

The integrated, online
text offers students a
low-cost alternative
to the printed text,
enhanced with direct
links to specifi c
portions of the text, plus
interactive animations
and videos to help
students visualize
concepts.

Select WileyPLUS
courses include LabRat,
the programming
assignment tool
allows you to choose
from hundreds of
programming exercises
to automate the
process of assigning,
completing, compiling,
testing, submitting, and
evaluating programming
assignments. When
students spend more
time practicing, they
come to class better
prepared.

See and try WileyPLUS in action!
Details and Demo: www.wileyplus.com

Try WileyPLUS with LabRat:
www.wileyplus.com/tours

Why WileyPLUS for Computer Science?
W ileyPLUS for Computer Science is a dynamic online environment that motivates students to spend more

time practicing the problems and explore the material they need to master in order to succeed.

Why WileyPLUS for Computer Science?

“I used the homework problems to practice before quizzes and tests. I re-did the problems

on my own and then checked WileyPLUS to compare answers.”

— Student Alexandra Leifer, Ithaca College

www.wileyplus.com/tours
www.wileyplus.com

Students easily access
source code for example
problems, as well as
self-study materials and
all the exercises and
readings you assign.

All instructional
materials, including
PowerPoints,
illustrations and visual
tools, source code,
exercises, solutions and
gradebook organized in
one easy-to-use system.

WileyPLUS combines robust course management tools with the complete online text and all of
the interactive teaching & learning resources you and your students need in one easy-to-use
system.

“Overall the WileyPLUS package made the material more

interesting than if it was just a book with no additional material other

than what you need to know.”

— Edin Alic, North Dakota State University

“WileyPLUS made it a lot easier to study. I got an A!”

— Student Jeremiah Ellis Mattson, North Dakota State University

Big C++

Cay Horstmann
SAN JOSE ST ATE UN IVERS ITY

Timothy A. Budd
OREGON ST ATE UN IVERS ITY

John Wiley & Sons, Inc.

S E C O N D E D I T I O N

EXECUTIVE PUBLISHER: Don Fowley
ASSOCIATE PUBLISHER: Dan Sayre
SENIOR EDITORIAL ASSISTANT: Carolyn Weisman
MEDIA EDITOR: Lauren Sapira
SENIOR PRODUCTION EDITOR: Ken Santor
SENIOR DESIGNER: Madelyn Lesure
TEXT DESIGNER: Nancy Field
COVER DESIGNER: Howard Grossman
COVER ILLUSTRATOR: Susan Cyr
PHOTO EDITOR: Lisa Gee
PRODUCTION MANAGEMENT: Cindy Johnson

This book was set in 10.5/12 Stempel Garamond by Publishing Services and printed and bound by R.R.
Donnelley – Crawfordsville. The cover was printed by R.R. Donnelley.

This book is printed on acid-free paper ∞

Copyright © 2009, 2005 John Wiley & Sons, Inc. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by
any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted
under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permis-
sion of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright
Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to
the Publisher for permission should be addressed to the Permissions Department, John Wiley and Sons, Inc.,
111 River Street, Hoboken, NJ 07030-5774, (201) 748-6011, fax (201) 748-6008.
To order books, or for customer service, please call 1-800-CALL-Wiley (225-5945).

ISBN 978-0-470-38328-5

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

Preface

This book provides a traditional introduction to computer science, focusing on pro-
gram development and effective use of the C++ programming language. It is suitable
for motivated beginners as well as students with prior programming experience. The
book can be used in a variety of settings, such as an introductory computer science
course, a two-semester course sequence that covers data structures and object-
oriented design, or an advanced course on C++ and its applications.

When writing the book, we were guided by the following principles:

• Teach computer science principles and not just C++. We use the C++ programming
language as a vehicle for introducing computer science concepts, and in this
“Big” book, we cover a large subset of the C++ language. However, we do not
aim to cover all esoteric aspects of C++. This book focuses on the modern fea-
tures of the C++ standard, such as the string class and the STL containers. By
minimizing the use of error-prone and confusing constructs, your students will
learn more computer science and become more productive programmers.

• Use a spiral approach to teach complex topics. We do not think it is wise to over-
whelm students when we introduce new topics. Generally, we start with the
essential facts that illustrate a concept, then cover technical details at a later time.
Here is an example. For efficiency’s sake, large object parameters should be
passed by constant reference, not by value. But that consideration obscures more
fundamental issues. For that reason, we don’t use constant references when we
first introduce classes. In the next turn of the spiral, students are comfortable
with classes and reference parameters, and a discussion of efficiency is appropri-
ate. We believe this spiral approach is essential when teaching a language as com-
plex as C++.

• Introduce C++ as an object-oriented language. Objects are introduced in two
stages. From Chapter 2 on, students learn to use objects—in particular, strings,
streams, instances of the simple Time and Employee classes, and graphical shapes.
Students become comfortable with creating objects and calling member func-
tions as the book continues along a traditional path, discussing and providing
practice with control structures and functional decomposition. In Chapter 5,

vi Preface

students learn how to implement classes and member functions. From then on,
objects and classes are used as the natural building blocks of computer programs.

• Keep the order flexible. The book is highly modular. Do you prefer to cover arrays
before classes? Simply switch the chapters. Do you want to cover streams and
files earlier? This is not a problem. We supply a graphics library, but it is entirely
optional. We have found that students enjoy programming exercises in which
numbers and visual information reinforce each other. But you may not want to
spend class time on it. Students can read the material on their own, or you can
skip it altogether. (See Figure 1 on page viii for the chapter dependencies.)

• Offer choices for advanced and applied topics. This “Big” book contains so much
material that it would be difficult to cover every chapter, even in an ambitious
two-semester course. The core material (Part A in Figure 1) contains what is
typically covered in a one-semester introductory course: control structures,
functions, arrays, classes, inheritance, and stream I/O. The advanced material is
grouped into four parts to make it easy to choose a focus that fits your course.

This edition has been reorganized to make it more suitable for a course that aims to
cover advanced C++ features, data structures, or object-oriented design. The intro-
ductory material has been condensed, and the material on control structures has
been consolidated into a single chapter.

The advanced chapters are now grouped into four distinct parts:

• Data structures and algorithms
• Advanced C++ and the STL
• Object-oriented design
• Applications

Part B covers an introduction to data structures and algorithms, suitable for a sec-
ond-semester programming course. Part C focuses on advanced C++ and covers the
STL in detail. Part D covers object-oriented design, UML, and design patterns.
Finally, Part E (which is available on the Web) contains applied material on graphi-
cal user interface programming, databases, and XML that you may find useful as a
capstone. Except as shown in Figure 1, the parts are independent of each other.

 The web-only chapters are part of the WileyPLUS eBook and may also be
downloaded from the book’s web site at www.wiley.com/college/horstmann. If you
are interested in adopting a custom print edition that incorporates portions of the
online material, please contact your local Wiley representative.

New in This Edi t ion

Streamlined Core Chapters

Modular Design

www.wiley.com/college/horstmann

Preface vii

This book continues to focus on the modern features of the C++ standard, such as
the string class and the STL containers. This edition prepares students for the
future with a new Chapter 21 on the features of the upcoming C++0x standard
(included in Part C).

A large number of extended examples and 15 case studies show how C++ fea-
tures are used in complete and useful programs.

The graphics programming coverage is provided because many students enjoy writ-
ing programs that create drawings, and because graphical shapes are splendid exam-
ples of objects. However, this edition makes it easier to skip this focus if desired.

Chapter 2 introduces the simple graphics library provided with this book as
another type of object students may program with. Thereafter, exercises that make
use of the graphics library are clearly identified at chapter end. An optional Chapter
25 covers graphical user interfaces and the wxWidgets library.

The first two pages of this book describe an innovative online tool for teachers and
students: WileyPLUS. WileyPLUS can be adopted with the book, or as an alterna-
tive to the printed text for about half the cost of print. WileyPLUS integrates all of
the instructor and student web resources into an online version of this text. For
more information and a demo, please visit the web site listed on pages i–ii, or talk to
your Wiley representative. (To locate your local representative, visit www.wiley.com/
college and click on “Who’s My Rep”.)

This edition offers enhanced electronic supplements. In particular, the test bank has
been completely revised to provide a significant number of multiple-choice ques-
tions that are suitable for self-check assignments and quizzes.

The following resources for students and instructors can be found in the Wiley-
PLUS course for this book. Web chapters and source code are also available on the
Web at www.wiley.com/college/horstmann.

• Solutions to all exercises (for instructors only)
• A test bank (for instructors only)
• A laboratory manual
• Lecture slides that summarize each chapter and include code listings and figures
• Source code for all examples in the book, the Employee and Time classes, and the

optional graphics library
• The programming style guide (Appendix A) in modifiable electronic form
• Help with common compilers, the graphics library, and wxWidgets.

Contemporary C++

Optional Graphics Programming

WileyPLUS

Student and Instructor Resources in WileyPLUS

www.wiley.com/college
www.wiley.com/college
www.wiley.com/college/horstmann

viii Preface

Figure 1 Chapter Dependencies

4. Functions

5. Classes

14. Operator
Overloading

15. Memory
Management

20. The Standard
Template Library

26. Relational
Databases

27. XML

16. Templates 17. Exception
Handling

10. Recursion

11. Sorting
and Searching

12. Lists,
Queues, & Stacks

13. Sets, Maps, &
Priority Queues

18. Name Scope
Management

19. Class
Hierarchies

21. The C++0x
Standard

6. Vectors and
Arrays

7. Pointers

8. Inheritance

3. Control Flow

1. Introduction

2. Numbers
and Objects

A: Fundamentals

B: Data Structures & Algorithms

C: Advanced Topics & STL

D: Object-Oriented Design

E: Applications (web only)

25. Graphical
User Interfaces

9. Streams

22. Object-
Oriented Design

23. The Unified
Modeling
Language

24. Intro to
Design Patterns

B C D

E

A

Preface ix

This edition builds on the pedagogical elements in the last edition and offers addi-
tional aids for the reader. Each chapter begins with the customary overview of
chapter objectives and motivational introduction. A listing of the chapter contents
then provides a quick reference to the special features in the chapter.

Throughout each chapter, margin notes show where new concepts
are introduced and provide an outline of key ideas. These notes are
summarized at the end of the chapter as a chapter review.

The program listings are carefully designed for easy reading.
Comments are typeset in a separate font that is easier to read than the
monospaced “computer” font. Functions are set off by a subtle out-

line. Keywords, strings, and numbers are “color-coded” consistently as they would
be in a development environment. (The code for all program listings in the book
(plus any additional files needed for each example) is available in the WileyPLUS
course for the book.)

Throughout the chapters, special features set off topics for added flexibility and
easy reference. Syntax boxes highlight new syntactical constructs and their purpose.
An alphabetical list of these constructs can be found on page xxii.

Five additional features, entitled “Common Error”, “Productivity Hint”, “Qual-
ity Tip”, “Advanced Topic”, and “Random Fact”, are identified with the icons
below and set off so they don’t interrupt the flow of the main material. Some of
these are quite short; others extend over a page. Each topic is given the space that is
needed for a full and convincing explanation—instead of being forced into a one-
paragraph “tip”. You can use the tables on pages xxiv–xxxi to see the features in
each chapter and the page numbers where they can be found.

Here is a list of the special features and their icons.

• Common Errors describe the kinds of errors that students often make, with an
explanation of why the errors occur, and what to do about them. Most students
quickly discover the Common Error sections and read them on their own.

• Quality Tips explain good programming practices. Since most of them require an
initial investment of effort, these notes carefully motivate the reason behind the
advice and explain why the effort will be repaid later.

• Productivity Hints teach students how to use their tools more effectively, familiar-
izing them with tricks of the trade such as keyboard shortcuts, global search and
replace, or automation of common tasks with scripts.

Pedagog ica l Structure

Margin notes mark and
reinforce new concepts
and are summarized at
chapter end.

