: Runtime Cost of Various Graph System Architectures 
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The test driver was run for depths ranging from 0 to 20 with a repeat value of 1,000 
(depth 0-5),100 (depth 6-10),10 (depth 11-15), and 1 (depth 16-20) on each of the 
four systems described above.23 The results of this very illuminating experiment are 
given in Figure 6-89. 

When the depth of the graph traversal is specified as 0, no graph traversal takes place. 
Most of the time is spent in building up and tearing down the graph structure. These 
kinds of operations are inherently relatively expensive; as the first line of Figure 6-89 
indicates, the effects of encapsulating and even insulating are negligible and small, 
respectively. When fully insulating, we incur a runtime cost that is 83 percent higher 
th~n our cost when not insulating. This is because of the very pronounced increase in 
the cost of returning a fully insulating Nodeld by value from Nodelter. 

As we increase the depth of the graph, the cost of traversing it begins to affect overall 
performance. Functions that are used to read the information in a graph are much 
smaller and do much less work per call than those used to construct the graph. These 
lightweight functions, however, are called many, many times in the course of travers
ing the graph. 

At a depth of 5, it takes 2.5 times as long for the experiment to run on System I as it 
took at a depth of 0; however, many times that number of additional function calls are 
occurring. If these small functions are made disproportionately expensive, the run
time performance will suffer. At this same depth, the encapsulated System II now 
experiences an increase of 37 percent compared to the runtime for the unwrapped 
System I. The partial insulation of System III causes the experiment to take 5 times as 
long. The dynamic allocations brought on by totally insulating Nodeld and Edgeld in 
System VI have cost us a factor of 30! 

At a depth of 10, it takes 100 times as long for the experiment to run on System I as it 
did at a depth of O. The time spent calling those "little" functions now dominates the 
runtime cost. For an encapsulating wrapper (System II), this experiment will run 
about 67 percent longer. For an insulating wrapper (System III) it will take over 8 
times as long, and for a fully insulating wrapper (System IV), it will take fully 40 
times as long. 

23 The test driver was trivially altered to accommodate the slightly different interface of System I. 



468 Insulation Chapter 6 

By scanning down Figure 6-89 from this point, we can see that we have reached the 
other asymptote; increasing the depth does not further spread the respective runtime 
performance ratios of these graph subsystem variants. 

What lessons can be learned from this experiment? 

1. Insulating the implementation of an object whose functions already do a 
substantial amount of work below the insulating layer will have no 
noticeable effect on runtime performance (suggesting that the level of 
insulation is appropriate). 

2. Encapsulating a subsystem with a wrapper whose functions do a non-triv
ial amount of work below the encapsulating layer will have a negligible 
effect on runtime performance (suggesting that the level of encapsulation 
is appropriate). 

3. Providing even an encapsulating wrapper for lightweight functions that 
are called frequently can have a significant effect on overall performance 
(perhaps suggesting that the level of encapsulation should be escalated). 

4. Providing an insulating wrapper for lightweight functions that are called 
frequently can have an overwhelming effect on overall performance 
(forcing the level of insulation to be escalated). 

5. Providing a totally insulating wrapper for tiny objects that are frequently 
returned by value can have a devastating effect on overall performance 
(forcing the degree of insulation to be reduced and/or the level of insula
tion to be escalated). 

6.7 Summary 

In this chapter, we introduced the concept of insulation as the physical analog of the 
logical concept commonly referred to as encapsulation. An implementation detail of a 
component is insulated if it can be changed without forcing clients of the component 
to recompile. 

Several constructs were identified that could potentially result in undesirable compi1e~ 
time coupling: 
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• Inheritance and Layering force the definitions of the inherited or embed
ded object to be seen by the client. 

• Inline Functions and Private Members expose the implementation details 
of this object to clients. 

• Protected Members expose the protected details to public clients. 

• Compiler-Generated Functions force an implementation change to affect 
the declared interface. 

• Include Directives artificially create compile-time coupling. 

• Default Arguments expose the default value to clients. 

• Enumerations cause unnecessary compile-time coupling due to improper 
placement and/or inappropriate reuse. 

All other things being equal, it is better to insulate a particular implementation detail 
from a client than not-even if other details remain uninsulated. Partial implementa
tion techniques are used to reduce the extent of compile-time coupling without incur
ring all of the overhead that total insulation could imply: 

• Removing private inheritance by converting WasA to HoldsA. 

• Removing embedded data members by converting HasA to HoldsA. 

• Removing private member functions by making them static at file scope 
and moving them to the . c file. 

• Removing protected member functions by creating a separate utility 
component and/or extracting a protocol. 

• Removing private member data by extracting a protocol and/or moving 
static data to the . c file at file scope. 

• Removing compiler-generated functions by explicitly defining these 
functions. 
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• Removing include directives by removing unnecessary include directives 
or replacing them with (forward) class declarations. 

• Removing default arguments by replacing valid default values with invalid 
default values or employing multiple function declarations. 

• Removing enumerations by relocating them to the . c file, replacing them 

with con s t static class member data, or redistributing them among the 

classes that use them. 

For widely used interfaces, avoiding all compile-time dependency on the underlying 

implementation details is highly desirable. Three general insulation approaches were 

discussed to insulate clients from all implementation details: 

• Protocol Class: Creating an abstract "protocol" class is a general insulation 

technique for factoring the interface and implementation of an abstract 

base class. Not only are clients insulated from changes to the implemen

tation at compile time, but even link-time dependency on a specific 

implementation is eliminated. 

• Fully Insulating Concrete Class: A "fully insulating" concrete class holds 

a single opaque pointer to a private structure defined entirely in the . c 

file. This s t rue t contains all of the implementation details that were for

merly in the private section of the original class. 

• Insulating Wrapper Component: The concept of an encapsulating wrapper 

component (from Chapter 5) can be extended to a fully insulating wrap

per component. Wrappers are typically used to insulate several other 

components or even an entire subsystem. Unlike a procedural interface, a 

wrapper layer requires considerable up-front planning and top-down 

design. In particular, care must be taken in the design of a multi-compo

nent wrapper to avoid the need for long-distance friendships. 

A procedural inteiface is a collection of functions that sit on top of an existing collec

tion of components and expose a subset of the functionality to ~nd users. A procedural 
interface is an alternative to total insulation. Unlike the three total insulation tech
niques presented in this chapter, a procedural interface is neither logically encapsulat
ing nor entirely insulating. A procedural interface does have the unique advantage of 
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working on very large systems that may not have been designed with a procedural 

interface in mind. 

Generally if a component is used widely throughout a system, its interface should be 
insulating; however, not all interfaces should be insulating. For example, insulation 
may not be practical, particularly for lightweight, reusable components. Common rea
sons for choosing not to insulate a component include the following: 

• Exposure: The number of clients may be known to be small. 

• Time to access data: The class may have embedded data and make effective 
use of tiny inline functions to access it. 

• Time to create objects: A tiny class (e.g., Poi nt) may not already allocate 
dynamic memory. 

• (Initial) development cost: There may be no compelling reason to insulate; 
the extra development effort may not be cost-effective. 

• Number of components: Insulation may require yet another component (e.g., 
to hold a protocol or wrapper), increasing maintenance costs. 

• Component complexity: An insulated implementation (e.g., a "fully 
insulated" s t rue t defined in the . c file) may be harder to understand 
and maintain than an uninsulated implementation. 



Packages 

A large project can span many developers, several layers of management, and even 
multiple geographic sites. The physical structure of the system will reflect not only 
the logical structure of the application but' also the organizational structure of the 
development team that implements it. Large systems require hierarchical physical 
organization beyond what can be accomplished by a levelizable hierarchy of individ
ual components alone. In order to encompass more complex functionality, we need to 
introduce a unit of physical design at a higher level of abstraction. This chapter 
addresses the physical structure needed to support the development of very large sys
tems. In particular, we introduce a macro unit of physical design referred to in this 
book as a package. 

A package aggregates a collection of related components into a logically cohesive 
physical unit. Each package has an associated registered prefix that immediately iden
tifies both files and file-scope logical constructs as belonging to that package. After 
presenting the semantics and physical structure of packages in the first two sections, 
we apply the concept of levelization at the package level in Section 7.3. Here we dis
cover that many of the techniques that applied at the component level also work when 
applied to entire packages. At the same time, new issues that must be addressed sepa
rately emerge. In Section 7.4, we explore the concept of insulation at the package 
level, in terms of improving the usability of complex subsystems for clients. Then, in 
Section 7.5, we extend the envelope of project size by hierarchically grouping pack
ages. In Section 7.6, we discuss the process of releasing a stable snapshot of a system. 
One possible directory structure for releasing a large system is presented. We then 
examine a technique known as patching for updating published software between 

473 
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releases. Next, in Section 7.7, we examine the role of rna i n () in an object-oriented 
software system, along with the special privileges and responsibilities of owning the 
"top" of a program. Finally, in Section 7.8, we examine the first few moments in the 
life of a program's execution. It is at this time that potentially all file-scoped static 
data is initialized. 

In large systems, static initialization can lead to unacceptably long invocation times. 
We take a look at four alternative initialization strategies, comparing their relative 
strengths and weaknesses as we go. We also address the need to clean up before pro
gram exit in order to facilitate memory regression testing. 

7.1 From Components to Packages 

In Chapter 3 we introduced the component as the smallest unit of physical design. A 

typical component contains one, two, or even several classes, often accompanied by 
appropriate free operators. Normally a component consists of many hundreds of lines 
of C++ source code and comments, with the . hand . c files often of comparable 
length. Occasionally a low-level definition component will have fewer than a hundred 
lines and an empty . c file. Sometimes wrapper components for large subsystems or 
machine-generated components will be measured in the thousands of lines. As a rule 
of thumb, however, several hundred to a thousand lines is a good practical size for 
components in terms of effective comprehension, testing, and reuse. 

As we saw with the p2p_router example in Chapter 4, we can build fairly complex 
subsystems using only a handful of components. In that example, the implementation 
of high-level functionality declared within a single component interface was distrib
uted across a hierarchy of components that greatly improved its testability. A system 
consisting of tens of thousands of lines can be supported easily without further parti
tioning. But what if our systems are much bigger than this? Suppose they consist of 
hundreds of thousands of lines of code. How would we address the physical organiza
tion of literally hundreds of components? As ever, we will address complexity with 
the tried-and-true: abstraction and hierarchy. 

When designing a system from the highest level, there are almost always large pieces 
that it makes sense to talk about abstractly as individual units. Consider the design of an 
interpreter for a large language (such as C++) shown in Figure 7-1. Each of the sub
systems described in that design is likely to be too large and complex to fit appropriately 
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into a single component. These larger units (indicated in Figure 7-1 with a double 
box) are each implemented as a collection of levelizable components. 

Interpreter 

Parser Evaluator Formatter 

Runtime Database 

Figure 7 .. 1: High-Level Interpreter Architecture 

The dependencies in Figure 7-1 between these larger units represent an envelope for 
the aggregate dependencies among the components that comprise each subsystem. 
For example, the runtime database is an independent subsystem; it has no dependen
cies on any external components. Each of the parser, evaluator, and formatter sub
systems has components that depend on one or more components in the runtime 
database, but none of the components in any of these three subsystems depends on 
any components in the other two parallel subsystems. The top-level interpreter con
sists of components that depend on components within each of the three parallel sub
systems (and perhaps directly on components within the runtime database). Carefully 
partitioning a system into large units and then considering the aggregate dependencies 
among these units is critical when distributing the development effort for projects 
across multiple individuals, development teams, or geographical sites. 

Although the design of Figure 7-1 would not be considered a large project, it could eas
ily be assigned to more than one developer. There is a natural partitioning that would 
allow several developers to work on this project concurrently. After the runtime data
base is designed, there would be an opportunity for three concurrent development 
efforts to begin on the parsing, evaluating, and formatting functionality. Once these 
pieces start to fall into place, the implementation and testing of the top-level inter
preter can begin. 
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Until now, we have discussed these separate subsystems as conceptual units with no 

actual physical partitions. If the entire project is expected to require only 20,000 lines 

of code and is being implemented by a single developer, there may be no compelling 

need to partition the overall architecture into distinct physical units. However, if the 

design is, say, 80,000 lines of code or if more than one developer will be working on 

the project at any given time, there is a much greater need for the conceptual physical 

partitioning to become concrete. 

DEFINITION: Apackage is a collection of components organized as 
a physically cohesive unit. 

The tenn package refers to a generally acyclic, often hierarchical collection of com

ponents that together have a cohesive semantic purpose. Physically, a package con

sists of a collection of header files along with a single library file containing the 

information in the corresponding object (. 0) files. A package might consist of a 

loosely coupled collection of low-level, reusable components, such as the original 

Standard Components library from AT &T, 1 and now the new Standard Template 

Library (STL) developed at Hewlett-Packard.2 A package might also consist of a spe

cial-purpose subsystem intended for use by only a single client, such as the 

p2p_router subsystem from Chapter 4. 

Figure 7-2 illustrates one possible organization for packages within a file system. In 

this organization, all packages exist at the same level in the directory structure regard

less of their physical interdependencies. All headers (required outside a given pack

age) are placed in a single, system-wide directory called i ncl ude. A library file 

corresponding to each package is placed in a single systemwide directory called 1 i b • 

. 
Each package directory contains files holding the source code for components aSSOCI-

ated with that package. As illustrated schematically in Figure 7-2, package pk contains 

n components: pk_cl, pk_c2, ... , pk_cn in its source directory. Each component 

(e.g., p k_c i) has an associated header' file (p k_c i . h), an implementation file 
(p k_ c i . c), and an individual test driver (p k_ c i . t . c) that can be used to exercise the 

functionality implemented in the component inc~ementally. Note that to be effective, 

1 stroostrup94, Section 8.3, pp. 184-185. 
2 STL has been accepted as part of the ANSIJISO (Draft) C++ Standard (see musser). 
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these hierarchical test drivers should be considered as much a part of the system 
source code as the components they test. These drivers can be easily distinguished 
from the implementation files by their . t . c. suffix. 

system 

develop include 1 i b 

pl_cl. h libpl.a 
. . . libp2.a 
pl_ cn.h . . . 
p2_ cl.h libpm.a 
. .. .. 
.. . . 
pm_ cn.h 

pI p2 pm 

dependencies exported 

source 

pk_cI.h pk_ cl.c pk_cl.t.c 
pk_c2.h pk_c2.c pk_c2.t.c 
. . . . . . .. .. . 
pk_ci .h pk_ci .c pk_ci .t.c 
.. . . .. • .. . . . 
pk_cn.h pk_cn.c pk_cn.t.c 

Figure 7-2: A Simple Development Organization for Packages 

In addition to the source directory, there are two files under each package directory. 
The dependenci es file holds the names of all other packages upon which this pack
age is authorized to depend. That is, in order to use this package, clients will not have 
to include or link to any other component defined in another package unless that pack
age is named in the dependencies file associated with this package. Although package 
dependencies seldom change, it does occasionally happen. Specifying these depen
dencies is the job of the system architect; verifying them is a process that can and 
should be automated. 
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The ex p 0 r ted file contains a list of component headers that are to be placed in the 

systemwide include directory of Figure 7-2 for use by general clients. Since not- all 
headers defined in a package are intended for use by external clients, the set of 
exported headers may be a proper subset of the components defined within the package. 

Placing headers used outside a package in a single systemwide include directory 
makes it convenient to specify where to look for exported header files. Exporting only 
the subset of headers needed by other packages reduces the clutter through which cli
ents must wade in order to use the product. Placing these headers in a single directory 
can also improve a client's compile-time efficiency with respect to looking in multiple 
package directories (see Section 7.6.1). Placing library files in a single directory simply 
makes using them more convenient. 

Until now, we have addressed levelization only at the component level. Recall from 
Section 4.7 that components that do not depend on any other (local) components are 
assigned a level of 1. By local we were referring to components defined in our pack
age; components defined in other packages were assigned a level of o. 

Level 2: 

Package Level 2: 

Levell: 

pkgb 

I/"',"}']"I 
Package Level I: 

I;I;:j~~,~:",;l[l I;ijti:~ir~~~ 1;1.1 
pkga 

Figure 7-3: Dependencies on Components in Other Packages 

Figure 7-3 illustrates the way we have all along been treating the dependencies of ~ur 
k hlefsubsystem (pkgb) on another subsystem (pkga). When testing our own pac age 
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archically, we assume that components defined outside our package are already tested 
and known to be internally correct. We therefore can assign to each of these external 
components a level number of 0 with respect to our local components. Components 
within our own package (e.g., i and j) that do not depend on any other components 
local to this package are defined to have a level of 1. Components that depend locally 
on components at level 1 but no higher (e.g., k and 1) are at level 2. 

DEFINI~ION: A package x DependsOn another package y if one or 
more components in x DependsOn one or more components in y. 

Just as relationships between logical constructs defined within components imply 
physical dependencies (see Section 3.4), dependencies among packages are implied 
by the individual dependencies among the components that comprise them. In Figure 
7-3, for example, component i in pkgb DependsOn component a in pkga and compo
nent 1 in pkgb DependsOn components 9 and h in package pkga. Therefore according 
to the definition, pkgb DependsOn pkga. Provided pkga does not depend back on 
p kgb, we can assign level numbers to these packages as a whole, just as we did for the 
individual components within a package. 

Packages provide a powerful mechanism of abstraction for developers and architects 
alike. Figure 7-4a shows a collection of 20 components, a through t, grouped into 
four packages: pkga, pkgb, pkgc, and pkgd. Each package defines a high-level archi
tectural unit consisting of a cohesive hierarchy of cooperating components, united for 
a common purpose. 

In contrast, Figure 7-4b shows the identical system represented as an unpackaged, 
levelizable collection of individual components. The modularity and the abstraction 
of the high-level architecture are gone; we have lost the semantic value attached to 
these high-level partitions created during the process of the top-down design. 

As Figure 7-4a shows, the individual component dependencies across package bound
aries of Figure 7 -4b have been abstracted away and replaced with overall package 
dependencies. For example, the dependencies of component p on component d and 
component q on components e and f shown in Figure 7-4b are collectively repre
sented in Figure 7-4a by the package dependency of pkgc on pkga. 
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Lev 2: 

Package Level 3: 

Lev 1: 

pkgd 

Lev 2: Lev 4: 

Package Level 2: 

Lev 1: Lev 3: --
pkgb Lev 2: 

Lev 1: 

pkgc 

Lev 2: 

Package Levell: 

Lev 1: 
~:.2.:.:..........:......l 

pkga 

(a) Top-Down Decomposition of a System into Packages of Components 
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Component Level 6: 

Component Level 5: 

Component Level 4: 

Component Level 3: 

Component Level 2: 

Component Levell: 

(b) Equivalent Unpackaged System 

Figure 7-4: 1\vo Different Views of a System 

Notice that the local component level numbers within each package of Figure 7-4a 
still begin with level 1. This is again because dependencies on other packages are 
treated as "primary inputs" (see Section 4.7) and, for the purposes of hierarchical test
ing, are presumed to be correct. As is common, each of these packages contains leaf 
components (i.e., components such as t that do not depend on any other components 
in the system). In an unpackaged system (Figure 7-4b), these leaf components would 
all have an absolute component level of 1. Consequently there is a tendency for many 
components to fall to the lower levels of the unpackaged diagram, perhaps obscuring 
their purpose. It is by packaging these leaf components along with their clients that 
we are able to improve the modularity of the system. 

Often a package will hold dozens of components. While a typical component might 
consist of 500 to 1,000 lines of source code, a typical package might encompass any
where from 5,000 to 50,000 lines of source. Decomposing large designs into cohesive 
packages of manageable size greatly simplifies the development process. For develop
ers, comprehending up to a few dozen components and their detailed interdependen-
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cies within a package (as in Figure 7-4a) is significantly easier than understanding the 
arbitrary dependencies among potentially hundreds of unpackaged components (as in 
Figure 7-4b). 

Packaging also allows system architects to understand, discuss, and develop the Over
all architecture of a large system at a much higher level of abstraction than would oth
erwise be possible. For example, an architect can delineate the responsibility of a 
package and then specify acceptable dependencies among entire packages as part of 
the overall system design without having to address individual components. The 
actual package dependencies can later be extracted from the source code and com
pared against the architect's specification. 

Having all the packages at the same level in the directory structure makes them easily 
accessible to developers. Using special-purpose tools (see Appendix C), the physical 
package interdependencies can be extracted from and compared against the architect's 
specification located within the dependencies file of the development structure shown 
in Figure 7-2. Note that to guarantee package-Ievellevelization when testing a new 
version of a package, only those packages named in the dependencies file should have 
their exported headers made available for inclusion or their libraries files supplied in 
the link command. 

The partitioning of components into packages is governed by more than just some 
arbitrary threshold of size or complexity. Identifying package-sized units of cohesive 
functionality is a natural consequence of top-down design. As with class dependen
cies within a single component, component dependencies within a package are often 
more numerous and intricate than dependencies across package boundaries. Because 
of their more localized nature, the physical character of dependencies among compo
nents within a package often involves more compile-time coupling than their inter
package counterparts. In fact, some components defined in a package may be merely 
insulated implementation details of other components defined in the same package; 
the headers for these implementation components would probably not be made avail
able outside of the package. 

Packaging also reflects the development organization. Typically, a package will be 
owned/authored by a single developer. The impact of change within a package can be 
well understood by its owner and dealt with both consistently and effectivelY· 
Changes across package boundaries affect other developers and perhaps even the 
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entire system. Therefore, highly coupled parts of the system are often better off being 
part of a single package. 

The degree to which parts of the system are likely to be reused as a unit also plays a 
role in the packaging of components. In the example of Figure 7-1, the runtime data
base may be used by a suite of tools, while the three parallel subsystems are used only 
once. Even if the runtime database were very small in comparison to these other parts 
of the system, it could make sense to place this low-level subsystem in its own pack
age to avoid tying its reusable functionality to any of the other less-of ten-used pack
ages. (An analogous argument was presented for demoting enum E in Section 5.3; 
Figures 5-24 and 5-25.) 

To summarize: a package is an aggregate unit of physical design. Like a component, a 
package serves as a cohesive unit of related functionality fulfilling a common pur
pose. Packages serve as both abstractions for architects and partitions for developers. 

-Package composition is determined by several factors, including semantic cohesion, 
the nature of physical dependencies, the organization of the development team, and 
the potential for independent reuse. 

7.2 Registered Package Prefixes 

As was discussed in Section 2.3.5, the only logical entities declared at file scope in 
header files are classes, structs, unions, and free operators. The reason given for this 
restriction was to reduce the opportunity for name collisions. When only a single 
developer is involved, ,it is not hard to avoid name collisions simply by following this 
strategy. N amespaces (as discussed in Section 7.2.2) can be used to counter a disorga
nized proliferation of global names resulting from the integration ,of completely inde
pendent development efforts. However, when dealing with many developers working 
across multiple sites on a large unified system, a more structured approach is required. 

7.2.1 The Need for Prefixes 

The approach taken here, which ensures unique global class names, requires that each 
package be associated with a unique registered prefix consisting of two to five charac
ters. When a package is first created, its prefix is registered with some company-wide 
authority or service so that no other package developer will inadvertently reuse it. 
Each construct in the header file declared at file scope is prepended with the package 
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prefix. The . c and . h files implementing this component are also each prepended 
with the same prefix. It is by prepending each global name with this registered prefix 
that we are able to guarantee that similar names defined in distinct packages cannot 
possibly collide. 

Major Desigll Rule 

Prepend every global identifier with its package prefix. 

For example, a package of geometric primitives would consist of a number of inde
pendent reusable components. A component defining a basic point would not be 
named poi nt but would instead be named geom_po; nt, where "geom" is the unique 
registered prefix associated with the geom package. The class defining a geometric 
point would not be called Poi nt but instead would be called geom_Poi nt.3 

Each identifier declared at file scope must be preceded by a registered prefix in order 
to ensure the avoidance of name conflicts across package boundaries. Although only 
classes, structs, unions, and free operators are allowed at file scope, extraordinary cir
cumstances (such as the ANSI C--compliant interface of Section 6.5.4) could force an 
exception to this rule. If for some reason we were to declare a function, variable, enu
meration, or typedef at file scope in a header file, we would still want to make sure to 
prepend each of its file-scope identifiers with the appropriate package prefix. This 
independent design rule is illustrated in Figure 7-5. 

3 Note that for the purposes of the convention for distinguishing type names from non-type names as 
presented in Section 2.7, we have elected not to treat the prefix as part of the identifier. An equiva
lent and equally valid convention would be to capitalize the prefix instead (e.g., Geom_poi nt). Capi
talizing Poi nt rather than Geom merely emphasizes that geom_Poi nt is a Poi nt type in the geom 

package. 



Section 7.2.1 

II geom_polygon.h 
#ifndef GEOM_POLYGON 
#define GEOM_POLYGON 

The Need for Prefixes 485 

II Filenames are always all lowercase. 
II CPP macros are always all uppercase. 
II Hence, the prefix must be case insensitive. 

enum geom_Color { geom_REO, geom_GREEN, geom_BLUE }; 
II Proscribed global enumeration must still use package prefixes. 

typedef short int geoffi_Int16; 
II Proscribed global typedefs must still use package prefixes. 

class geom_Polygon { 
II Global class definitions are not a design rule violation. 

} ; 

int operator==(const geom_Polygon& left, const geom_Polygon& right); 
II Global operators are not a design rule violation. 

geom_area(); 
II Proscribed global functions must still use package prefixes. 

double geom_scaleFactor; 
II Proscribed global variables must still use package prefixes. 

/lendif 

Figure 7-5: Even Proscribed Constructs at File Scope Require Prefixes 

Identifiers declared within class scope need not have package prefixes because the 
enclosing class (which is prefixed) provides a natural shield against collisions as well 
as a suitable grouping for related functionality. Similarly, identifiers with internal 
linkage, declared and used entirely within a single . c file, also need not use prefixes. 
That is, the scope of a typedef, enumeration, static variable, or static (or inline) free 
function specified within a . c file is limited to a single translation unit and therefore 
cannot collide with an identical short name defined locally within another translation 
unit. Static class member data and non-inline member functions have external link
age. It is therefore appropriate to use package prefixes for class names even when the 
class itself is defined and used entirely within a single . c file. Otherwise we run the 
risk that such a hidden class will produce external symbols that at link time might col
lide with those of a class hidden in the . c file of a component belonging to some other 
package.4 

4 Note that prefixes are not strictly necessary for hidden classes, provided that the developer ensures 
that all aspects of linkage for the hidden class are internal. A generally useful extension to the pack
age-prefix technique for naming classes with external linkage that are private to a component was 
presented in the context of fully insulating classes at the end of Section 6.4.2. 
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Major Desigll Rule 

Prepend every source file name with its package prefix. 

Names generated by the compiler are sometimes geared to the name of the source file 
itself. In CFRONT, file names are used as a basis for naming both the virtual tables and 
also for naming the entry points for initializing and destroying instances of user
defined types defined at file scope-both of which have external linkage. Therefore, 
to avoid link-time conflicts, it is important that all source files in the system have 
unique names. The library containing all of the .0 files for the geom package would 
also be adorned in some manner with the "geom" prefix (e.g., 1 i bgeom. a on a Unix 
system). 

For many systems, harsh limitations on file-name length make prepending unique pre
fixes painful. If the limitation is eight characters or fewer, the file names could get 
rather cryptic. On some systems (e.g., Unix), file-name length is not a problem except 
for archaic constraints placed on the length of the name of a . a file that can be placed 
in a library archive file. The names of the corresponding . c files may need to be con
strained to some relatively small length (as low as 14 characters on some Unix-based 
systems). In this case we can either make the. h files correspondingly short to match 
the . c file, or we can provide some sort of external cross reference to allow longer 
header file names to be associated with shorter (abbreviated) implementation file 
names. On my Unix system I use symbolic links to achieve this mapping during 
development. 

7.2.2 Namespaces 

In July of 1993, the ANSIIISO Committee adopted the namespace construct designed 
by Bjarne Stroustrup to aid in resolving collisions between global identifiers with the 
same name.5 For example, 

5 stroustrup94, Section 17.1, p. 400. 
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-

namespace geom { 

} 

class Point { /* ... *1 }; 
Point& operator==(const Point& left, const Point& right); 
class Polygon { /* ... */ }; 
/ / ... 

defines a namespace geom. The constructs declared within the braces are placed within 
their own scope and therefore will not collide with either global names or names 
declared in any other namespace. While using directives are supplied primarily to ease 
transition, the intent is always to use explicit qualifications via using-declarations:6 

void mySpace::Class::f() 
{ 

} 

9 e om: : Poi n t p ( 3 , 2 ) ; 
/ / ... 

As you can see, both namespaces and registered prefixes can be used in similar ways 
to avoid name conflicts among classes developed within a single company. Neither, 
however, can serve as a complete substitute for the other. 

When dealing with C++ application libraries supplied from two distinct vendors, 
there are several potential problems. As described in Appendix B, if the compilers 
used to develop these libraries are not compatible, you're out of luck. But even if you 
can get both vendors to supply compatible libraries (architecture, operating system, 
and compilerllinker), there is no central authority with which to register prefixes; thus 
there is a distinct possibility that globally defined names will collide. Herein lies the 
power of the namespace construct. 

Placing all library code developed by a company within a single namespace wrapper 
makes it impossible to ensure that even the unlikely event of matching both prefixes 
and identifiers can be overcome merely by explicit qualification. Suppose two compa
nies, SDL and SCI, both supply geometric library software. Each company decides to 
create a "unique" package prefix called geom. Obviously, there is a possibility that one 
or more of the geometric names (e.g., Poi nt, Line, Po 1 ygon) within those packages 
will coincide. 

6stroustrup94, Sections 17.4.2, p. 408 and 17.4.5.3, p. 414. 
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II sdl/geom_point.h 
#ifndef INCLUDED_SDL_GEOM_POINT 
#define INCLUDED_SDL_GEOM_POINT 
namespace SOL { 

class geom_Point { 
I I ... 

} ; 

public: 
geom_Point(int x. int y); 
geom_PointCconst geom_Paint& pOint); 
----geom_Po;nt(); 
geom_Point& operator=Cconst geom_Point& point); 
void setX(int x); 
void setY(int y); 
int xC) const; 
int y() const; 

int operator==(const geom_Point& left, const geom_Point& right); 
int operator!=(const geom_Paint& left, const geom_Point& right); 

} 

itendif 
II sci/geom_point.h 
#ifndef INCLUDED_GEOM_POINT 
#define INCLUDED_GEOM_POINT 

class geom_Point { 1* ... *1 } 

int operator==(const geom_Point& left, 
const geom_Point& right): 

int operator!=(const geom_Point& left, 
canst geom_Point& right); 

I!endif 
II my_class.c 

Chapter 7 

#include "my_class.hl! 
#include <sdl/geom_point.h> 
#include <sci/geom_point.h> 

v 0 i d my _C 1 ass: : f C) { 
SDL::geom_Po;nt p(1,2); 
::geom_Point qC3,4); 
I I ... 

} 

Figure 7-6: Using Namespaces to Resolve Name Conflicts Among Vendors 
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If one (or both) of these companies has the foresight to place their code within a single 
companywide namespace, the identifier name conflict-resolution problems disappear.7 

The technique of combining package prefixes and namespaces to resolve name con
flicts among multiple vendors is illustrated in Figure 7-6. Even though SCI did not 
choose to use namespaces, we can still access their geom_Poi nt class by prepending 
the scope resolution operator (: :) to designate true file scope. Notice that SDL has 

protected itself, but SCI is at risk if some other vendor or one of its clients did not 

choose to take these precautions. 

Because the C++ language supports the arbitrary nesting of namespaces,8 we could 

have elected to resolve interpackage name collisions within our company by replacing 

package prefixes with package namespaces. For example, 

void f 
{ 

} 

SDL::geom_Point pt; 
/ / ... 

would instead be written 

void f 
{ 

} 

SDL::geom::Point pt; 
/ / ... 

II package prefix 

1/ package namespace 

As we will soon see, however, replacing package prefixes with package namespaces is 
ill advised. 

As of the writing of this book (May 1996), the namespace feature of the C++ language 

was not generally available. Even if it were, it would not affect the need for prefixes, 

which have many advantages beyond ~imply avoiding name collisions. A package 

serves a cohesive purpose that unites the components within it. Each package tends to 

take on its own character. This phenomenon is due in part to the intrinsic nature of the 

package and also to the subtle variations in style promulgated by its author. By identi

fying a component or class as belonging to a particular package, you immediately 

7 We could still have problems if compiler-generated symbols with extemallinkage are generated 
based on the file name (as is the case in some implementations). 
8 strollstrup94, Section 17.4.5.4, pp. 415-416. 
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provide a context that aids in understanding its broader purpose.9 In time, the package 
prefix will be the first thing to catch your eye when reading application code that 
depends on components from mUltiple packages. 

The dominant purpose of a prefix is to identify uniquely the physical 
package in which the component or class is defined. 

In addition to its semantic cohesion, a package is also a physical unit. An important 
function of a package prefix is to identify where in the file system the definition of a 
given class or component can be found. Package prefixes also make searching for 
"use" of a particular package much easier. There are many other trivial advantages to 
package prefixes. For example, if you forget to link-in a particular package, the nature 
of the problem will be immediately obvious, as illustrated in Figure 7-7. 

john@john: CC -g geom_iter.o geom_util.o geom_file.o geom_print.o \ 
-0 a.out -L/home/sys/lib -lxref -lne -llst -lcrx 
ld: Undefined symbol 

___ ct __ lOstdc_ErrorFCQ2_10stdc_Error8errorNumPCciT2 
stdc_AssocList: :operator=(const stdc_AssocList&) 
stdc_AssocList: :ope~ator+=(const stdc_AssocList&) 
stdc_AssocList: :operator+=(const stdc_NameValue&) 
stdc_AssocList::setAssociation(const stdc_NameValue&) 
stdc_Plcontext: :pop() canst 
stdc_Plcontext::push() const 
operator==(const stdc_AssocList&,const stdc_AssocList&) 
stdc_AssocListlter: :operatorC)() const 
stdc_Error::operator=(const stdc_Error&) 
stdc_Plcontext::~stdc_Plcontext() 

operator«(ostream&,const stdc_Error&) 
stdc_AssocList::~stdc_AssocList() 

vtbl 14stdc_AssocList 
stdc_Error::~stdc_Error() 

Compilation failed 
john@john: 

Figure 7-7: Link-Time Errors Resulting from Missing the stdc Package Library 

9 For this and other views on segmenting the global namespace, see stroustrup94, Sections 17.4.1, 
p. 406; and 17.4.5.5, pp. 416-417. 
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Much more important, a package, like a component, represents a cohesive unit. As 
with component-level design, the logical and physical design of a package are tightly 
interleaved. It is important when discussing packages and, in particular, their physical 
interdependencies, that the logical and physical properties of each package coincide. 

7.2.3 Preserving Prefix Integrity 

The purpose of a prefix is to provide a hierarchical identification for the physicalloca
tion of the definition of a component or global logical construct. For well-designed 
packages with cohesive functionality, the package prefix contributes semantic as well as 
physical information. Using the prefix to identify only semantic properties defeats its 
primary purpose of forcing similarly prefixed cohesive logical functionality to be pack
aged together in the same physical library. 

Ideally, a package prefix will connote cohesive logical and organiza
tional characteristics in addition to denoting the physical library in 
which a component or class is defined. 

Sometimes there may be a great temptation to distribute logically related units across 
mUltiple physical libraries and to assign these logical units a common package prefix. 
For example, a given package (pub) might provide a set of low-level, reusable con
tainer types. Each of these components and each of the types defined therein would 
begin with, the prefix p u b_o Now suppose we are developing our own application 
package (x r 2 e) and discover we need a new type, B t r e e, which happens to have similar 
characteristics (low level, container, reusable) to those found in the pub package. 
What should we do? 

We might be tempted to call this component pub_btree and place it in our own 
library to reflect its logical relationship to the pub package. This urge should be sup
pressed. The fact that all components with a given package prefix reside in a single 
physical library is too valuable to both understanding and managing the organization 
of large systems to be sacrificed. 
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Instead we have two viable alternatives-each with its own advantages: 

1. Call it xr2e_Btree and place it in our own package. 
2. Call it pub_Btree and place it in the pub package. 

Probably the easier thing to do is simply to call the class x r 2 e_B t r e e and define it in a 
component that is part of our own package. Implementing this object locally reduces 
the likelihood that it will be reused-which can be both good and bad. By defining the 
Btree within the same package, we retain ownership and therefore need not be as con
cerned about making changes or enhancements to it should it suit our needs to do so. 

The potential for reuse is not always obvious a priori. It may be that we believe that no 
one else will need a Bt ree type, so we'll just write it and keep it for ourselves. If oth
ers think this way and the btree component turns out to be truly reusable, we may 
eventually see several redundant versions of a B t r e e popping up in our system. As a 
rule, if we see three or more comparable versions of a bt ree component in our system, 
the component may very well be a good candidate for reuse. At this point, we should 
probably evaluate the impact of consolidating our system by moving a single, unified 
version of Btree to the more public pub package (and changing its prefix to pub_). 

Often, we will believe that a component is reusable only to find that it is not needed 
by others. Placing such deadweight in highly reusable packages is worse than delay
ing the entry of potentially reusable components into the pub package. It is almost 
always easier to make functionality more rather than less public. If in doubt, it is bet
ter to defer adding a component to a widely used package until empirical evidence 
warrants it. 

If we are convinced at the outset that a component absolutely belongs in another pack
age, then we will need to talk to the developer responsible for maintaining that pack
age. If your proposal is compelling, as it might well be for a Bt ree, the owner of pub 

may agree to write the btree component for you and place it in the pub package for 
all to use. Note that you will now be just another customer of the pub package, and 
give up the right to add intrusive special customizations to the pub_btree component. 

Scheduling constraints may force you to write the component yourself and hand it 
over (along with its incremental test driver) to the pub package developer. After a 
careful review, this developer will assume ownership, and again you will become just 
like any other client with no special privileges. 
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The important trade-off here is that if you create a component redundantly, then you 
can make it exactly what you want it to be. You will not have to negotiate with other 
package developers, and you may be able to avoid additional package dependencies. 
If you hand this component over to some other package developer, you relinquish 
responsibility for and control over its functionality_ If the component is not inherently 
reusable, the cost to you and to others of sharing it will probably outweigh any bene
fit. If the component is a good candidate for reuse, then it could be in everyone's best 
interest to have it defined and maintained in a single, semantically cohesive, lower
level package where it can be found and reused easily. 

While the notion of a translation unit is well defined in the C++ language, the notion 
of a package is entirely the work of the system developers, and its implementation is 
dependent on the particular operating system. Because packages are not part of the 
language, it is up to system architects and developers to create these cohesive parti
tions within a large system, almost entirely on their own. 

Computer-aided software engineering (CASE) tools such as browsers help to uncover 
many detailed properties and interdependencies among a large collection of classes. 
Good tools are an important part of the design process, but they are not a substitute for 
the thoughtful partitioning of semantically cohesive functionality into distinct physi
cal units. Even the fanciest runtime environment would be hard pressed to convey as 
quickly the same semantic information afforded by consistently tagging logically 
cohesive global constructs with their physical package prefix. 

The registered prefix convention for all global identifiers and files is admittedly pain
ful at first. In time, most people not only adjust to it but come to depend on it during 
their daily development efforts. The advantages afforded by registered package pre
fixes are well worth the extra effort for developing very large projects. 

7.3 Package Levelization 

By analogy, a component is to its package as a planet is to its solar system. Each com
ponent describes a 'physical entity, and each package describes a cohesive aggregate 
of these physical entities. The ·physical coupling. among the nearby components 
within a package is typically more acute than the coupling between components in 
distinct packages. 
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7.3.1 The Importance of Levelizing Packages 

As yoU recall, avoiding cyclic dependencies among individual components was an 
importallt design goal because it aided in incremental comprehension, testing, and reuse. 

l\rlajor Desigll Rule 

Avoid cyclic .dependencies among packages. 

Avoiding cyclic dependencies among packages is a major design rule for the follow

ing reaSons: 

1. Development. When linking the entire system or any portion thereof, it 
will be necessary to specify the order in which package libraries are 
called upon to resolve undefined symbols. If the envelope of dependen

cies among components within in"ividual packages is acyclic, there will 
be at least one order that will be guaranteed to resolve all symbols during 
linking. In Unix, cyclic dependencies among packages imply that it will 
be necessary to include one or more libraries at least twice in the link 

J 

command. Doing so increases the time necessary to link a subsystem by 
forcing one or more libraries to be searched multiple times. Worse, minor 
changes to the calling sequence of functions could cause the library order 
required by the link command to change, thus causing the link to fail. It 
then becomes a non-trivial exercise to determine a new library linking 
sequence that does not result in undefined symbols. 

2. Marketing. Often a system will have a basic functionality and several 
optional add-on packages of functionality, as is illustrated in Figure 7-8. 
If the system itself depends on anyone of these add-on packages, then 
that add-on is not optional and must be shipped with the system. If any of 
the add-on packages are mutually dependent, they cannot be marketed 

and sold as truly independent options. 
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Add-On 1 Add-On 2 Add-On 3 

Core System 

Figure 7-8: Acyclic Package Dependencies Provide Flexibility 

3. Usability. Even if marketing is not an issue, users will not want to have to 
link-in a huge library or several large libraries just to use some simple func
tionality of the basic system (or just one of the supposedly independent 
applications). Minimizing package interdependencies reduces the number 
of libraries that must be linked into an application, which can in turn help to 
reduce the ultimate size of the executable image (both in core and on disk). 

4. Production. To support concurrent development in very large systems, it 
is effective to have a staged release process (as discussed in Section 7.6). 
Acyclic hierarchies of packages are collected into even larger architec
tural units called groups. Group levelization is then used to partition these 
groups into layers, which are then released in levelized order from bot
tom to top. Allowing cyclic dependencies among packages would impede 

our ability to form groups and therefore to make staged releases. 

5. Reliability. Design for testability dictates that there be a way to test a large 
system incrementally and hierarchically_ Avoiding cyclic dependencies 
among the macroscopic parts of the system is merely a natural conse
quence of this paradigm. 
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Although we might be serene enough to tolerate cyclic dependencies among a few com
ponents within a single package due to carelessness, ignorance, or special circumstance , 
we must be steadfast in our resolve to avoid cyclic dependencies among packages. 

7.3.2 Package Levelization Techinques 

The techniques for avoiding cyclic dependencies among packages are similar to those 
for avoiding cyclic dependencies among components. The basic goal is to ensure that , 
if the components in package b depend on services supplied by components in pack-
age a, then components in package a do not depend either directly or indirectly on 
components in package b. 

r2d2 c3po 

Figure 7-9: Two Mutually Dependent Packages 

Figure 7-9 illustrates a situation in which two packages, r2d2 and c3po, have become 
interdependent. This problem is entirely analogous to the problem we encountered in 
Figure 5-3, where logical constructs in both rectangl e and wi ndow caused a mutual 
dependency between these two components. 

mS 

r2d2 c3po 

Figure 7-10: Escalating Mutual Dependencies Between Packages 
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Fortunately, remedies analogous to those given in Section 5.2 for untangling the 
rectangl e and wi ndow component dependencies apply here also. For example, we 
could escalate two of the components contributing to mutual package-level depen
dency to a higher package level, as shown in Figure 7 -10. Or we might decide to apply 
the more general repackaging technique shown in Figure 5-36 to come up with two 
entirely new packages. 

It is not necessarily possible to assign a single package prefix to the 
subset of components used directly by clients of a multi-package 
subsystem. 

The purpose of a package is to unite closely related collections of components into 
modular physical entities that can be referred to abstractly and reused effectively. Fig
ure 7-11 shows a hierarchy of components whose dependencies form a binary tree. 
Clearly these components are levelizable. As discussed in Section 7.2.3, however, all 
components with the same package prefix should belong to the same physical library. 
Consequently, the packages implied by these prefixes are not levelizable, as, illustrated 
in Figure 7-12. 

Component Level 3: 

Component Level 2: 

Component Levell: ,', ' •• , '.'i··'··'·"··"·."'.comp4-

Figure 7-11: Implied Cyclic Package Dependencies 

The problem identified by Figure 7-12 can arise in practice when a single prefix is 
assigned to a conceptual presentation package-that is, a package containing every
thing directly usable by clients of a multi-package subsystem. If this presentation pack
age defines both protocol classes (which are inherently very low level) and wrapper 
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components (which are inherently very high level), it will not be possible to interleave 
components from separate, intermediate-level implementation packages and maintain 
a levelizable package hierarchy. The solution to this common problem is simply to pro
vide two separate packages for presentation to clients. One package will reside at the 
bottom of the package hierarchy and contain components that define only protocol 
classes; the second will reside at the top of the subsystem and define only wrappers. 

priv 

pub 

Figure 7-12: Levelizable Component Hierarchy; Unlevelizable Package Hierarchy 

7.3.3 Partitioning a System 

Although ensuring levelizability among packages is essential, that alone is not suffi
cient. For example, Figure 7 -13a illustrates a bottom-up approach to packaging in 
which we have merely taken the unpackaged design of Figure 7-13b and carefully 
diced it into packages whose aggregate dependencies on other packages form an acy
clic graph. But simply partitioning a sea of levelizable components into an otherwise 
arbitrary set of levelizable packages does not address an important aspect of design: 
cohesion. To be effective, a package should consist of components and logical entities 
that have related semantic characteristics, tight coupling, or otherwise make sense to 
be packaged together and treated abstractly at a higher level. 
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(a) Abstract Package-Level Dependency Diagram 
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(b) Detailed Package/Component Dependency Diagram 

Figure 7-13: Less Useful, Physically P~rtitioned System (Compare with Figure 7-4) 
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When adding a new component to a package, both the logical and 
physical characteristics of the component should be considered. 

As discussed in terms of subsystems in Section 5.7, dependency is also a factor that 
should be considered when incorporating components into packages. Suppose a given 
package is lightweight in character, depending on no other packages. Suppose further 
that adding a single, logically cohesive component would force clients of that package 
to link with ten other packages. Even if the logical cohesion of the component is ideal 
for the package, the impact of the additional dependencies would probably override 
any other consideration. Both logical and organizational cohesion should be consid
ered as defining the character of a package. 

A better solution in this case would be to create a separate package for this new com
ponent, with a similar, perhaps, but not identical prefix that conveys the similar nature 
of the logical semantics yet distinguishes the physical dependency implications. By 
placing this heavyweight component in a separate package, clients of the light-weight 
package will not be saddled with the overhead of unwanted and oppressive dependencies 
on libraries they do not need. 

7.3.4 Multi-Site Development 

The geographical distribution of the development team coupled with interpackage 
dependencies will influence how package ownership is distributed among developers. 
Consider the system of packages described in Figure 7 -14. Suppose our company has 
two geographically separate development sites, Nand S. How should we distribute 

the workload across these two separate sites? 
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ed sym 

elem I· cmp 

prim 

geom pub grph 

Figure 7-14: System of Packages and Their Physical Dependencies 

Logistically, it makes sense that the package dependencies across sites be minimized 
to whatever extent is possible in order to reduce inefficiencies associated with inter
site communication. Consider the package development distributions proposed in Fig
ure 7-15. Distribution (A) is pathologically bad, with seven direct package 
dependencies across sites. Dividing the diagram with a vertical line (B) illustrates 
another inappropriate partition with five direct intersite dependencies. Dividing the 
diagram with a horizontal line (C) may provide an optimal solution with a cost of only 
three long-distance direct dependencies. Both (D) and (E) also provide potentially 
optimal solutions if the complexity of packages and/or available resources at each site 
are not evenly distributed. 
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Figure 7-15: Potential Package Development Assignments Across Sites 
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Identifying packages and delineating their interdependencies can affect the success of 
larger projects. Minimizing the cost of interpackage dependencies should be at the 
forefront of every architect's mind throughout the design process. Most important, 
avoiding the high cost of cyclic dependencies among packages is essential if the flex
ibility and maintainability of the system are to be preserved. 

To summarize: partitioning a system into a levelizable collection of packages is criti
cal to the success of a large project. Most of the techniques discussed in Chapter 5 for 
achieving a levelizable collection of components apply equally well to packages. 
Apart from the coupling brought about by long-distance friendships, the same reason
ing that enabled us to reduce CCD can be used to reduce the cost of interpackage 
dependencies. Whenever we can take advantage of these techniques to reduce pack
age interdependencies, we are making significant improvements toward the flexibility 
and maintainability of the overall system. 

7.4 Package Insulation 

Packages present a higher level of abstraction than components. For packages with a 
horizontal dependency structure, such as geom (see Section 4.13), we must export 
most of the individual component header files in order to make the package function
ality usable by clients (see Figure 7-16a). Even though placing these physically inde
pendent components in a single package does not hide any additional details, we can 
still benefit from the ability to refer to the aggregate of these components abstractly as 
geom-a benefit that should not be underestimated. 

Minimizing the number and size of exported header tiles enhances 
usability. 
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geom 

Exported Headers 
geom_a.h geom_b.h 
geom_c.h geom_d.h 
geom_e.h geom_f.h 
geom_9.h 

Logical Abstraction Only 

(a) Horizontal geom Package 

Exported Headers 
p2p_9.h 

Logical and Physical Abstraction 

p2p 

(b) Tree-Like p 2 P Package 

Figure 7-16: A Package Is a Logical and Potentially a Physical Abstraction 

In the case of tree-like packages, such as p2p, that sport a small number of insulating 
wrapper components, we can gain not only the conceptual abstraction but also a phys
ical abstraction as well. It is by not exposing superfluous information in the form of 
unnecessarily exported header files, as illustrated in Figure 7 -16b, that this physical 
form of abstraction is realized. 

As with a good component interface, the fewer details we expose in the interface of a 
package, the easier it is for the package developer to maintain and tune its implemen
tation. Minimizing the size of the physical interface to which the client is exposed can 
also improve usability. Although the surface area of a horizontal package is inherently 
large, this need not be the case for a tree-like package. 

A package implementing a complex, application-specific subsystem, such as p2p, typ
ically represents a substantial amount of functionality. The implementation of the sub
system may span dozens of components. In order for clients to use this package, a 
non-empty subset of the components must have their header files exported (i.e., made 
available to components defined outside this package). Although package developers 
and test engineers will always have access to all headers, regular clients of a package 
need not necessarily be exposed to headers whose use is encapsulated. 
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Answering "yes" to any of the following questions for a particular component defined 
in a given package implies that the header for that component must be exported: 

1. Do clients of this package need access to this component in order to use 
any part of the functionality provided by this package as a whole? 

2. Does any other exported component in this package fail to insulate its clients 
from this components definition? 

3. Do other packages need access to this component, (e.g., to reuse its func
tionality independently in their own implementations)? 

Consider a package such as p2p that is implemented hierarchically and presents its pub
lic functionality entirely through the interface of only a small collection (one in this 
case) of wrapper components. These wrapper components must be exported to the glo
bal include directory (see Figure 7-2) in order for external clients to use the package. 
However, there may be no need to export the header files of the remaining components. 

Notice that we are not proposing to withhold header files here for the purpose of 
encapsulating details, but rather as a means of reducing the clutter that clients must 
wade through in order to use our package. Whether or not we export the implementa
tion component header files depends on whether or not they are needed (or useful) for 

I 

purposes other than creating the. 0 files that belong to this package's library. 

If a wrapper component is encapsulating but not insulating (see Section 6.4.3) it may 
be necessary for the client's compiler to have seen the definition of one or more of its 
implementation components in order to compile the wrapper interface. If so, you will 
be forced to export implementation headers, your clients will depend on them at com
pile time, and your flexibility to make changes to them will be impeded. 

Finally, in the process of implementing our package, we may have accidentally created 
one or more implementation components that other developers find useful in imple
menting their own packages. In that case, we may generously decide to publish the 
header files for these components. In doing so we enable reuse, but also enable addi
tional interpackage coupling. This coupling could potentially have an adverse effect on 
our ability to maintain our own package, and could introduce new package-level depen
dencies that were not authorized by the system architect. Such additional package-level 
dependencies would further constrain the levelizability of the entire system. 
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If a component header is not exported, our clients remain entirely insulated from it. 
We may feel free to make any changes to it that we like. Once a header file is 
exported, changes we make to its interface potentially affect many others who are 
attempting to reuse its functionality. Even if we preserve the functionality, making 
any change whatsoever to an exported component's header file will annoyingly force 
clients who include this header to recompile. This example illustrates yet another situ
ation in which reuse may not necessarily be a good thing. 

In practice, there are likely to be a few low-level (horizontal) packages that export a 
relatively large number of logically related and probably widely used component 
headers. Most of the remaining packages would then implement sophisticated func
tionality that operates on common, low-level types. Ideally these higher-level pack
ages would export relatively small, high-level interfaces in the form of insulating 
wrapper component headers. 

7.5 Package Groups 

In very large systems (involving many hundreds of thousands of lines of c++ code), 
even a package is not at a high enough level of abstraction to be useful in discussing 
overall system architecture. During the process of top-down design, architects will 
identify major portions of the system. Each of these major subsystems will be imple
mented by a team of developers; each subsystem will consist of a cohesive collection 
of packages called a group. 

DEFINITION: A package group is a collection of packages organized 
as a physically cohesive unit. 

Just as related components were collected into packages, so are related packages col
lected into groups. An individual package is appropriately owned and maintained pri
marily by a single developer, but a package group is usually owned by the project 
manager (or principal engineer) of the development team that is charged with its 
implementation. 

The same principles that applied to the composition of individual 'packages and the 
interdependencies among them (such as logical cohesion and avoiding cyclic depen
dencies) apply to package groups as a whole. Like packages, groups should carry a 
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well-defined architectural significance that governs what is (and what is not) appro
priate to belong to that group. For example, if a group is entitled "core functionality," 
we should resist placing packages that are not true to that label within this group. 

DEFINITION: A package group 9 DependsOn another package 
group h if one or more packages in 9 DependsOn one or more 
packages in h. 

Consider the large system shown in Figure 7-17. Although this system will consist of 
some 40 packages (500,000 lines) when complete, its functionality naturally divides into 
five vertically arranged package groups. Each of these groups consists of several pack
ages. Not only are these packages individually levelizable, but the dependencies among 
entire groups as defined above are also acyclic. That is, groups at higher levels contain 
packages that depend on packages in groups at lower levels, but never vice versa. 

Group LevelS: II Graphical Editor II 
ed ~ 

Group Level 4: II Command-Line Interpreter II 
cm ~ .. 

Group Level 3: I Application-Level Tool Kits I 
tlk ~ 

Group Level 2: II Core Database Functionality II 
db ~ 

Group Levell: Reusable System-Independent Libraries 

base 

Figure 7-17: A Large-System Architecture 
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Package Level 3: dbi 

Package Level 2: dba I dbb I I dbc I I dbd I dbe 

Package Levell: dbt 

Figure 7-18: Package Organization of Core Database Group 

There are good reasons for wanting to merge individual package libraries into a single 
large group library. Many of these reasons are analogous to those for merging the . 0 

files of components into a single package library. Consider the internal, package-level 
organization for the core database group shown in Figure 7 -18. In this architecture, 
there are several packages used in the implementation of the core database functionality. 

At the lowest level of the core database group, the dbt package represents a horizontal 
collection of types and protocols used throughout the group and by its clients. At the 
next level are a set of five independent implementation packages. A single package 
dbi provides a collection of wrapper components to present the combined functional

ity of the implementation packages to clients in higher-level groups. 

Often it is possible to provide a wrapper component for a subsystem directly in an 
intermediate-level implementation package (e.g., dba), thereby having to expose only 
a single component header from that package to the rest of the group. As happens to 
be the case in this particular example, however, it is sometimes necessary to escalate 
the encapsulation (and insulation) to a higher level-in this case, to a higher-level 

package within the group (e.g., db;). 

With the exception of the low-level types and protocols defined in dbt, the entire 
functionality of the core database group is accessible through the wrapper compo" 
nents provided in db; alone. Because dbi is an encapsulating and insulating package 
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of wrapper components for dba, dbb, dbc, dbd, and dbe, there is no compelling reason 
to provide clients of this group with the headers for components defined within these 
implementation packages. Once we have built the db; package library, exporting 
these headers to higher-level groups would serve only to clutter the global include 
directory. Note again that exposing these headers is not an issue of encapsulation, but 
one of insulation and abstraction. 

After building the database group, we will make available to clients of the group only 
the subset of headers defined in the db; and dbt packages. As a convenience to our 
clients, we will combine all of our individual package libraries into a single group 
library file with the associated prefix db,10 and make that file publicly available. 

To clients of our core database, it will now appear as if we had implemented the data
base as a single package, db, with two related prefixes: db; and dbt. There may now 
be a temptation to rename both dbt and db; to the simpler db; but this would be a mis
take. Within the collection ~f packages that comprise the core database group, we 
may be looking at literally hundreds of thousands of lines of code. For some, this 

" 

would be considered a large system in its own right. If we change the prefix names of 
these components, we give up an important maintenance property of our system-the 
prefix identifies the package where the source can be found. Furthermore, we lose our 
protection against namespace collisions between these two packages. 

If our solution to these problems is then to combine these two packages into a single 
lOW-level package, we have given up package levelization and any reasonable ability to 
develop and test our system hierarchically. We are back to the problem illustrated in 
Figure 7-12. From a purely practical point of view, we must remember not to lose sight 
of maintainability in our efforts to please the aesthetics of our clients (or ourselves). 

10 Note that this name too must be registered to avoid collisions between other group and package 
library names. 
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Demoting protocols and escalating wrappers within a package group 
can help to avoid cyclic dependencies between exported (presenta
tion) packages and unexported (implementation) packages. 

Step back for a moment and notice that the protocols are part of the lowest-level pack
age (dbt), not part of the presentation package (dbi). Escalating wrappers and demot
ing protocols is a general and effective technique that can help to avoid cyclic 
dependencies between the public and private packages within a group. 

Low-level package partitions continue to serve many useful purposes, even though 
most clients will not be concerned about internal partitioning. For example, during the 
development process, it is inevitable that bugs will occur. It may then be useful to link 
with versions of individual packages that have been compiled to contain debuggable 
symbols. For very large systems, trying to link and debug many packages using the 
debuggable versions can produce very large executables and make the entire process 
exceedingly slow. The amount of disk space alone needed to hold an executable in 
which every component in a group has been compiled with, the debug option can pose 
a significant development burden. Highly effective, commercially available tools 11 

used to detect low-level coding errors at runtime can produce executables literally 
three times their normal size that run an order of magnitude slower. Having only two 
alternatives-all or none-for linking with such large, special-purpose group libraries 
is often not practical. 

Fortunately most developers, working either within a package group or directly above 
it, will probably have a good idea as to which individual packages within the group 
are likely to be the ones causing the problem. These developers will know how to 
adjust their link command to pull in only the appropriate special-purpose package 
libraries, leaving access to the remaining package libraries unaffected. Providing the 
ability to select individual specially built package libraries from within a group helps 

11 An example of a particularly effective tool is Purify, from Pure Software Corporation. 
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to widen the envelope of systems that can be developed with a given set of tools on a 
given hardware platform. 

The size and structure of package aggregates is not bounded. In the example of Figure 
7-7, these groups of packages took the form of a vertically arranged sequence. As we 
will see in the next section, this vertical arrangement of groups somewhat simplifies 
the internal release process. In a yet-larger system (i.e., in excess of a million lines of 
source code), groups might form a tree-like or DAG-like structure (see Figure 7-19)
perhaps to reflect the engineering management structure of the development effort. Of 
course, in an actual design, the group dependencies would probably not be as regular 
as the one shown in the figure. 

Group Level 7: 

Group Level 6: 

Group Level 5: 

Group Level 4: ~ 

Group Level 3: 

Group Level 2: 

Group Levell: 

Figure 7-19: Hypothetical Very Large System with DAG-Like Group Dependencies 
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In short, groups of packages are analogous to packages of components 6 A group 
should consist of packages that are logically cohesive or otherwise make sense as a 
single cohesive physical unit As it does with packages, the defined purpose of a 
group should govern its contents; what is not germane should not be part of the group. 
Of course, dependencies among groups of packages should form a directed acyclic 
graph 6 Although a package is an appropriate size for being owned and implemented 
by a single developer, a group would be more likely to be owned by a project manager 
and implemented by a development team. From a client's point of view, a group looks 
just like a single huge package with a collection of closely related prefixes; however, 
in all cases the integrity and uniqueness of each individual package within each group 
should be preserved. Access to individual special-purpose package-level libraries is 
needed during development 

7.6 The Release Process 

As one of many developers working concurrently on a large project, it can be difficult 
to determine why your regression tests are failing-was it the change you just made to 
this package or a change made to some lower-level package? Developing software in 
an environment where spontaneous changes can occur affects productivity even for 
small projects, and is probably unworkable for most larger projects. 

Internal releases are an integral part of any large development project. Groups of 
packages are the smallest unit of functionality that are normally released. At some 
regular predetermined interval, the code for a group of packages (e.g, the core data
base group, db, of the previous section) is frozen12 and the process of building a stable 
internal release begins. 

DEFINITION: A layer corresponds to all package groups at a given 
level of a system. _ 

The process of releasing a group is accomplished in an orderly, bottom-up fashion, 
governed by the levelization of the packages within the group. The packages at the 
lowest level in the group are built and tested in isolation. Once these packages pass 
their individual, component-level hierarchical regression tests, level-2 packages can 

12 The liberty to make arbitrary updates to this version of the software is suspended. 
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-

be built and tested, linki~g only with level-1 packages. The process of rebuilding a 
system is markedly similar to the way the individual components within a package are 
developed and tested, but on a larger scale. 

The levelization of package groups has a special significance in the release process. 
All groups at each level in the system are collectively called a layer. For systems with 
vertically arranged groups (see Figure 7-17), each layer consists of only a single 
group. For larger systems with more complex group arrangements (see Figure 7-19), a 
given layer may consist of several groups. To ensure consistency across the entire sys
tem, it is important that all groups' on which a given group 9 depends have been 
released before code for 9 is frozen and 9 is released. For example, group dby in Fig
ure 7-19 is at level 3. The dby group cannot update its dependencies to the new ver
sion of group geo until the xl ate group has also been released. In contrast, group dbz 

depends only on group geo and hence need not wait for the' xl ate group to be 
released in order to start the update process. 

By definition, all groups on a given level are independent of each other. The release 
process for each of these groups can occur independently. Although not all groups at 
the next higher level will depend on all groups at the previous level, tracking individ
ual group dependencies during the release process may be more effort than it is worth. 
We can simplify the release process while ensuring the consistency of the entire sys
tem simply by insisting that all groups on a given level are released before beginning 
the release process for groups at the next higher level. 

When the release process for all groups on this layer is complete, the availability of 
the new package groups is announced. Developers working on the next higher layer 
continue to use the previous release of the lower-level layer until they reach a conve
nient stopping point. After rerunning their own regression tests one last time, these 
developers may now-at their leisure-adjust their environments to refer to the newer 
release of the lower-level software. 

At this point the developers may have to make changes to their own code to accom
modate any interface changes made to lower-level package groups since the last 
release-a process sometimes referred to as porting. 13 Obviously, with good planning 

13 The term porting applies to moving a software system to a new platform. This new platform can 
take the form of new hardware, a new operating system, or a new version of the lower layers of the 
system itself. 



514 Packages Chapter 7 

such changes will be minimized. After a few minor adjustments, developers should be 
able to rerun their regression tests to verify that changes to the lower-level software 
have not altered the nature of the needed functionality. These developers can now 
resume development, using the new stable release of the software. At some point 
these clients will in tum freeze their code and go through a similar release process. 

Notice how a client of the immediately preceding layer is not forced to respond imme
diately when a new release is published. Experience has shown that providing some 
slack between the release of successive layers is an effective way to manage internal 
releases within a large system. 

7.6.1 The Release Structure 

Figure 7-20 shows one way to organize the development hierarchy for the system pre
sented in Figure 7-18. This development-directory structure supports mUltiple releases 
and the notion of header files shared among packages that are not exported outside the 
group. At the root of the directory structure there are the five group directories corre
sponding to the five groups in the system of Figure 7-17; each group has a subdirectory 
structure similar to the one shown here for the core database group, db. Beneath the db 

directory are subdirectories holding the past several parallel release structures of this 
group; the release illustrated in Figure 7-20 for the db group is release 1.6.3. 

Under the group's release directory are four directories and a file. The directories are 
de pen den c i e s, sou r c e, inc 1 u de, and 1 i b, and the file is ex p 0 r ted. The dependen
cies directory indicates the names and release versions of the other groups on which 
this group depends. On a Unix-based system, each of these dependencies may be rep
resented by a symbolic link that refers back to the specific release of the lower-level 
group used to build this group. Providing these references allows the include and link 
directories of clients to remain relative as they update a single pointer from the old to 
the new release of a group. 

The source subdirectory is organized in the same way as it was the for the much sim
pler package-development structure shown in Figure 7-2. As Figure 7-20 indicates, all 
of the source for each package within the group lives under a directory corresponding 
to its package prefix, which makes it easy for developers to locate packages defined 
within the group. Unfortunately, locating packages defined outside the group noW 
becomes more difficult. This problem can be addressed by having packages within a 
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group extend a common group prefix (e.g., dba or dbb) Of, less desirably, by identify
ing the group location in the global package registry. There is an additional issue 
involving "prefix prefixes"-that is, how does anyone know that dbq is not a legal 
prefix for some new package not in group db? 

- ~ 

rell.6.3 rell.6.0 rell.6.1 

dba 

dependencies 

---- base 

dbb dbc 

source include 
dbi_cl.h 
dbi_c2.h 
dbt_cl.h 
dbt_c2.h 
dbt_c3.h 
dbt_c4.h 

1 i b 

libdb.a 

1 oca 1 

dba_cl.h 
1 oea 1 

dba_cn.h 
dbb_el.h 

libdba.a 
libdba_9.a 
libdbb.a 
libdbb_9.a 

libdbt.a 
dbt_e4. h 1 i bdbt_9 . a 

dbd dbe dbi 

-------~ 

-current 

exported 

dbt 

dependencies exported 

source 

dbe - cl.h dbe - cl.e dbe _cl.t.e 
dbe - c2.h dbe_c2.c dbe - c2.t.c 

. . . 
dbe_ ci . h dbe - ci . c dbe - c; . t. c 
... 
dbe - cn.h dbe - cn.e dbe _cn.t.e 

Figure 7-20: A Development Directory Hierarchy for Package Groups 

ed 
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Configuration control must be an integral part of the development process. Systems 
such as sees and ReS will need to be integrated into the development environment. 
Even more powerful systems are also commercially available, but a detailed discus
sion of the use of such tools is beyond the scope of this book. 

The include directory is now more complex in order to support the notion of exported 
versus local headers for this group. The subdirectory 1 0 cal under inc 1 u d e is similar to 
the global include area of Figure 7-2, but is accessible only from within the db group. 
This local directory contains header files that are necessary to support interpackage 
communication within this group. The contents of the file exported, defined directly 
under the release for the group, identifies individual components or entire packages 
whose headers are to be made available to clients external to this group. During a 
release, these headers are copied directly into the included directory for the group.14 

Finally, the 1 i b directory is now also more complex in order to support the notion of a 
single group library. Again the subdirectory 1 0 cal under 1 ibis similar to the global 
1 i b directory of Figure 7-2 in that this subdirectory holds all of the various versions of 
the individual package library files. Instead of containing library files corresponding to 
each package, 1 i b contains a single library file representing their union. Providing just 
a single library file makes using the group more convenient for general clients. 

As Figure 7-20 shows, more than one version of each individual package library may 
be built. The suffix _9 is used to indicate that the library has debugging symbols. 
Many other special forms of libraries may exist as well, for purposes such as perfor
mance monitoring or runtime memory-bounds checking. If the group is large, it may 
not be practical to use or even build special-purpose libraries for the entire group. 
Instead, developers will typically identify the individual packages within the group 
that they would like to analyze more carefully. 

Releasing a group using this development directory structure is straightforward. 
The entire directory and file structure (except for the files contained under the 
inc 1 u d e and 1 i b directories) for this group and release is repeated under a neW 

release (e.g., sy s tern/ d b / re 11 .7. 1). The dependencies for this new release (e.g., 
systern/db/rel1.7 .1/dependenci es/base) are adjusted to point to the new relea~e 

. thIS of the lower-level software (e.g., systern/base/rell.7 .1). Each package In 
group is then copied to the new release, rebuilt, and tested in levelized order. 

14 Symbolic links or the equivalent may replace actual copies. 
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As each package is built, header files that are to be exported from the package for use 
by other packages within .this group are placed in the local include directory (e.g., 
sy s tem/ db / re 11 . 7 . 1/ inc 1 ude /1 oca 1 / dba_c3 . h). At the same time, each version of 
the individual package libraries is placed in the local lib directory for this group (e.g., 
s y s t em / db / r ell. 7 . 1 / 1 i b / 1 0 cal /1 i b db a . a) Once all packages local to this group 
have been built, the package libraries are combined into a single library and placed in 
the lib directory (e.g., system/db/rel1.7 .1/1ib/libdb.a). Only those headers that 
clients of this group will need in order to use the group are then exported to the 
include directory (e.g., system/db/rel1. 7 .1/i ncl ude/dbi_cl. h). 

The directory cur r e ntis not published but is reserved for ongoing development. 
Although changes to published versions are infrequent and carefully controlled (see 
Section 7.6.2), changes to the cur r en t (development) version may be expected to 
occur frequently. 

We can extend this directory structure to support multiple platforms by providing an 

addition node in the hierarchy just before any machine-dependent files. For example, 

system/db/rell.7.1/1ib/libdb.a 

would instead become 

system/db/rell.7.1/1ib/sun4os4/1ibdb.a 

or 

system/db/rell.7.1/1ib/hppaux9/1ibdb.a 

to reflect the desired combination of machine architecture and operating system. 

Minimizing the time it takes to recompile after a source-code change 
can significantly reduce the cost of development. 

The cost of compiling is partially a function of the number of header files in an include 
directory, but is even more dependent on the number of directories the compiler has to 
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search in order to locate all required header files. On most systems, it is Significantly 

faster to compile components when all of the header files reside in just a few directo
ries than if the headers are distributed across many individual (package-level) include 
directories. 

To make the cost of an excessive number of individual include directories concrete, I 
devised an experiment to compare the overhead of compiling a single component 
using individual package include directories, group include directories, layer include 
directories, and a single global directory. I made several order-of-magnitude assumptions: 

• 10 Hi ncl ude directives per component 
• 10 components per package 
• 10 packages per group 
• 10 groups per layer 
• 10 layers per system 

The experiment was repeated for systems containing 1, 10, 100, 1,000, and 10,000 
components on structures with varying numbers of include directories. Figure 7-21 
contains the results of running the experiment both with the CFRONT compiler on a SUN 

SPARC 10 workstation and also with the native C++ Compiler on an HP7000 workstation. 

For reference, compiling an otherwise empty component that depends on only a sin
gle package include directory takes approximately 1 CPU second to compile on the 
SUN and 0.2 CPU seconds on the HP. As the system size increases, the cost of compil
ing increases modestly on the SUN and only negligibly on the HP. For systems on the 
order of 1,000 components, the cost of compiling a component using individual pack
age include directories can use nearly twice the CPU time on the SUN and 4.5 times 
the CPU time on the HP. For larger systems, the overhead of using individual package 
include directories is even more pronounced-roughly an order of magnitude for the 

SUN and nearly so for the HP. 15 

15 Note that actual elapsed "wall" time can overwhelm even the CPU time when compiling compo
nents that depend on a large subsystem. For example, the wall time to compile a component against 
a 1,000-component system distributed across 100 individual package include directories was 22.1 
seconds on the SUN and 4.8 seconds on the HP. When the system consisted of 10,000 components, 
the wall time to compile a single component grew to 225.5 seconds on the SUN and 209.2 seconds 
on the HP. 
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Subsystem 
Size in 
Number of 
Components 

10 

100 

1,000 

Number of Include Directories 

1 10 100 1000 

1.0 
(100%) 

Relative to 

1.0 1.0 
Using a Single 

Include Directory 
(100%) (100%) 

1.1 1.1 
(100%) (100%) (182% 
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Number of Include Directories 

1 10 100 1000 

0.2 
Time 

(100%) in CPU 
Seconds 

0.2 0.2 
(100%) (100%) 

0.2 0.2 0.9 
(100%) (100%) (450%) 

10,000 1.4 1.4 2.3 15.1 0.2 0.2 0.9 15.2 
(100%) (100%) (164%) (1,079%) (100%) (100%) (450%) (7600/0) 

CPU Time on SUN SPARe 10 CPU Time on HP 735 

Figure 7-21: Compilation Time/(Overhead) Due to Multiple Include Directories 

Reducing the amount of time it takes to recompile and relink can have a significant 
impact on productivity. Fortunately, there are a couple of ways we can reduce this 
problem for large systems short of buying a faster piece of hardware. The most effec
tive method is to reduce the number of header files via insulation, as discussed in 
Chapter 6. Another method, which will have a lesser (but still significant) impact, is to 
reduce the number of include directories that a compiler needs to search during a 
given compilation. One such way is to propagate the headers exported from lower
level groups (identified by file de pen den c i e s) into a dependent group's own exported 
headers directory, perhaps with additional filtering defined in file exported. 