Special Features

x Preface

• Advanced Topics cover nonessential or more difficult material. Some of these top-
ics introduce alternative syntactical constructions that are not necessarily techni-
cally advanced. In many cases, the book uses one particular language construct
but explains alternatives as Advanced Topics. Instructors and students should
feel free to use those constructs in their own programs if they prefer them. It has,
however, been our experience that many students are grateful for the “keep it
simple” approach, because it greatly reduces the number of gratuitous decisions
they have to make.

• Random Facts provide historical and social information on computing, as
required to fulfill the “historical and social context” requirements of the ACM
curriculum guidelines, as well as capsule reviews of advanced computer science
topics.

• Appendix A contains a style guide for use with this book. We have found it
highly beneficial to require a consistent style for all assignments. We realize that
our style may be different from yours. If you have strong feelings about a partic-
ular issue, or if this style guide conflicts with local customs, feel free to modify it.
The style guide is available in electronic form for this purpose.

• Appendices B and C contain summaries of the C++ keywords and operators.
• Appendix D lists character escape sequences and ASCII character code values.
• Appendix E documents all of the library functions and classes used in this book.
• Appendices F and G contain a discussion of binary and hexadecimal numbers,

and the C++ bit and shift operations.
• Appendix H contains a summary of the UML features that are used in this book.
• Appendix I compares C++ and Java. This appendix should be helpful to students

with a prior background in Java.

Many thanks to Dan Sayre, Lauren Sapira, Lisa Gee, and Carolyn Weisman at John
Wiley & Sons, and to the team at Publishing Services for their hard work and sup-
port for this book project. An especially deep acknowledgment and thanks to
Cindy Johnson, who, through enormous patience and attention to detail, made this
book a reality.

Several individuals assisted in the creation of the online resources for this edition.
We would like to thank Kurt Schmidt, Drexel University, and Diya Biswas, Maria
Kolakowska, and John O’Meara for a great set of lecture slides. We are grateful to
Fred Annexstein, University of Cincinnati, Steven Kollmansberger, South Puget
Sound Community College, and Gwen Walton, Florida Southern College, for their

Appendices

Acknowledgments

Preface xi

contributions to the solutions. And thank you to John Russo, Wentworth Institute
of Technology, for working with us to prepare the labs that accompany the book.

We are very grateful to the many individuals who reviewed this and the prior edi-
tion of the book, made many valuable suggestions, and brought an embarrassingly
large number of errors and omissions to our attention. They include:

Charles Allison, Utah Valley State College
Vladimir Akis, California State University, Los Angeles
Richard Borie, University of Alabama, Tuscaloosa
Ramzi Bualuan, Notre Dame University
Drew Coles, Boston University
Roger DeBry, Utah Valley State College
Joseph DeLibero, Arizona State University
Martin S. Dulberg, North Carolina State University
Jeremy Frens, Calvin College
Timothy Henry, University of Rhode Island
Robert Jarman, Augusta State University
Jerzy Jaromczyk, University of Kentucky
Debbie Kaneko, Old Dominion University
Vitit Kantabutra, Idaho State University
Stan Lippman, Microsoft Corporation
Brian Malloy, Clemson University
Stephen Murrell, University of Miami
Jeffery Popyack, Drexel University
John Russo, Wentworth Institute of Technology
Kurt Schmidt, Drexel University
William Shay, University of Wisconsin, Green Bay
Joseph R. Shinnerl, University of California, Los Angeles
Deborah Silver, Rutgers University
John Sterling, Polytechnic University
Gwen Walton, Florida Southern College
Joel Weinstein, New England University
Lillian Witzke, Milwaukee School of Engineering

Our gratitude also to those who took time to tell us about their C++ course and
whose advice shaped this new edition:

Fred Annexstein, University of Cincinnati
Noah D. Barnette, Virginia Tech
Stefano Basagni, Northeastern University

xii Preface

Peter Breznay, University of Wisconsin, Green Bay
Subramaniam Dharmarajan, Arizona State University
Stephen Gilbert, Orange Coast College
Barbara Guillott, Louisiana State University
Mir Behrad Khamesee, University of Waterloo
Sung-Sik Kwon, North Carolina Central University
W. James MacLean, University of Toronto
Ethan V. Munson, University of Wisconsin, Milwaukee
Kurt Schmidt, Drexel University
Michele A. Starkey, Mount Saint Mary College
William Stockwell, University of Central Oklahoma
Jonathan Tolstedt, North Dakota State University
David P. Voorhees, Le Moyne College
Salih Yurttas, Texas A&M University

Contents

Preface v
Special Features xxii

1.1 What Is a Computer? 2

1.2 What Is Programming? 3

1.3 The Anatomy of a Computer 4

1.4 Translating Human-Readable Programs to Machine Code 9

1.5 Programming Languages 10

1.6 The Evolution of C++ 11

1.7 Becoming Familiar with Your Computer 12

1.8 Compiling a Simple Program 15

1.9 Errors 19

1.10 The Compilation Process 21

1.11 Algorithms 24

2.1 Number Types 32

2.2 Input 40

2.3 Assignment 45

2.4 Constants 51

2.5 Arithmetic 54

Chapter 1 Introduction 1

Chapter 2 Numbers and Objects 31

xiv Contents

2.6 Strings 62

2.7 Using Objects 68

2.8 Displaying Graphical Shapes (Optional) 76

3.1 The if Statement 100

3.2 Relational Operators 105

3.3 Multiple Alternatives 109

3.4 Nested Branches 112

3.5 Boolean Operations 115

3.6 The while Loop 121

3.7 The for Loop 125

3.8 The do Loop 131

3.9 Nested Loops 132

3.10 Processing Inputs 133

3.11 Simulations 139

4.1 Functions as Black Boxes 160

4.2 Implementing Functions 162

4.3 Function Comments 166

4.4 Return Values 169

4.5 Parameters 171

4.6 Side Effects 175

4.7 Procedures 176

4.8 Reference Parameters 178

4.9 Variable Scope and Global Variables 183

4.10 Stepwise Refinement 186

4.11 Case Study: From Pseudocode to Code 188

4.12 Walkthroughs 195

4.13 Preconditions 200

4.14 Unit Testing 203

4.15 The Debugger 205

Chapter 3 Control Flow 99

Chapter 4 Functions 159

Contents xv

5.1 Discovering Classes 228

5.2 Interfaces 231

5.3 Encapsulation 235

5.4 Member Functions 237

5.5 Default Constructors 241

5.6 Constructors with Parameters 244

5.7 Accessing Data Fields 249

5.8 Comparing Member Functions with Nonmember Functions 250

5.9 Separate Compilation 253

6.1 Using Vectors to Collect Data Items 266

6.2 Working with Vectors 269

6.3 Vector Parameters and Return Values 275

6.4 Removing and Inserting Vector Elements 277

6.5 Arrays 280

7.1 Pointers and Memory Allocation 306

7.2 Deallocating Dynamic Memory 311

7.3 Common Uses for Pointers 314

7.4 Arrays and Pointers 322

7.5 Pointers to Character Strings 327

7.6 Pointers to Functions 330

8.1 Derived Classes 342

8.2 Calling the Base-Class Constructor 349

8.3 Overriding Member Functions 350

8.4 Polymorphism 356

Chapter 5 Classes 227

Chapter 6 Vectors and Arrays 265

Chapter 7 Pointers 305

Chapter 8 Inheritance 341

xvi Contents

9.1 Reading and Writing Text Files 376

9.2 The Inheritance Hierarchy of Stream Classes 379

9.3 Stream Manipulators 382

9.4 String Streams 384

9.5 Command Line Arguments 388

9.6 Random Access 394

10.1 Triangle Numbers 412

10.2 Permutations 416

10.3 Thinking Recursively 421

10.4 Recursive Helper Functions 424

10.5 Mutual Recursion 425

10.6 The Efficiency of Recursion 430

11.1 Selection Sort 444

11.2 Profiling the Selection Sort Algorithm 448

11.3 Analyzing the Performance of the Selection Sort Algorithm 449

11.4 Merge Sort 451

11.5 Analyzing the Merge Sort Algorithm 454

11.6 Searching 460

11.7 Library Functions for Sorting and Binary Search 463

12.1 Linked Lists 472

12.2 Implementing Linked LIsts 476

12.3 The Efficiency of List and Vector Operations 490

12.4 Queues and Stacks 493

Chapter 9 Streams 375

Chapter 10 Recursion 411

Chapter 11 Sorting and Searching 443

Chapter 12 Lists, Queues, and Stacks 471

Contents xvii

13.1 Sets 506

13.2 Binary Search Trees 509

13.3 Tree Traversal 516

13.4 Maps 521

13.5 Priority Queues 526

13.6 Heaps 529

14.1 Operator Overloading 546

14.2 Case Study: Fractional Numbers 551

14.3 Overloading Simple Arithmetic Operators 558

14.4 Overloading Comparison Operators 560

14.5 Overloading Input and Output 562

14.6 Overloading Increment and Decrement Operators 564

14.7 Overloading the Assignment Operators 568

14.8 Overloading Conversion Operators 569

14.9 Overloading the Subscript Operator 572

14.10 Overloading the Function Call Operator 574

14.11 Case Study: Matrices 577

15.1 Categories of Memory 590

15.2 Common Memory Errors 594

15.3 Constructors 602

15.4 Destructors 613

15.5 Reference Counting 622

15.6 Case Study: Matrices, Continued 627

Chapter 13 Sets, Maps, and Priority Queues 505

Chapter 14 Operator Overloading 545

Chapter 15 Memory Management 589

xviii Contents

16.1 Template Functions 642

16.2 Compile-Time Polymorphism 647

16.3 Template Classes 649

16.4 Turning a Class into a Template 652

16.5 Nontype Template Parameters 655

16.6 Setting Behavior Using Template Parameters 656

16.7 Case Study: Matrices, Continued 659

17.1 Handling Exceptional Situations 666

17.2 Alternative Mechanisms for Handling Exceptions 668

17.3 Exceptions 674

17.4 Case Study: Matrices, Continued 689

18.1 Encapsulation 698

18.2 Name Scopes 699

18.3 Protected Scope 706

18.4 Friends 708

18.5 Nested Classes 711

18.6 Private Inheritance 714

18.7 Name Spaces 716

18.8 Case Study: Matrices, Continued 720

19.1 Class Inheritance Hierarchies 728

19.2 Abstract Classes 730

19.3 Obtaining Run-Time Type Information 731

19.4 Multiple Inheritance 736

19.5 Software Frameworks 743

Chapter 16 Templates 641

Chapter 17 Exception Handling 665

Chapter 18 Name Scope Management 697

Chapter 19 Class Hierarchies 727

Contents xix

20.1 The STL 752

20.2 Iterators 753

20.3 The Fundamental Containers 758

20.4 Container Adapters 765

20.5 Associative Containers 767

20.6 Case Study: Dijkstra’s Shortest Algorithm 771

20.7 Functions, Generators, and Predicates 775

20.8 Generic Algorithms 781

20.9 Iterator Adapters 791

20.10 Case Study: File Merge Sort 792

21.1 C++0x Design Objectives 806

21.2 Automatic Type Inference 807

21.3 Range-based for Loop 808

21.4 New Constructor Features 810

21.5 Regular Expressions 813

21.6 Lambda Functions 814

21.7 Controlling Default Implementations 815

21.8 Hash Tables 817

21.9 Concepts 817

21.10 Other Minor Changes 820

22.1 The Software Life Cycle 826

22.2 CRC Cards 831

22.3 Cohesion 833

22.4 Coupling 835

22.5 Relationships Between Classes 837

22.6 Implementing Aggregations 838

22.7 Case Study: Printing an Invoice 839

22.8 Case Study: An Educational Game 851

Chapter 20 The Standard Template Library 751

Chapter 21 Features of the C++0x Standard 805

Chapter 22 Object-Oriented Design 825

xx Contents

23.1 The Unified Modeling Language 876

23.2 Use Cases 879

23.3 Sequence Diagrams 881

23.4 State Diagrams 883

23.5 Case Study: A Voice Mail System 884

24.1 Iterators 912

24.2 The Pattern Concept 914

24.3 The ADAPTER Pattern 919

24.4 The TEMPLATE METHOD Pattern 922

24.5 Function Objects and the STRATEGY Pattern 925

24.6 The COMPOSITE Pattern 928

24.7 Case Study: Putting Patterns to Work 931

25.1 The wxWidgets Toolkit

25.2 Frames

25.3 Adding a Text Control to the Frame

25.4 Menus

25.5 Event Handling

25.6 Layout Management

25.7 Painting

25.8 Mouse Events

25.9 Dialog Boxes

25.10 Case Study: A GUI for the Clock Game

26.1 Organizing Database Information

26.2 Queries

26.3 Installing a Database

26.4 Database Programming in C++

26.5 Case Study: Accessing an Invoice Database

Chapter 23 The Unified Modeling Language 875

Chapter 24 An Introduction to Design Patterns 911

Chapter 25 Graphical User Interfaces

Chapter 26 Relational Databases

Contents xxi

27.1 XML Tags and Documents

27.2 Parsing XML Documents

27.3 Creating XML Documents

27.4 Document Type Definitions

27.5 Parsing with Document Type Definitions

A C++ Language Coding Guidelines 951

B Keyword Summary 960

C Operator Summary 964

D Character Codes 967

E C++ Library Summary 969

F Number Systems 989

G Bit and Shift Operations 996

H UML Summary 999

I A C++ / Java Comparison 1004

Glossary 1011

Index 1026

Illustration Credits 1055

Chapter 27 XML

Appendices

xxii Special Features

Array Initializer List Construction 812
Array Variable Definition 282
Assertion 201
Assignment 48
Auto Initialization 808