As Figure 7-22 illustrates, not all the headers exported by the base and db layers are 
needed by clients of the t 1 k layer. Instead of having t 1 k simply publish just its own 
headers, t 1 k could republish the necessary subset of lower-level exported headers in 
addition to its own exported headers. In this way we can avoid forcing its clients to 
specify the separate include directories for both bas e and db. Now clients of the t 1 k 

layer need specify only one include directory in order to access the t 1 k layer func-
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tionality. Here again, it is insulation that enables us to reduce the number of headers 
we expose to our clients to improve their rate of compilation. 

system/base/rell,7,l/ioclude 
pub_cl.h 
pub...;.c2.h 
usr_cl.h 
pub_c2.h 
usr_c3.h 

system/db/rell.7,l/ioclude 
dbi_cl.h 
dbi_c2.h 
dbt_cl.h 
dbt_c2.h 
pub_cl.h 
pub_c2.h 
usr_cl.h 

system/tlk/rell,7,l/include 
tlkl_cl.h 
tlkl c2.h 
tlkl c3.h 
tlk2_cl.h 
tlk3_cl.h 
tlk3_c2.h 
dbi_cl.h 
dbt_cl.h 
pub_cl.h 

Figure 7-22: Minimizing a Client's Cost of Including Headers 

Another alternative is to make the client group responsible for "prefetching" all of its 
required headers into a single include directory before attempting to compile. Requir
ing the client to create a special-purpose directory to efficiently reuse a subsystem in 
effect makes such a subsystem less reusable. This second approach seems less 
friendly, since it forces the client to do more work to use the subsystem; however, it 
can have its advantages in a hostile environment. 

7.6.2 Patches 

Making changes to a release is potentially disruptive to development, and so it is 
important to preserve the stability of a release once it is created. Sometimes a critical 
bug will be detected in a stable release that cannot wait until the next release to be 
fixed. Repairing the bug and rebuilding the entire system from scratch is both disrup
tive and time consuming, especially for the potentially large client population. If the 
problem is in the implementation, it is often much more cost-effective to patch it. 

DEFINITION: Apatch is a local change to previously released soft
ware to repair faulty or grossly inefficient functionality within a com
ponent. 

The simplest, safest, and most common kind of patch involves making changes to 
only the. c file of a component. After the. c file is modified and compiled, the result
ing .0 file may then (on a Unix system) be placed before a library file in the link corn-
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mand to supplant an existing . 0 file. Of course, clients can choose whether or not to 
link-in these patch files-for some, the fix may not be worth the loss in stability. 

A patch must not affect the internal layout of any existing object. 

Not every bug can be patched. Fortunately, if the header file for the component is not 
exported, the layout of such an object can be known only to the components within 
the package. In such cases, the bug can almost always be fixed by providing one or 
more patch files to solve the problem. However, even if the header file is exported, 
there are a number of bugs that can be patched without having to rebuild the entire 
system. The more insulated the implementation of a component, the more likely that 
it can be patched without affecting components outside the package. 

Consider the non-insulating class Examp 1 e shown in Figure 6-49, implemented 
entirely inline. If the header for Ex a mpl e is exported, there is no way we could hope to 
patch a bug in it. Any change we would make to the implementation of class Examp 1 e 

would force the recompilation of all clients that use it. Compare this now to the fully 
insulating Examp 1 e class of Figure 6-51, which has no inline functions, no ip.heritance, 
and exposes only a single opaque pointer to its data. It is virtually certain that we could 
patch any purely implementational problem, thus avoiding the need for clients of this 
class to recompile. 

Ideally a patch does not require modifying any header files at all. Modifying infonna
tion in an exported header file has the potential to affect an unbounded number of cli
ents; such changes are therefore best avoided. Although risky, there are a number of 
repairs we can make that will not invalidate our release, even though it may mean 
altering the existing exported header files. If we can guarantee that the effects of these 
local changes are link compatible and do not invalidate the release, we can save the 
considerable expense and effort of a second release. 

The following kind of changes are relatively safe: 

• Altering the body of a non-inline function. 
• Altering any construct in the . cfile with intemallinkage. 
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• Adding a new exported header file to the release. 
• Adding a f r i end declaration to a class. 
• Relaxing an existing access specifier (e.g., from protected to publ i c). 
• Adding a new non-virtual function to a class (risky). 
• Adding a class or free operator to a header (risky). 

Note that the last four examples require modifying a header file. After such a change, 
this header file should be artificially backdated to prevent unnecessary recompilations 
by clients. The last two examples are risky because of the possibility of introducing an 
ambiguity from function or operator overloading in a header file that has already been 
included by some client. Had the last example been introduced in a new and separate 
header file, there would be no chance that the construct would affect any existing usage. 

The following changes can potentially corrupt a release: 

• Adding, reordering, modifying, or removing any data members. 
• Adding, reordering, or removing any virtual function. 
• Changing the signature or return value of any function. 
• Adding, reordering, modifying, or removing any inheritance relationships. 
• Altering any construct in the header with internal linkage. 
• Reducing the access of a class member (e.g., from protected to private). 
• Introducing an access specifier between adjacent data members. 16 

The lists presented here are not complete, but should give the idea and flavor of the 
kinds of changes that, if made carefully, can be accomplished locally via patches. The 
only real requirements are that: 

1. We ensure link-time compatibility after the patch. 

2. We avoid causing our clients to recompile because of changes in header
file time stamps. 

3. We are sure that the system would successfully rebuild if we were to try 

to do so. 

16 See ellis, Sections 9.2, p. 173; and 11.1, pp. 241-247. 
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There is much more to creating an effective development environment than can be 
presented here. The techniques used will depend on the operating system. Organiza
tions similar to those illustrated in Figure 7-20 have been used successfully on Unix
based systems to develop very large projects. 

7.7 The rna; n Program 

When we write a program in C++, we are required by the language to provide a 
unique definition of the function rna into interface with the operating system and, in 
particular, to process any command line arguments. However, when we invest tens, 
hundreds, or even thousands of staff years to create a C++ system, there is no single 
top to the system. That is, invariably there are several executables, each with its own 
rna i n procedure, that together comprise the system. Instead of producing a single pro
gram, our design methodology has created a hierarchical collection of reusable sub
systems. Many of these subsystems will be used in standalone input verifiers, 
translators, viewers, report generators, output analyzers, and so on. The number of 
individual "main" programs is likely to grow as the system evolves and matures. 

Factoring independently testable and potentially reusable functionality 
out of a translation unit that defines rna i n enables essentially the entire 
implementation of the program to be reused in a yet larger program. 

The purpose of a translation unit defining rna i n (other than a hierarchical test driver) is 
to provide a C++ subsystem with a command line interface, interpret environment 
variables, and manage global resources-nothing more. A common mistake is to 
place far too much code in a file that defines rna i n. Such code cannot be tested incre
mentally from a C++ test driver, nor can it be reused within a larger C++ program. 

For example, consider a program designed to perform some sort of desktop publishing 
function-say a glossary generator, illustrated in Figure 7-23. The function of a glos
sary generator is to read an input document and store it as a set of unique words. This 
input is filtered against a second input defining a set of blocking words. Blocking words 
are common words (such as and, this, a, etc.) that are likely not to be appropriate for a 
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glossary. Next, the remaining set of words is compared against a third input, a thesaurus , 
that in this context represents a mapping of aliases or alternate forms to more common 
or basic terms. For example, method is another name for member function in C++. 
Finally, all basic tenns that are not blocked or alia sed must be defined in a fourth 

input-a dictionary. A dictionary is a mapping from a set of common terms to their 
respective definitions. The outputs of the glossary generator are a list of undefined tenns 
and the' alphabetized subset of the definitions in the dictionary corresponding to 
recognized terms. 

Input Text • 

Glossary-Generator • Unrecognized Terms 

Blocking Words - • Program 

Thesauru s • 
• Glossary 

Die tionary • 

Figure 7-23: Glossary-Generator Program 

Where should we begin the design of this program? In a top-down approach we 
should probably begin with rna in, right? Perhaps. However, we should be diligent in 
our efforts to factor out the implementation of functionality provided by rna i n into 
independently testable and potentially reusable components. (Recall the technique of 
factoring to reduce complexity of unmanageably large components presented in Sec
tion 5.9.) How we will import the information from the command line is only one of 
our concerns. Another important question we should be asking is how the underlying 
functionality might some day conveniently be integrated into a larger program (e.g., a 
desktop publishing framework). To achieve a modular design, we must simulta
neously address the underlying programmatic interface and the standalon-e command

line interface for the immediate end user. 

A central piece in the design of a glossary-generator program is very likely a glossary
generator object defined in a glossary-generator component, such as the one illustrated 
in Figure 7-24. In order to use a glossary-generator object, we first need to program it 
with blocking words, aliases, and dictionary definitions. Explicit manipulator functions 
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in the d t p_G los s Gen class are provided for these purposes. After the glossary generator 
is programmed, we can load the individual words of the input text into the glossary
generator object using the addTextWord manipulator function. Once we are done load
ing all the input text for the document, we will create an iterator to sequence over the 
glossary definitions in alphabetical order. A second iterator is provided to allow us 
to sequence over any undefined terms. Having completed processing on a first doc
ument, w.e may wish to pass several related documents through the same generator. 
The c 1 ear I n put W 0 r d s manipulator allows us to start again with a new document while 
retaining the previously programmed blocking words, aliases, and definitions. 

/1 dtp_glossgen.h 
#ifndef DTP_INCLUDED_GLOSSGEN 
#define DTP_INCLUDED_GLOSSGEN 

class dtp_GlossDefIter; 
class dtp_GlossUndefTermlter; 

class dtp_GlossGen_i: 
class dtp_GlossGen { 

atp_GlossGen_i *d_this; 

friend dtp_GlossDefIter; 
friend dtp_GlossUndefTermIter; 

private: 
// NOT IMPLEMENTED 

// fully insulated.implementation 

dtp_GlossGenCconst dtp_GlossGen&); 
dtp_GlossGen& operator~(const dtp_GlossGen&); 

} ; 

public: 
// CREATORS 
dtp_GlossGen(): 
-dtp_GlossGen(): 

// MANIPULATORS 
int addBlockingWord(const char *blockingWord); 
int addAlias(const char *alias, const char *keyTerm); 
int addDefinition(const char *keyTerm~ const char *definition); 
int addTextWordCconst char *textWord); 
void clearlnputWords(): 

class dtp_GlossDeflter_i; // fully insulated implementation 
class dtp_GlossOeflter { 

dtp_GlossDeflter_i *d_this; 
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} ; 

private: 
II NOT IMPLEMENTED 
dtp_GlossDefIter(const dtp_GlossDeflter&); 
dtp_GlossDefIter& operator=(const dtp_GlossDefIter&); 

public: 
II CREATORS 
dtp_GlossDefIter(const dtp_GlossGen& glossaryGenerator); 
~dtp_GlossDefIter(); 

II MANIPULATORS 
void operator++(); 

II ACCESSORS 
operator const void *() const; 
const char *keyTerm(); 
canst char *definition(); 

II Provides an association 
II (keyTerm. definition) so 
II we choose not to define an 
II operatorC)() here. 

class dtp_GlossUndefTermIter_i; II fully insulated implementation 
class dtp_GlossUndefTermIter { 

} ; 

dtp_GlossUndefTermIter_i *d_this; 

private: 
II NOT IMPLEMENTED 
dtp_GlossUndefTermlter(const dtp_GlossUndefTermIter&); 
dtp_GlossUndefTermlter& operator=(const dtp_GlossUndefTermlter&); 

public: 
II CREATORS 
dtp_GlossUndefTermIter(const dtp_GlossGen& glossaryGenerator); 
~dtp_GlossUndefTermlter(); 

II MANIPULATORS 
void operator++(); 

II ACCESSORS 
operator const void *() const; 
const char *operatorC)() const; II Returns just the current undefined 

II term so operator()() is ok here. 

#endif 

Figure 7-24: Insulating Interface for a Glossary-Generator Wrapper Component 

Our rna i n will still need to create a dt p_G 1 os sGen object and then translate input from 
(files referenced by) the command line into dtp_Gl ossGen member function calls in 
order to program this object appropriately. However, we may elect to use any number 



section 7.7 The rna i n Program 527 

of input grammars in order to program the glossary generator. It would therefore be 
inappropriate to tie the programmatic interface of the glossary generator to anyone 
syntax. Instead, we create a separate component responsible for reading some given 
input, parsing that input, and exercising the glossary-generator component accord
ingly. The highest levels of the glossary generator program's component architecture 
are shown in Figure 7-25. 

main() 
n+2 

Lower-Level Components (see Figure 3-16) 

Figure 7-25: High-Level Glossary Generator Program Architecture 

The job of the interpreter component, illustrated in Figure 7-26, is to attach itself to a 
glossary-generator object and then exercise that object accordingly, based on com
mands found in a specified input file or stream. The interpreter object itself is pro
grammed with two pieces of information: 

1. The address of the glossary generator it is to manipulate. 
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2. The error output stream to which the interpreter is to report detailed 
syntax error messages. 

II dtp_glossgeninterp.h 
#ifndef DTP_GLOSS_GEN_INTERP 
#define DTP_GLOSS_GEN_INTERP 

class dtp_GlossGen: 
class ostream; 
class istream; 

class dtp_GlossGenlnterp_i; 
class dtp_GlossGenlnterp { 

dtp_GlossGenInterp_i *d_this; 

} ; 

private: 
II NOT IMPLEMENTED 
dtp_GlossGenlnterp(const dtp_GlossGenlnterp&); 
dtp_GlossGenlnterp& operator=(const dtp_GlossGenlnterp&); 

public: 
I I CREATORS 
dtp~GlossGenInterp(dtp_GlossGen* glossGen); 

II create an interpreter 

~dtp_GlossGenInterp(); 

II destroy this interpreter 

II MANIPULATORS 
void setErrorStream(ostream& errorStream); 

II Set output stream to which detailed errors will be reported. 
II By default, this stream is cerro 

II ACCESSORS 
int exercise(const char *fileName = "_") canst; 

II Parses commands from the specified input file. Returns 
II -Ion 1/0 error, 0 on success 9 and 1 on syntax error. 
II The default "_" stands for "standard input" (i.e., cin). 

int exerciseCistream& input, const char *fileName = 0) canst; 
II Parse commands from the specified input stream. Returns 
II -1 if an liD error occurs; otherwise returns the line 
I I number of the fi rst syntax error. If successful t thi s 
II function returns O. The second argument is used only 
II for the purpose of identifying the input source when 
II formatting syntax error messages to the error stream. 

#endif 

."'igure 7-26: Fully Insulating Interpreter Component for Glossary Generator 
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Two accessor functions of the interpreter are provided to exercise the functionality of 
the associated glossary-generator object. The first simply takes a file name and opens 
it if possible. This function then calls the second (more primitive) form, which takes 
an open stream and an optional "file" name to be used in formatting error messages. 
The lower-level function is exposed in the interface so that the source of the stream 
need not be an actual file. Note that these two member functions do not affect the state 
of the interpreter; they affect only the state of the glossary generator. 

Finally, all that is left to do in rna in is to create these two objects and sequence 
through a set of command-line arguments. If no command-line arguments are speci
fied,c i n should be assumed by default. A tiny standalone main driver for the glossary 
generator program is shown in Figure 7-27. This driver illustrates a reusable pattern, 
suitable to a variety of standalone applications. 

II dtp_glossgeninterp.t.c 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 

Usage: a.out [ <file name> I - J* 

Example: 

john@john: a.out stuff.abc such.def -

The above command line will first read input from the file 
"stuff.abc", then read input from the file "such.def", and 
finally read from standard input (cin). 

#include IIdtp_glassgeninterp.h" 
#include "dtp_glassgen.h" 

canst char *const defaultArgs[] - { 1111, "_n}; II has internal linkage 
canst int defaultNumArgs = sizeof defaultArgs I sizeof *defaultArgs; 

main(int argc, char *argv[J) 
{ 

int status = 0; 
canst char *progName = argv[O]: 
int numArgs = argc > 1 ? argc : defaultNumArgs; 
canst char *const *args = argc > 1 ? argv : defaultArgs; 

dtp_GlossGen glossaryGeneratar; 
dtp_GlossGenlnterp interpreter(&glossaryGenerator); 

for (int i-I; i < numArgs && 0 == status; ++i) { 
status = interpreter.exerciseCargs[i]): 

} 

return status; 
} 

Figure 7-27: A Standalone Main Driver for Glossary Generator and Interpreter 
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Ownership of rna incomes with both privilege and responsibility. There is only one 
rna in in a given program. It is this piece of code that should be responsible for reading 
environment variables and establishing global resources. The person who owns ma in 
owns the global name space. For example, there is no harm if the file containing rna in 
defines or accesses external global variables, fails to use package prefixes, and so 
forth. To ensure our ability to integrate arbitrary subsystems, however, no other part of 
the system should pollute the global name space or attempt to usurp a global resource. 

Guideline: 

In general, avoid granting one component license that, if also taken 
by other components, would adversely impact the system as a whole. 

This (Kant-like) philosophy implores that unless we define rna in, we should not 
attempt to do something that, if others did it also, would have a negative consequence 
for the overall system. 

Excessive use of inline functions is just one example of the kind of behavior that can 
lead to subtle integration problems down the road. By cavalierly declaring inappropri
ately large member functions inline, we can often improve the runtime performance 
of our own object in isolation or within a small subsystem. However, this runtime 
improvement is obtained at the cost of repeated code and increased executable size. 

When such selfishly architected subsystems are integrated into larger subsystems, the 
increased code size begins to show its adverse effect. Hardware mechanisms designed . 
to improve the performance of commonly used routines are defeated by the exceSSIve 
repetition of inline code. The increased program size reduces the percentage of the 
executable that the operating system can keep in core, which leads to increased swap
ping. At some level of integration, many of these objects will actually begin to run 
more slowly (as a result of the excessive inlines) than they would have run had so~e 
of the larger functions been declared non- i n 1 i n e. The end result of this selfishness IS 

a net decrease in overall system performance. 



section 7.8 Start-Up 531 

Another case in which a lack of diligence by individual developers can adversely 
affect an integrated system involves the indiscriminate use of non-local static objects, 
as discussed in Section 7.8. Yet another specific case of avoiding such egocentric 
behavior on the part of a component or subsystem is discussed in the context of class
specific memory management in Section 10.3.4.2. 

lVlajor Desigll Rllle 

Only the . c file that defines rna i n is authorized to redefine global new 

and del ete. 

An important special case of this philosophy is that only the owner of rna i n can be 
authorized to redefine the global operators new and del e t e. Components that do not 
define rna i n are proscribed from such unilateral behaviors. Otherwise two indepen
dent subsystems, each redefining a unique resource (such as global operator new), 
would not be link compatible. 

To summarize: there is no top when designing a large system. The purpose of rna in is 
only to provide a C++ subsystem with an interface to the command line, interpret envi
ronment variables, and manage global resources-nothing more. Factoring functional
ity provided by rna i n into separate components facilitates hierarchical testing and 
enables easier integration into yet larger systems. The. c file that defines rna in owns the 
global name space and is exempt from certain design rules that pertain to ordinary com
ponents. For components that do not define rna i n, care should be taken not to take liber
ties that, if also taken for other components, could compromise the system as a whole. 

7.8 Start-Up 

The elasped time between when a program is first invoked and when the thread of 
control enters rna in is referred to in this book as start-up. It is during this time that 
potentially all non-local static objects in every translation unit are constructed, as 
illustrated in Figure 7-28. 17 

17 According to the C++ language specification (ellis, Section 3.4, p. 19), all non-local static objects 
within a translation unit must be constructed prior to the first use of any function or object defined 
within that translation unit; in practice, however, all such initializations can and commonly do occur 
at start-UD. 
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DEFINITION: Start-up time (also known as invocation time) is the 
time between when a program is first invoked and when the thread of 
control enters rna; n. 

II my_component.c 
#include "my_component.h" 
#include "pub_list.h" 
#include <sys/types.h> 
#include <sys/time.h> 

II static object at file scope 
static pub_List list; 

II defines class my_Class 
II defines class pub_List 
II declares typedef time_t 
II declares ::time() 

II constructed at start-up 

II static dQta member initialized by function call 
static time_t startUpTime = time(O); II called at start-up 

II static object in class scope 
pub_List my_Class: :d_List; 

II 

II constructed at start-up 

Figure 7-28: Initialization of Non-Local Static Variables at Start-Up 

Since the order of initialization between non-local static objects defined in separate 
translation units is implementation dependent, special care must be taken to ensure 
that such static objects are initialized before they are used. When the intent is to pro
vide a single instance of a globally accessible object, our stated aversion to global 
data (Section 2.2) leads us to look for an alternative. Instead of creating an instance of 
an object at file scope with extemallinkage, we can usually achieve our purpose with 
a logical construct commonly referred to as a module and implemented in C++ as a 
class containing only static members. I8 

18 A module can also refer to a physical entity that is similar to a component, but that has a procedural 
interface. Note that, in ANSI C, the only way to implement a logical module is as a physical module 
(Le., as a separate translation unit defining static data at file scope). For more about modules, see 
stroostrup, Section 1.2.2, p. 16. 
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Guideline 

Prefer modules to non-local static instances of objects, especially when: 

1. Direct access to the construct is needed outside a translation 
unit. 

2. The construct may not be needed during start-up or immedi
ately thereafter and the time to initialize the construct itself is 
significant. 

The need to ensure the proper initialization of static constructs before they are used is 
well documented. 19 What is less commonly appreciated is the magnitude of the com
bined impact such initializations can have on start-up time. For small programs, ini
tializing a few static constructs at start-up would probably have no noticeable impact 
on a user's perception of the time needed to invoke the program. However, the larger a 
system is, the more opportunity there is for independent static constructs to require 
initialization during start-up. 

The construction of each non-local static objects in a program 
potentially contributes to invocation time. 

Since every static object defined at file scope or within class scope is potentially con
structed before rna i n is entered, a very large system whose components regularly 
define such static objects could take an unacceptably long time to bring up. In fact, 
there are documented cases of very large (supposedly interactive) systems where 
naively ignoring the cost of initialization at start-up has resulted in invocation times in 
excess of 10 minutes! 

19 ellis, Section 3.4, p. 20; meyers, Item 47, p. 178. . 
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Non-local static objects are initialized and destroyed automatically by the C++ runtime 
system; their indiscriminate use by individual components is a form of egocentric 
behavior that degrades the invocation performance of integrated systems. Although 
there is nothing we can do to stop these static instances from being initialized at start
up, there is considerable flexibility about how and when modules are initialized. Fortu
nately, it is always possible to transform a single global instance of an object into a 
module that, when initialized, dynamically allocates that object.2o Once initialized, the 
module can successfully return a reference to the dynamic object it now holds. 

7.8.1 Initialization Strategies 

There are at least four different techniques that can be used to ensure that a module is 
initialized before it is used: 

.. Wake-up initialized 
• Explicit i nit function 
• Nifty counter 
• Check every time 

Each of these initialization strategies has its own advantages and disadvantages; the 
best choice will depend on several factors: 

• The time required to initialize the module 
• The likelihood that the module will actually get used 
• The amount of work done per module function call 
• The frequency with which calls to module functions are made 
• The number of components that use the module directly 
• Whether there is a need to free/reallocate resources before the program exits 

7.8.1.1 The Wake-Up Initialized Technique 

By far the best way to initialize a module is to try to have the module "wake up" in an 
initialized state. For example, using this wake-up approach, a global registry module 
might be implemented as a list of record links, as shown in Figure 7-29. 

20 See the Singleton design pattern in gamma, Chapter 3, pp. 127-138. 
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II ax_registry.h 
#ifndef INCLUDED_AX_REGISTRY 
#define INCLUDED_AX_REGISTRY 

class aX_RecordLink; 
class ax Record; 

class ax_Registry { 
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static ax_RecordLink *d_list_p; 

public: 
static void addRecord(ax_Record *record); 

II Add record to registry; registry now owns the record. 

static void cleanup(); 
II Free all dynamicly allocated memory: reset to empty. 

II 
} ; 

#endif 

II ax_registry.c 
#include "ax_registry.h" 
ax_RecordLink *ax_Registry: :d_list_p = 0; 
I I ... 

Figure 7-29: Module that Wakes Up Already Initialized 

As long as all the static data members are fundamental types (pointers,21 integers, 
doubles, arrays of characters, etc.), they will be initialized at load time (i.e., prior to 
start-up) without affecting invocation time. Had we instead embedded a pub_L i st 
object (Le., not just a pointer) as a static member of class ax_Reg i s try, then that 
member would get initialized automatically (during start-up), incurring a runtime cost.. 

7.8.1.2 The Explicit; n; t Function Technique 

Not all modules can wake up initialized. More generally, some components may 
define modules or contain static constructs that must be initialized at runtime before 
they can be used. One way to enable this initialization is to provide each such component 
with an i nit function, as illustrated in Figure 7-30. This i nit function must be called (at 
least once) before the static constructs provided by the component can be used. The 
in it-function approach is quite flexible in that the initialization can be deferred until 

21 A non-local static pointer to a user~defined type can be initialized at load time; in particular, 
initialization to 0 is common. 
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well after the start-up phase and invoked only if and when the component is actually 
needed. 

II ax_table.h 
#ifndef INCLUDED_AX_TABLE 
#define INCLUDED_AX_TABLE 

class ax_RecordLink; 
class ax_Record; 

class ax Table { 

} ; 

static ax_RecordLink **d_array_p; 
static int d_size; 

public: 
static void init(int size); 
static void cleanupC); 
static int addRecordCconst ax Record& record); 
I I ... 

#endif 

II ax_table.c 
#include "ax table.h" 
#include "pub_List.h" 
#include <memory.h> 
I I ... 

void ax_Table: :init(int size) 
{ 

if Cd_array_p) return; 
d_size = size; 

II declare memset 

II global within this 
II component only 

d_array_p = new ax_RecordLink *[sizeJ; 
memsetCd_array_p, 0, size * sizeof *d_array_p); 

} 

II 

Figure 7-30: Providing a Component with an Explicit In i t Function 

Although flexible, the explicit-i ni t-function approach is quite error prone; clients com
monly forget to initialize a component before using it, often resulting in a fatal runtime 
error. To mitigate this problem, we might provide a distinguished component at the . 
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package level (e.g., ax_package) with an i ni t function that initializes any component 
requiring runtime initialization defined within this package. At the same time it could 
also call the i nit functions for all other packages upon which this package depends. 

Initializing components on which you do not otherwise directly 
depend can significantly increase CCD. 

The package-level i nit-function approach has some serious drawbacks. First, there is 

the obvious maintenance burden of ensuring that the i nit function of every contained 
component and of every package upon which these components depend gets called by 
the package-level init function. Much more problematic is that initializing the entire 
package can dramatically increase coupling, potentially drawing in many components 
at link time that are not otherwise needed. It is for this latter reason that the use of 
package-level i nit functions are best avoided-especially for a generally reusable 

package with a horizontal dependency structure. Instead, it is preferable for compo
nents that depend directly on other components requiring explicit initialization to ini
tialize such components individually. The client component may in tum supply an init 
function for use by its own direct clients, or instead may incorporate some other ini
tialization technique. Maintaining the initialization graph at a fine level of granularity 
helps to keep the CCD of a system to a minimum. 

7.8.1.3 The Nifty Counter Technique 

When static objects use other static objects, the initialization problem becomes more 

complex. For the sake of illustration, suppose that the global pub_L i st object of Figure 
7 -30 itself makes use of a static construct that also requires runtime initialization (e.g., 
for class-specific memory management, as discussed in Section 10.3.4). Trying to create 

a pub_L i st as a static object at start-up before the pub_L i st's static memory manage

ment has been initialized could easily cause a fatal runtime error. Since the relative order 
of these two initializations is implementation dependent, special precautions must be 

taken. 
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II pub_list.h 
#ifndef INCLUDED_PUB_LIST 
#define INCLUDED_PUB_LIST 

I I ... 

class pub_List { 
I I ... 

} ; 

struct pub_ListInit { 
pub_ListlnitC); 
""pub_ListInitC); 

} pub_listInit; 

II pub_list.c 
#include "pub_List.h" 

I I ... 

static int s_niftyCounter = 0: 

pub_Listlnit::pub_Listlnit() 
{ 

if (0 == s_niftyCounter++) { 
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II init pub_list's static constructs 
#endif } 

} 

pub_Listlnit::""pub_ListInitC) 
{ 

if (0 == --s_niftyCounter) { 
II clean-up pub_list's static constructs 

} 

} 

Figure 7-31: Using Nifty Counters to Ensure Initialization Before Use 

Instead of the error-prone i n i t-function approach, we might .consid~r using the nifty
counter approach.22 In this approach, a dummy static instance of an initialization class 
is placed in the header file of a component at file scope, as shown in Figure 7-31. Part 
of the purpose of this static instance is to count the number of other components that 
include this component's header. Each static instance of this dummy object included 
by a translation unit will be constructed during start-up (in some order). The first time 
a static instance of the dummy object is constructed, the static count is increased from 
o to 1, and the dummy object knows to initialize its component.23 Each subsequent 
time a dummy instance is constructed, the only effect is to increment the static count. 

22 The nifty-counter approach is discussed in ellis, Section 3.4, pp. 20-21. 
23 Note that the use of any non-inline function defined within a translation unit will trigger the con
struction of all non-local static instances defined within that translation unit. 
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At program exit, the process is reversed; the destructor for each dummy object decre
ments the static count. When this count reaches 0, the dummy object knows it is OK 
to clean up the component. i ostream uses the nifty-counter technique to ensure that 
c in, co u t, c err, and c log are initialized before they are used. 

The beauty of the nifty-counter approach is that it is foolproof. It is not possible to use 
a component requiring runtime initialization without first including its header. Doing 
so causes a dummy object to get constructed, which in tum forces an uninitialized 
component to become initialized. All this happens before the translation unit that 
included the component's header can make use of the newly supplied declarations to 
access the component. Thus a class that employs the nifty-counter method of initial
ization may safely be instantiated statically, even if the class itself uses other non
local static objects that also employ this technique. 

Another benefit of using the nifty-counter approach is that only those components in a 
package that are actually needed in order to link are initialized. The runtime cost of 
the nifty-counter initialization mechanism itself is negligible except for pathological 
designs containing N components depending directly on M modules, where both N 
and M are large. Normally this overhead is not large when compared with the con
struction of the first static object that does the real work of initializing the component. 

The major disadvantage of using nifty counters is that even components that only 
might be used at runtime are initialized at start-up anyway. For dynamic libraries that 
are loaded into a running program on demand, a non-local static initialization often 
requires dragging these libraries in at start-up, which defeats the purpose of demand 
loading. If the amount of work done during the initialization itself is large (e.g., load
ing a multi-dimensional table), it would be wise to consider using another technique 
that allows us to defer this initialization until later in the execution of the program. 

Non-local static objects are commonly used to load a collection of independent con
crete types into a global registry at start-up. However, linking to some library imple
mentations (such as archive files on a Unix system) will not incorporate a translation 
unit's . a file unless there is an explicit reference to an external symbol that is resolved 
by this .0 file. 
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Figure 7-32: Component/Class Diagram of System with Automatic Initialization 

Consider the system illustrated in Figure 7-32. An a x_Reg i s try (see Figure 7-29) is a 
module that acts as a global repository for various kinds of concrete records (e.g., 
my_Record) derived from the protocol class ax_Record. Since it is expected that there 
will be many different record subtypes, a special helper class, a x_R e 9 i s t r a r, is avail
able to aid in the automatic addition of concrete record types into the global registry at 
start-up. Component ax_reg; stra r is presented in Figure 7-33. 
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II ax_registrar.h 
#ifndef INCLUDED_AX_REGISTRAR 
#define INCLUDED_AX_REGISTRAR 

class ax Record; 

struct ax_Registrar { 
ax_RegistrarCax_Record(*)(»; 
'"'"'ax_Registrar(); 

} ; 

#endif 
II ax_registrar.c 
#include "ax_registrar.h" 
#include "ax_registry.h" 

static int s_niftyCounter = 0; 

ax_Registrar: :ax_Registrar(ax_Record(*cfp)(» 
{ 

++s_niftyCounter; 
a x_ Reg i s try: : add ( ( * c f P ) ( ) ) ; 

} 

ax_Registrar::'"'"'ax_Registrar() 
{ 

if (--s_niftyCounter (= 0) { 
a x_Re 9 i s try: : c 1 e an up ( ( * c f p ) ( ) ) ; 

} 

} 

Figure 7-33: ax_Reg; stra r Object Used to Register Records at Start-Up 

To register an instance of a record type such as my_Record, a non-local static instance 
of the a x_R e 9 i s t r a r class is defined in the . c file of component my _ r e cor d as shown 
in Figure 7-34. Merely linking my _reco rd. 0 into an executable image is enough to 
guarantee that it is registered in the global record registry of the system. But if 
my_record.o is part of a Unix library archive, there is no explicit reference to ~aw it 
in at link time. That is, linking to concrete records defined in a collection of . 0 files 
will work as expected, but, unless explicitly referenced, linking to the same objects 
defined in a Unix library archive will have no effect; after start-up the global registry 
will be empty! 
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II my_record.h 
#ifndef INCLUDED_MY_RECORD 
#define INCLUDED_MY_RECORD 

#ifndef INCLUDED_AX_RECORD 
#include "ax_Record.h" 
4Fendif 

class my_Record: public ax_Record { 
I I ... 

} ; 

public: 
static ax_Record *create(); 
my_Record ( ) ; 
I I ... 

II my_record.c 

1fendif 
/finclude "my_record.h" 
tfinclude "ax_registry.h" 
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static ax_Registry s_dummy(&my_Record: :create); 

ax_Record *my_Record: :create() 
{ 

return new my_Record; 
} 

II 

Figure 7-34: Using ax_Reg; strar to Register my_Record 

If concrete record objects reside in such a library archive, there must be some explicit 
link-time dependency in order to draw them in. One solution is to provide an empty 
non-inline i nit function to be called by rna i n. However, we can avoid the dependency 
of derived-record objects on the registry by escalating the registration process to a 
higher level (e.g., rna in). In so doing we both improve flexibility and reduce the CCD. 
The modified architecture using explicit initialization is shown in Figure 7-35. 



section 7.8.1.4 The Check-Every-Time Technique 543 

Figure 7-35: Component/Class Diagram of System Using Explicit Initialization 

Identifying which particular derived-record types are to be incorporated in a given 
executable must be done somewhere. The appropriate types can either be installed 
explicitly by the component that defines rna i n or externally to the program through 
configuration management. The fact that a seemingly elegant initialization technique 
will fail to work properly when incorporated into certain libraries underscores the 
importance of physical design. 

7.8.1.4 The Check-Every-Time Technique 

The larger the program, the less likely it is that we will use all of the functionality it 
provides. Infrequently used subsystems may still require significant work to initialize 
at runtime. As with insulation, if each function call of a component already performs 
a non-trivial task, adding a small amount of additional runtime overhead on each call 
will probably not noticeably affect runtime performance. 
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II ax_ledger.h 
#ifndef INCLUDED_AX_LEOGER 
#define INCLUOED_AX_LEOGER 

class ax_Record; 

class ax_Ledger { 
I I ... 

public: 
static int addRecord(const Record& record); 
static void cleanup(); 
I I ... 

} ; 

lIen d if 
II ax_Ledger.c 
#include "ax_ledger.h" 
I I ... 

static s_initFlag = 0; 

static void init() 
{ 

s_initFlag = 1; 
II initialize component's static constructs 

} 

inline void s checklnit() 
{ 

} 

if (!s_initFlag) { 
init(); 

} 

int ax_Table::addRecord(const Record& record) 
{ 

checklnit(); 
II now go ahead and add a record 

} 

void ax_Table::cleanup() 
{ 

} 

II 

II clean-up component's static constructs 
s_initFlag = 0; 

Figure 7-36: Check Every Time and Initialize if Necessary 
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Using the check-every-time technique illustrated in Figure 7-36, we do not need to 
initialize the component explicitly. Instead, we make sure that each function within 
the component that depends on internal static constructs first checks whether the com
ponent has been initialized; if not, the function initializes the component immediately. 
The advantages of the check-every-time approach are that it is also foolproof (for cli
ents, anyway) and that initialization need not occur at start-up. By deferring the ini
tialization until needed, we reduce invocation time and pay at runtime only for what 
we use. i ostream employs this technique to allocate buffer space for a stream object 
the first time it is used (see Section 10.3.3). The disadvantage of checking on every 
function call is that it is often not practical for heavily used, lightweight objects. We 
must also remember to include this initialization check whenever we add a new func
tion to our component. 

7.8.2 Clean-Up 

Often just exiting the program will accomplish what our general users want; however, 
as responsible developers, we must always consider the testability of our designs. 
There are several ways of verifying that our code does not "leak" memory; however, 
holding onto memory indefinitely is sometimes hard to distinguish from an actual 
leak-especially in regression tests. Constructs, such as mUltiple inheritance, that 
cause dynamically allocated memory to be managed by a pointer to anywhere other 
than the beginning of the allocated block make it difficult even for sophisticated tools 
to distinguish legitimate use from leaked memory. 

l\1ajor Design Rllle 

Provide a mechanism for freeing any dynamic memory allocated to 
static constructs within a component. 

By providing a clean-up function for each component containing static variables or 
objects that might harbor dynamically allocated memory, we help to ease the burden 
of detecting memory leaks. This requirement is presented as a major design rule 
because a single non-compliant component could affect the testability of any compo
nent that needs it. 
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One mixed blessing of the nifty-counter approach is that the destructor of the dummy 
object can be used to initiate the clean-up of a static construct automatically. This is 
good news for quality assurance, but it can present a burden for users who would pre
fer, for perfonnance reasons, simply to exit. Fortunately we can always supply a 
"switch" in order to program whether clean-up is actually to occur at program exit. 
The benefit of providing this extra clean-up capability is an extra measure of quality; 
the only real cost is that of additional development time and of a small amount of 
extra complexity in the interface. 

7.8.3 Review 

To summarize this entire section: initializing modules and non-local static objects at 
start-up can make the time to invoke a large program unacceptably long. Although we 
cannot affect the point in the program at which these static instances are initialized, it 
is always possible to transform a single global instance of an object into a module. An 
effective way to ensure initialization without runtime cost is to design the module or 
component to wake up initialized by having only fundamental static data members 
(which are initialized at load time). Another approach to reducing invocation time is 
to defer initialization until it is actually needed. This deferred initialization can be 
accomplished using individual i nit functions or with initialization checks built into 
every access. The i n i t-function approach is the most flexible and also the most error 
prone, but it may be necessary when the individual access functions are lightweight 
and called frequently. Explicit initialization is also required when attempting to link
in self-initializing components stored in a Unix-style library upon which there is no 
explicit link-time dependency. The check-every-time approach is foolproof for clients 
and especially appropriate when the work done in each function call is already sub
stantial. Finally, if we know we are likely to need a component initialized immedi
ately upon invocation and its functions are lightweight and called frequently, the 
nifty-counter approach may be the best choice after all. In all cases, providing a mech
anism to free any dynamic memory held by static constructs (before the program 
exits) will facilitate regression testing for memory leaks. 

7.9 Summary 

In this chapter we fonnalized the notion of a package as an aggregate cohesive unit of 
physical design. A package is a natural consequence of top-down design that serves as 
both an abstraction for architects and as a partition for developers. Every package 
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consists of an acyclic hierarchy of cooperating components. The file names for each 
component within a package and each global construct defined within that component 
should begin with the registered prefix allocated to that package. The dominant pur
pose of this prefix is to identify in which package the definition of a given component 
or class can be found. Consistent use of package prefixes partitions the global name 
space, which avoids name conflicts during package integration. 

Dependencies between components within a package form a levelizable hierarchy. To 
test components hierarchically within a package, components contained within other 
packages are presumed to be correct; each external component has a level number of 
o with respect to local components. Components that do not depend on other compo
nents within the same package are defined to have a local component level number of 
1. However, if package boundaries were removed, these components would not neces
sarily have an absolute component level of 1. Local components that do not depend on 
any other components within the system (called leaf components) have both a local 
and an absolute component level of 1. Placing these leaf components within the pack
ages that use them helps to improve the modularity and reusability of the system. 

Dependencies among packages are defined by the envelope of the individual depen
dencies between the components that comprise the packages. For reasons relating to 
development, marketing, usability, production, and reliability, it is required that the 
aggregate dependencies among packages are acyclic. Packages with acyclic depen
dencies form a levelizable hierarchy that is completely analogous to component level
ization. Most of the techniques discussed in Chapter 5 for reducing the coupling 
between individual components apply to packages as a whole. In particular, escala
tion, demotion, and factoring are commonly used to reduce the development costs 
associated with interpackage dependencies. 

Insulation at the package level includes reducing the number (and size) of header files 
that must be exported for clients to use the package. Insulating clients of a package 
from a particular component contained within the package requires that the compo
nent itself is not used directly by external clients of the package as a whole, all 
exported components that use this component insulate its definition from external cli
ents, and the individual component is not independently reused by other packages. 
Whenever we insulate our clients from the underlying complexities of a subsystem, 
we are likely to have improved both its usability and maintainability. 
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Just as packages partition a system into levelizable hierarchies of components, pack
age groups partition a large system into levelizable hierarchies of packages. Princi
ples, such as logical cohesion and avoiding cyclic dependencies, that applied to the 
composition of individual packages and the interdependencies among them apply also 
to package groups as a whole. The library file for individual packages may be merged 
into a single group library file for the convenience of clients at higher levels; however, 
specially instrumented versions of individual package libraries should continue to be 
made externally accessible during development. Every package used in a system must 
continue to have a unique associated prefix irrespective of any package grouping. 

Internal releases are an integral part of any large development project. A directory 
structure capable of supporting versioned releases was presented in Section 7.6.1. 
Very large systems can be partitioned into horizontal bands of package groups called 
layers. A layer corresponds to all groups on a given level. A levelizable system can be 
released in stages, starting at the bottom layer (group level 1) and progressing to 
higher-level groups. To improve insulation, abstraction, and compile-time perfor
mance for our clients, we may choose to export only a subset of all headers needed to 
compile a given package, group, or layer. 

A patch is a local change to a previously released version of software. Making a patch 
is typically less expensive and far less disruptive than re-releasing the entire system. 
Our ability to patch a release is directly related to the degree to which implementation 
details are insulated from clients. Types of changes that probably can and cannot be 
realized with patches were presented in Section 7.6.2. 

For a large software system written in C++, there is usually no "top"-no single pro
gram that defines the system. The purpose of rna i n is only to provide a command-line 
interface, interpret environment variables, and manage global resources. 

Factoring the underlying functionality provided by rna i n into separately testable and 
reusable components facilitates integration into yet larger subsystems. Only the . c 
file rna i n can take unilateral global actions; components that do not define rna i n 

should avoid egocentric behavior that might compromise the integration process down 

the road. 

Start-up is defined as the time from the moment a program is invoked until the thread 
of control enters rna in. It is during this period that all non-local static objects defined 
throughout the entire program are constructed. Naively ignoring the cost of such ini-
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tialization can result in unacceptably long invocation times. A module can be imple
mented in C++ as a class containing only static members, and is preferable to a non
local static instance, especially when the cost of initialization is high and the need for 
the object is not immediate. 

Four separate techniques for initializing static constructs were presented: 

1. Wake up initialized: The static data member is of a fundamental type, 
which can be initialized at load time. 

2. Explicit i nit function: The i nit function for a component must be called 
explicitly before the component can be used. 

3. Nifty counter: A static instance of a dummy object defined in the header 
file of the component guarantees intialization before use (at start-up). 

4. Check every time: Initialization occurs on demand (Le., the first time any 
function in the component is called). 

The choice of initialization technique will depend on several factors, including: 

• The "weight" of the component 
• If and when the component is likely to be used 
• The cost of initializing the component itself 

Effective regression testing for memory leaks dictates that we provide a way to free 
dynamic memory associated with static constructs--even if this feature is not 
required by the application itself. 



PART III: 

ALOE 

Until now, the focus has been primarily on concepts that pertain to physical design 
(e.g., components, levelization, insulation, and packages). Although good physical 
design is critical to the success of larger projects, fundamental logical design issues 
should be addressed by any project team early in the development process. 

Logical design is a more mature and well-understood discipline than physical design. 
Consequently, the presentation in this part takes on a different flavor. Where possible, 
other readily accessibl~ books are cited to help minimize redundancy. Part III of this 
book is a terse "reference manual" on the effective logical design of components. 

Design patterns describe reusable micro-architectural units of cooperating compo
.nents. There are countless design patterns in use in large software systems. This level 
of logical design is, for the most part, beyond the scope of this book; however, many of 
the most common design patterns are cataloged elsewhere and are readily accessible. 

In this final part of the book, we limit ourselves to the design and implementation of 
individual components. C++ provides an almost overwhelming logical design space. 
This extra freedom can make finding an optimal design more complicated than is war
ranted by the functionality implemented by the component. Our goal is therefore to 
simplify the interface of each component and eliminate redundant degrees of freedom 
that unnecessarily complicate the logical design space. 
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In Chapter 8 we take a high-level look at component design-this time from a logical 
perspective. We consider the familiar concept of encapSUlation and characterize condi
tions under which total encapsulation may be prohibitively expensive. We also identify 
and contrast various ways in which to implement auxiliary objects used only within the 
implementation of a component. 

In Chapter 9 we focus our attention on the abundant issues that confront the compo
nent-interface author as individual behaviors are cast into the syntax of C++ operators 
and member functions. Whether to implement a particular behavior as a member or 
free operator, whether to make it virtual, how to pass in a particular argument, and how 
to return a value are just some of the 14 separate issues addressed. The consequences 
of using the various flavors of integers (e.g., s h 0 r t, un s i 9 ned, 1 0 n g) in the interface 
are also presented. We then take a close look at the issues surrounding special-case 
functionality such as conversion operators, compiler-generated behaviors, and-in 
particular-the destructor. 

In Chapter lOwe tour some of the issues that face implementors of objects in a large
system environment, with one eye toward performance and the other toward reliabil
ity. Highlights include the selection and ordering of individual member data and the 
effective implementation of individual functions. A large part of this chapter is 
devoted to a quantitative analysis of the efficient customized management of an 
object's memory. We see that object-specific memory management can be more effi
cient than the conventional class-specific techniques, while avoiding the potential 
problem of soaking up memory in long-running programs. Finally, we explore the 
pitfalls of memory management in the context of generic, template-based container 
classes and then briefly contrast the applicability of templates with design patterns. 



Architecting a Component 

An individual object is usually too small to capture a complete concept. For an object to 
be effective it may require free operators, or even entire friend classes, in order to cap
ture the essential behavior of an abstraction. An abstraction is an abstract specification 
of objects and functions that cooperate to serve some useful purpose. A component is a 
concrete representation of that specification. A component is therefore also the funda
mental building block of logical design. 

Encapsulation, like insulation, can be a matter of degree. The costs associated with 
complete encapsulation can often be prohibitively expensive. Sometimes we can 
attain considerable performance gains without any real loss in flexibility by settling 
for almost complete encapsulation. How and when to make this trade-off requires 
careful deliberation. 

A component will occasionally need to define and use in its implementation auxiliary 
objects that are not intended for direct use by clients. C++ provides several techniques 
for implementing such classes, each with advantages and disadvantages. There are 
sound reasons for choosing exactly one of these approaches in most cases. Establish
ing the selection criteria is all that is needed. In this chapter we consider several high
level aspects of component interface design. We discuss the type and amount of func
tionality that is appropriate for the component as a whole as well as for the individual 
objects it contains. We characterize the costs associated with complete encapsulation, 
and present ways to reduce that cost. Finally, we survey the many ways to implement 
auxiliary objects within a component, and provide a rationale for making an imple
mentation choice based on the properties emphasized by the particular usage model. 



554 Architecting a Component Chapter8 . 

8.1 Abstractions and Components 

In Chapter 3 we introduced components as atomic units of physical design. Every .. 

thing placed in the header file of a component is made available at once. This physical 
cohesion makes a component (not a class) the smallest unit of design that is indepen
dently reusable across executable programs. 

The component level is also the appropriate level for detailed logical interface design. 
When you, as a user, take advantage of a component implementing, say, a list abstrac
tion (see Figure 6-19) you are probably using more than the functionality provided in 
the Lis t class itself. For example, writing a simple output statement such as 

cout « "list = " « list « endl; 

involves the use of a free operator (Le., operator «) that is not part of the logical 
interface of any class. The Lis tIt e r class provides functionality, that is, an intrinsic 
part of the list abstraction, yet this _functionality is not supplied by the interface of 
class Lis t directly. 

DEFINITION: An abstraction is an abstract specification of a collec
tion of objects and related behaviors that fulfills a common purpose. 

According to Stroustrup, l an appropriate definition of an abstract data type (ADD is a 
formal abstract specification of a single object. A class (interface and implementation) 
would then be a concrete specification of this object. By analogy, an abstraction is also 
an abstract specification, with a component being the analogous concrete specification. 

A class is a concrete specification of an ADT; a component is a con
crete specification of an abstraction. 

1 stroustrup, Section 1.2.3, pp. 18-19. 
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In other words, a component is the realization of not just a type, but of a self-consistent 
microcosm of functionality that, taken as a whole, comprises what we call an abstrac
tion. It is the entire abstraction, not just a single ADT, that defines a useful logical par
tition of the functionality within a system that is implemented by a component. 

8.2 Component Interface Design 

There are several aspects to the quality of a well-designed component interface.2 At a 
minimum, the interface must be sufficient for intended clients to make efficient use of 
the abstraction that the component was designed to support. Consider a component 
implementing a set abstraction. The ability to 

1. determine membership in the set, 
2. - iterate over the members of the set, or 
3. remove a given member from the set 

mayor may not be necessary for any particular client. However, without the addi
tional ability to add members to the set, this component will be of little use to anyone. 

• Private interfaces should be sufficient. 
• Public interfaces should be complete. 
• Class interfaces should be primitive. 
• Component interfaces should be minimal yet usable. 

2 booch, Section 3.6, p. 136. 
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If a component is not intended for public use, then, as suggested in Section 1.8, the 
minimal subset of functionality that does the job efficiently for its known fixed set of 
clients is, by definition, sufficient. At the other end of the spectrum, if a component is 
intended to be reused widely in various situations throughout a system, then we can
not necessarily know ahead of time what subset of the functionality will be needed.3 

A complete interface enables all operations commonly expected by users of a given 
abstraction to be accomplished in an efficient manner. The more remote our clients, 
the more likely we are to opt to err on the side of generality by trying to make the 
interface complete.4 

Where practical, deferring the implementation of unneeded 
functionality reduces the cost of development and maintenance, and 
avoids prematurely committing to a precise interface or behavior. 

Often a complete interface requires a more involved implementation strategy than one 
that would be sufficient for any individual client. Hence, a complete interface may be 
more expensive to implement. The more general implementation may also run more 
slowly than a specialized version, perhaps even on the most basic and frequently used 
operations.5 Hence, a complete interface may be more expensive at runtime. A more 
complete interface is usually larger and more complex, incorporating less frequently 
used features. A larger or more complex interface makes it more difficult for clients to 
find and use basic features. Hence, a complete interface may be more expensive to 
use. Since a complete interface is more expensive according to a variety of measures, 
it is wise to be sure that a complete interface is warranted before implementing one. 

3 Accidental reuse implies use in situations other than for which a component was originally 
intended. Intentional reuse implies (among other things) a desire on the part of the component 
author to provide a complete interface and a robust implementation. If you were to link to a com
ponent that is part of a standard library of "reusable" components (e.g., STL), would you be using it 
or reusing it? What about; ostream? . 
4 See meyers, Item 18, p. 62. 
5 For example, template-based container classes that must work correctly when parameterized by 
arbitrary user-defined types cannot take the same liberties with bit-wise copy routines (such as 
memcopy) as could a container designed exclusively for fundamental types (see Section 10.4.2). 
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Between the two extremes of sufficient and complete can lie a wide middle ground. 
For example, it is generally true that assigning the state of one iterator to that of 
another is almost never performed in practice. Hence, an iterator's assignment opera
tor can usually be declared private and left unimplemented, without affecting the 
usability of the component. This deliberate omission saves development time and 
code size, yet leaves open the possibility of adding that functionality without causing 
existing clients to rework their code. 

DEFINITION: An operation defined on an object is primitive if 
implementing that operation efficiently implies having direct access 
to private details of the object. 

When selecting functions for the interface of a class, our goal should be to strive for a 
minimum set, using primitiveness as a criteria. Clearly, adding and deleting members 
of a set are independent primitive operations. The ability to iterate over the members 
of a set enables a client to determine membership, suggesting that membership itself 
is not an independent primitive operation. However, it is likely that determining mem
bership via iteration is fundamentally much less efficient than it would be if imple
mented with direct private access to the internal representation (e.g., by binary 
search). If determining membership is likely to be a frequently used operation, it 
would almost certainly qualify for primitive status. 

Even a potentially significant performance benefit is a legitimate reason to treat an 
operation as primitive. Consider the S t r i n 9 class of Figure 6-9. We are not sure 
whether we are going to have a d_l ength member in the class or not. If we do, then 
we will surely want to provide a primitive 1 ength ( ) accessor function. If we decide 
against, then we will simply have 1 ength ( ) forward its call to the standard C library 
function strl en(const char *) along with the underlying representation. In the 
latter case, there is no actual performance gain; however, unless we provide the 
1 eng t h ( ) member, there is no way to give clients the maximum benefit afforded by 
each implementation as we experiment back and forth between the two. Whether or 
not we have a d_ 1 eng t h member should in no way force clients to rework their code; 
such considerations are part of the subtle art of encapsulation. 
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Keeping the functionality to a practical minimum enhances both 
usability and reusability. 

Chapter 8 

When selecting functions for the interface of a component, our goal is again to strive for 
minimality, but with an eye toward usability. Supplying every conceivable operation for 
an abstraction in a component interface increases its girth, overwhelms its clients, and 
adversely effects its usability. For example, we could provide non-primitive support for 
replacing the top entry on the S t a c k of Figure 3-2. Although potentially useful to a few 
clients, most would find such functionality superfluous. 

By the same argument, we could also have omitted the tests for equality in the stack 

component of Figure 3-2. Since these tests are implemented as free, non-friend func
tions, operator== and operator!= could instead be implemented by any developer 
who needs them. But if many users are developing applications that will work 
together in a large system, it is desirable to avoid having each user rewrite the same 
functions within each subsystem. Such redundancy wastes development time, execut
able size, and, consequently, execution time. Finding the appropriate non-primitive 
functionality to add to a component to make it most useful is a design goal. Often the 
smallest interface that accomplishes this goal is optimal. 

Minimizing the use of externally defined types in a component's 
interface facilitates reuse in a wider variety of contexts. 

The term coupling applies to both logical and physical designs. Physical coupling 
comes from placing logical entities in the same component or by creating a physical 
dependency of one component upon another. Logical coupling arises from types used 
in the interface of one component that are defined or supplied by other components. 
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As with physical coupling, logical coupling is best kept to a minimum. Reducing the 
number of external types used in the logical interface often makes a component easier 
to use and to maintain. 

Suppose you are creating a very public interface and you need to accept character 
string inputs. Which interface in Figure 8-1 do you feel is more general? Your clients 
may have their own string class which they are accustom to using. Every general-pur
pose string class will know how to generate a canst cha r * representation. The inter
face of Figure 8-1a will force your clients to use class my_St ri ng; the interface of 
Figure 8-1 b will not. 

II my_engine.h 
#ifndef INCLUDED_MY_ENGINE 
#define INCLUDED_MY_ENGINE 

class my_String; 

my_Engine { 
I / ... . 

} ; 

public: 
mY_EngineCconst my_String& name); 
/ I ... 
void setName(canst my_String& name); 
/ / ... 
canst my_String& name() canst: 
/ / ... 

#endif 

II my_engine.h 
#ifndef INCLUDED_MY_ENGINE 
#define INCLUDED_MY~ENGINE 

my_Engine { 
I I ... 

} ; 

public: 
my_Engine(canst char *name); 
/ / ... 
void setNameCconst char *name); 
/ I ... 
canst char *nameC) canst; 
/ / ... 

#endif 

(a) Using my _St ri ng in the Interface (b) Using cons t cha r * in the Interface 

Figure 8-1: Avoiding Logical Coupling 

The consequences of this form of logical coupling would have been even more severe 
had we instead elected to depend on some other non-standard component-library type 
(e.g., yaur_Stri ng in the interface). Until an ANSIIISO standard string component 
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is universally available, there will continue to be an advantage to preferring canst 
cha r * over any other string representation in a ubiquitious interface. 

In short, there are a number of high-level questions we must ask ourselves when 
designing the interface of a component. The most important questions is, "How public 
is this component?" If it will be reused in lots of different and unpredictable ways, it 
will need to have a reasonably complete interface. If the component is intended for 
private use within a package (and will not be exported), the interface should be suffi
cient-nothing more. In all cases we can improve the maintainability of our classes if 
we design their interfaces to contain only primitive functionality, pushing off useful 
but non-primitive functionality into separate operators or classes without private 
access. Finally, logical coupling often can result in unwanted physical coupling; 
avoiding the use of unnecessary types in the interface of a component that are defined 
outside that component can help to alleviate this coupling. 

8.3 Degrees of Encapsulation 

Encapsulation can be harder to achieve than it might at first seem. Like total insula
tion, total encapsulation can also be prohibitively expensive at runtime. 

Figure 8-2 is an example of poor encapsulation.6 Instead of taking an argument, each 
manipulator function returns a writable reference to a private data member. 

II bad_point.h 
#ifndef INCLUDED_BAD_POINT 
#define INCLUDED_BAD_POINT 

class bad_Point { 
int d_x; // (may change to short later) 
int d-y; 1/ (may change to short later) 

public: 
II CREATORS 
b a d_P 0 i n t ( i n t x. i n t y) : d_x C x ), d3 C y) {} 

bad_Point(const bad_Point& p) : d_x(p.d_x), d-yCp.d-y) {} 

II MANIPULATORS 
bad_Point& operator=(const bad_Point& p) { 

d_x = p.xC); d-y = p.y(); return *this; } 
i n t & xC) { ret urn d_x;} I I bad ide a 
i n t & y () { ret urn d-y;} I / bad ide a 

6 See meyers, Item 30, pp. 100-102. 
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} ; 

II ACCESSORS 
int xC) const { return d_x; } 
int y() const { return d-y; } 

#endif 
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Figure 8-2: Example of Poor Encapsulation 

Figure 8-3 shows a trivial test driver for the bad_Poi nt interface. 

II bad_point.t.c 
#include "bad_point.h" 
#include <iostream.h> 

ostream& operator«(ostrearn& a, conit bad_Point& p) 
{ 

return 0 « 'c' « p.xC) « ", " « p.y() « ')'; 
} 

rna i n ( ) 
{ 

} 

bad_Point ptCl,2); 
cout « pt « endl; 
pt.xC) = 5; 
cout « pt « endl; 

Figure 8-3: Test Driver for Poor bad_Poi nt Interface 

When run on the example as shown in Figure 8-2, this driver produces the following 
output (as expected): 

john@john: a.out 
( 1, 2) 
C 5, 2) 
john@john: 

But now suppose we change the type of the private data members in bad_Poi nt from 
i n t to s h 0 r t: 

class bad_Point { 
short d_x; II OK, we changed "private" data 
short d-y; II so what? 

public: 
I I ... 
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and rerun the experiment. The results have now changed to the unexpected: 

john@john: a.out 
( 1, 2) 
( 1, 2) 
john@john: 

The problem is that the reference returned in the interface (i nt&) is inconsistent with 
the type of data returned (s h 0 rt). As a result, a temporary i ntis created and a writ
able reference to that temporary is returned. We could modify the interface functions 
to instead return ash 0 r t &, but then we would have modified the interface in response 
to an implementation change-thereby propagating the problem to our clients. 

A properly encapsulating version of the interface for ba d_Po i nt (like geom_Poi nt in 
Figure 4-3) would define the manipulators to take the new value of the member to be 
set as a parameter: 

rna i n ( ) 
{ 

} 

bad_Point pt(1,2); 
cout « pt « endl; 
Ilpt.x() = 5; 
pt.setX(5); 
cout « pt « endl; 

II Returning writable reference replaced 
II by function taking value of x coordinate. 

The resulting output is again as expected-regardless of whether the data members 
are declared i n t or s h 0 r t : 

john@john: a.out 
( 1, 2) 
( 5, 2) 
john@john: 

A good test for encapsulation is to see whether a given interface will 
simultaneously support two significantly different implementation 
strategies without modification. 
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In the b a d_P a i n t example, doing it right costs nothing extra; however, in some cases, 
total encapsulation can be more expensive. Consider the two potential implementation 
strategies for a geom_Box, shown in Figure 8-4. Implementation (a) stores the lower
left and upper-right comers of the box as points embedded in the geam_Box. It is 
therefore possible to return both the lower-left and upper-right comers by con s t ref
erence. The center point is not stored, and so it must be calculated and returned by 
value. Likewise, both the length and width must be calculated on demand. Implemen
tation (b), however, stores the center point along with the width and height of the 
geam_Box. The center point is returned efficiently by canst reference, while the 
lower-left and upper-right comers must be calculated and returned by value. Length 
and width now require no calculation, but-being fundamental types-they are 
returned most efficiently by value. 

class geom_Box { 

} ; 

geom_Point d_lowerLeft; 
geom_Point d_upperRight; 

public: 
/ / ... 
canst geam_Point& lawerLeftC) canst; 
const geam_Point& upperRight() canst; 
geom_Paint center() canst; 
int width() canst; 
int height() canst; 

class geom_Box { 
geom_Paint d_center; 
int d_width; 

} ; 

int d_height; 

public: 
/ / ... 
geom_Paint lowerLeft() canst; 
geom_Paint upperRight() canst; 
canst geam_Point& center() canst; 
i nt wi dth C) canst; 
int height() canst; 

(a) Stores Lower-Left and Upper-Right Comers (b) Stores Center, Width, and Height 

Figure 8-4: Two Implementation Strategies for a geom_Box Class 

Ilii::
i ~p¢iple>·'1 

- ................ . 

A fully encapsulating interface may impose a significant performance 
burden on a given implementation. 

Part of the advantage of one implementation over the other is in avoiding the expense 
of constructing the most frequently accessed point and instead returning it efficiently 
by reference. Strictly speaking, however, these two interfaces, though similar, are not 
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programmatically identical. For example, in implementation (b), it is possible to take 
the address of the center point, while in implementation (a) it is not. Encapsulating 
all aspects of the implementation would necessitate returning all three points (Le., 
from 1 owerLeft, center, and upperRi ght) by value, or passing in the address of a 
previously constructed point whose value is to be assigned. In the case of geom_Box, 
a fully encapsulating interface would eliminate much of the performance gain of one 
implementation over another. 

A classic example where encapSUlation is not complete can be found in virtually any 
general-purpose string class, which for efficiency will invariably provide direct access 
as a con s t c h a r * to its internal null-terminated string representation. Clearly this 
interface constrains the internal implementation, forcing it to maintain a valid null-ter
minated string representation as long as the string object is not modified or deleted. 
However, a more encapsulating interface turns out to be too expensive or inconvenient 
to be popular. 

Another example where the interface constrains the implementation for efficiency can 
be found in an unbounded array abstraction in which a writable reference to an 
indexed object is returned. As illustrated in Figure 8-5a for an array of points, this 
style of interface forces the implementation to maintain the same space for a 
geom_Poi nt object once it has been referenced. Any attempt by the array to relocate 
the object would invalidate references held by clients. 

class geom_PointArray { 
/ / ... 

} ; 

public: 
/ / ... 
geom_Point& operator[](int index); 
const geom_Point& operator[](int index) canst; 
/ / ... 

Figure 8-5a: Partially EncapSUlating Interface (Array A) 

By contrast, a naive, fully encapsulated version would provide functions to get and set 
a particular element, as illustrated in Figure 8-5b. Notice that this interface is com
pletely generaL There is nothing to stop us from storing the points internally as, say, 
two parallel arrays of integers. We might decide to implement some kind of in-core 
compression scheme for points. We might even think about swapping part of a large 
array out to disk. 
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class geom_PointArray { 
/ / ... 

} ; 

public: 
/ / ... 
geom_Point pointCint index) const; 
void setPointCconst geom_Point& point, int index); 
/ / ... 

Figure 8-5b: Naive Fully Encapsulating Interface (Array B) 

Passing in the address of a previously constructed object to be 
assigned the return value (called return by argument) can improve 
performance while preserving total encapsulation. 

Although this new interface does nothing to limit our implementation choice, the 
runtime cost of using this fully encapsulating interface could be substantially more 
expensive--even when the two underlying implementations are identical. For less 
lightweight elements (i.e., being significantly larger, having a non-inline copy con
structor, or requiring dynamic memory allocation at construction), a fully encapsulat
ing version of the interface could be prohibitively expensive at runtime. 

Fortunately, there is another fully encapsulating form of the interface that does afford 
some relief for "heavier" objects, particularly when accessing their values. Returning 
an object by value will result in construction (and destruction) of at least one tempo
rary of the indexed type. As Figure 8-5c illustrates, we can pass in a writable pointer 
to an existing object instead of returning the object by value. Assigning the value of 
the existing object Gust once) can often be accomplished with relative efficiency. 

class geom_Po~ntArray { 
/ / ... 

} ; 

public: 
/ / ... 
void getPointCgeom_Point *returnValue. int index) const; 
void setPointCconst geom_Point& point. int index); 
/ / ... 

Figure 8-5c: Alternate Fully Encapsulating Interface (Array C) 
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To make this all concrete, I created a single experimental version of a Poi n tAr ray 
class with all three modes of access available simultaneously. The contents of Figure 
8-6 were placed at the top of a driver file used to compare the relative performance of 
these three modes of operation. 

/1 pointarray.t.c 
#include "point.h" 
#include <memory.h) // memcpy() 

class PointArray { 
Point **d_array_p; 
int d_size; 

II array of pointers to Point objects 

Point d_dummy; 
// current physical size of "unbounded" array 
// not static to avoid construction at startup 

private: 
void resize(int maxlndex); // extend array of Point pointers when needed 

PointArray(const PointArray& array); 
PointArray& operator=(const PointArray& array); 

public: 
// CREATORS 

// not implemented 
// not implemented 

PointArray(int size) : d_array_p(O), d_size(O), d_dummy(O,O) 
{ 

resize(size - 1); 
} 

..... PointArray() ; 

/1 MANIPULATORS 
Point& operator[](int index) 
{ 

} 

if (index )= d_size) { 
resize (index); 

} 

void setPoint(const Point& point, int index) 
{ 

} 

if (index )= d size) { 
resize (index); 

} 

// ACCESSORS 
int size() const {return d_size; } 

// Factoring 1S good. 

II ARRAY A 

II ARRAY B & C 

// ARRAY A, B, C 
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} ; 

canst Paint& operator[](int index) canst 
{ 

} 
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II ARRAY A 

Point paint(int index) canst II ARRAY B 
{ 

return index )= d size? d_dummy *d_array_p[index]: 
} 

void getPoint(Point *returnValue. int index) canst II ARRAY C 
{ 

*returnValue = index )= d_size ? d_dummy : *d_array_p[indexJ; 
} 

PointArray::-PointArray() 
{ 

} 

for (int i = D: i < d_size; ++i) { 
delete d_array_p[i]; 

} 

delete [] d_array_p; 

void PointArray::resize(int maxlndex) 
{ 

} 

int newSize = maxIndex + 1; 
Point **p = d_array_p; 
d_array_p = new Point *[newSize]; 
memcpy (d_array_p, p. d_size * sizeof *p); 
delete p; 
for (int i = d_size; i < newSize; ++i) { 

d_array_p[i] = new Point(D.D); 
} 

d size = newSize; 

Figure'8-6: Experimental Po; ntArray Class Implementation 

The first test was to compare the relative efficiency of reading the x coordinate of the 
first 1,000 points of the array and accumulating this value in the variable sum. This 
experiment was run for each of the three array interlaces as presented in Figure 8-7. 
To illustrate the effect the "weight" of the object can have on the interlace, the three 
different Poi nt implementations used in the experiment of Figure 6-83 were reused 
here as well. 7 

7 Data presented represents fully optimized code. 
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maine) 
{ 

II 

II 

int arraySize = 1000; 
int sum = 0; 
PointArrayarray(arraySize); 
canst PointArray& constArray - array; 
I I ... 

INTERFACE A: 
{ 

for (int j = 0; J < arraySize; ++j) 
sum += canstArray[j].x(); 

} 

} 

INTERFACE B: 
{ 

for ( i nt J = 0; J < arraySize; ++j) 
sum += constArray.point(j).x(); 

} 
} 

II INTERFACE C: 
{ 

Point ptCO,O); 
for (int j = 0; j < arraySize; ++j) 

canstArray.getPoint(&pt, j); 
sum += pt. x ( ) ; 

} 

Chapter 8 

II Provide a const reference to 
II enable the invocation of the 
II canst version of operatar[] 

{ 

{ 

Figure 8-7: Experimental Poi n tAr ray "Reading" Driver 

Figure 8-8 provides the results of comparing these three different interfaces styles for 
accessing Poi nt objects within the same array. Using the original Poi nt class (line 1) 

with all its functions declared inline, the cost of total encapsulation is only minimally 
more for the naive encapsulation of ARRAY B (111 %) and nonexistent for the full 
encapsulation of ARRAY C (100%). Removing the inline functions from the con
tained Poi n t type (line 2) makes both constructing and assigning to Poi n t objects 
somewhat more expensive. Part of the runtime advantage of ARRAY C (168%) over 
ARRAY B (271 %) is that the Poi nt assignment is occurring exactly once per array 
access without th~ extra constructor (and destructor) calls generally needed to return 
an object by value. For a contained object that allocates dynamic memory on con
struction (line 3), the cost of construction (1,673%) well exceeds the cost of assigning 
the new value in place (169%). From this data we conclude that there can be substan-
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tial gains in performance for fully encapsulated classes if we return heavyweight 
objects through the argument list instead of by value. 

Partially Totally 
Encapsulating Encapsulating 

ARRAY A ARRAYB 

Line Description of Point Class 

1. Original Point Class (light) 0.222 
(100%) 

2. Without Inline Functions (medium) 0.296 
(100%) 

3. Fully Insulating Version (heavy) 0.369 
(100%) 

0.247 
(111 %) 

0.802 
(271%) 

6.173 
(1,673%) 

Also Totally 
Encapsulating 

ARRAYC 

0.222 
(100%) 

0.497 
(168%) 

0.622 
(1690/0) 

loop time in milliseconds on SUN SPARe 20 

(time as percentage of Array A's time) 

Figure 8-8: Relative Costs of Accessing a Po; ntArray Element 

The second test was to compare the relative efficiency of setting the x coordinate of 
the first 1,000 points of the array while leaving the y coordinate unchanged. Note that 
interface A allows us to accomplish this operation directly, while interfaces B and C 
force us to first get the current value of the entire point. This experiment, illustrated in 
Figure 8-9, was also run for each of the three array interfaces and for each of the three 
Poi nt implementations. The results are tabulated in Figure 8-10. 

rna i n ( ) 
{ 

arraySize = 1000; 
PointArrayarray(arraySize); 
PointArray& nonConstArray = array; II provide non-canst reference. 
I I ... 

II INTERFACE A: 
{ 

} 

for (int j ~ 0; j < arraySize; ++j) { 
nonCanstArray[j].setX(j); 

} 
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II INTERFACE B: 
{ 

Chapter 8 

for (int j = 0; j < arraySize; ++j) { 
nonConstArray.setPoint(Point(j, nonConstArray.point(j).y(»), j): 

} 

} 

II INTERFACE C: 
{ 

} 

} 

Point pt(O,Q); 
for (int j = 0; j < arraySize; ++j) { 

nonConstArray.getPoint(&pt, j); 
nonConstArray.setPoint(Point(j, pt.y(), j); 

} 

Figure 8-9: Experimental Poi n tAr ray "Writing" Driver 

Partially Totally Also Totally 

Line Description of Point Class 

1. Original Point Class (light) 

Encapsulating Encapsulating Encapsulating 

ARRAY A ARRAY B ARRAY C 

0.162 
(100%) 

0.403 
(249%) 

0.336 
(226%) 

2. Without Inline Functions (medium) 0.242 
(100%) 

1.451 
(503%) 

1.118 
(418%) 

3. Fully Insulating Version (heavy) 0.385 
(100%) 

12.901 
(3,551%) 

6.669 
(1,732%) 

loop time in milliseconds on SUN SPARe 20 

(time as percentage of Array A's time) 

Figure 8-10: Relative Costs of Manipulating a Po; ntArray Element 

Based on the results of this experiment, we can conclude that providing a writable ref
erence to the contained object can have profound performance benefits that increase 
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dramatically with the weight of the object. For fully insulating classes, some degree of 
relief is provided by returning the original value through the argument list. 

Settling for less than full encapsulation is sometimes the right choice. 