Block Statement 102

Cast 50
Class Definition 234
Comment 35
Concept Definition 818
Constant Definition 53
Constant Reference Parameter 181
Constructor Chaining 811
Constructor Definition 246
Constructor with Base-Class Initializer 350
Constructor with Field Initializer List 248
Copy Constructor 609

Default Constructor 607
Default/Deleted Implementations 816
delete Expression 312
Derived Class Definition 348
Destructor Definition 614
do Statement 132
Dynamic Cast 732

Exception Specification 687

for Statement 127
Friends 709
Function Call 57
Function Declaration (or Prototype) 174
Function Definition 165

if Statement 102
Input Statement 42

Lambda Function 815

Member Function Call 64
Member Function Definition 239
Multiple Inheritance 738

Name Space Alias 719
Name Space Definition 718
Nested Class Definition 713
new Expression 309

Alphabetical List of Syntax Boxes

Special Features xxiii

Object Construction 69
Object Variable Definition 70
Output Statement 34
Overloaded Operator Definition 548
Overloaded Operator Member Function Definition 550

Pointer Dereferencing 309
Pointer Variable Definition 309
Private Inheritance 716
Protected Members 707
Pure Virtual Member Function 731

Range-based for Loop 809
Reference Parameter 180
return Statement 171

Simple Program 18

Template Class Concept Binding 819
Template Class Definition 651
Template Function Concept Binding 818
Template Function Definition 644
Template Member Function Definition 652
Throwing an Exception 675
try Block 676
Type Duplication 808
typedef Statement 332
typeid 733
Two-Dimensional Array Definition 291

Variable Definition 35
Vector Variable Definition 268
Vector Subscript 269
Virtual Function Definition 363

while Statement 123

xxiv Table of Special Features

Chapter Common Errors Quality Tips

1 Introduction Omitting Semicolons 19

Misspelling Words 21

2 Numbers and Objects Buffered Input 42

Failed Input 44

Roundoff Errors 49

Integer Division 58

Unbalanced Parentheses 59

Forgetting Header Files 60

Trying to Call a Member Function
Without an Object 73

Initialize Variables When You
Define Them 36

Choose Descriptive Variable
Names 37

Do Not Use Magic Numbers 53

White Space 61

Factor Out Common Code 61

3 Control Flow Confusing = and == 107

Comparison of Floating-
Point Numbers 108

The Dangling else Problem 112

Multiple Relational Operators 117

Confusing && and ||
Conditions 118

Infinite Loops 123

Off-by-One Errors 124

Forgetting a Semicolon 129

Brace Layout 103

Compile with Zero
Warnings 107

Use for Loops for Their
Intended Purpose Only 128

Don’t Use != to Test the End
of a Numeric Range 128

Symmetric and
Asymmetric Bounds 130

Count Iterations 130

4 Functions Missing Return Value 171

Type Mismatch 173

Use Meaningful Names for
Parameters 173

Minimize Global Variables 185

Keep Functions Short 188

5 Classes Mixing >> and getline Input 230

Forgetting a Semicolon 234

const Correctness 240

Forgetting to Initialize All Fields
in a Constructor 246

Trying to Reset an Object by
Calling a Constructor 247

File Layout 252

6 Vectors and Arrays Bounds Errors 272

Omitting the Column Size of
a Two-Dimensional Array
Parameter 292

Don’t Combine Vector Access
and Index Increment 273

Make Parallel Vectors into
Vectors of Objects 279

Name the Array Size and
Capacity Consistently 291

Table of Special Features xxv

 Productivity Hints Advanced Topics Random Facts

Backup Copies 14 The ENIAC and the Dawn
of Computing 8

Standards Organizations 12

Numeric Ranges and Precisions 38

Casts 49

Combining Assignment
and Arithmetic 50

Enumerated Types 54

Remainder of Negative Integers 61

Characters and C Strings 66

The Pentium Floating-Point
Bug 39

Computer Graphics 80

Tabs 103

Redirection of Input
and Output 136

The Selection Operator 104

The switch Statement 110

De Morgan’s Law 119

The Loop and a Half Problem 135

End-of-File Detection 136

Clearing the Failure State
of a Stream 137

Artificial Intelligence 120

The Denver Airport Luggage
Handling System 138

Write Functions with Reuse
in Mind 165

Global Search and Replace 168

Regular Expressions 168

Commenting Out a Section
of Code 198

Stubs 199

Function Declarations 173

Constant References 180

The Explosive Growth of
Personal Computers 181

The Therac-25 Incidents 202

The First Bug 205

Calling Constructors from
Constructors 247

Overloading 248

Programmer Productivity 243

Programming—Art or Science? 257

Inspecting Vectors in the
Debugger 272

Strings Are Vectors
of Characters 273

Passing Vectors by Constant
Reference 277

An Early Internet Worm 274

International Alphabets 292

xxvi Table of Special Features

Chapter Common Errors Quality Tips

7 Pointers Confusing Pointers with the
Data to Which They Point 310

Declaring Two Pointers on
the Same Line 310

Dangling Pointers 312

Memory Leaks 313

Confusing Array and Pointer
Declarations 325

Returning a Pointer to a
Local Array 325

Failing to Allocate Memory 328

Confusing Character
Pointers and Arrays 329

Copying Character Pointers 329

Program Clearly, Not
Cleverly 324

8 Inheritance Private Inheritance 348

Attempting to Access Private
Base-Class Fields 355

Forgetting the Base-Class
Name 355

Slicing an Object 363

9 Streams

10 Recursion Infinite Recursion 415

Tracing Through Recursive
Functions 419

11 Sorting and Searching

12 Lists, Queues, and Stacks

13 Sets, Maps, and Priority Queues

14 Operator Overloading Inconsistent Operations 566

Only One Level of Conversion 571

Ambiguous Conversions 571

Avoid Dependencies on Order
of Evaluation 565

Conversion, Coercion, and
Casts 570

Table of Special Features xxvii

 Productivity Hints Advanced Topics Random Facts

The this Pointer 310

The Address Operator 313

References 319

Using a Pointer to Step
Through an Array 323

Dynamically Allocated Arrays 326

Electronic Voting Machines 320

Embedded Systems 332

Protected Access 356

Virtual Self-Calls 364

Operating Systems 364

Binary Files 398 Encryption Algorithms 392

Databases and Privacy 399

The Limits of Computation 434

The Quicksort Algorithm 457

Defining an Ordering for
Sorting Objects 464

The First Programmer 459

Cataloging Your Necktie
Collection 464

Polish Notation 496

Defining an Ordering for
Container Elements 508

Constant Iterators 525

Discrete Event Simulations 528

Overload Operators Only
to Make Programs Easier
to Read 559

Define Comparisons in Terms
of Each Other 560

Define One Operator in
Terms of Another 568

Returning Local Objects 559

Symmetry and Conversion 561

Peeking at the Input 563

The explicit Keyword 572

Other Operators 576

Inline Functions 576

The First Algorithm 557

xxviii Table of Special Features

Chapter Common Errors Quality Tips

15 Memory Management Forgetting the Dual Use of Single
Argument Constructors 605

Default Constructor and
Parentheses 607

Confusing Destruction and
Deletion 615

Not Declaring Destructors
Virtual 617

Self Assignment 626

Reference Counting Fails in the
Presence of Cycles 627

Avoid Buffer Overflow Errors 597

When to Use the System-Defined
Copy Constructor 609

Observing Constructors 612

Include Virtual Destructors 618

If Destructor, Then Copy
Constructor and Assignment 619

16 Templates Invalid Type Parameters 645

Templates Don’t Preserve
Inheritance 654

Move from Concrete to
Abstract 646

Document Template Parameter
Requirements 655

17 Exception Handling Forgetting to Check Return
Values 671

Throwing Objects versus
Throwing Pointers 682

Exceptions During Construction
of Global Variables 686

Nobody Cares How Fast You
Get the Wrong Answer 669

Tie Exception Classes to the
Standard Library 681

Use Exceptions for Exceptional
Cases 687

Throwing an Exception is Not
a Sign of Shame 688

18 Name Scope Management Confusing Scope and Lifetime 704 Don’t Pollute the Global Scope 703

Use Accessor Functions for
Protected Access to Data 708

Friendship is Granted,
Not Taken 710

Manage Encapsulation 713

Use Unambiguous Names for
Name Spaces 719

19 Class Hierarchies Taking Type of Pointer,
Not Object 734

Using Type Tests Instead of
Polymorphism 734

Failing to Preserve the Is-a
Relationship 738

Avoid Multiple Inheritance 742

Design Your Own Software
Frameworks 745

20 The Standard Template Library Mismatched Iterators 756

Assuming the Ending Iterator
Is Included in a Range 756

Forgetting to Erase Removed
Elements 790

Experimentally Evaluate
Execution Times 761

Table of Special Features xxix

 Productivity Hints Advanced Topics Random Facts

Tracing Execution 616 Constructors Are Always
Extensions 611

Overloading the Memory
Management Operators 621

Templates and Overloading 648

Forms of Polymorphism 648

Nested Templates 654

The Ariane Rocket Incident 688

Overriding, Shadowing, and
Scopes 702

Forward References 705

Local Name Space Declaration 719

A Forest, Not a Tree 730

Virtual Function Tables 735

Functional Programming 745

Memory Allocation Traits 765

xxx Table of Special Features

Chapter Common Errors Quality Tips

21 Features of the C++0x Standard

22 Object-Oriented Design Consistency 836

23 The Unified Modeling Language

24 An Introduction to Design
Patterns

Confusing Function Objects
and Classes 927

Pattern Recognition 930

25 Graphical User Interfaces

26 Relational Databases Joining Tables Without
Specifying a Link Condition 15

27 XML XML Describes Structure, Not
Appearance 4

XML Elements Describe Data
Fields, Not Classes 23

XML Is Stricter Than HTML 3

Prefer XML Elements over
Attributes 8

Avoid Children with Mixed
Elements and Text 9

Stand on the Shoulders of
Others 23

Table of Special Features xxxi

 Productivity Hints Advanced Topics Random Facts

Programming Languages 820

Extreme Programming 830

Generic Programming with
Inheritance and Templates 918

Learning About a New Toolkit 6

Becoming Familiar with a
Complex Tool 7

Custom Dialog Boxes 30 Visual Programming 41

Stick with the Standard 4

Avoid Unnecessary Data
Replication 7

Don’t Replicate Columns in
a Table 9

Looking for Help on
the Internet 19

Transactions 33 Open Source and Free
Software 19

Let the Database Do the Work 24

Helper Functions in an
XML Parser 22

Writing an XML Document 30

Use DTDs with Your XML Files 43

The XML Schema Specification 36

Other XML Technologies 43

Word Processing and
Typesetting Systems 4

Grammars, Parsers, and
Compilers 10

This page intentionally left blank

Chapter 1
Introduction

• To understand the activity of programming

• To learn about the architecture of computers

• To learn about machine languages and higher-level
programming languages

• To become familiar with your compiler

• To compile and run your first C++ program

• To recognize syntax and logic errors

• To understand the notion of an algorithm

CHAPTER GOALS

This chapter contains a brief introduction to the architecture of computers and an

overview of programming languages. You will learn about the activity of

programming: how to write and run your first C++ program, how to diagnose and

fix programming errors, and how to plan your programming activities.