Fully encapsulating interfaces should be a design goal. However, if performance is 
also a design goal, then extravagant implementation choices must be ruled out regard
less of the degree of encapsulation. By making reasonable assumptions, we can 
achieve superior performance while preserving the flexibility we need in order to 
modify our implementation within appropriate limits. 

As a final aside, we should note a subtle problem with the interface of the unencapsu
lated version of this array. There are two versions of the [J operator: 

aperator[](int index) 

and 

operator[](int index) canst. 

The first of these operators can potentially resize the array; the second cannot. If this 
array were implemented as a "sparse array," the space for a Poi n t (or a significan~ly 
bigger object) might deliberately be left unallocated until referenced by the non
eanst version of operator[]. With this interface, the act of merely "reading" a non
e a n s t array object will implicitly populate it. It would be far more practical to skip 
the operator overloading and choose distinct function names for these operations. 
Doing so would make this array far less prone to subtle misuse that could result in 
grossly excessive allocations of memory. 

To summarize: encapsulation is a cornerstone of good object-oriented design; its goal 
is to minimize the logical dependency of clients on the details of an implementation 
across an interface. More complete encapsulation affords implementors greater flexi
bility in their choice of implementation. Yet, like insulation, total encapsulation for a 
very low-level object can be prohibitively expensive at runtime. 
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If perfonnance is a design goal, then certain implementation choices (e.g., object com
pression and swapping to disk) must be ruled out anyway. By making reasonable 
assumptions, learned through experience, we can attain most of the benefit of encapsula
tion without incurring excessive and unnecessary runtime cost. When total encapSUlation 
is appropriate, we can sometimes reduce its runtime cost by passing in a previously 
constructed object to load instead of returning the object by value. 

8.4 Auxiliary Implementation Classes 

Often a component will make use of one or more tiny auxiliary classes in its imple
mentation that are not programmatically accessible in the interfaces of the principal 
classes defined in that component. Two characteristics help to distinguish an auxiliary 
implementation class from other kinds of classes: 

1. The class is intended for the sole purpose of implementing a component 
and is not intended for direct use (or reuse) outside that component. 

2. The class is trivial and may not warrant direct testing. 

The Lin k class of the list component shown in Figure 6-19 is a case in point. There 
are a variety of ways to realize such implementation classes, each with its advantages 
and disadvantages. In this section we explore the pros and cons of a variety of design 
options. 
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Consider a simple integer list class shown in Figure 8-11a. Class my ~L ink is an imple
mentation detail of my _L i s t, and is not programmatically accessible from my _L i st. In 
this implementation, the auxiliary class definition is placed in the header file of the 
component defining the primary class. This straightforward approach is the simplest 
and most common method of implementing components using such auxiliary classes. 

II my_list.h 
#ifndef INCLUDED_MY_LIST 
#define INCLUDED_MY_LIST 

class my_Link { 

} ; 

int d_data; 
my_Link *d_next_p; 

public: 
I I ... 

class my_List { 
my_Link *d_head_p; 
I I ... 

public: 
II 

} ; 

#endif 

my_list 

Figure 8-11a: (Original) File Scope Implementation of my_L ink (A) 
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We could put the link class in its own component, as illustrated in Figure 8-11 b. This 
arrangement has the advantage of allowing us to test (and even reuse) my_L ink inde
pendently of my _L i st. But for tiny implementation classes such as my _L ink, the cou
pling brought about by reuse along with the extra physical complexity of a second 
component makes this an unlikely choice. 

II my_list.h 
#ifndef INCLUDED_MY_LIST 
#define INCLUDED_MY_LIST 

class my_Link; 

class my_List { 
my_Link *d_head_p; 
I I ... 

public: 
II 

} ; 

1fendif 
II my_link.h 
#ifndef INCLUDED_MY_LINK 
#define INCLUDED_MY_LINK 

c 1 ass my _ Lin k { 

} ; 

int d_data; 
my_Link *d_next_p; 

public: 
II 

1Iendif 

my_link 

Figure 8-11b: Separate Component Implementation of my _L ink (B) 

1 

We could declare my _L i s t a f r i end of class my _L ink and make all of the link's func
tions private, as suggested in Figure 8-11c. Making my _L ink a "slave" class of 

my _L i s t prevents clients of component my _1 i s t from using my _L ink directly; how

ever, access for direct testing is also precluded. 
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II my_list.h 
#ifndef INCLUOED_MY_LIST 
#define INCLUDED_MY_LIST 

class my_List; 

class my_Link { 

} ; 

int d_data; 
my_Link *d_next_p; 
friend my_List; 
I I ... 

class my_List { 
my_Link *d_head_p; 
I I ... 

public: 
II 

} ; 

#endif 
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my_list 

Figure 8-11c: Slave Class Implementation of my _L ink (C) 

We could make the my _L ink class a local definition, contained entirely within the . c 
file, as illustrated in Figure 8-11d. This design would serve to insulate clients from 
my _ Lin k. However, in addition to precluding direct testing, this design would also 
preclude inlining any members of my _L i s t that made substantive use of my _L ink. If 
component my _, i s t had also contained an iterator, not being able to inline iterator 
functions might have significantly degraded runtime performance. 

II my_list.h 
#ifndef INCLUDED_MY_LIST 
#define INCLUDED MY LIST - -

class mY_Link; 

class my_List { 
my_Link *d_head_p; 
/ / ... 

public: 
II 

} : 

#endif 

my_list 

my_I ist. h my_list.c 

Figure 8·11d: Local Class Implementation of my _L ink (D) 
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Finally, we could make the my _ Lin k class a private (or public) nested class whose def
inition is contained entirely within class my _L i s t, as illustrated in Figure 8-11e. This 
implementation would not insulate clients from the details of my _L ink, but it would 
permit members of my _ Lin k to be used in the bodies of inline members of my _ Lis t 

(and my _ Lis tIt e r ). Making my _ Lin k a nested class avoids affecting the global name 
space; making it private makes it encapsulated and therefore not directly usable (or 
testable). 

II my_list.h 
#ifndef INCLUDED~MY_LIST 
#define INCLUDED_MY_LIST 

class my~List { 

} ; 

class my_Link { 

} ; 

int d_data; 
my_Link *d~next~p; 

public: 
I / ... 

my_Link *d_head_p; 
/ I ... 

public: 
I / ... 

my_list 

Figure 8-11e: Nested Class Implementation of my _L ink (E) 

The advantages of each of the implementation alternatives for the my _L ink class pre
sented in this section are summarized in Figure 8-12. Placing my _ Lin k in a separate 
component (implementation B) is clearly the most flexible, allowing the component 
author to include the auxiliary class definition in either the . c file or the . h file of the 
principal component as needed. However, there is a cost associated with each physical 
piece of a system. Unless we plan to directly test or independently reuse the auxiliary 
class, creating a separate component to hold it would probably be unwarranted. 

Nested classes are not as flexible as classes defined at file scope. For example, nested 
classes cannot be forward declared;8 hence, nested classes cannot be insulated from 
clients of their enclosing class. In addition, nested types are notationally cumbersome 

8 The ANSIIISO committee has adopted a proposal to allow the forward declaration of nested 
classes in c++. See stroDstrup94, Section 13.5, pp. 289-290. 
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and cause excessive clutter in the physical interface. The syntax of the nested imple
mentation inhibits our conveniently transplanting the auxiliary class to the . c file or to 
another component, should we later decide to insulate or reuse it. 

Is Directly Testable 

Affects Global Name Space 

Can Be Used in Inline Bodies 

Is Physically Coupled 

Can Be Insulated 

Is Reusable 

(A) File Scope (Original) YES YES YES YES NO NO 

(B) Separate Component YES YES YES NO YES YES 

(C) Slave Class NO YES YES YES NO NO 

(D) Local Class NO NO* NO YES YES NO 

(E) Nested (Private) Class NO YES YES YES NO NO 

(E') Nested (Public) Class YES NO YES YES NO NO 
*Presumes class does not involve constructs with extemallinkage. 

Figure 8-12: Summary of Various Auxiliary Class Implementation Advantages 

The original implementation (A) and the public nested implementation (E') have sim
ilar properties. The one benefit of the nested public design is that it does not affect the 
global name space. Considering the disadvantages of nested classes described aboye, 
if you're going to make a nested class public, why not just prefix its name and define 
it at file scope in the . h file (as in implementation A)? 
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Though not insulated, private nested classes are truly encapsulated and cannot be 
accessed by clients of the primary objects, nor can they be directly tested. The slave 
class implementation (C) is almost identical to the private nested class implementa
tion (E), except that the class itself is part of the global name space, though still not 
usable or testable directly. The local class implementation (D) is also similar to a pri
vate nested implementation (E), except that the local classes are insulated from clients 
and therefore cannot be used in the bodies of inline functions of the primary classes. 
For more on classes without extemallinkage, see Section 3.2 (immediately following 
the discussion of Figure 3-7). 

The best choice in any given situation will depend on the answers to the following 
three questions: 

x. Does the auxiliary component warrant direct testing? 

In our 1 i s t component, the Lin k class will automatically be tested with 
100 percent coverage just by testing the Lis t class under normal condi
tions; there is no practical advantage to testing Lin k directly. In cases 
where the auxiliary class is more complex, we should probably allow for 
direct access, which would eliminate slave (C), local (D), or private 
nested (E) auxiliary class implementations. 

y. Does the component expose inline functions that require access to the 
auxiliary class? . 

If the component's header does not define inline functions that make sub
stantive use of an auxiliary class, that class can be insulated from clients 
and is often best implemented locally (D). However, if the auxiliary class 
is complex enough to warrant direct testing, the class should be imple
mented using either (A) or (B). 

z. Will the component be used widely? 

If the component is used only in the implementation of a single sub
system, then there may be no need to get fancy. The original implementa
tion (A) will often be a good choice. 
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A decision tree to aid in making the decision is provided in Figure 8-13. 

x. Does the auxiliary 
class require direct 
testing? 

y. Do inline functions 
need access to the 
auxiliary class? 

z. Will the component 
be used widely? 

(x?) 

/~ 
no yes 

/ ~ 
(y?) (y?) 

/~ /~ 
no yes no yes 

(z?) 

/\ 
(z?) 

/\ 
(z?) 

I"" 
(z?) 

I"'" no yes no yes no yes no yes 
D D A C/E A B A B* 

*The header for the auxiliary class is included in the. h file instead of the . C file 
of the principal component. 

Figure 8-13: Deciding Which Auxiliary Class Implementation to Use 

To sum up: defining auxiliary classes in the same header file as the primary classes is 
common; often this approach is adequate, if not optimal. Where possible, we would 
like to insulate auxiliary classes from our clients by hiding them in the . c file or, if 
necessary for testing, placing them in a separate component. For lightweight compo
nents that are widely used, we may be forced to use slave or private nested classes to 
enforce our sole ownership of the auxiliary class. This section is intended as a guide
line and is not a substitute for the application of common sense. 

8.5 Summary 

Components serve jointly as effective units of both logical and physical design. An 
abstraction is an abstract specification of closely related objects and (operator) func
tions; a component (interface and implementation) is the corresponding concrete 
realization. 

There are several competing aspects to consider when creating the high-level specifi
cation for a component. For components designed as part of a specific subsystem, we 
require only that the interface be sufficient for its intended clients. For components that 
will be used for various purposes throughout a large system, we expect the interfaces 
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to be complete. By sufficient we imply that the interface is suitable for solving a par
ticular instance of a problem in some domain. By complete we mean that the interface 
is suitable for solving an arbitrary problem in that domain. Both usability and main
tainability are enhanced by keeping all component interfaces minimal. 

Operations defined as members of individual objects should be primitive. An operation 
is primitive if its efficient implementation requires direct access to private details of the 
class. Operations that are useful but not primitive should be implemented outside of 
the object in terms of primitive functions, and should not be granted friend status. 

User-defined types used in the interface of a component imply a strong logical depen
dency on that type. As with physical coupling, logical coupling is best minimized. For 
example, it is often preferable to use a canst cha r * parameter instead of some par

ticular string class in order to avoid unnecessary logical coupling, especially if the 
interface will be used by a variety of clients in many different contexts. 

Encapsulation is a property of an object that enables the implementation of that object 
to be modified without affecting its logical interface. Sometimes total encapsulation 
can be prohibitively expensive. However, encapsulation, like insulation, need not be 
absolute in order to be useful. Often we can make reasonable assumptions that allow 
us to achieve our performance goals, and still preserve sufficient encapsulation to 
allow us to continue to modify the implementation within reasonable limits. If total 
encapsulation is required, we can sometimes achieve a sizable performance gain by 

passing in a previously constructed object as a writable argument to be loaded with 
the result, rather than returning the result by value. The performance gain for return 

by argument over return by value is even more pronounced for heavyweight objects 

that manage internal dynamic memory. 

When implementing a component, there is often a need to create one or more auxil
iary classes. These classes are not accessible through the interface(s) of the primary 
object(s) defined in the component. These classes are implementation details of the 
component and are simple enough that they may not require independent testing. The 
following strategies have been identified for implementing auxiliary classes: 

• At file scope in the. h file. 
• In a separate component. 
• As a slave class of one or more primary classes. 
• In the . c file of the component. 
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• As a private (or public) nested class of a primary class. 

Figure 8-12 identifies the various advantages of these implementation strategies for 
auxiliary classes with respect to the following questions: 

• Is the auxiliary class directly testable? 
• Does the auxiliary class affect the global name space? 
• Can the auxiliary class be used in inline function bodies? 
• Is the auxiliary class physically coupled? 
• Can the auxiliary class be insulated from clients? 
• Is the auxiliary class independently reusable? 

Figure 8-13 provides a decision tree that can be used to select the appropriate imple
mentation for an auxiliary class based on the context in which it will be used. 



Designing a Function 

The goal of function design is to provide safe, easy, and efficient access to the behav
iors defined by an abstraction. The C++ language provides great latitude when it 
comes to specifying the interface at the function level. Whether to make a function an 
operator, whether it should be a member or free operator, how arguments should be 
passed, and how values should be returned are all part of this level of the design pro
cess. There are reasons beyond style that playa role in making these design decisions, 
many of which we touch on in this chapter. 

The C++ language places a variety of flavors of fundamental integer types (such as 
s h 0 r t, un s i 9 n e"d, 1 0 n g, etc.) at our disposal. These types represent yet another degree 
of freedom that, if used thoughtlessly, can complicate and even weaken an interface. 

A user-defined conversion operator allows the compiler to convert implicitly to or 
from a user-defined type. Careful design requires weighing the possible advantages of 
implicit conversion against ambiguities and potential for errors caused by the result
ing degradation in type safety. Certain other functions, if not explicitly specified, will 
be defined automatically by the compiler if needed. Deciding when these compiler
generated function definitions are good enough requires thoughtful consideration. 

In this chapter we provide a framework in which to design the interface of a compo
nent, but at the level of detail of an individual function. We examine the excessively 
large design space available to component authors and identify design decisions that 
have shown themselves to be either beneficial or counter productive. We see how 
many unnecessary degrees of freedom in the design" space of the functional interface 
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can be eliminated without any loss in effectiveness. The resulting framework can then 
help guide us toward simpler, more uniform, and more maintainable interfaces. 

9.1 Function Interface Specification 

There is a list of issues one must address when specifying the interface of a function 
in C++ in accordance with the ground rules presented in Chapter 2: 

1. Operator or non-operator function? 
2. Free or member operator? 
3. Virtual or non-virtual function? 
4. Pure or non-pure virtual member function? 
5. Static or non-static member function? 
6. canst or non-canst member function? 
7. Public, protected, or private member function? 
8. Return by value, reference, or pointer? 
9. Return canst or non-canst? 

10. Argument is optional or required? 
11. Pass argument by value, reference, or pointer? 
12. Pass argument as canst or non-canst? 

There are two organizational issues that, although not part of the logical interface, 
must also be addressed: 

13. Friend or non-friend function? 
14. Inline or non-inline function? 

There is a great deal of interplay among these issues; typically the answer to one 
question will imply or at least affect the answer to another. In what follows we 
address each of these issues individually, and provide guidelines for making optimal 

design decisions. l 

9.1.1 Operator or Non-Operator Function 

Apart from the compiler-generated operators (e.g., assignment), the only reason to 
make a function an operator is for the notational convenience of the client. Note that, 

1 See also meyers, Item 19, p. 70. 
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unlike function notation, operator notation is not context sensitive; the resulting func
tion call resolution of an operator invoked from a member function will be the same 
as if invoked at file scope.2 When used judiciously, operator overloading has a natural 
and obvious advantage over the functional notation-especially for user-defined logi
cal and arithmetic types. 

#include "pub_intset.h" 
#include <iostream.h> 

rna i n ( ) 
{ 

pUb_IntSet a, b, c, d, e, f; 

a += 1; a += 3; a += 5; a += 7; 
b += 1; b += 2; b += 3; b += 4; 
c = a + b; d = a*b; e = a - b; 

f = a*b*c + b*c*d + c*d*e; 

#include "pub_intset.h" 
#include <iostream.h> 

rna i n ( ) 
{ 

pub_IntSet a, b, c, d, e, f; 

a.add(l); a.add(3); a.add(5); a.add(7); 
b.add(l); b.add(2); b.add(3); b.add(4); 
c = pub_IntSet::or(a, b); 
d = pub_IntSet::and(a, b); 
e = pub_IntSet::sub(a, b); 
f = pub_IntSet::or( 

) ; 

pub_IntSet: :or( 
pub_IntSet::and( 

pub_IntSet: :and(a, b), 

) , 

c 
) , 
pub_IntSet: :and( 

pub_IntSet::and(b, c), 
d 

) 

pub_IntSet::and( 
pub_IntSet: :and(c, d), 
e 

) 

cout « f « endl; pub_IntSet: :print(cout, f) « endl; 
} } 

(a) With Operator Overloading (b) \Vithout Operator Overloading 

Figure 9-1: 1\vo Usage Models for an Integer Set Abstraction 

Consider the two different usage models shown in Figure 9-1, corresponding to two 
different interfaces for an integer set component, pUb_intset. Figure 9-1a illustrates 
how operator notation can be used effectively. The nature of the set abstraction makes 

2 eUis, Section 13.4.1, p. 332. 
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the meanings of these operators intuitive, even for developers not familiar with this 
particular component. Figure 9-1 b shows the equivalent computation using the more 
bulky function call notation. 3 

Readability (more than ease of use) should be the primary reason for 
employing operator overloading. 

In this integer set application, the operator notation clearly enhances both readability 
and ease of use. By readability, we mean the ability of a software engineer to discern, 
quickly and accurately, the intended behavior of a body of unfamiliar source code. 
Ease of use refers to how easily a developer can use the object effectively to create 
new software. Any typical body of source code is read many more times than it is 
written ("For most large, long-lifetime software systems maintenance costs exceed 
development costs by factors ranging from 2 to 4,,4), so it makes practical sense to 
favor readability over ease of use in the long run. 

Guideline 

The semantics of an overloaded operator should be natural, obvious, 
and intuitive to clients. 

It is easy to come up with cute and easy-to-use applications for operators that have no 
intuitive meaning for developers unfamiliar with your component. Sophomoric antics, 
such as defining unary ope r a to r"'" as a member of a string class to reverse the string in 
place, are obviously out of place in a large-scale development environment. The lit
mus test for determining when to supply operator notation should be whether there is 

3 We have made some of the member functions static to enable the same symmetric implicit conver
sion of arguments, as do the corresponding operators (see Section 9.1.5). The indentation style of 
the deeply nested function calls in Figure 9-1 b is borrowed from languages such as LISP and CLOS 
where such constructs occur frequently_ 
4 sommerville, Section 1.2.1, p. 10. 
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a natural and intuitive meaning-immediately obvious to new clients-that improves 
(or at the very least maintains) the level of readability.5 

Guideline 

The syntactic properties of overloaded operators for user-defined types 
should mirror the properties already defined for the fundamental types. 

At a semantic level, it is quite difficult to provide specific guidelines as to what is and 
what is not intuitive. However, at a syntactic level we can make a number of strong 
and well-defined statements based on the implementation of the fundamental types in 
the language. 

Patterning the syntactic properties of user-defined operators after 
the predefined C++ operators avoids surprises and makes their usage 
more predictable. 

In the C++ language, every expression has a value. There are two basic types of values, 
called lvalues and rvalues.6 An lvalue is a value whose address can be taken. If an 
lvalue can be on the "left" of an assignment statement, it is said to be a modifiable 
lvalue; otherwise it is said to be a non-modifiable Ivalue.7 An rvalue cannot be 
assigned to nor can its address be taken.8 The simplest lvalued expression is a variable 
identifier itself. Unless the variable is declared con s t, it is a modifiable Ivalue. 

5 See also cargill, Chapter 5, p. 91. 
6 Originally these terms came from classic C: the term lvalue meant that the value of an expression 
could appear on the left of an assignment statement while an rvalue could appear only on the right. 
With the advent of canst in C++ and ANSI C, lvalues are now divided into two flavors: modifiable 
and non-modifiable (see stroostrop, Section 2.1.2, p. 46--47). 
7 ellis, Section 3.7, p. 25-26. 
8 Bit fields are an exception in that they can appear on the left of an assignment statement, yet 
according to the ARM (ellis, Section 9.6, p. 184), the address of a bit field may not be taken. The 
same is true for unnamed temporaries of a user-defined type (see Section 9.1.2). 
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Certain operators, such as assignment (=) and its variations (+= -= *= /= "= &= 1= 
~= %= »= «=), pre-increment (++x), and pre-decrement (--x) all return modifiable 
lvalues when applied to fundamental types. These operators always return a writable 
reference to the modified argument. For example the hypothetical definition of these 
operators for the fundamental type do U b 1 e (if implemented as a C++ class) might 
look as shown in Figure 9-2. 

class double { II Note: not legal C++ 

} ; 

I I ... 
public: 

double() {} 
double(int); 
double(const double&); 
,....d 0 u b 1 e () {} 

double& operator=(const double& d); 
double& operator+=(const double& d); 
double& operator-=(const double& d); 
double& operator*=(const double& d); 
double& operator/=(const double& d): 

double& operator++(); 
double& operator++(); 
double operator++(int); 
double operator--(int); 

double *operator&(); 
canst double *operator&() const 

II pre-increment ++x 
II pre-decrement --x 
II post-increment x++ 
II post-decrement x--

II unary address operator 
; I I unary address operator 

double operator+(const double& d); 
double operator-(const double& d); 

II unary + 
II unary -

int aperatar!(const double& d); II unary logical "natl! 

int aperator&&(const double& left, const double& right); 
int operatorll (canst double& left, canst double& right); 

double operator+(const double& left, canst double& right); 
double operator-(const double& left, canst double& right); 
double operator*(const double& left, canst double& right); 
double operator/(const double& left, canst double& right); 

int operator==(const double& left, const double& right); 
int operator!=(const double& left, const double& right); 
int operator< (const double& left. const double& right); 
int operator<=(const double& left, -const double& right); 
int operator> (const double& left, const double& right); 
int operator>=(const double& left. const double&-right); 

Figure 9-2: Hypothetical Implementation of Fundamental Type do U b 1 e 



Section 9.1.1 Operator or Non-Operator Function 589 

Other operators shown in Figure 9-2 return an rvalue because there is no appropriate 
Ivalue to return. In the case of symmetric binary operators (such as + and *), the value to 
be returned is neither the left argument nor the right argument but a new value derived 
from both; consequently the return must be by value.9 Equality (== !=) and relational 
« <= > >=) operators always return an i nt type rvalue of either 0 or 1; clearly neither 
of the input arguments would be appropriate to return here either. The post-increment 
and post-decrement operators are an interesting special case in that they are the only 
operators that modify the object and yet have no appropriate lvalue to return: 

double double::operator++(int) 
{ 

} 

double tmp = *this; 
++*this; 
return tmp; 

double double::operator--(int) 
{ 

} 

double tmp = *this; 
--*this; 
return tmp: 

As a more subtle example, consider the two usage models corresponding to a generic 
symbol table abstraction shown in Figure 9-3. In both cases, a symbol table-parame
terized by type i nt-is constructed, two symbols are added, and the value of symbol 
"foo" is looked up by name. Since it is entirely possible that a symbol with the speci
fied name does not exist in the table, it is not appropriate for the function doing the 
lookup to return its result by value or reference; hence the value is returned by pointer. 
(Notice how and to what degree we have just taken liberty with encapsulation.) But 
compare this usage with what we normally expect when we apply 0 per at 0 r [] to a 
fundamental array of i nt. We expect to get back a reference to the indexed value, not 
a pointer which may be null. This difference in usage between the 0 per at 0 r [] in Fig
ure 9-3a and the usage of operator[] for fundamental types tends to make the func
tion call notation of Figure 9-3b preferable in this case. Reserving the operator 
notation for those cases where the syntax closely mirrors the corresponding funda
mental syntax reinforces the effectiveness of operator overloading. 

9 For a more detailed explanation, see meyers, Item 23, pp. 82-84. 
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#include "gen_symtab.h" 

maine) 
{ 

gen_SymTab<int> s; 
s("foo", 1); II operator() 
s("bar", 2); II (bad idea) 
const int *val = s["foo"]; 
I I ... 

(a) With Operator Overloading 

#include "gen_symtab.h" 

maine) 
{ 

gen_SymTab<int> s; 
s.add("foo", 1); 
s.add("bar", 2): 

Chapter 9 

const int *val = s.lookup("foo"); 
I I ... 

(b) Without Operator Overloading 

Figure 9-3: Two Usage Models for a Generic Symbol Table Abstraction 

Figure 9-4 summarizes the declarations of most C++ operators as they would be if 
applied to fundamental types. (The fundamental operators - > ->* () and , provide 
little insight.) 

class T { 
T& operator++(); 
T operator++(int); 

T* operator&(); 
const T* operator&() const; 

T& operator=(const T&): 
} : 

T operator-(const T&); 
int operator!(const T&); 

T operator+(const T&, const T&); 
int operator==(const T&, const T&): 
int operator&&(const T&, const T&); 

II operators with similar declarations 

II ++x --x (prefix) 
II x++ x-- (postfix) 

II &x (unary) 
II &x (unary) 

II = += -= *= 1= %= «= »= &= A= 1= 

II - + ,.... (unary) 
II (unary) 

II + - * I « » % & A 
1 

II -- 1= < <= > > = . 
II && 1 1 

II if the type is. pointer-like (i .e., P = T*) 

class P { 

} ; 

T& operator[](int) const; 
T& operator*() const; 

II indexed array access (binary) 
II pointer dereference (unary) 

II if type is pointer-to-const-like (i .e .. PC = const T*) 
class PC { 

const T& operator[](int)const; II indexed array access (binary) 
const T& operator*()const; II pOinter dereference (binary) 

} ; 

Figure 9-4: Summary of Properties of Some Fundamental Operators 
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Notice that unary operators that do not modify their arguments are not fundamentally 
members. For example, unary operator! works perfectly on a user-defined type such 
as an ostream even though there is no ! operator defined for this type: 

#include "iostream.h" 
void g(ostream& out) 
{ 

if (!out) { 
cerr « "output stream is bad" « endl; 
return; 

} 

/ / ... 
} 

The code above works because an ostream knows how to convert itself implicitly to a 
fundamental type (va; d *) for which the! operator is defined. If operator! were 
treated as a member of a hypothetical v 0 i d * class definition, no user-defined conver
sion could occur and the above code would result in a compile-time error. 

If we want to disable implicit conversion of the argument to the "free" unary 
operator!, we can remain consistent with these guidelines simply by making the! 
operation a member function-e.g., obj . not ( ) instead of an operator. 10 

9.1.2 Free or Member Operator 

The decision of whether to make an operator function a member or a free function is 
entirely defined by whether implicit type conversion of the leftmost operand is desir
able. If the operator modifies this operand, such conversion is definitely not desirable. 

The C++ language itself serves as an objective and relevant standard 
after which to model user-defined operators. 

Consider what could happen if we defined the concatenation operator (+=) for a string 
class to be a free function instead of emulating the approach taken for the fundamental 

10 See also murray, Section 2.5, -po 44. 
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types. As Figure 9-5 illustrates, making 0 per at 0 r+= a free function has enabled the 
implicit conversion of its left-hand con s t c h a r * operand to a temporary p ub_St ring 
(denoted here as tOO 5) with f 0 0 as its value. Even though this temporary would be an 
rvalue for fundamental types, it is the temporary p u b_S t r i n 9 object that then has the 
value II ba r" concatenated to it (and is not a compile-time error).11 As this behavior 
would likely surprise and annoy our clients, we would be wise to suppress it. 

II pub_String.h 
/ / ... 
class pub_String { 

I I ... 
public: 

pub_String(const char *str); 
} ; 

pub_String& operator+=(pub~String& left, const pub_String& right); 
II free-function definition of concatenation for strings 

I I ... #include "pub_string.h" 

void f() 
{ 

pub_String a("tar"); 
const char *b = "foo"; 
pub_String c("bar"); 
b += c; II has no effect 

b 

(pub_String) taOS 

+= 

(pub_String) t005 .-

} 

a += b += c; II a now holds "tarfoobar" 
II but b remains unaffected. 

c 

(" bar" concatenated 
to temporary copy 
of pub_St ri ng) 

Figure 9-5: Result of Implementing operator+= as a Free Function 

11 The C++ Language currently permits the modification of unnamed temporaries of user-defined 
type. See murray, Section 2.7.3, pp. 53-55. 
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On the other hand, we expect certain operations (e.g., + and ==) to work regardless of 
the order of their arguments. Consider 0 per a t 0 r+, which is used to concatenate two 
strings and return its result by value. The language allows us to define 0 per at 0 r+ as 
either a member or a non-member. The same goes for operator==. If we elect to 
define these operators as members, then we will subject our clients to the following 
anomalous behavior: 

void f() 
{ 

pub_String s("foo"), te""); 
i n t i; 

t - s + "bar"; 
t - "bar" + s ; 
1 - S -- "bar"; 
1 - "bar" -- s ; 

} 

II ok 
II error 
II ok 
II error 

The problem is that 

pub_String::operator+(const String& right) 

and 

pub_String::operatar==(const String& right) 

enable a char * to be implicitly converted to a pub_String on the right via a con
structor of the fonn 

pub_String::pub_String(const char *) 

while no such conversion on the 'left is possible.12 Making these operators free solves 
the symmetry problem until we add the conversion operator 

pub_String: :operatar canst char *() canst 

to the pu b_S t r i n 9 class. 

Figure 9-6 illustrates a problem brought about merely by adding a conversion (cast) 
operator from a pub_St ring to a can s t ch a r *. Strangely, the two apparently similar 
operators == and + are not identical with respect to overloading as (naively) we would 

12 ellis, Section 13.4.2, p. 333. 
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like to believe. The difference lies in the fact that there are now two ways to interpret 
the == operator: 

1. Implicitly convert the c h a r * to a p u b_S t r i n 9 and compare using 
operator==(const String&, canst String&). 

2. Implicitly convert the pub_St ring to a can s t ch a r * and compare using 
the built-in == for pointer types. 

The problem does not exist for the + operator because there is no way to "add" two 
pointer types in C++; hence there is no ambiguity. 

II pub_String.h 
I I ". 
class pub_String { 

I I ... 
public: 

pub_StringCconst char *pcc): 
I I ... 
operator const char *() const; II (== new conversion operator 

} ; 

int operator==(const String& left. canst String& right); 
String operator+Cconst String& left. const String& right); 

I I ... #include "pub_String.h" 

void f() 
{ 

pub_String s("foo"), te""); 
i nt i; 

t - s + "bar"; II ok 
t - "bar" + s ; II ok 
1 - s -- "bar"; II error 
1 - "bar" -- s ; II error 
1 - strlen(s); II ok 

} 

(ambiguous) 
(ambiguous) 

Figure 9-6: Ambiguity Resulting from both Conversion Operators 

In a real-world string class, we would never rely on the implicit conversion to obtain 
the string value for fear that the extra construction and destruction would unduly 
affect our performance. Instead, we would define separate overloaded versions of 
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ope rat 0 r+ to handle each of the three possibilities as efficiently as possible, thus 
sidestepping these ambiguity problems. 

Inconsistencies in overloaded operators can be obvious, annoying, 
and costly to clients. 

As Figure 9-7 illustrates, in order to accept a con s t c h a r * on the left of the == operator, 
we are forced to make at least one of the equality operators functions a free function. 

class pub_String { 
I I ... 

} ; 

public: 
pub_String(const char *pcc); 
operator canst char *() canst; 
int operator==(const char *pcc) canst; II bad idea: (asymmetric) 

II Allows for user-defined' conversion only for the 
II argument on the right side of the operator. 

int operator==(const pub_String& left, const pub_String& right); 
int operatar==(const char *left, const p~b_String& right); 

II Allows for user-defined conversion on both the 
II left and right arguments symmetrically. 

struct Foo { 
F 00 ( ) ; 

operator const pub_String& () canst; 
II Implicitly convert a Foo to a pub_String, 

} ; 

struct Bar { 
Bar(); 
operator canst char *() canst; 

II Implicitly convert a Bar to a (canst char *). 
} ; 
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void g() 
{ 

} 

Faa faa; 
Bar bar; 
if (bar == faa) { 

I I ... 
} 

if (faa == bar) { 
I I ... 

II ok: 

II error: 

Chapter 9 

Bar =to=) (canst char *) 
Faa =ta=) (canst pub_String&) 

Faa =NO=) (const pub_String&) 
Bar =to=) (canst char *) 

Figure 9-7: Result of Implementing 0 per at 0 r= as a Member Function 

As long as we are supplying all three versions of the operatar== function, what harm 
could it do to make one a member? The hann is that a lack of symmetry could sur
prise our clients. In the event that one object can be implicitly converted to 
p u b_S t r i n 9 and the other to a can s t c h a r *, we would still expect the order of com
parison to be unimportant. That is, if bar == f a a compiles, then so should fa 0 == bar 
(and produce the identical result at runtime). However, if the 

int aperator==(const pub_String&, canst char *); 

version is not available as a free function, then there is no way for the following 
implicit conversions to occur: 

implicit conversion 
of Foa to 

canst pub_string& 

f 0 bar 

implicit conversion 
of Sa r to 
canst char * 

(pub_String) t006 (canst char *) t007 

(pub_String) t008 

The conclusion is that 0 per at 0 r== should always be a free function, regardless of 
what other functions are involved. The same reasoning holds for the other binary 
operators that do not modify either operand and return their result by :value. 
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The example set forth by the language itself is an impartial and useful model that cli
ents can exploit to infer basic syntactic and axiomatic properties of operators.- The 
goal of modeling the fundamental operations is not to enable implicit conversions 
unnecessarily, but rather symmetrically to avoid surprises. If operator overloading is 
used to any great extent, it is reasonable to expect that the abstraction is suitable for 
reuse in a variety of situations. Clients of reusable components will appreciate a con
sistent and professional interface-devoid of syntactic surprises. Note that the C++ 
language requires that the following operators be members: 13 

[ ] 

-) 

( ) 

Assignment 
Subscript 
Class member access 
Function call 

(T) Conversion ("cast") operator 
new (static) allocation operator 
del e t e (static) deallocation operator 

9.1.3 Virtual or Non-Virtual Function 

Dynamic binding enables member functions accessed through a base class to be 
determined by the actual subtype of the object, as opposed to the type of the pointer or 
reference used in the call. A function must be declared vir t u a 1 in order to be dynam
ically bound. Only member functions can be virtual in C++. However, the conclusion 
that polymorphic behavior of an operator requires it to now become a member where 
it would otherwise have been a free function is erroneous. 

Syntactic issues, such as symmetric implicit conversion for binary 
operators, need not be compromised in order to achieve polymorphic 
behavior. 

13 ellis, Section 12.3c, p. 306; stroostrup94, Section 3.6.2, pp. 82-83. 
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II geom_shape.h 
#ifndef INCLUDED GEOM SHAPE - -
#define INCLUDED_GEOM_SHAPE 

class geom_Shape { 
public: 

virtual ~geom_ShapeC); 
virtual canst void *classld() const = 0; 
virtual int compare(const geom_Shape& shape) const = 0; 

II Returns negative. zero. or positive corresponding to 
II whether this geom_Shape object is less than. equal to, or 
II greater than the specified geom_Shape object. respectively. 

} ; 

inline int operator==(class geom_Shape& left. class geom_Shape& right) { 
return left.compare(right) == 0; } 

inline int operator!=(class geom_Shape& left, class geom_Shape& right) { 
return left.compare(right) != 0; } 

inline int"operator<=(class geom_Shape& left, class geom_Shape& right) { 
return left.compare(right) <= 0; } 

inline int operator<Cclass geom_Shape& left, class geom_Shape& right) { 
return left.compare(right) < 0; } 

inline int operator)=Cclass geom_Shape& left. class geom_Shape& right) { 
return left.compareCright) )= 0; } 

inline int operator)Cclass geom_Shape& left. class geom_Shape& right) { 
return left.compareCright) 0; } 

#endif 

Figure 9-8: Polymorphic Comparison of Shapes Using Free Operators 
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Figure 9-8 illustrates how symmetric operators can and should continue to remain free 
even in the presence of polymorphic behavior. Instead of making each of the six 
equality and relational operators virtual members of the class, a single virtual com
pare member is provided. These six operators will now continue to behave symmetri
cally with respect to any implicit conversion. 

Equality operators often make sense even when the relational operators do not (think 
of a point abstraction). Sometimes sorting a heterogeneous collection allows for more 
efficient access. In such cases, any ordering (even an arbitrary one) can be useful. The 
virtual c 1 ass I d () method in Figure 9-8 enables derived types to define their own 
runtime type identifier. 14 Using this identifier, shapes of the same type can be sorted 
according to their own internal ordering, while ordering across concrete types can be 
defined by some different (perhaps arbitrary) comparison. An implementation of a 
geom_Ci rcl e, which participates in a total order on shapes, is provided succinctly for 
reference in Figure 9-9. 
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II geom_circle.h 
#ifndef INCLUDED_GEOM_CIRCLE 
#define INCLUDED_GEOM_CIRCLE 

#ifndef INCLUDED_GEOM_SHAPE 
#include "geom_shape.h" 
#endif 

class geom_Circle : public geom_Shape { 
static canst void *d_classld_p; 
double d_radius; 

public: 
geom_Circle(double radius) : d_radius(radius) {} 
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geom_Circle(const geom_Circle& circle) : d_radiusCcircle.d_radius) {} 
-geom_Circle(const geom_Circle& circle); 

} ; 

geom_Circle& operator=(const geom_Circle& circle) { 
d_radius = circle.d_radius; return *this; } 

canst void *classld() const { return d_classld_p; } 
int compare(const geom_Shape& shape) const; II virtual 
int compare(const geom_Circle& circle) const; II non-virtual 

inline int operator«class geom_Circle& left, class geom_Circle& right) { 
return left.compareCright) < 0; } 

II Cdefinitions of other 5 symmetric operators omitted) 

#endif II geom_circle.c 
#include "geom_circle.h" 
canst void *geom_Circle: :d_classld_p = &d_classld_p; II runtime type id 
9 e 0 m_ C i r c 1 e: : ---9 e 0 m_ C i r c 1 e () {}. I I em p t Y & 0 u t - 0 f - 1 i n e (s e e Sec t ion 9. 3 . 3 ) 

int geom_Circle::compareCconst geom_Shape& shape) const 
{ 

return shape.classldC) == d_classld_p ? 
compare«const geom_Circle&) shape) II compare instances 
d_classld_p < shape.classldC) ? -1 : 1; II compare types 

} 

int geom_Circle::compareCcanst geom_Circle& circle) const 
{ 

return d_radius < circle.d_radius ? -1 : d_radius > circle.d_radius; 
} 

Figure 9-9: Implementation of Polymorphic Comparison for geom_Ci rcl e 
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Virtual functions implement variation in behavior; data members 
implement variation in value. 

More generally, virtual functions are used to describe variation in behavior across 
types derived from a common base class. Data members, however, are sufficient for 
describing variation in value without having to resort to inheritance. 15 For example, 
we would not define a protocol class art_Color, and then derive classes art_Red, 
a rt_B 1 ue, and a rt_ Ye 11 ow; a single (perhaps fully insulating) concrete art_Co lor 
class that stores one of a number of enumerated colors is probably a more appropriate 
design. However, virtual functions are an effective technique for breaking both com
pile-time and link-time dependencies (see Section 6.4.1). For that reason, a single 
concrete class might be derived from an art_Co lor protocol. 

DEFINITION: 

Hide: A member function hides a function with the same 
name ·declared in a base class or at file scope. 

Overload: A function overloads the name of another function 
with the same name defined in the same scope. 

Override: A member function overrides an identical function 
declared virtual in a base class. 

Redefine: The default definition of a function is irretrievably 
replaced by another definition. 

15 See cargill, Chapter 1, pp. 16-19. 
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Finally, there are four similar terms that are commonly used (and misused) to describe 
a function and its effect on other functions (hide, overload, override, and redefine) 
that we define here for reference. Distinct functions with the same name are said to be 
overloaded only if they are declared in the same scope. When a member function in a 
derived class is declared with the identical interface of a function declared virtual in a 
base class, that function is said to override the base class function. In all other cases, a 
function name hides all identically named functions in an enclosing scope, regardless 
of their argument signatures. Functions hidden in a named scope are not directly 
accessible, but can be accessed via the scope resolution operator (: :). However, when 
we redefine a function (e.g., global new or class specific unary &), we replace its defi
nition; the previous definition is no longer accessible from the program. I6 

Guideline 

Avoid hiding a base-class function in a derived class. 

We should be careful not to hide the definitions of any base-class functions in derived 
classes. In particular, we should never supply a new definition for a non-virtual func
tion in a derived class, since that would make the function sensitive to the type of any 
pointer or reference from which the function might be called. I7 Allowing the type of 
the pointer or reference to affect which behavior is invoked is counterintuitive, subtle, 
and error prone. Hiding functions defined in base classes does not protect them from 
use; it merely makes such use more cumbersome. We can always fiddle with the 
pointer or use the scope resolution operator to call the hidden member. A better idea is 
simply never to hide a member function in the first place. An example of a design pat
tern involving virtual functions, multiple inheritance, and runtime type identification 
can be found in Appendix C. 

16 ellis, Section 10.2, p. 210, and Section 13.1, p. 310. 
17 See meyers, Item 37, pp. 130--132. . 
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9.1.4 Pure or Non-Pure Virtual Member Function 

Declaring a virtual function to be pure forces the concrete derived-class author to sup
ply a definition. If failing to supply a specific behavior in a derived class is likely to be 
an error, then the virtual function should be declared pure in the base class. 

Protocol classes (see Section 6.4.1) are useful for achieving both levelization and 
insulation in inheritance hierarchies. We want to avoid defining any behavior in the 
protocol class itself; making all of the member functions (except the destructor) pure 
virtual enables us to avoid defining any of them. 

An abstract class derived from a pure protocol is sometimes referred to as partial 
implementations. Protocol functions that are not declared in the derived class are 
inherited as pure virtual. Some functions in a partial implementation may have a use
ful default behavior, but they should not necessarily default automatically. As illus
trated in Figure 9-10, both defining a virtual function and declaring it pure forces a 
derived-class author to enable the default behavior explicitly.I8 

#include <iostream.h> 

struct Base { 

} ; 

virtual void f() - 0; 
virtual -Base(); 

Bas e : : '"""B as e () {} 

struct Partial: Base { 
virtual void f() = 0; 
-Partial(); 

} ; 

void Partial::f() 
{ 

cout « "Parti al: :f" « endl: 
} 

Partial::'"""Partial() {} 

18 See ellis, Section 10.3, p. 214. 

II *** Base Class *** 

II *** Partial Implementation *** 
II declaration of pure virtual function 

II definition of pure virtual function 
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'struct Derived: Partial { 
Derived() {} 
void f(); 
~Derived(); 

} ; 

void Derived::f() 
{ 

cout « "Derived: :f" « endl; 

Chapter 9 

II *** Concrete Derived Class *** 

Partial::f(); II explicit call of pure virtual function 
} 

Derived::'"'"'Derived() {} 

maine) 
{ II *** Main Program *** 

Base *b - new Derived; 
b-)f(); 

} 

II Output: 
II john@john: a.out 
II Derived::f 
I I Part i a 1 : : f 
II john@john: 

Figure 9-10: Forcing Default Behavior to Be Enabled Explicitly 

9.1.5 Static or Non-Static Member Function 

The obvious reason for making a function a static member of a class is that it does not 
depend on any particular instance of an object: 

class my_Widget { 

} ; 

static int d_instanceCount; 
I I ... 

public: 
static int instanceCount() { return d_instanceCount; } 
I I ... 

. 
Static member functiQns are commonly used to implement non-
primitive functionality in a separate utility class. 
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Escalating functionality to a higher level may require making it a static member func
tion of a type defined in some other component (see Figure 5-15). If the function is a 
convenience function that does not require private access, we might consider making 
the function a static member of a separate class to emphasize its non-primitive status. 

class geom_Point { 1* ... *1 }; 

struct geom_PointUtil { 

} ; 

static int compareMagnitude(const Point& a, const Point& b); 
II Compare the distance of each point from the origin, 
II and return a negative, zero, or positive value 
II depending on whether the magnitude of a is less than, 
II equal to, or greater than that of b, respectively. 

Notice that by making the campa reMagn.i tude a static function, we retain symmetry 
with respect to the implicit conversion of its arguments. Had we instead declared 
campareMagnitude a non-static member of geom_Point, there could be cases where 
a . compa reMagni tude (b) would compile but b. campa reMa gni tude (a) would not 
(see Section 9.1.2). 

Though rarely necessary, we could grant private access while retaining this symmetry 
just by moving the static method inside the geam_Poi nt class itself. 

9.1.6 canst Member or Non-canst Member Function 

A member function should be declared can s t in order to remove unnecessary restric
tions on its use wherever this is appropriate. 19 There are two notions of canst-ness: 
logical and physical. Logical can s t-ness is more nebulous and refers to what the user 
is meant to perceive as can s t; changes to the internal organization that are program
matically undetectable by the client are considered logically canst. On the other 
hand, the C++ language enforces physical canst-ness. A member function can be 
declared con s t so long as it (1) does not modify the bits contained directly in the 
structure that defines the class, or (2) does not return a non-con s t pointer or reference 
to any data member embedded in that structure. 

Figure 9-11 illustrates how physical con s t-ness is enforced in C++. A con s t member 
function is permitted to modify and return a writable reference to memory that is held 

19 See meyers, Item 21, pp. 73-78. 
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and managed by an object. Since all of the functions defined above cause or enable 
side effects that are programmatically accessible by clients, none would be considered 
logically con s t functions. 

class ex_String { 
char *d_str_p; 

public: 
I I ... 
makeNull() 
rna ke Empty ( ) 

{ d_str_p = O;} II physically nan-canst 
canst { d_str_p[OJ = 0; } II physically canst 

char *&getRepRef() {return d_str_p;} II physically nan-canst 
char * getRepC) canst { return d_str_p;} II phYSically canst 

} ; 

Figure 9-11: The C++ Language Enforces Physical canst-ness Only 

DEFINITION: An object is canst-correct if a function taking only a 
single argument that is a canst reference to that object is not able, 
without explicit casting, to obtain a non-canst reference to that same 
object (or a portion thereof) from within the function body. 

Guideline 

Every object in a system should be canst-correct. 

Deciding what is and what is not canst behavior of an object is an important part of 
the design of its class (see Section 10.3.1). Care must taken to ensure that there are no 
loopholes that could allow a client to circumvent that decision. Returning writable 
access to an object's internal representation from a con s t member function can short
circuit the ability of the compiler to help ensure that a can s t object is not modified.

2o 

20 meyers, Item 29, pp. 96-99. 
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Returning a non-canst object from a canst member function can rup
ture the canst-correctness of a system. 

class te_Node { 
I I ... 

public: 

} ; 

II 

II MANIPULATORS 
void setValue(double v); 

II ACCESSORS 
canst char *name() const; 
te_Node *parentC) const; 
te Node *childlC) const; 
te_Node *child2() const; 

a) Not canst Correct 

class te_Node { 
I I ... 

public: 

} ; 

II 

II MANIPULATORS 
void setValue(double v); 
te_Node *parent(); 
te_Node *childl(); 
te_Node *child2(); 

II ACCESSORS 
canst char *name() const; 
const te_Node *parentC) const; 
canst te_Node *childlC) canst; 
const te Node *child2() const; 

b) canst Correct 

Figure 9-12: Dlustrating canst-Correctness 

When designing the system, it is easy to inadvertently provide ways in which a non
con s t version of a reference to an object can be obtained from a con s t reference to 
that same object. For example, Figure 9-12 provides two definitions of a t e_N 0 d e 
used to implement a binary tree. Figure 9-12a defines canst member functions that 
return writable access to the parent and each child. A function taking a reference to a 
canst te_Nade could easily modify this supposedly canst value, without ever resort
ing to a cast, as follows: 

void f(const te_Node& readonlyNode) 
{ 

} 

if (readonlyNode-)childl()) ( 

} 

te_node *writableNode = readonlyNode-)childi()-)parent(); 
writableNode-)setValue(-9.99E99): 
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In the context of a system, an object that does not allow a non-canst reference to an 
object to be obtained from a canst reference to that same object alone (either directly 
or indirectly) is said to be canst-correct. Figure 9-12b defines a class that does not 

provide a way to obtain writable access from a can s t reference through indirect 
means. This implementation is can s t-correct because it preserves the intent of what 
can and cannot be done with a canst te_Nade alone. 

DEFINITION: A system is canst-correct if there is no way (without 
using an explicit cast) for a function taking only canst reference 
arguments to any subset of objects within the system to obtain a writ
able reference to any of these objects (or any portions thereof) from 

. within the body of the function. 

In other words, given an arbitrary function: 

void fCconst Tl& aI, canst T2& a2, 000, canst TN& aN) 
{ 

II There is simply no way for me to get hold of a 
II writable reference to any of aI, a2, ... , aN or 
II any portion thereof (short of casting away canst). 

} 

Guideline 

A system should be canst-correct. 

canst-correctness is a property that extends beyond a single class or component and 
applies to an entire system. For example, class Nade in Figure 5-8 is suspect because it 

contains a function 

Edge& Node::edgeCint index) canst; 

that allows a client to obtain a modifiable Ed 9 e from a can s t N a de. Even if Ed 9 e were 
to have been careful to perpetuate the canst-ness as shown here: 

Nade& Edge::to(); Node& Edge::fram(); 
canst Nade& Edge::ta() canst; canst Nade& Edge::fram() canst; 
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as long as we can obtain a non-canst reference to a Nade from a non-canst Edge, the 
subsystem is not canst-correct: 

void f(const Node& readonlyNode) 
{ 

} 

if (readonlyNode-)numEdges() ) 0) { 

} 

Edge& writableEdge = readonlyNode-)edgeCO); 
Node& writableNode = (&writableEdge-)to() == this) ? 

writableEdge-)to() : 
writableEdge-)from(); 

II writableNode is a writable reference to readonlyNode! 

In a heterogeneous network of objects, a canst member of one type can be exploited 
to undermine the canst-correctness of another. The problem can be illustrated graph
ically, as shown in Figure 9-13a. In this conversion graph, every type in the system 
has both a non-canst and a canst representation. Converting from the non-canst 
(down) to the can s t version of a type is automatic. Member functions of a type X that 
return a pointer or reference to a type Y are represented in the conversion graph with 
the appropriate directed edge from the appropriate version (i.e., canst or non-canst) 
of type X to the appropriate version of type Y. 

non-const: 

(a) Contains canstINon-canst Cycle (b) Is can s t-Correct 

Figure 9-13: Establishing canst-Correctness Graphically (see Figure 9-12) 

Since Ed g e defines a can s t member that returns a reference to a can s t N a de, there is 
a directed edge from canst Edge& to canst Node&. The non-canst version of this 
method is treated analogously. The problem is that Nade contains a canst member 
that returns a non-canst Edge reference-hence the upward sloping diagonal entry in 
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Figure 9-13a. This diagonal entry introduces a cycle that contains both the canst and 
the non-canst versions of Nade. Consequently, given a canst reference to a Node, we 
can potentially obtain a non-canst reference to the identical Nade. A similar cycle 
involves both versions of Edge, so a canst Edge reference 'could be converted to nOD

can s t without the use of a cast. 

DEFINITION: A system is canst-correct if its conversion graph con
tains no cycle that involves both the canst and non-canst versions of 
anyone type. 

The conversion graph shown in Figure 9-13b reflects the definition of Nade given in 
Figure 9-12b. There are conversion cycles between Node& and Edge&, and also 
between canst Nade& and canst Edge&. However, there is no one cycle that involves 
both versions of either type; this small subsystem is can s t-correct. This interpretation 
of canst-correctness generalizes to apply to an entire system. 

It is possible that an object may supply canst information, such as a name that could 
then be used to look up a writable version of the same object in some non-canst con
tainer object: 

void gCte_Tree *t, te_Node& readonlyNode) 
{ 

} 

te_Node *writableNode = t->lookupCreadonlyNode.nameC)); 
writableNode->setValueC-9.99E99); 

The above is not a violation of canst-correctness because the canst object alone is 
not enough to obtain a non-canst version of itself. Had the te_Tree been passed by 
canst reference, we would expect that a canst version of the te_Tree: :lookup 

member function would instead return a pointer to a canst te_Nade,ensuring the 
canst-correct system shown in Figure 9-14. 
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non-const: 

Figure 9-14: A canst-Correct Implementation of te_Tree and te_Node 

There are situations where we do want a const member to return a non-canst refer
ence or pointer to another type. In the Poi n tIt e r Han d 1 e of Figure 6-75, we are able 
to access a writable version of the contained Poi ntlter from a reference to a const 
handle: 

Pointlter *PaintlterHandle::operator-)C) canst; 

The intent here was to emulate the semantics of a writable pointer passed by value
that is, you can modify the indicated object but you cannot change the handle itself to 
refer to a different object.21 However, as Figure 9-15 illustrates, this subsystem is 
con s t-correct because there is no way to obtain a writable Poi n tIt e r Han d 1 e refer
ence from either kind of Po i nt I te r.22 

21 The usefulness of a canst iterator obtained from a handle passed to a function by const reference 
is dubious. 
22 Note that verifying canst-correctness for a system can be done through static analysis; however, 
because violating canst-correctness can depend on the underlying object (instance) network, it is 
possible to have a canst-correct system that cannot statically be proven to be so. Such systems are 
more expensive to maintain and much harder to validate. 
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non-canst: 

Figure 9-15: A const-Correct Implementation of Poi ntIterHandl e and Poi ntIter 

Ignoring canst-correctness implies that an argument passed to a function by canst 
reference may "legitimately" be modified within that function. Respecting canst
correctness improves the consistency of the system and enables the compiler to detect 
a wider class of errors at compile time than would otherwise be possible. 

Guideline 

Think twice (at least) before casting away const. 

Casting away canst-ness serves to undermine all the benefits we worked so hard in 
this section to achieve. 

9.1.7 Public, Protected, or Private Member Function 

Member functions intended for direct use by general clients must be declared pub 1 ; c. 
Free operators such as the equality or relational operators may be implemented in 
terms of a primitive member function (see Figure 9-21). If this primitIve member 
function is not public, the dependent free operators will need to be declared friends of 
the class, which lessens maintainability and enables abuse (see Section 3.6). 
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Member functions that are not public expose general users to uninsu
lated implementation details. 

Private member functions are intended for use within a class and by friends of a class. 
Since friendship outside a component is discouraged, there is often little advantage to 
non-virtual private member functions over static free functions defined at file scope in 
the. c file (see Section 6.3.3). One common valid use of a private non-virtual member 
function is to factor out complex but seldom needed behavior from an otherwise tiny 
and frequently called inline function. For example, class my_Stack in Figure 10-13 
uses the private non-inline member 9 rowAr ray ( ) to implement the public inline pus h 

method: 

i n 1 i ne 
void my_Stack::push(int value) 
{ 

} 

if (d_sp )= d_size) { 
growArray() ; 

} 

Without using private methods, we would be forced either to implement the entire 
push method out-of-line with a significant cost in performance, or to violate encapsu
lation by making the growArray method public. Trying to implement the entire push 

function inline is probably out of the question. 

Private virtual functions make sense when the behavior defined in a derived class is 
used only by members and friends of the base class. A potential use of a private vir
tual function can be found in the sur f ace E qua t ion member of class Sol i d described 
in Section 6.6.3 (see Figure 6-84). 
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All virtual and protected functions are intended for consideration by 
derived-class authors. 

Protected member functions are explicitly earmarked for derived-class authors. Pro
tected member functions expose general clients to implementation details and are 
often best avoided (see Section 6.3.4). Although private virtual function are not acces
sible to derived classes, derived-class authors may be expected to supply definitions 
for these functions; in this sense, private virtual functions are exceptional: 

c 1 ass Ba s e { 
private: 

virtual void programMe(); 
} ; 

class Derived: public Base { 
public: 

} ; 

void programMe(); II The derived class itself cannot call this 
II function through the base-class interface; 
II yet even clients of the derived class's public 
II interface are able to access this function. 

9.1.8 Return by Value, Reference, or Pointer 

The issue of whether to return by value or not comes down to whether there is some
thing within the object or argument list suitable to reference. For example, there is no 
reasonable implementation23 of 

pub_String& operator+(const pub_String& left, canst pub_String& right); 

As we saw in Section 8.3, returning an object by value preserves total encapsulation 
but can be significantly more expensive at runtime than returning a pointer or refer
ence. For non-operator functions, we have the additional option of r~turning an object 
through the argument list. Return by argument is usually more efficient than return by 

23 See meyers, Item 23, pp. 82-84; Item 31, pp. 102-105. 
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value, and yet it is still fully encapsulating. The four ways to return a (F 00) value are 
summarized in Figure 9-16. 

Foo v( ... ); II return by value 
canst Foo& r( ... ); II return by reference 
const Foo *p( .. ~); II return by pointer 
int a(Foo *retVal, . . . ) ; II return by argument 

int a(Foo& retVal, . . . ) ; II bad idea (see Section 9.1.11) 

Figure 9-16: Four Ways to Return a Value from a Function 

In cases where the function may fail, return by value or reference may not an option.24 

Sometimes we can return the value by pointer, which can be 0 on failure. Another 
option is to return an integer status to indicate success or failure, and to return the 
object itself through the argument list. 

Guideline 

For functions that return an error status, an integral value of 0 should 
always mean success. 

For functions that return an error status as either an i nt or some enumerated type, it is 
convenient to have a way of knowing whether or not this function worked25 without 
having to inspect some header file to determine the appropriate success value for this 
particular function. Traditionally, a status of zero indicates success, a non-zero status 
indicates failure, and the particular non-zero value may be used to provide additional 
information to clients. 

24 Sometimes it may make sense to return an object in a class-defined "invalid" state. 
25 Note that a function such as f e los e performs an operation and returns an error status regarding 
the outcome of that operation. A function such as i sa 1 pha merely answers a yes-or-no question with 
no preconceived notions of success or failure. Consequently, fel ose returns an error status, while 
i sa 1 pha does not. 



616 Designing a Function 

Often there is exactly one way for a function to work and several 
ways for it to fail; as clients, we may not care why it failed. 

Chapter 9 

Very often, clients will not care why an operation failed; in such cases a simple test 
for non-zero status is sufficient, as indicated in Figure 9-17. In some cases, this con
vention may allow us to avoid including an additional header enumerating the error 
conditions, thereby reducing unwanted compile-time coupling. 

Although redundant, this a initializer 
indicates that the value of the 
enumerator is not arbitrary. 

int f( ... ) 
{ 

} 

enum { GOOD = 0, BAD, UGLY} status = GOOD: 

if (01= g( ... )) { 

status = BAD; 
I I ... 

} 

if (GOOD == status && 0 1= h( ... ») { 

status = UGLY; 
I I ... 

} 

II 

return status; 

Figure 9-17: 0 == Success for All Functions that Return Status 

For non-canst member functions, returning a non-canst reference to the object itself 
is always a viable option. Returning a pointer or reference to an internal part of the 
object potentially limits the implementation choice; its impact on encapsulation 
should be considered carefully (see Section 8.3). 
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Returning a dynamically allocated object by loading a modifiable 
handle argument is less prone to memory leaks than returning that 
object by non-canst pointer. 

For polymorphic objects such as geom_Shape (see Figure 9-8), it is not possible to 
return an object by value. Returning a clone (dynamic copy) of the object by non
eon st· pointer places the burden of deallocation on the client, and is prone to memory 
leaks. The use of a reference here would be obscure and inappropriate (see Section 
9.1.11). A preferred approach for returning newly allocated polymorphic objects 
would be to pass in a pointer to a handle (see Section 6.5.3) explicitly designed to 
hold a pointer to the base class geom_Shape: 

class geom_ShapeUtil { 
void create(geom_ShapeHandle *handle, canst char *typeName); 

} ; 

Guideline 

II Create a new shape of the type specified by typeName and 
II load it into the handle passed in via a non-canst pointer. 

Functions that answer a yes-or-no question should be worded appro
priately (e.g., i sVal i d) and return an i nt value of either 0 ("no") or 1 

("yes"). 

Finally, it is helpful for functions that explicitly answer a yes-or-no question to be 
worded to indicate this fact-i s Aeu te ( ), has P rotoco 1 ( i d ), are Par all e 1 ( 1 i n e 1 , 

1 i n e 2 ), and so forth. -and to return an i n t value of a for "no" and 1 (nothing else) 
for "yes." By emulating the behavior of built-in operators such as == that return Boolean 
values, we help to make the semantics of these common functions clear. Sometimes 
clients will depend on the 1 value where they need not: 

if (1 == angle.isAcute(» { 1* ... */ } 
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If . you cache this value as a flag in the object, you might be tempted to retum a 
masked bit that could have some non-Boolean value (e.g., 8). Converting a non-Bool
ean value x to a Boolean value y is as simple as y = !! x. An appropriate implementa
tion of i sAcute might look as follows: 

int geom_Angle::;sAcute() canst 
{ 

return lied_flags & ACUTE_MASK); 
} 

Since the ANSIIISO committee has adopted boal as a distinct integral type in C++, 
we should probably consider returning baal instead of i nt in such cases once this 
new fundamental type becomes generally available:26 

bool geom_Angle::;sAcute()canst. 
{ 

return d_flags & ACUTE_MASK: 
} 

At least now the conversion to a Boolean value is implicit and automatic. 

9.1.9 Return const or Non-const 

In an effort to eliminate unnecessary restrictions, we strive to take canst operands 
and return non- can s t results while maintaining can s t-correctness. 27 

Guideline 

Avoid declaring results returned by value from functions as canst. 

Results returned from a function by value are rvalues. In the case of fundamental 
types, declaring an rvalue can s t is redundant, confusing, and can interfere with tem
plate instantiation: 

const int f(); II redundant use of const 

26stroustrup94, Section 11.7.2, pp. 254-255. 
27 meyers, Item 21, pp. 73-78. 



Section 9.1.10 Argument Optional or Required 619 

An rvalue of a user-defined type (e.g., an object returned by value from a function) 
can be manipulated by non-canst member functions; an object returned by value as 
can s t cannot. This latter behavior is a "comer" of the language that is both conten
tious and may not be implemented consistently across current compilers and plat
forms. Since the value returned is a copy anyway, exploiting the notion of a can s t 
versus a non-con s t rvalue is typically unnecessary. 

In general, returning a value by can s t pointer or reference is less restrictive on the 
implementation than returning a non-canst pointer or reference. In the sparse array 
implementation of Poi ntArray (discussed in Section 8.3), for example, it is conve
nient to return a can s t reference to a dummy empty object. If the reference were non
canst, we would be forced to allocate a new object at that location. Note that canst 
member functions are obliged not to return non-canst objects that would violate 
can s t-correctness (see Section 9.1.6). 

9.1.10 Argument Optional or Required 

Having just one function body is often easier to maintain than several overloaded ver
sions.28 In most cases it is easy enough to use inline functions to create overloaded 
versions that, in effect, allow optional arguments to be located in the middle of an 
argument list.29 

I·

···· .. ·· •. ··•·• .. • .. •.•·• ... •··•··.•·· ........... ,., .. , ........... ,.,.................. ... . ..•.....•...............•..•..•......•....•.•...•.... •·•· •. •· •. ······.···.··.··.····.1 . Ift~~b~ . 
Default arguments can be an effective alternative to function over
loading, especially where insulation is not relevant. 

Figure 9-18 contrasts the use of overloaded functions with that of default arguments 
for factoring common code within a constructor call. As shown in Figure 9-18a, fac
toring the implementations of several overloaded constructors requires the use of an 
auxiliary function i nit, since one constructor cannot usefully be called from 
another.3o Such factoring does not allow us to take advantage of the initialization lists 

28 See cargill, Chapter 2, p. 32; Chapter 3, p. 65; and Chapter 4, p. 87. 
29 ellis, Section 8.2.6, p. 142. 
30 meyers, Item 24, pp. 85-87. 
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of the constructors. The use of inline functions in Figure 9-18a to forward calls from 
several overloaded functions (sometimes referred to as inline forwarding) eliminates 
the potential overhead of nested function calls. At the same time, inline forwarding 
negates the insulating value of having separate overloaded functions implemented 
out-of-line. 

geom_Point { 
int d_x; 
int d-y; 

} ; 

private: 
void init (x, y); 

public: 
geom_Point (); 
geom_Point (int x, int y); 
/ / ... 

geom_Point operator+(const Point&, 
const Point&); 

inline 
void geom_Point::init(int x, int y) 
{ 

d x = X' - , 
d-y = y; 

} 

inline 
geom_Point::geom_Point() 
{ 

init(O,O); 
} 

inline 
geom_Point: :geom_Point(int x, int y) 
{ 

initex, y); 
} 

(a) Using Overloaded Functions 

geom_Point 
int d_x; 
i n t d-y: 

public: 
geom_Point(int x = 0, int y = 0); 

/ / ... 
} ; 

geom_Point operator+(const Point&, 
canst Point&); 

inline 
geom_Point::geom_Point(int x, int y) 

d_x(x) 
, d-y(y) 
{ 

} 

(b) Using Default Arguments 

Figure 9-18: Factoring Common Constructor Code 

Figure 9-18b illustrates a great economy of notation compared to factoring construc
tor function bodies. Note, however, that these two implementations are not identical 
with respect to the construction of a geom_Poi nt from an i nt: 
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void g() 
{ 

} 

geom_Point a = 5; 
a = a + 10; 

Pass Argument by Value, Reference, or Pointer 621 

The implementation in Figure 9-18a does not allow a geom_Poi nt to be constructed 
from a single argument, and so precludes the non-intuitive initialization and implicit 
conversion above. Using two default arguments to implement the default constructor 
as in Figure 9-18b subtly introduces an undesirable integer conversion operator that 
allows the above code to compile silently (see Section 9.3.1). 

Default arguments can be more self-documenting, more compact, and more easily 
understood by clients than mUltiple overloaded functions because they place more 
information in the header file. As such, default arguments are at odds with the goal of 
insulation. For more information about how to reduce compile-time coupling when 
using default arguments, see Section 6.3.8. 

One important use of default arguments is to allow developers to append additional 
parameters to functions conveniently, without breaking any preexisting programs that 
use them. 

Guideline 

Avoid default arguments that require the construction of an 
unnamed temporary object. 

Passing user-defined types as default arguments is cumbersome at best; not all objects 
make sense as defaults. Constructing a temporary object to pass in by default, like 
passing an object by value, is expensive and should be avoided. 

9.1.11 Pass Argument by Value, Reference, or Pointer 

Passing user-defined types by value is unnecessary and expensive. This practice is so 
costly that it has contributed to the perception that the C++ language itself is SIOW.

31 

31 For more justification, see meyers, Item 22, pp. 78-82. 



622 Designing a Function Chapter 9 

Never pass a user-defined type (i.e., cl ass, struct, or un; on) to a func
tion by value. 

Instead of passing a user-defined type by value, pass it by con s t reference. In the 

absence of global variables, the semantics are essentially identical in practice, but the 

runtime performance is superior. Enumerations and all fundamental types are most 

efficiently passed by value. 

When it comes to returning a value through the argument list, there are two mind sets: 

1. va i d f ( my _0 b j e c t & res u 1 t, ... ); / / ret urn by non - con s t re fer e n c e 
2. voi d f(my_Object *resul t, ... ); / / return by non-const poi nter 

Wherever feasible, we would like to use the language itself to express our intention 

instead of relying on a comment. The C++ language definition states that a pointer 

may be null but that a reference may not. Returning a value through a modifiable ref

erence argument makes the semantics clear: the object to receive the value must be 

supplied by the client. Any documentation to reiterate this requirement would be 

unnecessary and redundant. Consequently there is no need to test for a null refer

ence-and there is no portable way to do so anyway. Returning an object by non

canst pointer can therefore be reserved exclusively for results that are truly optional; 

that is, the pointer is always tested inside the function, and if a null pointer is supplied, 

the result is not loaded into the object. 

In the other camp,32 classical theory discourages functions that modify their argu

ments; such functions are known to be more difficult to maintain. Remember that, his

torically, most of the cost incurred over the life of a system is in maintenance and 

enhancement-not initial development. Allowing functions to modify their arguments 

by reference makes it more difficult for software engineers maintaining an unfamiliar 

32 stroustrup, Section 2.3.10, p. 62. 
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body of code to know whether an argument passed into a function (apparently by 
value) could potentially be modified. 

The expressive power of writable references applies only if you happen to look at the 
appropriate header file. From looking at just the client code in Figure 9-19, it is not at 
all clear what caused the value of the my_String variable name initialized with 
II La u r e 1" to come to hold the (incorrect) value" Hardy" . 

void g(int i ~ int j) 
{ 

} 

my_String name("Laurel"); 
I I ... 
int s = my_Stuff::funcX(name, i); 

I I ... 
int t = your_Problem::funcY(name, j); 
I I ... 
int u = their_Thing::funcZ(name, i + j); 
I I ... 
cout « II name = " « name « endl; 

II Output: 
II name = Hardy 

Figure 9-19: Modifying Function Arguments via Writable References 

Functions that actually do modify their arguments are relatively scarce. By adopting 
the guideline of modifying function arguments only through non-con s t pointers, we 
make such functions easy to spot from the client code. ·Figure 9-20 shows that only 
one of the three functions that operate on name could legitimately have modified its 
value; in this example, we can look in only one place instead of three, simply by virtue 
of having followed this guideline. 

Guideline 

Be consistent about returning values through arguments (e.g., avoid 
declaring non-canst reference parameters). 
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void g(int i, int j) 
{ 

my_String name("Laurel"); 
I I ... 
int s = my_Stuff::funcXename, i); 
I I ... 
int t = your_Problem::funcye&name. j); 
I I ... 
int u = their_Thing::funcZename, i + j); 
I I ... 
cout « "name = " « name « endl; 

II Output: 
II name = Hardy 

Figure 9-20: Modifying Function Arguments Only via Writable Pointer 

Figure 9-21 demonstrates that even in the body of a function that takes a non-canst 
pointer argument, we need look no further than the definition of this function (rather 
than the header files declaring each called function) to infer which called functions 
might modify that argument. 

v 0 i d f ( my _ S t r i n 9 * n a me, 1, j) 
{ 

} 

int s = my_Stuff::funcXe*name, i); II should not modify name 
I I ... 
int t = your_Problem::funcY(name, j); II potentially modifies name 
I I ... 
int u = their_Thing::funcZ(*name, i + j); II should not modify name 
I I ... 

Figure 9-21: Nesting Functions that Return via Writable Pointer 

Historically, passing objects by pointer and passing objects by reference have not 
always been equivalent when it came to user-defined conversions. Until the c++ lan
guage definition changed for release 2.0 of CFRONT,33 a function taking a non-canst 
reference to you r _C 1 ass would allow its argument to undergo a user-defined conver
sion to a temporary before the retum-by-argument assignment could occur. The value 
would therefore not be returned to the caller, and this error would have gone undetec
ted until runtime. By contrast, a function taking a non-c 0 n s t pointer never permitted 
user-defined conversion to occur; a type error would always have been detected at 

33 strollstrup94, Section 3.7, p. 86. 
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compile time. The latter is the desired behavior and is consistent with that of member 
operators such as operatar=, which will not implicitly convert the object that they 
modify (see Section 9.1.2). 

It is worth noting that standard pointer conversions continue to work as expected when 
passing the object to be modified via non-canst pointer. In other words, passing the 
address of a derived object to a function taking a pointer to one of its public base classes 
makes sense and the conversion will occur implicitly. It is only the unwanted, user
defined conversion that is suppressed by requiring the client to pass the modifiable argu
ment's address. Fortunately, most current compilers will at least warn you when a user
defined conversion causes a temporary to be bound to a.non-constreference parameter. 

The C language does not permit function arguments to be modified directly; C++ 
does. When first using C++, classic C programmers will often forget to insert the 
con s t qualifier before a reference parameter where appropriate, leaving a reader to 
wonder whether the function author intended the argument to be modifiable or not. 
Discouraging any use of non-canst references in function arguments makes the intent 
clear (or the defect immediately obvious). 