2 CHAPTER 1 • Introduction

CHAPTER CONTENTS

You have probably used a computer for work or fun. Many people
use computers for everyday tasks such as balancing a checkbook or
writing a term paper. Computers are good for such tasks. They can
handle repetitive chores, such as totaling up numbers or placing
words on a page, without getting bored or exhausted.

More importantly, the computer presents the checkbook or the term paper on
the screen and lets you fix mistakes easily. Computers make good game machines
because they can play sequences of sounds and pictures, involving the human user
in the process.

What makes all this possible is not only the computer. The com-
puter must be programmed to perform these tasks. One program
balances checkbooks; a different program, probably designed and con-
structed by a different company, processes words; and a third program

plays a game. The computer itself is a machine that stores data (numbers, words,
pictures), interacts with devices (the monitor, the sound system, the printer), and
executes programs. Programs are sequences of instructions and decisions that the
computer carries out to achieve a task.

Today’s computer programs are so sophisticated that it is hard to believe that
they are composed of extremely primitive operations. A typical operation may be
one of the following.

• Put a red dot at this screen position.
• Get a number from this location in memory.

1.1 What Is a Computer?

Computers execute very
basic operations in rapid
succession.

Different tasks require
different programs.

1.1 What Is a Computer? 2

1.2 What Is Programming? 3

1.3 The Anatomy of a Computer 4
RANDOM FACT 1.1: The ENIAC and the Dawn

of Computing 8

1.4 Translating Human-Readable
Programs to Machine Code 9

1.5 Programming Languages 10

1.6 The Evolution of C++ 11
RANDOM FACT 1.2: Standards Organizations 12

1.7 Becoming Familiar with
Your Computer 12

PRODUCTIVITY HINT 1.1: Backup Copies 14

1.8 Compiling a Simple Program 15
SYNTAX 1.1: Simple Program 18
COMMON ERROR 1.1: Omitting Semicolons 19

1.9 Errors 19
COMMON ERROR 1.2: Misspelling Words 21

1.10 The Compilation Process 21

1.11 Algorithms 24

1.2 • What Is Programming? 3

• Add up these two numbers.
• If this value is negative, continue the program at a certain instruction.

The computer user has the illusion of smooth interaction because a program con-
tains a huge number of such operations, and because the computer can execute them
at great speed.

The flexibility of a computer is quite an amazing phenomenon. The same
machine can balance your checkbook, print your term paper, and play a game. In
contrast, other machines carry out a much narrower range of tasks; a car drives and
a toaster toasts. Computers can carry out a wide range of tasks because they execute
different programs, each of which directs the computer to work on a specific task.

A computer program tells a computer, in minute detail, the sequence
of steps that are needed to fulfill a task. The act of designing and
implementing these programs is called computer programming. In
this book, you will learn how to program a computer—that is, how
to direct the computer to execute tasks.

To use a computer you do not need to do any programming. When you write a
term paper with a word processor, that program has been programmed by the man-
ufacturer and is ready for you to use. That is only to be expected—you can drive a
car without being a mechanic and toast bread without being an electrician. Most
people who use computers every day never need to do any programming.

Since you are reading this introductory computer science book, it may well be
your career goal to become a professional computer scientist or software engineer.
Programming is not the only skill required of a computer scientist or software engi-
neer; indeed, programming is not the only skill required to create successful com-
puter programs. Nevertheless, the activity of programming is central to computer
science. It is also a fascinating and pleasurable activity that continues to attract and
motivate bright students. The discipline of computer science is particularly fortu-
nate that it can make such an interesting activity the foundation of the learning path.

To write a computer game with motion and sound effects or a word processor
that supports fancy fonts and pictures is a complex task that requires a team of
many highly skilled programmers. Your first programming efforts will be more
mundane. The concepts and skills you learn in this book form an important founda-
tion, and you should not be disappointed if your first programs do not rival the
sophisticated software that is familiar to you. Actually, you will find that there is an
immense thrill even in simple programming tasks. It is an amazing experience to see
the computer carry out a task precisely and quickly that would take you hours of
drudgery, to make small changes in a program that lead to immediate improve-
ments, and to see the computer become an extension of your mental powers.

1.2 What Is Programming?

Programmers produce
computer programs to
make the computer solve
new tasks.

4 CHAPTER 1 • Introduction

To understand the programming process, you need to have a rudimentary under-
standing of the building blocks that make up a computer. We will look at a personal
computer. Larger computers have faster, larger, or more powerful components, but
they have fundamentally the same design.

At the heart of the computer lies the central processing unit (CPU)
(see Figure 1). It consists of a single chip, or a small number of chips.
A computer chip (integrated circuit) is a component with a plastic or
metal housing, metal connectors, and inside wiring made principally
from silicon. For a CPU chip, the inside wiring is enormously compli-

cated. For example, the Pentium chip (a popular CPU for personal computers at the
time of this writing) is composed of several million structural elements, called
transistors.

 Figure 2 shows a magnified detail view of a CPU chip. The CPU
performs program control, arithmetic, and data movement. That is,
the CPU locates and executes the program instructions; it carries out
arithmetic operations such as addition, subtraction, multiplication,
and division; it fetches data from external memory or devices and
stores data back. All data must travel through the CPU whenever it
is moved from one location to another. (There are a few technical
exceptions to this rule; some devices can interact directly with memory.)

The computer stores data and programs in memory. There are two
kinds of memory. Primary storage is fast but expensive; it is made
from memory chips: so-called random-access memory (RAM) and
read-only memory (ROM). Read-only memory contains certain pro-
grams that must always be present—for example, the code needed to

1.3 The Anatomy of a Computer

The central processing
unit (CPU) executes one
operation at a time.

Figure 1 Central Processing Unit

Data values can be
brought into the CPU for
processing from storage
or from input devices
such as the keyboard,
the mouse, or a
communications link.

Storage devices include
random-access memory
(RAM) and secondary
storage.

1.3 • The Anatomy of a Computer 5

start the computer. Random-access memory might have been better called “read-
write memory”, because the CPU can read data from it and write data back to it.
That makes RAM suitable to hold changing data and programs that do not have to
be available permanently. RAM memory has two disadvantages. It is comparatively
expensive, and it loses all its data when the power is turned off. Secondary storage,
usually a hard disk (see Figure 3), provides less expensive storage that persists with-
out electricity. A hard disk consists of rotating platters, which are coated with a
magnetic material, and read/write heads, which can detect and change the magnetic
flux on the platters. Programs and data are typically stored on the hard disk and
loaded into RAM when the program starts. The program then updates the data in
RAM and writes the modified data back to the hard disk.

Figure 2 CPU Chip Detail

TRANSFER
CACHE

SYSTEM
BUS

DYNAMIC
EXECUTION

DYNAMIC
EXECUTION

DYNAMIC
EXECUTION

RAPID
EXECUTION

ENGINE

EXECUTION
TRACE CACHE

FLOATING POINT/
MULTIMEDIA

HYPER PIPELINE

6 CHAPTER 1 • Introduction

The central processing unit, RAM memory, and the electronics controlling the
hard disk and other devices are interconnected through a set of electrical lines called
a bus. Data travels along the bus from the system memory and peripheral devices to
the CPU and back. Figure 4 shows a motherboard, which contains the CPU, the
RAM, and card slots, through which cards that control peripheral devices connect
to the bus.

Figure 3 A Hard Disk

Figure 4 A Motherboard

1.3 • The Anatomy of a Computer 7

To interact with a human user, a computer requires peripheral devices. The com-
puter transmits information to the user through a display screen, speakers, and
printers. The user can enter information and directions to the computer by using a
keyboard or a pointing device such as a mouse.

Some computers are self-contained units, whereas others are interconnected
through networks. Through the network cabling, the computer can read data and
programs from central storage locations or send data to other computers. For the
user of a networked computer it may not even be obvious which data reside on the
computer itself and which are transmitted through the network.

Figure 5 gives a schematic overview of the architecture of a personal computer.
Program instructions and data (such as text, numbers, audio, or video) are stored on
the hard disk, on a CD-ROM, or elsewhere on the network. When a program is
started, it is brought into RAM memory, from where the CPU can read it. The
CPU reads the program one instruction at a time. As directed by these instructions,
the CPU reads data, modifies it, and writes it back to RAM memory or the hard
disk. Some program instructions will cause the CPU to place dots on the display
screen or printer or to vibrate the speaker. As these actions happen many times over
and at great speed, the human user will perceive images and sound. Some program
instructions read user input from the keyboard or mouse. The program analyzes the
nature of these inputs and then executes the next appropriate instructions.

Figure 5 Schematic Design of a Personal Computer

Printer

Mouse

Keyboard

Bus

Ports

CPU

RAM

Disk
Controller

Hard disk

CD-ROM drive

Monitor

Speakers

Internet

Graphics
card

Sound
card

Network
card

8 CHAPTER 1 • Introduction

The ENIAC and the Dawn of Computing

The ENIAC (electronic numerical integrator and computer) was the first usable electronic
computer. It was designed by J. Presper Eckert and John Mauchly at the University of
Pennsylvania and was completed in 1946—two years before transistors were invented. The
computer was housed in a large room and consisted of many cabinets containing about
18,000 vacuum tubes (see Figure 6). Vacuum tubes burned out at the rate of several tubes per
day. An attendant with a shopping cart full of tubes constantly made the rounds and replaced
defective ones. The computer was programmed by connecting wires on panels. Each wiring
configuration would set up the computer for a particular problem. To have the computer
work on a different problem, the wires had to be replugged.

Work on the ENIAC was supported by the U.S. Navy, which was interested in computa-
tions of ballistic tables that would give the trajectory of a projectile, depending on the wind
resistance, initial velocity, and atmospheric conditions. To compute the trajectories, one must
find the numerical solutions of certain differential equations; hence the name “numerical
integrator”. Before machines like ENIAC were developed, humans did this kind of work,
and until the 1950s the word “computer” referred to these people. The ENIAC was later
used for peaceful purposes such as the tabulation of U.S. Census data.

Figure 6 The ENIAC

RANDOM FACT 1.1

1.4 • Translating Human-Readable Programs to Machine Code 9

On the most basic level, computer instructions are extremely primitive. The proces-
sor executes machine instructions. A typical sequence of machine instructions is

1. Move the contents of memory location 40000 into register eax. (A register is a
storage location in the CPU.)

2. Subtract the value 100 from register eax.
3. If the result is positive, continue with the instruction that is stored in memory

location 11280.

Actually, machine instructions are encoded as numbers so that they
can be stored in memory. On a Pentium processor, this sequence of
instruction is encoded as the sequence of numbers

161 40000 45 100 127 11280
On a processor from a different manufacturer, the encoding would
be quite different. When this kind of processor fetches this sequence

of numbers, it decodes them and executes the associated sequence of commands.
How can we communicate the command sequence to the computer? The sim-

plest method is to place the actual numbers into the computer memory. This is, in
fact, how the very earliest computers worked. However, a long program is com-
posed of thousands of individual commands, and it is a tedious and error-prone
affair to look up the numeric codes for all commands and place the codes manually
into memory. As we said before, computers are really good at automating tedious
and error-prone activities, and it did not take long for computer programmers to
realize that the computers themselves could be harnessed to help in the program-
ming process.

The first step was to assign short names to the commands. For example, mov
denotes “move”, sub “subtract”, and jg “jump if greater than 0”. Using these com-
mands, the instruction sequence becomes

mov 40000, %eax
sub 100, %eax
jg 11280

That is much easier to read for humans. To get the instruction sequences accepted
by the computer, though, the names must be translated into the machine codes. This
is the task of another computer program: a so-called assembler. It takes the sequence
of characters “mov %eax”, translates it into the command code 161, and carries out
similar operations on the other commands. Assemblers have another feature: they
can give names to memory locations as well as to instructions. Our program
sequence might be checking that some interest rate is greater than 100 percent, and
the interest rate might be stored in memory location 40000. It is usually not impor-
tant where a value is stored; any available memory location will do. By using sym-
bolic names instead of memory addresses, the program gets even easier to read:

1.4 Trans la t ing Human-Readable Programs to
Machine Code

Computer programs are
stored as machine
instructions in a code
that depends on the
processor type.

10 CHAPTER 1 • Introduction

mov int_rate, %eax
sub 100, %eax
jg int_error

It is the job of the assembler program to find suitable numeric values for the sym-
bolic names and to put those values into the generated code sequence.

Assembler instructions were a major advance over programming with raw
machine codes, but they suffer from two problems. It still takes a great many
instructions to achieve even the simplest goals, and the exact instruction sequence
differs from one processor to another. For example, the above sequence of assembly
instructions must be rewritten for the Sun SPARC processor, which poses a real
problem for people who invest a lot of time and money producing a software pack-
age. If a computer becomes obsolete, the program must be completely rewritten to
run on the replacement system.

In the mid-1950s, higher-level programming languages began to appear. In these
languages, the programmer expresses the idea behind the task that needs to be per-
formed, and a special computer program, a so-called compiler, translates the higher-
level description into machine instructions for a particular processor.

For example, in C++, the high-level programming language that we will use in
this book, you might give the following instruction:

if (int_rate > 100) cout << "Interest rate error";

This means, “If the interest rate is over 100, display an error message”. It is then the
job of the compiler program to look at the sequence of characters “if (int_rate >
100)” and translate that into

161 40000 45 100 127 11280
Compilers are quite sophisticated programs. They have to translate logical state-
ments, such as the if, into sequences of computations, tests, and jumps, and they
must find memory locations for variables like int_rate. In this book, we will gener-
ally take the existence of a compiler for granted. If you become a professional com-
puter scientist, you may well learn more about compiler-writing techniques later in
your studies.

Higher-level languages are independent of the underlying hard-
ware. For example, the instruction if (int_rate > 100) does not rely
on particular machine instructions. In fact, it will compile to differ-
ent code on an Intel Pentium and a Sun SPARC processor.

Programming languages are independent of specific computer archi-
tecture, but they are human creations. As such, they follow certain
conventions. To ease the translation process, those conventions are
much stricter than they are for human languages. When you talk to
another person, and you scramble or omit a word or two, your con-
versation partner will usually still understand what you have to say.

Higher-level languages
are independent of
the processor.

1.5 Programming Languages

Programming languages
are designed by computer
scientists for a variety of
purposes.

1.6 • The Evolution of C++ 11

Compilers are less forgiving. For example, if you omit the quotation mark close to
the end of the instruction,

if (int_rate > 100) message_box("Interest rate error);

the C++ compiler will get quite confused and complain that it cannot translate an
instruction containing this error. This is actually a good thing. If the compiler were
to try to guess what you did wrong and try to fix it, it might not guess your inten-
tions correctly. In that case, the resulting program would do the wrong thing—
quite possibly with disastrous effects, if that program controlled a device on whose
functions someone’s well-being depended. When a compiler reads programming
instructions in a programming language, it will translate them into machine code
only if the input follows the language conventions exactly.

Just as there are many human languages, there are many programming languages.
Consider the instruction

if (int_rate > 100) cout << "Interest rate error";

This is how you must format the instruction in C++. C++ is a very popular pro-
gramming language, and it is the one we use in this book. But in Visual Basic (a pop-
ular programming language for business applications) the same instruction would
be written as

if int_rate > 100 then System.Console.Write("Interest rate error") end if

Compilers are language-specific. The C++ compiler will translate only C++ code,
whereas a Visual Basic compiler will reject anything but legal Visual Basic code. For
example, if a C++ compiler reads the instruction if int_rate > 100 then ..., it will
complain, because the condition of the if statement isn’t surrounded by parenthe-
ses (), and the compiler doesn’t expect the word then. The choice of the layout for
a language construct such as the if statement is somewhat arbitrary. The designers
of different languages make different tradeoffs among readability, easy translation,
and consistency with other constructs.

C++ is built upon the C programming language, which was developed to be trans-
lated efficiently into fast machine code, with a minimum of housekeeping overhead.
C++ builds on C by adding features for “object-oriented programming”, a pro-
gramming style that enables modeling of real-world objects.

The initial version of the C language was designed about 1972, but features were
added to it over the years. Because different compiler writers added different fea-
tures, the language actually sprouted various dialects. Some programming instruc-
tions were understood by one compiler but rejected by another. Such divergence is
a major obstacle to a programmer who wants to move code from one computer to
another. An effort got underway to iron out the differences and come up with a
standard version of C. The design process ended in 1989 with the completion of the
ANSI (American National Standards Institute) standard. In the meantime, Bjarne
Stroustrup of AT&T added features of the language Simula (an object-oriented

1.6 The Evolut ion of C++

12 CHAPTER 1 • Introduction

language designed for carrying out simulations) to C. The resulting language was
called C++. From 1985 until today, C++ has grown by the addition of many fea-
tures. A standardization process culminated in the publication of the international
C++ standard in 1998. A minor update to the standard was issued in 2003, and a
major revision is expected to come to fruition around 2009.

At this time, C++ is the most commonly used language for devel-
oping system software such as databases and operating systems. Just
as importantly, C++ is increasingly used for programming “embed-
ded systems”, small computers that control devices such as automo-
bile engines or cellular telephones.

Standards Organizations

Two organizations, the American National Standards Institute (ANSI) and the International
Organization for Standardization (ISO), have jointly developed the definitive standard for
the C++ language.

Why have standards? You encounter the benefits of standardization every day. When you
buy a light bulb, you can be assured that it fits in the socket without having to measure the
socket at home and the bulb in the store. In fact, you may have experienced how painful the
lack of standards can be if you have ever purchased a flashlight with nonstandard bulbs.
Replacement bulbs for such a flashlight can be difficult and expensive to obtain.

The ANSI and ISO standards organizations are associations of industry professionals
who develop standards for everything from car tires and credit card shapes to programming
languages. Having a standard for a programming language such as C++ means that you can
take a program that you developed on one system with one manufacturer’s compiler to a dif-
ferent system and be assured that it will continue to work.

To find out more about standards organizations, check out the following Web sites:
www.ansi.org and www.iso.ch.

As you use this book, you may well be doing your work on an unfa-
miliar computer system. You should spend some time making your-
self familiar with the computer. Because computer systems vary
widely, this book can only give an outline of the steps you need to
follow. Using a new and unfamiliar computer system can be frustrat-
ing. Look for training courses that your campus offers, or just ask a
friend to give you a brief tour.

Step 1 Log In

If you use your own home computer, you don’t need to worry about logging in.
Computers in a lab, however, are usually not open to everyone. Access is usually

C++ is a general-purpose
language that is in
widespread use for
systems and embedded
programming.

RANDOM FACT 1.2

1.7 Becoming Fami l iar wi th Your Computer

Set aside some time to
become familiar with the
computer system and the
C++ compiler that you will
use for your class work.

www.ansi.org
www.iso.ch

1.7 • Becoming Familiar with Your Computer 13

restricted to those who paid the necessary fees and who can be trusted not to mess
up the configuration. You will likely need an account number and a password to
gain access to the system.

Step 2 Locate the C++ Compiler

Computer systems differ greatly in this regard. Some systems let you start the com-
piler by selecting an icon or menu. On other systems you must use the keyboard to
type a command to launch the compiler. On many personal computers there is a so-
called integrated environment in which you can write and test your programs. On
other computers you must first launch one program that functions like a word pro-
cessor, in which you can enter your C++ instructions; then launch another program
to translate them to machine code; and then run the resulting machine code.

Step 3 Understand Files and Folders

As a programmer, you will write C++ programs, try them out, and improve them.
You will be provided a place on the computer to store them, and you need to find
out where that place is. You will store your programs in files. A C++ file is a con-
tainer of C++ instructions. Files have names, and the rules for legal names differ
from one system to another. Some systems allow spaces in file names; others don’t.
Some distinguish between upper- and lowercase letters; others don’t. Most C++
compilers require that C++ files end in an extension .cpp, .cc, or .C; for example,
test.cpp.

Files are stored in folders or directories. These file containers can be nested. A
folder can contain files as well as other folders, which themselves can contain more
files and folders (see Figure 7). This hierarchy can be quite large, especially on net-

Figure 7
A Directory Hierarchy

14 CHAPTER 1 • Introduction

worked computers where some of the files may be on your local disk, others else-
where on the network. While you need not be concerned with every branch of the
hierarchy, you should familiarize yourself with your local environment. Different
systems have different ways of showing files and directories. Some use a graphical
display and let you move around by clicking the mouse on folder icons. In other
systems, you must enter commands to visit or inspect different locations.

Step 4 Write a Simple Program

In the next section, we will introduce a very simple program. You will need to learn
how to type it in, run it, and fix mistakes.

Step 5 Save Your Work

You will spend many hours typing C++ programs in and improving
them. The resulting program files have some value, and you should
treat them as you would other important property. A conscientious
safety strategy is particularly important for computer files. They are
more fragile than paper documents or other more tangible objects.
It is easy to delete a file by accident, and occasionally files are lost

because of a computer malfunction. Unless you keep another copy, you must
retype the contents. Because you are unlikely to remember the entire file, you will
likely find yourself spending almost as much time as you did to enter and improve
it in the first place. This lost time may cause you to miss deadlines. It is therefore
crucially important that you learn how to safeguard files and get in the habit of
doing so before disaster strikes. You can make safety or backup copies of files by
saving copies on a memory stick or on another computer.

Backup Copies

Backing up files on a memory stick is a an easy and convenient storage method for many
people. Another increasingly popular form of backup is Internet file storage. Here are a few
pointers to keep in mind.
• Back up often. Backing up a file takes only a few seconds, and you will hate yourself if

you have to spend many hours recreating work that you could have saved easily. I recom-
mend that you back up your work once every thirty minutes.

• Rotate backups. Use more than one directory for backups, and rotate them. That is, first
back up onto the first directory. Then back up onto the second directory. Then use the
third, and then go back to the first. That way you always have three recent backups. If
your recent changes made matters worse, you can then go back to the older version.

• Back up source files only. The compiler translates the files that you write into files consist-
ing of machine code. There is no need to back up the machine code files, since you can
recreate them easily by running the compiler again. Focus your backup activity on those
files that represent your effort. That way your backup disks won’t fill up with files that
you don’t need.

Develop a strategy for
keeping backup copies
of your work before
disaster strikes.

PRODUCT IV ITY HINT 1.1

1.8 • Compiling a Simple Program 15

• Pay attention to the backup direction. Backing up involves copying files from one place to
another. It is important that you do this right—that is, copy from your work location to
the backup location. If you do it the wrong way, you will overwrite a newer file with an
older version.

• Check your backups once in a while. Double-check that your backups are where you
think they are. There is nothing more frustrating than to find out that the backups are not
there when you need them.