Proponents of passing function arguments by modifiable reference would argue that a 
reference is self-documenting in that there is no question about whether a valid object 
must be supplied, whereas a pointer argument leaves this possibility open. Again, the 
only way to know what is expected is to look at the header file for each function 
called (and that could mean many header files). 

Forcing the client to pass the address for a modifiable argument often requires the cli
ent to type the extra keystroke "&". However, this extra keystroke is worth its weight 
in gold when it comes to advertising that a function call can potentially modify its 
argument. And because most functions do not modify their parameters, almost all 
function calls can quickly be eliminated from suspicion. 

Returning an argument by non-c a n s t pointer is a general and context-independent 
technique; the syntactic anomaly alerts clients to the special nature of the argument. 
Any notational convenience of passing a modifiable argument into a function by non
con s t reference is outweighed by the need to avoid costly surprises. However, non
can s t reference parameters continue to have their place in operator functions (e.g., 
operator+=) and well-entrenched idioms such as streams, which make no sense 
unless the stream can be modified. The context of the stream idiom makes the semantics 
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of their usage relatively clear, compared with returning some little-known object 
through a modifiable reference. 

Guideline 

Avoid storing the address of any argument to a function in a location 
that will persist after the function terminates; pass the address of the 
argument instead. 

Another related issue is that passing a user-defined type by con s t reference is so com
mon that we might never suspect the importance of a particular value's being an 
lvalue. Consider the scenario of Figure 9-22. An infinite precision integer type 
my _B i gIn t is defined that can be constructed from a fundamental i n t type. The 
my _B i gIn t Set is a homogeneous collection that stores only the address of the object 
supplied to its add function. Suppose a naive user tries to create a function 9 that adds 
three integers to the set. Each integer is implicitly converted to a temporary 
my _B i gIn t, which is guaranteed to remain valid only until the function returns; the 
temporary can be destroyed any time thereafter until exiting the scope in which the 
temporary was created.34 If the second temporary my _B i gIn t is no longer valid by the 
time the i sMembe r method of my _B i 9 I ntSet is invoked, a memory reference through 
a bad pointer value could easily cause this program to crash! 

class my_Biglnt { 
I I ... 

public: 

} ; 

my _B i gIn t ( i n t i); 

I I ... 

class my_BiglntSet { 
canst my_Biglnt **d_set_p; 
int d_size; 
int d_length; 

34 ellis, Section 12.2, p. 268. 

II physical size 
II cardinality 
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public: 
I I ... 
void add(const ni_Biglnt& bi); II bad idea: should pass by pointer 

/1 Stores the address of this object in the set. 

int isMember(const my_Biglnt& bi) const; 
II Returns 1 if bi is a member of the set; else O. 

} ; 

void g() 
{ 

my_BiglntSet set; 
set.add(l); 
set.add(2); 
set.add(3); 
set.isMember(2); 

II Address of temporary my_Biglnt Added 
II Address of temporary my_Biglnt Added 
II Address of temporary my_Biglnt Added 
II core dump?! 

Figure 9-22: Retaining the Address of a Reference Argument in a Function 

Without careful scrutiny of the class definitions, the client has absolutely no warning 
that the address of the object (and not a copy of the object) will be retained. Had we 
instead defined the a dd function of my _B i gIn tSet to take a con s t pointer, we would 
have alerted the client that this function·considers the lvalue to be important, and-at 
the same time-documented that fact directly in the declaration itself.35 The modified 
usage model for my _B i gIn t 5 e t is illustrated in Figure 9-23. 

class my_BiglntSet { 
I I ... 

public: 
I I ... 
void add(const ni_Biglht *bi); 
I I ... 

} ; 

void 9 () 
{ 

my_BiglntSet set; 
set.add(l); 
set.add(&2); 
I I ... 

II compile time error! 
II compile time error! 

Figure 9-23: Making the Need for an LvaIue Explicit 

35 This recommendation, called the Linton convention, is presented in murray, Section 9.2.4, 
pp.213-215. 
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Storing the address of an argument to a function is bad form. If the argument is passed 
by value, it is represented- as a local automatic variable and the address will become 
invalid as soon as the function returns. If the argument is passed by canst reference, 
we have- no guarantee that it does not refer to a temporary. Passing the argument by 
can s t pointer instead of by con s t reference suppresses the implicit creation of a tem
porary, which is desired behavior when we plan to hold onto that address. Exceptions 
to this guideline do occur in very common idioms when it is obvious from context 
(e.g., an iterator) that the address of the object must be stored. Note that when a func
tion stores the address of a oon-can s t argument for later modification, the two guide
lines presented in this section (e.g., modifiable + lvalue) both apply; in this case, the 
object should always be passed by non-canst pointer . 

........ ...... . ". " ............ ,:" .... . ..... . ........ . " .. '., ... ' .... ', .. ,.', .. > ''''' ,,',.,'., " .. __i__ '" ' 

: .. :: : : .. ::~ . . .. .. .., 
.......... 

Never attempt to delete an object passed by reference. 

Beyond modification, functions that delete an object should always take a non-canst 
pointer to that object and never a non-canst reference. In order to delete an object, 
you must supply a pointer to the delete operator. Taking the address of an object to be 
deleted is error prone; some compilers (e.g., CFRONT) will generate a warning mes
sage, cajoling the developer to add an extra assignment (or worse, a cast) to a pointer 
variable. Even more compelling is the fact that the C++ language specification per
mits the value of a deleted pointer to be adjusted (e.g., to 0) by the compiler.36 A null 
(or invalid) reference is not permitted in the language.37 

Using pointer instead of reference arguinents to capture the semantic properties men
tioned in this section has yet another benefit in terms of maintenance. If a function 
that previously did not modify or take the address of an argument should suddenly be 
changed to do so, all clients of that function would be forced to examine their code 
before they could recompile. This is exactly what we want! Making such significant 
semantic changes with syntactic compatibility could silently lead to subtle bugs and 

-very unpleasant surprises. 

36 ellis, Section 5.3.4, p. 63. 
37 cargill, Chapter 6, p. 125; ellis, Section 8.4.3, p. 153. 
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9.1.12 Pass Argument as canst or Non-canst 

Whenever a pointer or reference passed to a function refers to the object as canst, it 
widens the audience of potential clients who can take advantage of this function. 

Guideline 

Whenever a parameter passes its argument by reference or pointer to 
a function that neither modifies that argument nor stores its writable 
address, that parameter should be declared canst. 

As a rule, whenever we can reasonably pass a pointer or reference argument as canst, 

we should.38 

Guideline 

Avoid declaring parameters passed by value to a function as canst. 

An argument passed to a function by value is a copy. Declaring the parameter canst 

makes its value immutable in the function body: 

void f(const int i) 
{ 

} 

I I ... 
++i; 
/ / ... 

II bad idea 

II compile-time error 

Whether or not this local copy is changed is an implementation detail of the function; 
declaring it can s t exposes this decision in the interlace, compromising not only insu
lation but also readability. This is not an issue for user-defined types since we never 
pass them by value anyway (see Section 9.1.11). 

38 See meyers, Items 21~22, pp. 73-82. 
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Guideline 

Consider placing parameters (except perhaps those with default 
arguments) that enable modifiable access before parameters that 
pass arguments by value, canst reference, or canst pointer. 

Except for (optional) parameters with default arguments added after a function is 
already in use, parameters that allow their arguments to be modified should precede 

parameters whose arguments are passed by value, con s t reference, or con s t pointer. 

Apart from making where to look for modifiable arguments more uniform, this rec

ommendation is admittedly arbitrary; however, it is a classic style that is language 

independent, predates C++ (and even C), and has proven useful over the years. 

9.1.13 Friend or Non-Friend Function 

Friendship, even within a single component, affects maintenance cost. 

Avoiding unnecessary friendships (even within the same component) 
can improve maintainability. 

Before making an individual operator a friend, consider whether there is a primitive 

member function that can be used to implement that operator. For example, we can 
often implement free operator+ in terms of the primitive member operator+= (see 

Section 3.6) without making ope ra to r+ a friend. Similarly, a single public member 
function compa re can be used to implement all six of the free equality and relation oper

ators (== != <= < >= » (see Section 9.1.2). Typically an iteratorclass with private 
access can be used to implement a free output 0 per a tor < < of a container type (such 
as a set, list, etc.), obviating individual friendships and enhancing user extensibility. 
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Guideline 

Avoid granting friendship to individual functions. 

In general, whenever we decide we need a free operator, we should be cognizant of 
what primitive functions we might use to implement that operator. Making a free 
operator a friend could compromise encapsulation (see Section 3.6). 

9.1.14 Inline or Non-Inline Function 

From Section 6.2.3 we know that inline functions affect insulation. Apart from expos
ing the implementation, large inline functions can increase executable size, poten
tially making an integrated system run slower than if some of these functions had 
been declared non-inline. If insulation is not an issue, the first question is whether the 
object code resulting from the body of the function is larger or smaller than the non
inline function call. If the inline object code is no bigger than a function call, inlining 
will not increase executable size. 

Guideline 

Avoid declaring a function i n 1 i n e whose body produces object code 
that is larger than the object code produced by the equivalent non
inline function call itself. 

For functions that merely get and set data members, it is often reasonable to use an 
inline function without first acquiring performance data. For function bodies that gen
erate more object code than the corresponding non-inline function call, performance 
analysis at the system level should precede the decision to define the function inline. 
Passing additional arguments to a function increases the amount of code generated for 
a non-inline function call. Therefore, an inline function taking several arguments 
could justify a somewhat larger function body before profiling. 
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If a function is called frequently and performance is critical, the next question to ask 
is, "From how many distinct locations can the function be called?" If access to the 
function is restricted and the function is known to be called from only a few distinct 
locations, then inlining is not likely to be an issue with respect to executable size. If 
the function is large and may be called from many locations, the function is not likely 
to be a candidate for inlining. 

Guideline 

Avoid declaring a function i n 1 i n e that your compiler will not 
generate inline. 

Finally, inlining is merely a hint to the compiler; there is no way to ensure that a func
tion will actually be i n 1 i n e' d. Whenever we take the address of a function declared 
i n 1 i ne, we force a static (non-inline) version of the function to be generated in the 
translation unit where the address was taken. If a function declared i n 1 i n e is too large 
or too complex, it might not inline; the metrics that control this are compiler dependent. 

When a function does not inline, the compiler defines a static version of the inline 
function in each translation unit that uses the inline. These multiple static copies may 
cause the executable to be bigger and run more slowly than if the function had been 
declared non-inline. Fortunately, there are usually ways to ask a compiler to report 
functions that do not inline.39 

A dynamically bound function call cannot be generated inline; however, a virtual 
function call can be inlined when the virtual call mechanism is disabled by using the 
scope resolution operator (: :). A virtual function call can also be inlined if the com
piler can determine the exact type of the concrete object (e.g., when the function is 
called from the object itself instead of through a pointer or reference). In any event, 
the compiler will be forced to implement a non-inline version of the virtual function 
in order to store its address in the virtual tables. If we are not careful, far more than 
one static copy of this function could be generated (see Section 9.3.3).40 

39 See meyers: Item 33, pp. 107-110. 
40 See also murray, Section 9.13.2, p. 244. 

" 
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9.2 Fundamental Types Used in the Interface 

In Chapter 3 we discussed the uses relation in terms of user-defined types. In this sec
tion we address the use of various fundamental types in the interface of a function. 

9.2.1 Using short in the Interface 

The C++ language requires that variables declared of type c h a r or s h 0 r t be promoted 
automatically to type i nt before participating in an expression. That is, no direct use 
of c h a r or s h 0 r t values can be made in an expression apart from determining their 
size (s i z e 0 f) or taking their address (unary &). 

Guideline 

Avoid using short in the interface; use i nt instead. 

Figure 9-24a illustrates that before a c h a r or ash 0 rt is used in a binary expression, it 
is first automatically promoted to a temporary of type i nt. Irrespective of any over
loaded function call resolution, the same automatic promotion to i n t values also 
occurs implicitly during a function call as indicated in Figure 9-24b. The type i nt in 
C++ typically corresponds to the fundamental integer size supported by the underly
ing computer hardware. For most commercially available workstations, an i nt is (at 
least) 32 bits.41 

41 In what follows I am assuming a 32-bit (or larger) architecture. If you are working on a 16-bit 
machine or an embedded system, some of the statements in this section will not apply. 
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int f(char,int}; char c; short s; 

char c; short s; 
f ( c , s ) 

c + s 
(int) t004 (int) tOOS 

(int) t001 (int) t002 

(int) t003 (int) t006 

(a) Integral Promotion in Binary Operation (b) Integral Promotion in Function Call 

Figure 9 .. 24: Result of Integral Promotion 

Figure 9-25 illustrates a class that uses short instead of i nt in its interface. Why 

might we want to do such a thing? The motivation comes from a desire to express 

intent directly in the declaration and avoid having to resort to comments. If we declare 

that a parameter is ash 0 r t, no one would ever try to pass in anything larger and so we 

don't have to check it ourselves, right? 

class my_Point { 
short d_x; 
short d-y: 

} ; 

public: 
II CREATORS 
my_Point(short x, short y): 
my_Point(const my_Point& p); 
my_Pointe); 

II MANIPULATORS 
my_Point& operator=(const my_Point& p); 
void x(short x); 
v 0 i d y ( s hart y); 

II ACCESSORS 
short xC) canst: 
short y() canst; 

Figure 9-25: Using short Integers in the Interface (Bad Idea) 
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I ... ~"i~Ciple 1 . ., ........... . 

Specifying design decisions directly in the code instead of relying on 
comments is a design goal; designing robust interfaces that are safe to 
use and easy to maintain will occasionally compete with this goal. 

The fact of the matter is that documenting information in the header file that is useful 
only when looking directly at the header file itself can be of limited utility when it 
comes to maintenance (see Section 9.1.11). Clients will pass an integer literal or 
expression regardless of how we attempt to document it in the header; declaring the 
integer to be ash a rt simply causes the truncation to occur outside the function rather 
than inside, making it impossible for the function itself to detect an overflow error. To 
the client, the perception is the same: the function doesn't work. 

Consider the answers to the following questions: 

1. Does using ash art in the interface ensure at compile time that overflow 
will not occur at runtime? 

No. The C++ language allows arithmetic overflow to occur silently at runtime. 

2. Does using short in the interface allow for overflow detection? 

No. If the interlace accepted an i nt, we could at least detect a coordinate 
that is out of range of the implementation; at a minimum, passing an i nt 
would allow us to assert the precondition. 

3. Does using s h 0 r t in the interface serve to encapsulate or un -encapsulate 

the implementation? 

Exposing s h 0 r t in the interface limits the size of the coordinates that any 
implementation can accommodate and eliminates our ability to detect 
overflow; limiting implementation choice is a symptom of reducing 
encapsulation. 
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4. Does using s h 0 r t in the interface improve or degrade efficiency? 

If anything, the argument may have to have its high-order bits masked 
off, requiring additional work and therefore reducing runtime efficiency. 

5. Does using short in the interface interfere with overloaded function 
resolution? 

Yes. According to the rules of the language, converting an i n t to ash 0 rt 
is a standard conversion just like converting an i n t to ado u b 1 e. That is, 
if two functions were named f, one taking a short and the other taking a 
doub 1 e, the call f ( 10) would be ambiguous. 

6. Does using s h art in the interface interfere with template instantiation? 

template<short N) 
class pub_BitVec { 

int d_bits : N; 

} ; 

public: 
BitVec(); 
int operator[] (int i); 
void set(int i); 
void clear(int i); 
void toggle(int i); 

Figure 9-26: Template Class Parameterized by s h 0 r t 

Yes. According to the rules of template instantiation, the type of a tem
plate must match the argument exactly; a template parameterized by a 
short such as pub_Bi tVec in Figure 9-26 will not be instantiated when 
declared with an integer literal or any compile-time constant integral 

• expressIon: 

BitVec<2> vI; II expecting short got int 
BitVec(short(Z» vI; II ok. 
BitVec<5 - 3> v2; II expecting short got int 
BitVec<short(5 - 3) vI; II ok. 
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9.2.2 Using uns i gned in the Interface 

The C++ language requires that binary operators involving one un s i 9 ned integer first 
convert the other integer to un s i 9 ned before performing the operation. Usually this is 
not a problem; however, when it is, it's not at all easy to debug. 

Guideline 

Avoid using uns i gned in the interface; use i nt instead. 

#include <iostrearn.h> 
rna i n ( ) 
{ 

} 

unsigned int i = 3; 
co u t < < "3 * -- 1 - " 

< < i * --1 < < end 1 ; 

II Output: 
II john@john: a.out 
II 3 * -1 = 4294967293 
II john@john: 

* -1 

(unsigned) -1 

(unsigned) t007 

(a) Using un sign ed in 
Arithmetic Expressions. 

#include <iostream.h> 
ma i n ( ) 
{ 

} 

unsigned int i = 3; 
cout « "(3 > -1) = " 

< < (i > -1) < < "end 1 ; 

II Output: 
II john@john: a.out 
II (3 > -1) = 0; 
II john@john: 

> -1 

(unsigned) -1 

/ 
(unsigned) tOOa 

(b) Using un s i 9 ned in 
Logical Expressions 

Figure 9-27: Mixing i n t with un s i 9 ned in Binary Expressions 

Figure 9-27a illustrates that when a signed and an uns i gned value are involved in 
a binary operation, the bit pattern of the s i 9 n ed number is silently reinterpreted 
as an un s i 9 ned number. No actual temporary is created. For most integer repre
sentations, the result is the largest number that will fit in an uns i gned (e.g., 
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232 - 1 = 4294967295). This number is then multiplied by 3, which causes the 
unsigned to overflow; the result is therefore printed as (3 • (232_1» mod 232= 
232 _,3. In Figure 9-27b precisely the same reasoning applies. The unsigned value 
again causes the bit pattern of the sign ed value to be reinterpreted to a huge un signed 

value, the comparison is made, and-for many-produces unexpected results. 

class my_Array { 

} ; 

int *d_array_p; 
unsigned short d_size; 

public: 
II CREATORS 
ArrayCunsigned int size); 
Array(const Array& array); 
,...,Array(); 

II MANIPULATORS 

II bad idea: Short used in implementation 
II only, but see Section 10.1.2. 

Array& operator=Cconst Array& array); 
int& operator[](unsigned int i); 

/1 ACCESSORS 
int operator[]Cunsigned int i) canst; 
unsigned int sizeC) canst; 

Figure 9-28: Using unsi gned Integers in the Interface (Bad Idea) 

One might argue that we deserve what we get when we mix negative and unsigned 
integers. Perhaps-when we do it. But consider the seemingly innocent my~Array 
class shown in Figure 9-28. 

#include <assert.h> 
#include <iostream.h> 
void printForwardMovingAverageCconst my_Array& a, int width) 
{ 

assertCwidth > 0); 
canst int N = width - 1; 
int total = 0; 
for (int i = -N; i < a.sizeC); ++i) { 

if (i + N < a.size(» { 

} 

total += a[i + NJ: 
} 

cout « i « '\t' « doubleCtotal)/width « endl; 
i f C i >= 0) { 

total -= a[i]; 
} 

Figure 9-29: Innocent Client Function to Print the Forward Moving Average 
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As a client of the my_Array class, I have written the function shown in Figure 9-29, 
which takes an instance of my_Array and prints its forward moving average of speci
fied width. As a responsible developer, I whipped up the little test driver shown in 
Figure 9-30 to verify that my function worked-and it did not. 

II test.c 
# include <stdlib.h> II atai() 

main(int argc, char *argv[]) 
{ 

} 

canst int SIZE = argc > 1 ? atoiCargv[l]) : 4; 
canst int WINDOW = argc > 2 ? ataiCargv[2]) : 2; 
my_Arrayarray(SIZE): 
for (int i = 0; i < SIZE; ++i) { 

array[i] = 1: 
} 

printForwardMovingAverage(array, WINDOW); 

Figure 9-30: Test Driver for pri ntForwa rdMovi ngAverage Function 

The output I expected for the default values (an array of S I Z E 4 containing alII' sand 
a WIN DOW width of 2) was supposed to look as shown in Figure 9-31a; the disappointing 
reality is shown in Figure 9-31b. 

john@john: a.out 
-1 0.5 
o 1 
1 1 
2 1 
3 0.5 
john@john: 

(a) Expected Output 

. john@john: a.out 
john@john: 

(b) Actual Output 

Figure 9-31: Driver Output for pri ntForwa rdMovi ngAverage Function 

Even though we know better than to mix uns i gned and i nt, one does not always 
check a header for each integer value that is returned. In this case, it was s i z e ( ) that 
did us in. The problem is again that comparing a negative number with an unsi gned 

i nt will usually go the wrong way, as illustrated again in Figure 9-32. 
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#include <iostream.h> 
rna i n ( ) 
{ 

} 

my _A r ray a ( 1 0 ) ; 
cout « "size = II « a.size() « endl; 
if (a.size() > -1) { 

cout « IIsize is positive or zero." « endl; 
} 

else { 
cout « "size 1S negative!!!" « endl; 

} 

II Output: 
II john@john: a.out 
II size = 10 
II 
II 

size is negative!!! 
john@john: 

Chapter 9 

Figure 9-32: Comparing an uns; gned i nt Return Value Against a Negative i nt Value 

All we need to do to repair the damage in this case is to replace the line 

for (i n t i = - N; i < a. s i z e ( ); ++ i) { 

in Figure 9-29 with the pair of lines 

canst int S = a.sizeC); II work-around for returning unsigned 
for (int i = -N; i < S; ++i) { 

and the function will operate correctly. 

Occasionally comments work better than trying to express an inter
face decision directly in the code (e.g., uns i gned). 

Bugs occurring from the use of uns i gned in the interface are frustrating and notoriously 
hard to detect. Looking at the problem with a debugger, it can seem that the i f state .. 
ment itself in Figure 9-32 must be broken. It is often quite a stretch to guess that the 
return value of the function is declared un s i 9 ned and is implicitly converting some 
other negative number to a positive value as a result of a binary comparison operation. 
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Consider the answers to the following questions: 

1. Does using uns i gned in the interface ensure at compile time that negative 
numbers will not be passed in at runtime? 

No. The C++ language allows the bit pattern to be reinterpreted silently at 
runtime. 

2. Does using un s i 9 ned in the interface allow for the possibility of checking 
for negative values? 

Yes, but you have to coerce the uns i gned back to an i nt internally. 

·3. Does using un s i 9 ned improve or degrade runtime efficiency? 

It typically has no effect. 

4. Does using uns i gned increase the size of the positive integer that can be 
stored? 

Yes-by 1 bit. This extra bit is rarely useful. If the extra capacity is 
needed, there is a risk of losing data when the un s i 9 ned is converted back 
to an i nt (see Section 10.1.2). 

5. Does using un s i 9 ned in the interface increase or decrease the likelihood 
of user error? 

It increases it. Without looking at the header file, there is no safety advan
tage, since the conversion is done silently. Naively using an unsigned 
return value in an expression that involves a negative i n t value will cause 
the client's code to break at runtime. 

6. Does using un s i 9 ned in the interface serve to encapsulate or unencapsu
late the implementation? 

Exposing unsigned in the interface effectively limits the values that any 
implementation will accommodate, thereby reducing encapSUlation. 

7. Does using uns i gned in the interface interfere with overloaded function 
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resolution? 

Yes. According to the rules of the language, converting an i n t to an 
uns i gned is a standard conversion, just like converting an i nt to a 
do U b 1 e. That is, if two functions were named f, one taking an un s i 9 ned 

and the other taking a doubl e, the call f( 10) would be ambiguous. 

8. Does using un s i 9 ned in the interface interfere with template instantiation? 

Yes. We encounter a problem for precisely the same reason as when 
parameterizing a template with a short (see Section 9.2.1). 

9.2.3 Using long in the Interface 

Although in this book we cavalierly assume that an i nt holds at least 32 bits, in fact 
only 16 bits are needed to satisfy the ANSI requirement for type i nt.42 If you are 
working on a 16-bit machine, the following guideline clearly does not apply. 

Guideline 

Avoid using long in the interface; assert( 5 i zeaf( i nt) )== 4) and use 
either i nt or a user-defined large-integer type instead. 

The c++ language defines along integer to be at least as large as an i nt. Along i nt 
means "the biggest integer you have"; an i nt means "the biggest integer that is effi
cient" (typically the natural word size of the computer). On a 16-bit machine, along 
is probably a double word (32 bits). On most commercially available compilers for 
32-bit workstations, along is a single 32-bit word. On 64-bit architectures, an i nt 
will probably continue to be set at 32 bits for compatibility with existing programs, 
while a 1 0 n 9 might be 64 bits. If portability is an issue, any assumption that a 1 0 n gin t 

is more than 32 bits is a recipe for failure (not every machine you may want to port to 
will have a 64-bit long i nt). 

42 ellis, Section 3.2.1c, p. 28. 
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Figure 9-33 illustrates a component that uses 1 0 n gin t instead of i n t in the interface. 

Why might we want to do such a thing? Usually the answer to this question is some
thing like, "1 want it to hold the biggest integers it can." For small projects on small 
machines, this reason might be sufficient. For large projects running on industrial
strength workstations on multiple platforms, the i nt is either big enough or it isn't
if you're not sure, then it isn't. Fortunately, the C++ language enables us to define a 
larger integer type ourselves. 

class my_Point { 
long int d_x; 
1 0 n gin t d_y; 

} : 

public: 
II CREATORS 
my_Point(long int x, long int y); 
my_Point(const my_Point& p); 
my_Pointe) ; 

II MANIPULATORS 
my_Point& operator=(const my_Point& p); 

void x(long int x); 
void yClong int y); 

II ACCESSORS 
long int xC) canst; 
long int y() const; 

Figure 9-33: Using long Integers in the Interface 

Whenever we initialize, assign, or pass along i nt value where an i nt value is expected, 

we are forcing a standard conversion that has the potential to lose information (if it didn't, 
there would be no reason to use long in the first place). The compiler may warn clients of 

these "lossy" conversions, as illustrated in Figure 9-34. We could always tell our clients 
how to suppress these warnings by sprinkling their code with casts-just kidding! 

int r(int x, int y); 

void g() 
{ 

} 

my_Point p(3, 2); 
int j. i - p.x(): 
j = p.y(); 
double d =r(p.x(), p.y(»; 

II fine, int converted to long .. 
II warning: long assigned to int 
/1 warning: long assigned to int 
II warning: argument 1: long passed as int 
II warning: argument 1: long passed as int 

Figure 9-34: Mixing Types i nt and long 
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Consider the answers to the following questions: 

1. Does using along in the interface ensure increased capacity over an i nt? 

Not on all platfonns. Often an i nt and along are the same size. If you 
depend on increased capacity, your code will not be portable. 

2. Does using long in the interface hinder usability? 

Yes. A potentially large number of warning messages could inundate clients 
(see also question 3). 

3. Does using long in the interface interfere with overloaded function reso
lution? 

Yes. According to the rules of the language, converting an i nt to along 
is a standard conversion, just like converting an i n t to a do u b 1 e. 43 That 
is, if two functions were named f, one taking along and the other taking 
a do u b 1 e, the call f ( 10) would be ambiguous. 

4. Does using long in the interface interfere with template instantiation? 

Yes. We encounter a problem for precisely the same reason as when 
parameterizing a template with a short (see Section 9.2.1). 

9.2.4 Using float, doubl e, and long doubl e in the Interface 

The C++ language enables floating-point computation to occur in each of the three 
floating-point types: 

• float, 
• double, and 
• long double. 

43 Going from i nt to long is not an integral promotion; rather it is a standard conversion. Converting 
an i nt to along and its (canst/val at; 1 e) equivalents is the only "non-lossy" standard conversion in 
the language. 
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Guideline 

Consider using do U b 1 e exclusively for floating-point types used in the 
interface unless there is a compelling reason to use float or 1 ang 

daubl e. 

Historically, C required all floating -point expressions to be of type do u b 1 e and did not 
support long doubl e. ANSI C introduced the ability to do arithmetic directly with 
float values. Most C library calls pass and return a floating-point value as a daubl e. 

These days, much of the computer hardware is optimized to make daubl e floating
point calculations run as quickly as possible. In fact, a double precision multiply on 
my machine is an order of magnitude faster than an integer multiply (which is imple
mented as a subroutine). 

I 
.. 

· 

.. 

•··· ... ···•· .. •····· .. ·•·.· .. ···· .. ····.··.···........... ...... ........ ...... ... ... ... . .......... ' .. · ... '····1.· . J:'~fipl~· ••••• ·•·•···. 
In most cases that arise in practice, the only fundamental types you 
need in order to represent integer and floating-point numbers in the 
interface are i n t and do U b 1 e, respectively. 

The same issues of consistency, error checking, operator overloading, and template 
instantiation that applied to the integer types apply to floating-point types as well. 

9.3 Special-Case Functions 

There are a few special member functions that warrant some discussion. Conversion 
operators (i.e., single-argument constructors and "cast" operators) and compiler-gen
erated functions (such as the copy constructor, the assignment operator, and, in partic
ular, the destructor) deserve specific mention. 
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9.3.1 Conversion Operators 

Implicit conversions compete with type safety, can introduce ambiguities, -and in gen
eral increase the cost of maintaining a program. Any time we create a constructor that 
can take a single argument, we enable an implicit user-defined conversion. Defining a 
conversion operator other than a constructor, referred to in this book as a cast 
operator, also enables implicit conversion. An example of each of these forms can be 
found in Figure 9-35. 

pub_String { 
I I ... 

} ; 

public: 
pub_String(const char *cptrt int maxSizeHint = 0); II "cast constructor" 
I I ... 
operator const char *() canst; II "cast operator" 

Figure 9-35: The 1\vo Forms of User-Defined Conversion Operators in C++ 

Constructors that enable implicit conversion, especially from widely 
used or fundamental types (e.g., i nt), erode the safety afforded by 
strong typing. 

A constructor accepting a single argument, sometimes called a cast constructor, can 
contribute to surprises by enabling an unexpected conversion. Consider the two
dimensional table component sketched in Figure 9-36. 

II d2_table.h 
# ifndef INCLUDED_D2_TABLE 
# define INCLUDED 02 TABLE - -

class d2_Entry; 
class d2_Rowlter; 
class d2_Collter; 
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class d2 Table { 
/ / ... 

} : 

friend d2_Rowlter: 
/ / ... 

public: 
d2_Table(); 
/ / ... 

class d2_Rowlter { 
/ / ... 
friend d2_Collter; 
/ / ... 

public: . 

Conversion Operators 647 

d2_RowIter(const d2_Table& table): II takes a d2_Table 
operator const void *() canst; 
void operatar++(); 

} ; 

class d2 Col Iter { 
I I ... 

public: 
d2_ColIter(const d2_Rowlter&); II takes a d2_Rowlter!!! 
operator canst void *() const; 
void operator++(); 
const d2_Entry& aperator()() const; 

} ; 

#endif; 

Figure 9-36: Sketch of Two-Dimensional d2_tabl e Component 

The intent is that a client will apply a row iterator to the table and, for each row position, 
reapply a new column iterator to that row iterator. 

As the function in Figure 9-37 -shows, editor cut-and-paste can introduce bugs: 
c; t ( t) on the indicated line should have been cit ( r it). As long as our code is 
"type-safe," we stand a good change of detecting such bugs at compile time-but not 
here! What actually happens is that each instantiation of the second iterator forces an 
implicit conversion of the d2_ Tab 1 e, t, to an unnamed temporary of type d2_Row I te r 
(which happens to be positioned at the first row of the table). There is no guarantee that 
this temporary row iterator will remain valid while the column iterator operates; but if 
it does, the table will appear as if the contents of all rows are identical to the fITst. 
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void g(d2~Table& t) 
{ 

for (d2~Rowlter rit(t); rit; ++rit) { 

Chapter 9 

for (d2_Collter cit(t); cit; ++cit) ( II <-- oops!!! "cit(t)" 

} 
} 

} 

II should be "cit(rit)" 
cout « cit() « endl; II print (ith row, jth col) table entry 

Figure 9-37: (Mis)using the d2_tab 1 e Component 

A cast constructor taking a user-defined type is less likely to be a problem in practice 
than constructors taking a single fundamental type-especially an integral type. For 
example, consider the situation depicted in Figure 9-38. A gr _Graph provides its cli
ents with the ability to look up a particular node either by name or ide Unfortunately, a 
9 r _N 0 del d knows how to construct itself from an arbitrary integer. The apparent type 
safety afforded by gr _Graph's overloaded 1 ookupNode methods does little to detect 
the error in function f. The problem is that the extra "*" at the indicated line turns the 
character string name, n am e s [ a J, into the ASCII value of its first character; this value 
is promoted to an i nt and then implicitly converted to some bogus gr _Nodeld. It is 
anyone's guess what happens next. The error would have been detected at compile 
time had gr _Nodeld not enabled an implicit conversion from an integral type. (A sim
ilar problem results from the use of default arguments in Figure 9-18b.) 

class gr_Node; 

class gr_Nodeld { 
int d_index; 

} ; 

public: 
II gr_Nodeld(int index); 
I I ... 

class gr_Graph { 
I I ... 

public: 
I I ... 

II there goes type safety 

const gr~Node *lookupNode (const char *name) const; 
II lookup a node in the graph by name 

} ; 

const gr_Node *lookupNode (const gr_Nodeld& id) const; 
II lookup a node in the graph by id 



Section 9.3.1 Conversion Operators 649 

void f(const char *names[], const gr_Graph& g) 
{ 

} 

const gr_Node *node = g.lookupNode(*names[O]); II <-- oops!!! didn't 
II want * in *names[O] 

if (node) { 
cout « *node « endl; I I all is well, pri nt the node 

} 

else { 

} 

cout « "Program Error: What happened to the node!!!" « endl; 
assert(O); II node with this name should be there 

Figure 9-38: (Mis)using gr _Graph to Look Up a gr _Node by Name 

Guideline 

Consider avoiding "cast" operators, especially to fundamental 
integral types; instead, make the conversion explicit. 

In general, explicit conversion functions are more readable and much safer than 
implicit conversions. Although cast constructors are a necessary part of doing busi
ness, cast operators are a form of implicit conversion that is more easily avoided: we 
can always supply an explicit conversion function to do the work of a cast operator. 

As we saw in Figure 9-6, providing p u b_S t r i n g with both a cast constructor and a 
cast operator (for implicit conversion to and from a can s t c h a r *) led to ambiguities 
that required further effort to resolve. Had we replaced the cast operator with a mem
ber function such as con s t c h a r * s t r () con s t; with the identical implementation, 
no ambiguity would have occurred.44 

In very limited, well-understood situations, implicit conversions can increase usabil
ity.45 Automatically converting a pub_String to a canst char * and converting an 
arbitrary object to a canst vaid * (as a test for validity) seem to be reasonably safe 
uses of implicit conversion. Arguably, the client code would be clearer if forced to call 
explicit members such as s t r ( ) and i s Val i d ( ). What makes these conversions rea-

44 See meyers, Item 26, p. 89. 
45 See strollstrup, Section 7.3.2, pp. 232-233. 
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sonable is the lack of surprise potential. Passing a pub_St ri ng to a function expecting 
a con s t c h a r * is almost always a reasonable thing to do because the semantics of the 
two types are so tightly coupled. Implicitly converting to a can 5 t va i d * is safe 
because the only useful thing you can do with the result is compare it to O. 

Clear misuses of implicit conversion involve converting an object to an unrelated or 
more widely usable type--especially a fundamental type. For example, having a spe
cific object such as 9 r _N ad e I d convert itself to an i n t representing its internal index 
is entirely inappropriate and virtually eliminates any type-safety advantage of having 
represented the value as a class. A geom_Poi nt that knows how to convert itself to a 
double representing its magnitude would also be inappropriate, especially since 
explicit conversion (e.g., using pt. magn i tude ( ) is safer, is more readable, and is an 
interface alternative that is always available. 

9.3.2 Compiler-Generated Value Semantics 

The C++ language requires that the compiler automatically generate the definitions of 
certain basic member functions, if needed, unless they are already explicitly declared 
in the class (see Section 6.2.6). Most commonly of interest are the generated copy 
constructor and assignment operator. 

Guideline 

Explicitly declare (either public or private) the constructor and 
assignment operator for any class defined in a header file, even when 
the default implementations are adequate. 

When considering whether or not to declare a copy constructor or assignment opera
tor explicitly, the first question to ask is whether we intend this object to support value 
semantics (see Section 5.9). For some objects, such as Gnode in Figure 5-81, value 
semantics do not make sense. For other objects, such as iterators, value semantics 
make sense but are often not necessary for a sufficient interface (see Section 8.2). In 
either case, we should explicitly inhibit the use of such value-semantic functions by 

declaring them p r i va te and deliberately leaving them undefined.46 
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If value semantics are to be supported, the next issue is whether the compiler-gener
ated constructor and/or assignment operator would do the right thing.47 If the default 
definitions are not correct, we will need to declare these members and define them our
selves. Otherwise, we must determine the likelihood that the default definitions might 
become invalid, and determine also the cost to our clients of making an uninsulated 
change to our interface if they do. If the expected cost is too high, we would again opt 
to define these operations ourselves rather than use the default implementation. 