• Relax, then restore. When you lose a file and need to restore it from backup, you are
likely to be in an unhappy, nervous state. Take a deep breath and think through the recov-
ery process before you start. It is not uncommon for an agitated computer user to wipe
out the last backup when trying to restore a damaged file.

You are now ready to write and run your first C++ program. The traditional choice
for the very first program in a new programming language is a program that dis-
plays a simple greeting: “Hello, World!” We follow that tradition. Here is the
“Hello, World!” program in C++.

ch01/hello.cpp

Program Run

You can download this program file from the companion web site for this book.
The line numbers are not part of the program. They are included so that your
instructor can reference them during lectures.

We will explain this program in a minute. For now, you should make a new pro-
gram file and call it hello.cpp. Enter the program instructions and compile and run
the program, following the procedure that is appropriate for your compiler.

By the way, C++ is case-sensitive. You must enter upper- and lowercase letters
exactly as they appear in the program listing. You cannot type MAIN or Return. On
the other hand, C++ has free-form layout. Spaces and line breaks are not important.

1.8 Compi l ing a S imple Program

1 #include <iostream>
2
3 using namespace std;
4
5 int main()
6 {
7 cout << "Hello, World!\n";
8 return 0;
9 }

Hello, World!

16 CHAPTER 1 • Introduction

You can write the entire program on a single line,
int main(){cout<<"Hello, World!\n";return 0;}

or write every keyword on a separate line,
int
main()
{
cout
<<
"Hello, World!\n"
;
return
0;
}

However, good taste dictates that you lay out your programs in a readable fashion,
so you should follow the layout in the program listing.

When you run the program, the message
Hello, World!

will appear on the screen. On some systems, you may need to switch to a different
window to find the message.

Now that you have seen the program working, it is time to understand its
makeup. The basic structure of a C++ program is shown in Syntax 1.1 on page 18.

The first line,
#include <iostream>

tells the compiler to read the file iostream. That file contains the defi-
nition for the stream input/output package. Your program performs
output onto the screen and therefore requires the services provided
in iostream. You must include this file in all programs that read or
write text.

By the way, you will see a slightly different syntax, #include <iostream.h>, in
many C++ programs.

The next line,
using namespace std;

tells the compiler to locate names such as cout in the “standard name space”. In
large programs, it is quite common that different programmers will use the same
names to denote different things. They can avoid name conflicts by using separate
name spaces. However, for the simple programs that you will be writing in this
book, separate name spaces are not necessary. You will always use the standard
name space, and you can simply add the directive using namespace std; at the top of
every program that you write, just below the #include directives. Name spaces are a
relatively recent feature of C++, and your compiler may not yet support them.

The construction
int main()
{
 ...

Every C++ program
contains #include
directives, to access
necessary features such as
input and output, and a
function called main.

1.8 • Compiling a Simple Program 17

 return 0;
}

defines a function called main. A function is a collection of programming instruc-
tions that carry out a particular task. Every C++ program must have a main func-
tion. Most C++ programs contain other functions besides main, but it will take us
until Chapter 4 to discuss how to write other functions. The instructions or state-
ments in the body of the main function—that is, the statements inside the curly
braces {}—are executed one by one. Note that each statement ends in a semicolon.

cout << "Hello, World!\n";
return 0;

A sequence of characters enclosed in quotation marks
"Hello, World!\n"

is called a string. You must enclose the contents of the string inside quotation marks
so that the compiler knows you literally mean "Hello, World!\n". In this short pro-
gram, there is actually no possible confusion. Suppose, on the other hand, you
wanted to display the word main. By enclosing it in quotation marks, "main", the
compiler knows that you mean the sequence of characters m a i n, not the function
named main. The rule is simply that you must enclose all text strings in quotation
marks, so that the compiler considers them plain text and not program instructions.

The text string "Hello, World!\n" should not be taken completely literally. You
do not want the odd-looking \n to appear on the screen. The two-character
sequence \n actually denotes a single, nonprinting character, a so-called newline.
When the newline character is sent to the display, the cursor is moved to the first
column in the next screen row. If you don’t send a newline character, then the next
displayed item will simply follow the current string on the same line. In this pro-
gram we only printed one item, but in general we will want to print multiple items,
and it is a good habit to end all lines of output with a newline character.

The backslash \ character is used as a so-called escape character. The backslash
does not denote itself; instead, it is used to encode other characters that would oth-
erwise be difficult or impossible to show in program statements. There are a few
other backslash combinations that you will encounter later. Now, what do you do if
you actually want to show a backslash on the display? You must enter two in a row.
For example,

cout << "Hello\\World!\n";

would print
Hello\World!

Finally, how can you display a string containing quotation marks, such as
Hello, "World"!

You can’t use
cout << "Hello, "World"!\n";

As soon as the compiler reads "Hello, ", it thinks the string is finished, and then it
gets all confused about World followed by a second string "!\n". Compilers have a

18 CHAPTER 1 • Introduction

one-track mind, and if a simple analysis of the input doesn’t make sense to them,
they just refuse to go on, and they report an error. In contrast, a human would
probably realize that the second and third quotation marks were supposed to be
part of the string. Well, how do we then display quotation marks on the screen? The
backslash escape character again comes to the rescue. Inside a string the sequence \"
denotes a literal quote, not the end of a string. The correct display statement is
therefore

cout << "Hello, \"World\"!\n";

To display values on the screen, you must send them to an entity called cout. The <<
operator denotes the “send to” command. You can also print numerical values. For
example, the statement

cout << 3 + 4;

displays the number 7.
Finally, the return statement denotes the end of the main function.

When the main function ends, the program terminates. The zero
value is a signal that the program ran successfully. In this small pro-
gram there was nothing that could have gone wrong during the pro-
gram run. In other programs there might be problems with the input
or with some devices, and you would then have main return a nonzero

value to indicate an error. By the way, the int in int main()indicates that main
returns an integer value, not a fractional number or string.

In a simple program, main
just displays a message on
the screen and then
returns with a success
indicator.

SYNTAX 1.1 Simple Program

header files
using namespace std;
int main()
{

statements
 return 0;
}

Example:

#include <iostream>
using namespace std;
int main()
{
 cout << "Hello, World!\n";
 return 0;
}

Purpose:

A simple program, with all program instructions in a main function.

1.9 • Errors 19

Omitting Semicolons

In C++ every statement must end in a semicolon. Forgetting to type a semicolon is a com-
mon error. It confuses the compiler because the compiler uses the semicolon to find where
one statement ends and the next one starts. The compiler does not use line ends or closing
braces to recognize the ends of statements. For example, the compiler considers

cout << "Hello, World!\n"
return 0;

a single statement, as if you had written

cout << "Hello, World!" return 0;

and then it doesn’t understand that statement, because it does not expect the keyword return
in the middle of an output command. The remedy is simple. Just scan every statement for a
terminating semicolon, just as you would check that every English sentence ends in a period.

Experiment a little with the hello program. What happens if you make a typing
error such as

cot << "Hello, World!\n";
cout << "Hello, World!\";
cout << "Hell, World!\n";

In the first case, the compiler will complain. It will say that it has no
clue what you mean by cot. The exact wording of the error message
is dependent on the compiler, but it might be something like “Unde-
fined symbol cot”. This is a compile-time error or syntax error.
Something is wrong according to the language rules, and the com-
piler finds it. When the compiler finds one or more errors, it will not

translate the program to machine code, and as a consequence there is no program to
run. You must fix the error and compile again. In fact, the compiler is quite picky,
and it is common to go through several rounds of fixing compile-time errors before
compilation succeeds for the first time.

If the compiler finds an error, it will not simply stop and give up. It will try to
report as many errors as it can find, so you can fix them all at once. Sometimes,
however, one error throws it off track. This is likely to happen with the error in the
second line. The compiler will miss the end of the string because it thinks that the \"
is an embedded quote character. In such cases, it is common for the compiler to emit
bogus error reports for neighboring lines. You should fix only those error messages
that make sense to you and then recompile.

COMMON ERROR 1.1

1.9 Errors

Syntax errors are faulty
constructs that do not
conform to the rules of the
programming language.

20 CHAPTER 1 • Introduction

The error in the third line is of a different kind. The program will compile and
run, but its output will be wrong. It will print

Hell, World!

This is a run-time error or logic error. The program is syntactically
correct and does something, but it doesn’t do what it is supposed to
do. The compiler cannot find the error, and it must be flushed out
when the program runs, by testing it and carefully looking at its
output.

During program development, errors are unavoidable. Once a
program is longer than a few lines, it requires superhuman concen-
tration to enter it correctly without slipping up once. You will find

yourself omitting semicolons or quotes more often than you would like, but the
compiler will track down these problems for you.

Logic errors are more troublesome. The compiler will not find them—in fact, the
compiler will cheerfully translate any program as long as its syntax is correct—but
the resulting program will do something wrong. It is the responsibility of the pro-
gram author to test the program and find any logic errors. Testing programs is an
important topic that you will encounter many times in this book. Another impor-
tant aspect of good craftsmanship is defensive programming: structuring programs
and development processes in such a way that an error in one place in a program
does not trigger a disastrous response.

The error examples that you saw so far were not difficult to diagnose or fix, but
as you learn more sophisticated programming techniques, there will be much
more room for error. It is an uncomfortable fact that locating all errors in a pro-
gram is very difficult. Even if you can observe that a program exhibits faulty
behavior, it may not be obvious what part of the program caused it and how to fix
it. There are special software tools, debuggers, that let you trace through a pro-
gram to find bugs—that is, logic errors. In this book you will learn how to use a
debugger effectively.

Note that all these errors are different from the kind of errors that you are likely
to make in calculations. If you total up a column of numbers, you may miss a minus
sign or accidentally drop a carry, perhaps because you are bored or tired. Comput-
ers do not make these kinds of errors. When a computer adds up numbers, it will
get the correct answer. Admittedly, computers can make overflow or roundoff
errors, just as pocket calculators do, when you ask them to perform computations
whose result falls outside their numeric range. An overflow error occurs if the result
of a computation is very large or very small. For example, most computers and
pocket calculators overflow when you try to compute 101000. A roundoff error
occurs when a value cannot be represented precisely. For example, may be stored in
the computer as 0.3333333, a value that is close to, but not exactly equal to . If you
compute , you may obtain 0.0000001, not 0, as a result of the roundoff
error. We will consider such errors logic errors, because the programmer should
have chosen a more appropriate calculation scheme that handles overflow or round-
off correctly.

Logic errors are constructs
that can be translated into
a running program, but
the resulting program
does not perform the
intended action.

1
3 1

3
1 3 1

3
− ×

1.10 • The Compilation Process 21

You will learn a three-part error management strategy in this
book. First, you will learn about common errors and how to avoid
them. Then you will learn defensive programming strategies to mini-
mize the likelihood and impact of errors. Finally, you will learn
debugging strategies to flush out those errors that remain.

Misspelling Words

If you accidentally misspell a word, strange things may happen, and it may not always be
completely obvious from the error messages what went wrong. Here is a good example of
how simple spelling errors can cause trouble:

#include <iostream>

using namespace std;

int Main()
{
 cout << "Hello, World!\n";
 return 0;
}

This code defines a function called Main. The compiler will not consider this to be the same
as the main function, because Main starts with an uppercase letter and the C++ language is
case-sensitive. Upper- and lowercase letters are considered to be completely different from
each other, and to the compiler Main is no better match for main than rain. The compiler will
compile your Main function, but when the linker is ready to build the executable file, it will
complain about the missing main function and refuse to link the program. Of course, the
message “missing main function” should give you a clue where to look for the error.

If you get an error message that seems to indicate that the compiler is on the wrong track,
it is a good idea to check for spelling and capitalization. All C++ keywords, and the names of
most functions, use only lowercase letters. If you misspell the name of a symbol (for example
out instead of cout), the compiler will complain about an “undefined symbol”. This error
message is usually a good clue that you made a spelling error.

Some C++ development environments are very convenient to use. You just enter
the code in one window, click on a button or menu to compile, and click on another
button or menu to run your code. Error messages show up in a second window, and
the program runs in a third window. Figure 8 shows the screen layout of a popular
C++ compiler with these features. With such an environment you are completely
shielded from the details of the compilation process. On other systems you must
carry out every step manually.

The programmer is
responsible for inspecting
and testing the program to
guard against logic errors.

COMMON ERROR 1.2

1.10 The Compi la t ion Process

22 CHAPTER 1 • Introduction

Even if you use a convenient C++ environment, it is useful to know what goes
on behind the scenes, mainly because knowing the process helps you solve prob-
lems when something goes wrong.

You first enter the program statements into a text editor. The editor stores the
text and gives it a name such as hello.cpp. If the editor window shows a name like
noname.cpp, you should change the name. You should save the file to disk fre-
quently, because otherwise the editor only stores the text in the computer’s RAM
memory. If something goes wrong with the computer and you need to restart it, the
contents of the RAM (including your program text) are lost, but anything stored on
a hard disk is permanent even if you need to restart the computer.

When you compile your program, the compiler translates the C++
source code (that is, the statements that you wrote) into machine
code. The resulting file consists of machine instructions and informa-
tion on how to load the program into memory prior to execution.
Machine code is sometimes called object code, but we do not use that
terminology to avoid confusion with C++ objects. Machine code

Figure 8 Screen Layout of an Integrated C++ Environment

C++ programs are
translated by a program
called a compiler into
machine code.

1.10 • The Compilation Process 23

files usually have the extension .obj or .o. For example, the machine code for the
hello program might be stored in hello.obj.

The machine code file contains only the translation of the code
that you wrote. That is not enough to actually run the program. To
display a string on a window, quite a bit of low-level activity is neces-
sary. The authors of the iostream package (which defines cout and its
functionality) have implemented all necessary actions and placed the
required machine code into a library. A library is a collection of code
that has been programmed and translated by someone else, ready for
you to use in your program. (More complicated programs are built

from more than one machine code file and more than one library.) A special pro-
gram called the linker takes your machine code file and the necessary parts from the
iostream library and builds an executable file. (Figure 9 gives an overview of these
steps.) The executable file is usually called hello.exe or hello, depending on your
computer system. It contains all machine code necessary to run the program. You
can run the program by typing hello at a command prompt, or by clicking on the
file icon, even after you exit the C++ environment. You can e-mail that file to
another user who doesn’t have a C++ compiler or who may not know that there is
such a thing as C++, and that person can run the program in the same way.

Your programming activity centers around these files. You start in the editor,
writing the source file. You compile the program and look at the error messages.
You go back to the editor and fix the syntax errors. When the compiler succeeds,
the linker builds the executable file. You run the executable file. If you find an error,
you can run the debugger to execute it one line at a time. Once you find the cause of
the error, you go back to the editor and fix it. You compile, link, and run again to
see whether the error has gone away. If not, you go back to the editor. This is called
the edit-compile-debug loop (see Figure 10). You will spend a substantial amount of
time in this loop in the months and years to come.

Figure 9 From Source Code to Executable Program

CompilerEditor Linker

Executable
ProgramSource File

Library files

Machine code

A program called a linker
combines machine code
with previously translated
machine code for input/
output and other services
to build your program.

24 CHAPTER 1 • Introduction

You will soon learn how to program calculations and decision mak-
ing in C++. But before we look at the mechanics of implementing
computations in the next chapter, let us consider the planning pro-
cess that precedes the implementation.

You may have run across advertisements that encourage you to
pay for a computerized service that matches you up with a love part-
ner. Let us think how this might work. You fill out a form and send it

in. Others do the same. The data are processed by a computer program. Is it reason-
able to assume that the computer can perform the task of finding the best match for
you? Suppose your younger brother, not the computer, had all the forms on his
desk. What instructions could you give him? You can’t say, “Find the best-looking
person of the opposite sex who likes inline skating and browsing the Internet”.
There is no objective standard for good looks, and your brother’s opinion (or that
of a computer program analyzing the digitized photo) will likely be different from
yours. If you can’t give written instructions for someone to solve the problem,

Figure 10
Edit-Compile-Debug Loop

True

True

False

False

Edit
program

Begin

Compile
program

Test
program

End

Compiler
errors?

Run-time
errors?

1.11 Algor i thms

An algorithm is a
description of steps to
solve a problem that is
unambiguous, executable,
and terminating.

1.11 • Algorithms 25

there is no way the computer can magically solve the problem. The computer can
only do what you tell it to do. It just does it faster, without getting bored or
exhausted.

Now consider the following investment problem:

You put $10,000 into a bank account that earns 5 percent interest per year. How
many years does it take for the account balance to be double the original?

Could you solve this problem by hand? Sure, you could. You figure out the balance
as follows:

You keep going until the balance goes over $20,000. Then the last number in the
year column is the answer.

Of course, carrying out this computation is intensely boring. You could tell your
younger brother to do it. Seriously, the fact that a computation is boring or tedious
is irrelevant to the computer. Computers are very good at carrying out repetitive
calculations quickly and flawlessly. What is important to the computer (and your
younger brother) is the existence of a systematic approach for finding the solution.
The answer can be found by following a series of steps that involves no guesswork.
Here is such a series of steps:

Step 1 Start with the table

Step 2 Repeat steps 2a–2c while the balance is less than $20,000.

Step 2a Add a new row to the table.

Step 2b In column 1 of the new row, put one more than the preceding year’s
value.

Step 2c In column 2 of the new row, place the value of the preceding balance,
multiplied by 1.05 (5 percent).

Year Balance

0 $10,000.00

1 $10,500.00 = $10,000.00 × 1.05

2 $11,025.00 = $10,500.00 × 1.05

3 $11,576.25 = $11,025.00 × 1.05

4 $12,155.06 = $11,576.25 × 1.05

Year Balance

0 $10,000.00

26 CHAPTER 1 • Introduction

Step 3 Report the last number in the year column as the number of years required
to double the investment.

Of course, these steps are not yet in a language that a computer can understand, but
you will soon learn how to formulate them in C++. What is important is that the
method described be

• Unambiguous
• Executable
• Terminating

The method is unambiguous because there are precise instructions for what to do at
each step and where to go next. There is no room for guesswork or creativity. The
method is executable because each step can be carried out in practice. Had we asked
to use the actual interest rate that will be charged in years to come, and not a fixed
rate of 5 percent per year, our method would not have been executable, because
there is no way for anyone to know what that interest rate will be. Finally, the com-
putation will eventually come to an end. With every step, the balance goes up by at
least $500, so eventually it must reach $20,000.

A solution technique that is unambiguous, executable, and terminating is called
an algorithm. We have found an algorithm to solve our investment problem, and
thus we can find the solution with the computer. The existence of an algorithm is an
essential prerequisite for programming a task. Sometimes finding an algorithm is
very simple. At other times it requires ingenuity or planning. If you cannot find an
algorithm, you cannot use the computer to solve your problem. You need to satisfy
yourself that an algorithm exists, and that you understand its steps, before you start
programming.

1. Computers execute very basic operations in rapid succession.

2. Different tasks require different programs.

3. Programmers produce computer programs to make the computer solve new
tasks.

4. The central processing unit (CPU) executes one operation at a time.

5. Data values can be brought into the CPU for processing from storage or from
input devices such as the keyboard, the mouse, or a communications link.

6. Storage devices include random-access memory (RAM) and secondary storage.

7. Computer programs are stored as machine instructions in a code that depends
on the processor type.

CHAPTER SUMMARY

Review Exercises 27

8. Higher-level languages are independent of the processor.

9. Programming languages are designed by computer scientists for a variety of
purposes.

10. C++ is a general-purpose language that is in widespread use for systems and
embedded programming.

11. Set aside some time to become familiar with the computer system and the C++
compiler that you will use for your class work.

12. Develop a strategy for keeping backup copies of your work before disaster
strikes.

13. Every C++ program contains #include directives, to access necessary features
such as input and output, and a function called main.

14. In a simple program, main just displays a message on the screen and then returns
with a success indicator.

15. Syntax errors are faulty constructs that do not conform to the rules of the pro-
gramming language.

16. Logic errors are constructs that can be translated into a running program, but
the resulting program does not perform the intended action.

17. The programmer is responsible for inspecting and testing the program to guard
against logic errors.

18. C++ programs are translated by a program called a compiler into machine code.

19. A program called a linker combines machine code with previously translated
machine code for input/output and other services to build your program.

20. An algorithm is a description of steps to solve a problem that is unambiguous,
executable, and terminating.

Exercise R1.1. Explain the difference between using a computer program and pro-
gramming a computer.

Exercise R1.2. Name the various ways in which a computer can be programmed that
were discussed in this chapter.

Exercise R1.3. Which parts of a computer can store program code? Which can store
user data?

Exercise R1.4. Which parts of a computer serve to give information to the user?
Which parts take user input?

REVIEW EXERCISES

28 CHAPTER 1 • Introduction

Exercise R1.5. A toaster is a single-function device, but a computer can be pro-
grammed to carry out different tasks. Is your cell phone a single-function device, or
is it a programmable computer? (Your answer will depend on your cell phone
model.)

Exercise R1.6. Describe the utility of the computer network in your department
computer lab. To what other computers is a lab computer connected?

Exercise R1.7. Assume a computer has the following machine instructions, coded as
numbers:

160 n: Move the contents of register A to memory location n.
161 n: Move the contents of memory location n to register A.
44 n: Add the value n to register A.
45 n: Subtract the value n from register A.
50 n: Add the contents of memory location n to register A.
51 n: Subtract the contents of memory location n from register A.
52 n: Multiply register A with the contents of memory location n.
53 n: Divide register A by the contents of memory location n.
127 n: If the result of the last computation is positive, continue with the

instruction that is stored in memory location n.
128 n: If the result of the last computation is zero, continue with the instruc-

tion that is stored in memory location n.

Assume that each of these instructions and each value of n requires one memory
location. Write a program in machine code to solve the investment-doubling
problem.

Exercise R1.8. Design mnemonic instructions for the machine codes in Exercise R1.7
and write the investment-doubling program in your “assembler code”, using your
mnemonics and suitable symbolic names for variables and labels.

Exercise R1.9. Explain two benefits of higher-level programming languages over
assembler code.

Exercise R1.10. List the programming languages mentioned in this chapter.

Exercise R1.11. Explain at least two advantages and two disadvantages of C++ over
other programming languages.

Exercise R1.12. On your own computer or on your lab computer, find the exact loca-
tion (folder or directory name) of

a. The sample file hello.cpp, which you wrote with the editor
b. The standard header file iostream
c. The header file ccc_time.h, needed for some of the programs in this book

Exercise R1.13. Explain the special role of the \ escape character in C++ character
strings.

Programming Exercises 29

Exercise R1.14. Write three versions of the hello.cpp program that have different
syntax errors. Write a version that has a logic error.

Exercise R1.15. How do you discover syntax errors? How do you discover logic
errors?

Exercise R1.16. Write an algorithm to settle the following question: A bank account
starts out with $10,000. Interest is compounded monthly at 6 percent per year (0.5
percent per month). Every month, $500 is withdrawn to meet college expenses.
After how many years is the account depleted?

Exercise R1.17. Consider the question of Exercise R1.16. Suppose the numbers
($10,000, 6 percent, $500) were user-selectable? Are there values for which the algo-
rithm you developed would not terminate? If so, change the algorithm to make sure
it always terminates.

Exercise R1.18. The value of π can be computed according to the following formula:

Write an algorithm to compute π. Because the formula is an infinite series and an
algorithm must stop after a finite number of steps, you should stop when you have
the result determined to six significant digits.

Exercise R1.19. Suppose you put your younger brother in charge of backing up your
work. Write a set of detailed instructions for carrying out his task. Explain how
often he should do it, and what files he needs to copy from which folder to which
location. Explain how he should verify that the backup was carried out correctly.