Finally, for very local objects where the compiler-generated implementations make 
sense and insulation is not an issue, we might allow these function definitions to 
default. In particular, allowing default copy and assignment semantics is often appro
priate for classes defined entirely within a . c file. However some clients of an 
exported class definition that relies on default semantics may be left with this nagging 
doubt: is the default implementation really good enough, or did the author simply fail 
to address this issue? 

Note that some current implementations of C++ do not allow generated operator= to 
be called via function notation, nor its address to be taken, as required by the lan
guage.48 Such failings by compilers bolster the argument in favor of always declaring 
an exposed class's value-semantic operators explicitly. 

9.3.3 The Destructor 

The destructor is an important function with many unique responsibilities; we enu
merate them here. 

In every class that declares or is derived from a class that declares a 
virtual function, explicitly declare the destructor as the first virtual 
function in the class and define it out of line. 

46 meyers, Item 27, pp. 92-93. 
47 ellis, Section 12.8, p. 295; and meyers, Item 11, pp. 34-37. 
48 ellis, Section 12.8, p. 296. 



652 Designing a Function Chapter 9 

The destructor is responsible for destroying the object and freeing any resources (e.g., 
dynamic memory) currently managed by that object. When a class declares a function 
vir t u a 1, it is advertising itself as a base class-what other reason could there be for 
declaring a function vir t u a 1 ? Derived classes may accrue resources even when the 
base class has none. Conversely, in order to ensure that the derived class destructor is 
called, even from a base-class pointer or reference, the base-class destructor must be 
declared vi rtua 1.49 

In an efficient implementation of dynamic binding, we would hope that there would 
be only a single copy of any virtual table in the entire program. The question is, "In 
which unique translation unit will the compiler deposit the virtual table definition(s) 
for a given class?" The trick employed by CFRONT (and many other C++ implementa
tions) is to place the external virtual tables in the translation unit that defines the lexi
cally first non-inline virtual function that appears in the class (if one exists). 

The cost of ignorance can sometimes be truly staggering. Figure 9-39 depicts a real
life problem that went undetected in a large project for quite some time. The story 
begins with the fact that the popular core_Stri ng class is derived from 
cor e_S t r i n 9 Bas e that contains virtual functions, including of course a virtual 
destructor. The cor e_S t r i n 9 class, not allocating any additional resources, faile,d to 
declare a destructor at all. ~e compiler is required to generate a destructor for the 
derived class and place it in a virtual table for the derived class. 

class core_StringBase { 
I I ... 

} ; 

public: 
I / ... 
virtual ~core_StringBase(); 
/ / ... 
virtual int length(): 
virtual operator const char *() const; 

class core_String: public core_StringBase { 
int d_length; 

49 ellis, Section 12.4, p. 278. 
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} ; 

The Destructor 653 

public: 
core_String(const char *cptr); 
core_String(const core_String& string); 
core_String& operator=(const core_String& string); 
int length() { /* ... */ } 

Figure 9-39: Failing to Define at Least One Virtual Function Out of Line 

Not being given any clue as to where to place a unique global copy of the virtual table, 
the compiler placed a copy of the table in every translation unit that included the 
core_Stri ng header. To add insult to injury, there was also no unique place to gener
ate a non-inline version of the destructor; hence, a static copy of the destructor was 
placed in every translation unit along with the virtual tables. Finally, every inline vir
tual function (e.g., 1 ength) was also denied a unique home for its out-of-line imple
mentation. A static version of each in line virtual function was also placed in every 
translation unit that included the cor e_S t r i n 9 class. 

The problem was finally detected when the Unix "nm" utility was run on the execut
able and a histogram of static names turned up thousands of static function defini
tions, each with the same name, but defined in separate translation units. Declaring 
the destructor for cor e_S t r i n 9 and implementing it out of line solved all of the prob
lems. This behavior is cryptic and implementation dependent; however, this is our 
current reality. 

In the style we have followed throughout this book, creators precede any other non
static member functions. Thus, the first virtual member function encountered is 
invariably the destructor. Also, in order for the address of a destructor to be placed in 
a virtual function table, there must be at least one version of the destructor defined out 
of line anyway. The requirement that there must be at least one virtual function 
declared non-inline, coupled with the natural lexical position of the destructor within 
the class, makes the destructor the natural choice to be declared virtual and defined 
out of line. 

In rare cases (e.g., a deep inheritance hierarchy), performance may be improved by 
defining empty destructors inline, in which case some other function in the class must 
be declared a virtual, non-inline function to avoid generating redundant tables. 
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Guideline 

In classes that do not otherwise declare virtual functions, explicitly 
declare the destructor as non-virtual and define it appropriately 
(either inline or out-of-line). 

For classes that do not otherwise declare virtual functions, implementing a virtual 
destructor is not likely to be appropriate. Making the destructor alone virtual would, 
in most implementations, increase the size of each instance by the size of a pointer. 
For small objects such as geom_Poi nt, the increase in cost could be 50 percent. One 
solution for guarding against memory leaks is that a class derived from a base class 
with a non-virtual destructor should avoid managing additional resources that must be 
released when the object is destroyed.5o 

For classes that do not require virtual functions, there is still a reason to require that 
the destructor be declared explicitly. Calling the destructor of a fundamental type 
explicitly is legal C++:51 

int i; 
i. int: :----int(); / / 1 ega 1 c++ ; doe s not h i n 9 

Attempting an explicit call to the destructor of an object that does not explicitly 
declare one and for which none has been generated doesn't work on several current 
compilers. Since it is not possible to take the address of a destructor, a destructor is 
generated for a class that does not explicitly declare one only when a base class or 
embedded member object has a destructor. 52 This fact has implications for template
based container objects that attempt to call the destructor of the parameterized type 
explicitly (Figure lO-33b provides a useful workaround). For consistency, it should be 
possible to destroy any object in place, regardless of whether or not a destructor has 
been defined. 

50 meyers, Item 14, pp. 42-48. 
51 ellis, Section 12.4, p. 280. 
52 ellis, Section 12.4, p. 277. 
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9.4 Summary. 

c++ provides an enormous amount of flexibility in describing the function-level 
interface. There are at least 14 separate questions we must address as we design each 
function. Each of these decisions evokes additional considerations that must be 
resolved in context: 

1. Operator or non-operator function? 
Operator: 

• The operator notation improves usability (readability in 
particular). 

Non-Operator: 
• The operation on the user-defined type does not 

syntactically mirror the same operation on the fundamental 
types. 

2. Free or member operator? 
Free: 

• We want to enable implicit user-defined conversion for its . 
leftmost argument. 

• It is syntactically symmetric (e.g., -- < +). 

Member: 
• We want to disable implicit user-defined conversion for its 

leftmost argument. 
• It modifies an argument (e.g., = += *= ++). 
• The language requires membership (e.g., ( ) [J -»). 

3. Virtual or non-virtual function? 
Virtual: 

• Its behavior must be able to be overridden in a derived class. 
Non-virtual: 

• It is a symmetric operator function (e.g., ! = )= I). 
• It is a unary operator function that should support user

defined conversion of its argument (e.g.,! + -). 

• Its behavior can be implemented as variation in the value of 
member data. 
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4. Pure or non-pure virtual member function? 
Pure: 

• Not overriding its behavior in a derived class is likely to be 
an error. 

• Physically decoupling the interface from the implementa
tion is important. 

• The class will be used by many clients. 
• The class defines a protocol. 

Non-pure: 
• Default behavior'makes sense. 
• Its default behavior is correct in many cases. 
• The class will not be widely used. 

5. Static or non-static member function? 
Static: 

• It uses a s t r u c t solely to scope the name of the function. 
• It implements non-primitive behavior.escalated from a 
. lower-level object 

• Symmetry with respect to user-defined conversion is 
needed among all of its arguments. 

Non-Static: 
• It depends on data contained within a specific instance of 

the class. 

• It is an operator function. 

6. canst or non-canst member function? 
canst: 

• It does not modify bits embedded in the c 1 ass or 
struct. 

• It modifies only physical values that are never 
programmatically accessible by clients. 

Non-canst: 
• It modifies logical values, even though the compiler says 

can s t would be legal. 
• It returns a non-canst version of a type that could violate 

can s t-correctness. 
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• It is static. 

7. Public, protected, or private member function? 
Public: 

• It is intended for direct use by the general pUblic. 
Protected: 

Private: 
• It is intended for use only by derived-class authors. 

• It is a non-virtual implementation detail (especially to 
factor the implementation of a public inline function). 

• It is a virtual function that must be programmed but that 
need not be accessed by derived classes. 

8. Return by value, reference, or pointer? 
Value: 

• There is no preexisting object available to return. 
• Preserving total encapsulation, is important. 

Reference: 

Pointer: 

• There is always something to return. 
• We are returning access to a polymorphic object whose 

memory is managed elsewhere. 

• There may be something to return. 

• The function may fail. 
Argument: 

• We want to return a newly allocated polymorphic object in 
a handle that will manage the object, reducing the like

lihood of memory leaks. 
• We want to preserve total encapsulation while returning 

heavy-weight objects more efficiently than by value. 

• We want to return more than one item. 

• Both status and a value must be returned. 

9. Return canst or non-canst? 
Const: 

• We are returning a pointer or reference to a data member of 
the class. 
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• Returning non-canst would violate canst-correctness. 
• We are returning a reference to a shared dummy object 

(e.g., a zero entry in a sparse array). 

Non-canst: 

• We are returning by value. 
• We are providing direct writable access to a contained 

object (e.g., in an array). 

10. Argument optional or required? 
Optional: 

• We have added a new argument to existing code. 

• There is a single algorithm. 
• We want our code to be self-documenting . 
.• The default argument is an invalid value. 

Required: 

• This is a widely used interface. 
• The default value is a user-defined type. 

• Insulation is important. 

11. Pass argument by value, reference, or pointer? 
Value: 

• It is a fundamental or enumerated type. 
Reference: 

• It is a user-defined type that is not modified. 
Pointer: 

• It is modified. 
• Its address is taken. 

• It is deleted. 
• It may be omitted. 

12. Pass argument as canst or non-canst? 
can s t: 

• It is a user-defined type passed by reference. 
• It is never modified, but is passed by pointer 

(because a null value is sometimes appropriate). 

Non-canst: 
• It (e.g., an enumeration or fundamental type) is 
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passed by value. 

13. Friend or non-friend function? 
Friend: 

• Enforcement of encapsulation is not an issue (rare). 
Non-friend: 

• There is a member function (e.g., compa re) or friend class 
(e.g., S t a c kIt e r) available that is suitable for implement
ing it (e.g., operator==). 

14. Inline or non-inline function? 
Inline: 

• The size of the inline function body would be smaller 
than the size of the non-inline function call. 

• Performance is measurably critical, and it is 
reasonably small or called from only a few places. 

Non-inline: 

• It will not inline. 
• It is useful only when dynamically bound. 
• Insulation is important. 

There are many alternative integral types available for use in the interface of func
tions: short, uns i gned, long, etc. In practice, on a 32-bit machine, the only integral 
type we need in the interface is i nt. Using any other type is potentially inefficient, 
unencapsulating, error prone, or just plain annoying to use. 

There are three alternative floating-point types available in c++: float, doubl e, and 
long doub 1 e. Traditionally all floating-point arguments in C were converted to doub 1 e 
before being passed as arguments. Most hardware is geared to handle do U b 1 e values 
as efficiently as possible. Unless there is a compelling reason to do otherwise, all 
floating-point numbers should be expressed as do U b 1 e in the interface. 

Conversion operators (e.g., single-argument constructors and cast operators) compete 
with compile-time type safety. Constructors that take a single argument enable 
implicit user-defined conversion. However, such constructs are a necessary part of 
many interfaces. On the other hand, cast operators are easily avoided, simply by pro
viding explicit conversion functions. Occasionally usability is enhanced by implicit 
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conversion. In most cases, however, implicit conversion is a liability, particularly 
when it involves a fundamental integral type. 

The c++ compiler automatically generates certain undefined functions (if needed). 
There are a variety of reasons for not relying on the default behavior, particularly 
when the interface is used widely throughout the system. Many implementations of 
C++ depend on there being at least one virtual function defined out of line. In OUf 

style, this will always be the destructor. Some current compilers do not allow explicit 
calls to destructors that are not explicitly declared. In practice, it is wise to define the 
destructor of every class explicitly. For classes with no virtual functions, define the 
destructor inline or out of line as appropriate. For classes with virtual functions, 
define the destructor out of line. For protocol classes (see Section 6.4.1.) the destruc
tor should be empty. 



Implementing an Object 

The cavernous realm of object implementation alternatives is made ever more vast by 
good (Le., small, encapsulating) interfaces. Making a design error here is far less 
costly than errors at higher levels of design because the problem is confined to a tiny 
portion of the overall system. Yet there are still several ways in which even individual 
implementation techniques can combine during system integration to affect the over
all success of a project. 

A program must run in an environment with finite resource (e.g., memory). Classes 
with many instances active at a single time put a premium on the size of their objects. 
The sizes and order of their individual data members will affect this size. Custom 
memory-management techniques can sometimes be used to double runtime perfor
mance, but they can also cause a system, over time, to soak up much more memory 
than is actually necessary. 

In this final chapter, we examine some basic principles relating to the organizational 
details of implementing classes in C++. We even proffer some suggestions on imple
menting individual member functions. In the remainder of the chapter, we examine 
several issues relating to custom memory management. 

Although memory management is a complex topic, it is a necessary concern of most 
high-performance systems. We look at several detailed examples and experiments that 
compare the relative merits of some common memory-management organizations. In 
particular, we explore the performance advantages of class-specific management tech
niques, and then discuss potential problems that can be caused when classes using 
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these techniques are integrated into larger systems. We then present object-specific 
memory management as a preferred altemative~ne that avoids many of these prob
lems while achieving essentially the same runtime performance as the class-based tech
nique. Finally we discuss memory management in the context of templates, and provide 
a detailed example of how to implement truly general-purpose container objects. 

10.1 Member Data 

In this section we discuss logical and organizational issues pertaining to the choice 
and ordering of data members within a class. 

10.1.1 Natural Alignment 

Many common RISe-based microprocessors depend on instances of fundamental 
types being naturally aligned. Being naturally aligned means that instances of built-in 
types such as i nt, daub 1 e, and cha r * cannot reside at just any address, but instead 
must be aligned on an N-byte address boundary where N is the size of the object. 

DEFINITION: An instance of a fundamental type is naturally 
aligned if its size divides the numerical value of its address. 

Since s i z e a f ( c h a r) is 1, a c h a r may be stored at any addressable location in mem
ory. If s i z e a f ( s h art) is 2, it cannot be stored at an "odd" address; instead it must be 
stored at an "even" address, sometimes referred to as a half-word boundary (on a 32-
bit machine). Integers and pointers, which often have sizes corresponding to the word 
size of the computer, would have to be stored at a word boundary (e.g., a 4-byte 
boundary on a 32-bit machine). A daubl e, which is often larger than the word size of 
a machine, would normally be stored on a two-word boundary.1 

1 Often a daubl e can be stored on an odd-word boundary (as opposed to an even-word boundary) 
without disastrous consequences. However, on some architectures, failing to follow natural align
ment for a daub 1 e can result in a significant decrease in performance. 
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DEFINITION: An instance of an aggregate type is naturally aligned 
if the alignment of the subtype with the most restrictive alignment 
requirement divides the address of the aggregate. 

An instance of an array of a given type has the same alignment requirement as that of 
the type itself. Satisfying natural alignment for a user-defined type means satisfying 
the alignment requirements of the most restrictive embedded subtype. Figure 10-1 
gives some examples of natural alignment on a typical 32-bit machine. 

*) = s i z e 0 f ( i n t) = 4 and s i z eo f ( do U b 1 e) = 8. 

struct A { struct B { struct C { 

char d c· - , char d_c; double d d· - , 
} ; char d_ac[3]; char *d_pc_p; 

} ; int d . 
1 • - , 

} ; 

sizeof(A): 1 sizeof(B): 4 sizeof(C): 16 
alignment(A): 1 alignment(B): 1 alignment(C): 8 

Figure 10-1: Size and Natural Alignment of Various User-Defined ~pes 

The order in which data members are declared can affect object size. 

The C++ language guarantees that in the absence of intervening access specifiers 
(e.g., publ i c, protected, and pri vate), the memory for non-static data members 
will be allocated with increasing address values corresponding to their order of decla
ration within the structure; however, they need not be contiguous.2 Alignment within 

2 eni~_ Section 9.2. D. 173. 
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a structure can cause gaps at both the middle and end of a structure (but never at the 
beginning). As a rule, one can assume natural alignment when it comes to organizing 
the layout of a c 1 ass or s t r u c t; however, one should not depend on it. 

Assume sizeof(int) =4and sizeof(double) =8. 

struct 0 { struct E { struct F { 

char d c· _ t int d_i1; int_d_il; 
int d 1 • _ t double d d . - , int d i 2 . _ t 

} ; int d i 2 . - , double d_d; 
} ; } ; 

sizeofCO): 8 sizeof(E): 24 sizeof(F): 16 
alignment(D): 4 alignmentCE): 8 alignmentCF): 8 

d c ? ? . . d - i1 

d • 
I ? . 

-

d_d 

d i2 -

? . 

Figure 10-2: User-Defined Types with Holes 

Figure 10-2 gives the size, natural alignment, and corresponding object layout of three 
user-defined types. Type 0 has a hole in the middle because the second data member is 
forced to reside on a word boundary. Type E has two holes: the first hole is caused 
because the doubl e, d_d, is forced to start on a double word (8-byte) boundary. The 
second hole at the end is to ensure that each element in an array of E objects is also 
aligned: 

. 
given: 
then: 

E a[N], b; II N is compile-time const with value> 0 
assertCsizeof a == N * sizeof b): 
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Considering the order in which data members are declared (to reduce object size) 
becomes important when there will be many instances of the type active at one time. 
We can reorganize the data members of type E in Figure 10-2 to eliminate the holes; 
the result is type F, which is 33 percent smaller. 

Whenever we attempt to allocate an object in place using the placement syntax for over
loaded global operator new, we must make sure to do so at a properly aligned location. 
We may assume that global new returns addresses that will work for the most restrictive 
possible boundary. But we must be careful to avoid code such as the following: 

#include <new.h> /1 declare placement syntax 
I I ... 
char *buf = new char[sizeof(Stack[lOO])]; 
Stack *p = new(&buf[l]) Stack; II bus error! 

An example of ensuring proper alignment within a buffer is given in Figure B-5 of 
Appendix B.2. 

10.1.2 Fundamental Types Used in the Implementation 

We argued in Section 9.2 that it is wise to restrict the selection of fundamental types 
used in the interface. The use of unusual fundamental types in the implementation 
brings up a separate set of issues. 

Guideline 

Use short instead of i nt in the implementation as an optimization 
only when it is known to be safe to do so. 

class win Point { 
short d_x; 
short d-y; 

} ; 

public: 
win_Point(int x, int y); 
I / ... 

Figure 10-3: Using short in the Implementation 
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Figure 10-3 illustrates a reasonable use of s h 0 r t in the implementation of an object, 
assuming that the specification of this class states that the values of both x and y must 
be in the range [0, ..., 1,023] at all times. On a 32-bit architecture where 
s i z e 0 f ( s h 0 r t) is 2, we stand to fit the entire object in a single 32-bit register. The 
potential performance implications in both space and runtime may justify the use of 
short in this case. (For a more easily ported approach, see Section 10.1.3.) Justifiable 
uses of uns i gned apart from low-level bit-shifting operations3 are much harder to 
come by. 

Guideline 

Consider not using unsi gned even in the implementation. 

class pub_Array { 

} ; 

int *d_array_p; 
unsigned int d_size; 

public: 
pub_Array(unsigned int size); 
/ / ... 

(a) An Array Class 

class core_String { 

} ; 

char *d_string_p; 
unsigned short d_length; 

public: 
/ / ... 
int length() canst; 
/ / ... 

(b) A String Class 

Figure 10-4: Inappropriate Use of uns i gned and s ho rt in the Implementation 

Figure 10-4 shows two classes in which the use of un signed and s ho rt is misplaced 
(assuming a standard 32-bit architecture). In Figure 10-4a, the internal size is made 
uns i gned to accommodate an array of up to 232 integers, presumably to avoid the pos
sibility of overflow. This decision has prompted the class author to expose the 
un s i 9 ned i n t in the interface as well. Even ignoring the adverse effect on the inter
face, the reasoning that leads to using un s i 9 ned in this example is twice fallacious. 
First, there is no way operator new is going to find space for anywhere near 232 (about 
4 billion) contiguous integer-sized objects (for the foreseeable future at least). Sec
ond, unless a pointer variable is larger than an i nt, the virtual address space limits the 

3 ellis, Section 5.8, p. 74. 
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total number of integers: 232 + s i zeaf (i nt) ::; 230 . In other words, a (signed) i nt, 
which can hold positive values of up to 231 

- 1, is more than big enough. 

Using uns i gned in the implementation to "gain a bit" is an indicat~on 
that the fundamental integral type is not large enough to be safe. 

In Figure lO-4b, the core_Stri ng class defines its internal size to be a sh"ort because 
it does not expect the length of a string to exceed several thousand. The internal vari
able is then made uns i gned, just in case this value exceeds 32,767. Apart from the 
loss in maintainability discussed in Section 9.2.2, in all but pathological cases, if 
32,767 isn't known to be large enough, then 65,535 is suspect as well. Making a 
s h 0 r t value un s i 9 ned "just in case" is tempting fate-it is usually better to use an 
i nt than to risk disaster. The misuse of short in this case is made even more ridicu
lous because natural alignment will create a hole where the other half of an i n t could 
have been placed; using a short here saves nothing.4 

As with any localized, code-tuning effort, the decision to use alternate fundamental 
integral types (e.g., short, char) to optimize the storage within an object is best 
deferred until after the object is working, has been functionally tested, and perfor
mance analysis data is available. A suite of thorough regression tests will help to 
ensure that we do not optimize the correctness out of our implementation. 5 

10.1.3 Using typedef in the Implementation 

Typedefs are often helpful for expressing complex function declarations. Typedefs 
also have a very useful place in the definitions of certain basic types that assume a 
precise number of bits in the representation. 

4 For further discussion regarding the inappropriate use of fixed-size arrays in the implementation, 
see murray, Section 9.2.2, pp. 210-212. 
5 See also murray, Sections 9.9-9.10, pp. 234-235; and cargill, Chapter 7, p. 138. 
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Sometimes we know exactly how many bits we need. For example, when we want to 
store infonnation persistently (on disk) that is shared across heterogeneous platforms, 
we want to make sure that our basic data types hold no more and no less precision 
than needed. Figure IO-5a shows a systemwide header file that isolates the definitions 
of types with absolute sizes. When porting to a new platform, we need change only 
this one file in order to ensure that objects that assume absolute sizes are handled cor
rectly. For example, Figure IO-5b shows a geom_Poi nt class that requires exactly 32 
bits for each coordinate. Typically, an i nt corresponds to the word size of the 
machine. Even on a 64-bit architecture we need only 32 bits for compatibility with 
other architectures-why waste the space? 

II sys_type.h 
#ifndef INCLUDED_SYS_TYPE 
#define INCLUDED SYS TYPE - -

struct sys_Type { 

} ; 

typedef signed char Int8; 
typedef short Int16; 
typedef int Int32; 
typedef unsigned char Uint8; 
typedef unsigned Uint16; 
typedef int Uint32; 
typedef float Float32; 
typedef double Float64; 

ifendif 

(a) System-Wide Definitions File 

II geom_point.h 
#ifndef INCLUDED_GEOM_POINT 
#define INCLUDED_GEOM_POINT 

#ifndef INCLUDED_SYS_TYPE 
#include "sys_type.h" 
#endif 

class geom_Point { 
sys_Type: :Int32 d_x; 
sys_Type::lnt32 d_y; 

} ; 

public: 
Point (int x, int y); 
I I ... 

#endif 

(b) Fixed-Size geom_Poi nt Class 

Figure 10-5: Using typedef to Specify Fixed Size in the Implementation 

In case you thought that only functions are worth testing, consider the test driver for 
the sys_type component shown in Figure 10-6. Exercising this driver before any 
other ensures that components that depend on fixed-size data types are not "fooling 
themselves." We have isolated our configuration assumptions to a single file. Com
pile-time coupling is not a problem here since the common information derives from 
the lower-level compiler and the architecture of the machine (which is fixed), and not 
from any higher-level extensible collection of components (which could change).6 

6 Section 6.2.9 deals with enumerations and compile-time coupling. 



Section 10.2 Function Definitions 669 

II sys_type.t.c 
#include "test_util.h" 
#include "sys_type.h" 
maine) 

II define TEST_ASSERT, etc. 

{ 

} 

TEST_BEGIN 
TEST_ASSERTCI == sizeof(Int8)); 
TEST_ASSERT(2 == sizeof(Int16)); 
TEST_ASSERT(4 == sizeof(Int32)); 
TEST_ASSERT(l == sizeof(Uint8)); 
TEST_ASSERTC2 == sizeof(Uint16)); 
TEST_ASSERT(4 == sizeof(Uint32)); 
TEST_ASSERT(4 == sizeofCFloat32)); 
TEST_ASSERTC8 == sizeofCFloat64)); 
TEST_END 

Figure 10-6: Testing a typedef 

10.2 Function Definitions 

Once we are down to the level of implementing functions, most of our decisions are 
localized. The cost of making a poor decision is therefore small, because changing it 
typically does not affect a large amount of code. Even so, there are a few general 
points to keep in mind when writing function bodies. 

10.2.1 Assert Yourself! 

Documenting the conditions under which the behavior of a function is undefined is an 
important part of developing the interface. Comments in the interface are passive, and 
do nothing to warn of a programming error at runtime. As discussed in Section 1.3, 
we can use both comments and assert statements in combination to achieve light
weight maintainable code. 

In longer functions, there are sometimes several paths that can lead to the same state
ment; often this statement assumes internal conditions. Figure 10-7 illustrates a situa
tion in which either the i f or the wh i 1 e might not be entered. In any case, the stated 
condition that follows the if statement must hold true and is backed up by an assert 
statement. 
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// 

if (!q) { 

} 

while (p && 0 1= strcmp(name, p-)name()) { 
p = p-)next(); 

} 

Chapter 10 

1/ Either q is tru~, or p now pOints to the first element 
II with the specified name if one exists. 
assert (q I I !p I I 0 == strcmp(name, p-)name(»); 

I I ... 

Figure 10-7: Commenting/Asserting an Internal Invariant 

These kinds of internal self-checks do more than merely detect errors at runtime. The 
practice of explicitly identifying an assumption encourages a crispness of thinking 
that typically makes the logical flow of the function easier for others to follow.7 

In systems that monitor critical functionality, we might be reluctant to remove the 
assert statements even in production code; however, forcing the entire program to 
abort when a programming error causes an object to enter an inconsistent state is 
clearly not acceptable either. The natural extension of an assert statement would be to 
th rowan exception derived from a base class such as sy s_P r og rammi ng E r ro r. In this 
case, instead of automatically exiting, fault-tolerant systems could be designed to 
cat chand recover from such errors at whatever level had sufficient context to do so. 
Failing to catch the error would degenerate to an abort. Notice that by using excep
tions we have, in effect, "escalated" the responsibility of handling the error to a 
higher-level component (see Section 5.2). 

10.2.2 Avoid Special Casing 

Obtaining code coverage is one common criterion used to measure the effectiveness 
of tests. But the more paths there are through a function, the more difficult it can be to 
assure ourselves that the function is reliable under all conditions. 

7 See also murray, Section 9.2.1, pp. 208-210. 
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Algorithms that naturally include their boundary conditions are 
often simpler, shorter, and easier to understand and to test than 
algorithms that treat boundary conditions as a special case. 

For example, developers sometimes choose to use a pair of pointers when walking a 
list to be modified. This approach requires treating the empty list as a special case (or 
always maintaining a dummy first link). Instead of using the pointer to the current 
link as a state variable, consider instead maintaining the address of the current link, as 
was done for the Pt rBa gMa nip class shown in Figure 5-83. 

Figure IO-8a shows an implementation that maintains both a pointer to the current 
link and a pointer to' the previous link; the d_p rev Lin k_p pointer will be used to 
update the d_next_p field of the previous link when the current link is removed. If the 
current link happens to be the first link in the list, d_p rev Lin k_p will be 0, and we 
will need to update the root of the list instead; we therefore retain a writable pointer to 
the Pt r Ba 9 itself. 

The implementation of Figure IO-8a is straightforward but inelegant, complicated by 
unnecessary state and algorithmic complexity. Equivalent functionality is accom
plished with the implementation in Figure IO-8b. Removing the first element in this 
implementation is handled in just the same way as removing any other element. 

Implementation (b) requires only one state variable, and the complexity of removing a 
node is significantly reduced. 

, 

A variety of problems can be solved by adding an extra level of 
indirection. 
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class PtrBagManip { class PtrBagManip { 

} ; 

PtrBag *d_bag_p; 
PtrBagLink *d_Link_p; 
PtrBagLink *d_PrevLink_p; 

public: 
I I ... 
void remove(); 
I I ... 

} : 

PtrBagLink **d_addrLink_p; 

public: 
I I ... 
void remove(); 
I I ... 

void PtrBagManip::remove() 
{ 

void PtrBagManip::removeC) 
{ 

PtrBagLink *tmp = *d_addrLink_p; 
*d_addrLink_p = C*d_addrLink_p)->nextC); 
delete tmp; PtrBagLink *tmp = d_Link_p; 

d_link_p = d_link_p->next(); } 
if (d_prevLink_p) { 

d_prevLink_p->nextRefC) - d_link_p; 
} 

else { 
d_bag_p->d_root_p = d_link_p; 

} 

delete tmp; 

(a) Treating the Boundary Condition 
as a Special Case 

(b) Treating the Boundary Condition 
as Part of the Main Algorithm 

Figure 10-8: Avoiding Special-Case Code 

The technique of maintaining the address of a pointer instead of the pointer itself is a 

terse but powerful idiom for manipulating a variety of list-like structures: 

s t r u c t Lin k { Lin k * d_n ex t_p; Lin k ( Lin k * n ext) : d_n e x t_p ( n ext) {} I I ... 

class List { Link *d_head_p; void modify(); II 

static int qCconst Link& x); 

void List: :modify() 
{ 

II 1 if some condition on x holds; else 0 

II some function that modifies the list 

Link **ppl = &d_head_p; II starting at the beginning 
while (*ppl && !qC*ppl)) { II while not at end and item not found 

ppl = &(*ppl)->d_next_p; II advance the (address of the) pointer 
} 

assert(!*ppl II q(*ppl)); 

I I ... 

II ppl points to last or desired Link * 

II insert before, remove, etc. using *ppl 
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The extra level of indirection allows us to insert an element into an ordered list with
out having to maintain two pointers or treat the empty list as a special case: 

*ppl = new Link(*ppl); II inserting before an item is easy 

Removing a specific Link from a list is also facilitated: 

if (*ppl) { 

} 

Link *item = *ppl; 
*ppl = (*ppl )->d_next_p; 
delete item; 

II if found we can unlink and delete item 

This idiom (or its for-loop equivalent) is used to implement the private functions copy 
and end in the List class shown in Figure 6-19b, and is also used extensively to imple
ment a hash-based symbol table (Figure 10-11) in the following section. 

10.2.3 Factor Instead of Duplicate 

In Section 5.6 we argued that reuse of small functions could result in physical cou
pling that is not worth the benefit of a factored implementation. However, within a 
single well-designed component, there is little justification for replicating code. Often 
construction, destruction, and assignment will share common algorithms. As with the 
Lis t class shown in Figure 6-19, it can be useful to define a small set of more primi
tive functions to factor out commonality from this basic public functionality, as indi
cated in Figure 10-9. 

Default Constructor: 
Copy Constructor: 
Assignment Operator: 
Destructor: 

clean(); 
clean(); 

init(); 

init(); 

init(); 

copy() ; 

copy() ; 

Figure 10-9: Factoring Common Creator/Assignment Functionality 
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It is interesting to note that the assignment operator is not completely primitive; it can be 
implemented in terms of the destructor and the copy constructor, which are primitive: 

#include "new.h" 

T& T::operator=(const T& that) 
{ 

} 

if (this != &that) { 
T:: ..... T(); 
new(this) T(that); 

} 

return *this; 

II declare placement syntax 

II check for x = x 
II destroy object in place 
II construct object in place 

II return reference to this object 

This observation has implications for template-based container-class design (see 
Section 10.4.2). 

Another example of factoring can be found in the implementation of a basic symbol
table component. A symbol table is a specialization of an associative array that supports 
a mapping from a key (most often a character string) to some value (in this case, the 
user-defined type my _Va 1 u e). 

Figure 10-10 shows the header file for a simple implementation of a symbol table. 
This implementation uses closed hashing and so is implemented using a dynami
cally allocated array of my_SymTabL ink pointers (d_tabl e_p) of size derived from 
maxEnt ri esHi nt (d_s i ze). There are four basic operations provided: add if not 
found, set whether or not found, remove and report if found, and lookup. Each of 
these operations can be implemented separately, as shown in Figure 10-11 a. However, 
each of these functions basically requires locating the pointer to the symbol (imple
mented as a my_SymTabL ink). Note that only the remove method requires the address 
of the pointer; both add and set can always add a new symbol to the front of the list 

for a given hash slot, and lookup never adds a new symbol. 

Factoring generally reusable functionality within a component can 
reduce code size and improve reliability with only a modest loss in 
runtime performance. 
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II my_symtab.h 
#ifndef INCLUDED_MY_SYMTAB 
#define INCLUDED_MY_SYMTAB 

class my_Value; 
class my_SymTabLink; 
class my_SymTabIter; 

class my_SymTab { 

} ; 

class my_SymTabLink **d_table_p; 
int d_size; 
friend my_SymTablter; 

private: 
my~SymTab(const my_SymTab&); 
my_SymTab& operator=(const my_SymTab&); 

public: 
I I CREATORS 

/1 closed hash table 
// size of hash table 

/1 not implemented 
II not implemented 

my_SymTab(int maxSymbolsHint = 0); II see Section 10.3.1 
// Optionally specify approx. number of entries (default -500). 

-my_SymTab ( ) ; 

// MANIPULATORS 
my_Value *add(const char* name); 

II Adds a symbol to the table only if name is not already present. 
II Returns a pointer to the internal value if added, and 0 otherwise. 

my_Value& set(const char* name); 
II Adds a symbol to the table if not already present. Returns a 
II reference to the internal value of a symbol with specified name. 

int remove(const char *name); 
II Removes a symbol from the table. Returns a if the symbol with 
/1 the specified name was found, and non-zero otherwise. 

II ACCESSORS 
my_Value *lookupCconst char *name) canst: 

// Returns a poi nter to an exi sti ng symbol's va 1 ue, or 0 if 
II a symbol with the specified name cannot be found. 

my_SymTabIter { /* ... *1 }; 

#endif 

Figure 10-10: Partial Header for Basic Symbol-Table Abstraction 
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II my_symtab.c 
# include "my_symtab.h" 

char 

my_Value *my_SymTab::add(const char *name) 
{ 

} 

int index = hash(name) % d_size: 
my_SymTabLink *&slot = d_table_p[index]; 
my_SymTabLink *p = slot: 

while (p && 0 1= strcmp(p->name(), name)) { 
p - p->next(): 

} 

if ( ! p) { 

slot = 
return 

} 

else { 
return 

} 

new my_SymTabLink(name, slot): 
&slot->value(): 

o ; 

my_Value& my_SymTab::set(const char 
{ 

int index = hash(name) % d_size: 
my_SymTabLink *&slot = d_table_p[index]; 
my_SymTabLink *p = slot; 

while (p && 0 != strcmp(p-)name(), 
p = p-)next(); 

( ! p) { 
p.= slot = new my_SymTabLink(name, 

Chapter 10 
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1/ my_symtab.c 
# include "my_symtab.h" 

*& : .. " ...................... . 
**table, 

my_Value *my_SymTab::add(const char *name) 
{ 

my_SymTabLink *& p = locate(d_table_p, d_size, name); 
if (p) { 

return 0; 
} 

p - new my_SymTabLink(name, p): 
return &p->value(); 

my_Value& my_SymTab::set(const char *name) 
{ 






















































































































































































































































































































