Exercise P1.1. Write a program that prints the message, “Hello, my name is Hal!”
Then, on a new line, the program should print the message “What would you like
me to do?” Then it’s the user’s turn to type in an input. You haven’t yet learned how
to do it—just use the following lines of code:

string user_input;
getline(cin, user_input);

Finally, the program should ignore the user input and print the message “I am sorry,
I cannot do that.”
This program uses the string data type. To access this feature, you must place the
line

#include <string>

before the main function.

π
4

1
1
3

1
5

1
7

1
9

= − + − + −�

PROGRAMMING EXERCISES

30 CHAPTER 1 • Introduction

Here is a typical program run. The user input is printed in boldface.
Hello, my name is Hal!
What would you like me to do?
Clean up my room

I am sorry, I cannot do that.

When running the program, remember to hit the Enter key after typing the last
word of the input line.

Exercise P1.2. Write a program that prints out a message “Hello, my name is Hal!”
Then, on a new line, the program should print the message “What is your name?”
As in Exercise P1.1, just use the following lines of code:

string user_name;
getline(cin, user_name);

Finally, the program should print the message “Hello, user name. I am glad to meet
you!” To print the user name, simply use

cout << user_name;

As in Exercise P1.1, you must place the line
#include <string>

before the main function.
Here is a typical program run. The user input is printed in boldface.

Hello, my name is Hal!
What is your name?
Dave

Hello, Dave. I am glad to meet you!

Exercise P1.3. Write a program that computes the sum of the first ten positive inte-
gers, 1 + 2 + … + 10. Hint: Write a program of the form

int main()
{
 cout <<
 return 0;
}

Exercise P1.4. Write a program that computes the product of the first ten positive
integers, 1 × 2 × … × 10, and the sum of the reciprocals . This is
harder than it sounds. First, you need to know that the * symbol, not ×, is used for
multiplication in C++. Try writing the program, and check the results against a
pocket calculator. The program’s results aren’t likely to be correct. Then write the
numbers as floating-point numbers, 1.0, 2.0, . . ., 10.0, and run the program again.
Can you explain the difference in the results? We will explain this phenomenon in
Chapter 2.

Exercise P1.5. Write a program that displays your name inside a box on the terminal
screen, like this:

Do your best to approximate lines with characters such as | - +.

1 1 1 2 1 10+ + +�

Dave

Chapter 2
Numbers and Objects

• To understand the properties and limitations of integer and
floating-point numbers

• To write arithmetic expressions and assignment statements
in C++

• To appreciate the importance of comments and good
code layout

• To be able to define and initialize variables and constants

• To learn how to read user input and display program output

• To use the standard C++ string type to define and manipulate
character strings

• To become familiar with using objects and invoking
member functions

• To write simple graphics programs (optional)

CHAPTER GOALS

This chapter teaches you how to manipulate numbers and character strings in C++.

You will also learn how to use objects that were designed for use with this textbook.

The goal of this chapter is to write simple programs using basic data types.

32 CHAPTER 2 • Numbers and Objects

CHAPTER CONTENTS

Most computer programs process numbers. Typical numeric values include physical
quantities, counters, and prices. In this section, you will learn how numbers are rep-
resented in a C++ program.

Consider the following simple problem. I have 8 pennies, 4 dimes, and 3 quarters
in my purse. What is the total value of the coins?

Here is a C++ program that solves this problem.

ch02/coins1.cpp

2.1 Number Types

1 #include <iostream>
2
3 using namespace std;
4

2.1 Number Types 32
SYNTAX 2.1: Output Statement 34
SYNTAX 2.2: Comment 35
SYNTAX 2.3: Variable Definition 35
QUALITY TIP 2.1: Initialize Variables When You

Define Them 36
QUALITY TIP 2.2: Choose Descriptive

Variable Names 37
ADVANCED TOPIC 2.1: Numeric Ranges

and Precisions 38
RANDOM FACT 2.1: The Pentium Floating-

Point Bug 39

2.2 Input 40
SYNTAX 2.4: Input Statement 42
COMMON ERROR 2.1: Buffered Input 42
COMMON ERROR 2.2: Failed Input 44

2.3 Assignment 45
SYNTAX 2.5: Assignment 48
COMMON ERROR 2.3: Roundoff Errors 49
ADVANCED TOPIC 2.2: Casts 49
SYNTAX 2.6: Cast 50
ADVANCED TOPIC 2.3: Combining Assignment

and Arithmetic 50

2.4 Constants 51
SYNTAX 2.7: Constant Definition 53

QUALITY TIP 2.3: Do Not Use Magic Numbers 53
ADVANCED TOPIC 2.4: Enumerated Types 54

2.5 Arithmetic 54
SYNTAX 2.8: Function Call 57
COMMON ERROR 2.4: Integer Division 58
COMMON ERROR 2.5: Unbalanced Parentheses 59
COMMON ERROR 2.6: Forgetting Header Files 60
ADVANCED TOPIC 2.5: Remainder of

Negative Integers 61
QUALITY TIP 2.4: White Space 61
QUALITY TIP 2.5: Factor Out Common Code 61

2.6 Strings 62
SYNTAX 2.9: Member Function Call 64
ADVANCED TOPIC 2.6: Characters and C Strings 66

2.7 Using Objects 68
SYNTAX 2.10: Object Construction 69
SYNTAX 2.11: Object Variable Definition 70
COMMON ERROR 2.7: Trying to Call a Member

Function Without an Object 73

2.8 Displaying Graphical Shapes
(Optional) 76

RANDOM FACT 2.2: Computer Graphics 80

2.1 • Number Types 33

Program Run

This program manipulates two kinds of numbers. The coin counts (8,
4, 3) are integers. Integers are whole numbers without a fractional
part. (Zero and negative whole numbers are integers.) The numerical
values of the coins (0.01, 0.10, and 0.25) are floating-point numbers.
Floating-point numbers can have decimal points. They are called
“floating-point” because of their internal representation in the com-

puter. The numbers 250, 2.5, 0.25, and 0.025 are all represented in a very similar
way: namely, as a sequence of the significant digits—2500000—and an indication of
the position of the decimal point. When the values are multiplied or divided by 10,
only the position of the decimal point changes; it “floats”. (Actually, internally the
numbers are represented in base 2, but the principle is the same.) You have probably
guessed that int is the C++ name for an integer. The name for the floating-point
numbers used in this book is double; the reason is discussed in Advanced Topic 2.1
on page 38.

Why have two number types? One could just use
double pennies = 8;

There are two reasons for having separate types—one philosophical and one prag-
matic. By indicating that the number of pennies is an integer, we make explicit an
assumption: There can only be a whole number of pennies in the purse. The pro-
gram would have worked just as well with floating-point numbers to count the
coins, but it is generally a good idea to choose programming solutions that docu-
ment one’s intentions. Pragmatically speaking, integers are more efficient than float-
ing-point numbers. They take less storage space and they are processed faster.

In C++, multiplication is denoted by an asterisk *, not a raised dot . or a cross ×.
(There are no keys for these symbols on most keyboards.) For example, d . 10 is
written as d * 10. Do not write commas or spaces in numbers in C++. For example,
10,150.75 must be entered as 10150.75. To write numbers in exponential notation in
C++, use an En instead of “× 10n”. For example, 5.0 × 10-3 becomes 5.0E-3.

5 int main()
6 {
7 int pennies = 8;
8 int dimes = 4;
9 int quarters = 3;
10
11 double total = pennies * 0.01 + dimes * 0.10
12 + quarters * 0.25; // Total value of the coins
13
14 cout << "Total value = " << total << "\n";
15
16 return 0;
17 }

Total value = 1.23

The most common
number types in C++ are
double (floating-point
number) and int (integer).

34 CHAPTER 2 • Numbers and Objects

The output statement
cout << "Total value = " << total << "\n";

shows a useful feature: stream output. You can display as many items as you like (in
this case, the string "Total value = ") followed by the value of total and a string
containing a newline character, (to move the cursor to the next line). Just separate
the items that you want to print by <<. (See Syntax 2.1.) Alternatively, you could
write three separate output statements

cout << "Total value = ";
cout << total;
cout << "\n";

This has exactly the same effect as displaying the three items in one statement.
Note the comment
// Total value of the coins

next to the definition of total. This comment is purely for the benefit of the human
reader, to explain in more detail the meaning of total. Anything between // and the
end of the line is completely ignored by the compiler. Comments that span multiple
lines can be enclosed in /* and */ symbols.

The most important feature of our sample program is the introduction of sym-
bolic names. We could have just programmed

int main()
{
 cout << "Total value = "
 << 8 * 0.01 + 4 * 0.10 + 3 * 0.25 << "\n";

 return 0;
}

This program computes the same answer. Compare it with the first program,
though. Which one is easier to read? Which one is easier to update if we need to
change the coin counts, such as by adding some nickels? By giving the symbolic
names, pennies, dimes, and quarters, to the counts, we made the program more
readable and maintainable. This is an important consideration. You introduce sym-
bolic names to explain what a program does, just as you use variable names such as
p, d, and q in algebra.

SYNTAX 2.1 Output Statement

cout << expression1 << expression2 << ... << expressionn;

Example:

cout << pennies;
cout << "Total value = " << total << "\n";

Purpose:

Print the values of one or more expressions.

2.1 • Number Types 35

In C++, each variable has a type. By defining int pennies, you proclaim that pen-
nies can only hold integer values. If you try to put a floating-point value into the
pennies variable, the fractional part will be lost.

You define a variable by first giving its type and then its name, such as int pen-
nies. You may add an initialization value, such as = 8. Then you end the definition
with a semicolon. See Syntax 2.3. Although the initialization is optional, it is a good
idea to always initialize variables with a specific value. See Quality Tip 2.1 on page
36 for the reason.

Variable names in algebra are usually just one letter long, such as p
or A, maybe with a subscript such as p1. In C++, it is common to
choose longer and more descriptive names such as price or area. You
cannot type subscripts; just tag an index behind the name: price1.
You can choose any variable names you like, provided you follow a
few simple rules. Names must start with a letter or the underscore (_)
character, and the remaining characters must be letters, numbers, or

underscores. You cannot use other symbols such as $ or %. Spaces are not permitted
inside names either. Furthermore, you cannot use reserved words such as double or
return as names; these words are reserved exclusively for their special C++ mean-
ings. Variable names are also case-sensitive, that is, Area and area are different

A variable is a storage
location with a name.
In C++, you also specify
the type of the values
that can be stored.

SYNTAX 2.2 Comment

/* comment text */
// comment text

Example:

/* Total value of the coins */
// Total value of the coins

Purpose:

Add a comment to help a human reader understand the program.

SYNTAX 2.3 Variable Definition

type_name variable_name;
type_name variable_name = initial_value;

Example:

double total;
int pennies = 8;

Purpose:

Define a new variable of a particular type, and optionally supply an initial value.

36 CHAPTER 2 • Numbers and Objects

names. It would not be a good idea to mix the two in the same program, because it
would make that program very confusing to read. To avoid any possible confusion,
we will never use any uppercase letters in variable names in this book. You will find
that many programmers use names like listPrice; however we will always choose
list_price instead. (Because spaces are not allowed inside names, list price is not
permissible.)

Initialize Variables When You Define Them

You should always initialize a variable at the same time you define it. Let us see what hap-
pens if you define a variable but leave it uninitialized.

If you just define

int nickels;

the variable nickels comes into existence and memory space is found for it. However, it con-
tains some random values since you did not initialize the variable. If you mean to initialize
the variable to zero, you must do so explicitly:

int nickels = 0;

Why does an uninitialized variable contain a random value? It would seem less trouble to
just put a 0 into a variable than to come up with a random value. Anyway, where does the
random value come from? Does the computer roll electronic dice?

When you define a variable, sufficient space is set aside in memory to hold values of the
type you specify. For example, when you declare int nickels, a block of memory big
enough to hold integers is reserved. The compiler uses that memory whenever you inquire
about the value of nickels or when you change it.

When you initialize the variable, int nickels = 0, then a zero is placed into the newly
acquired memory location.

If you don’t specify the initialization, the memory space is found and left as is. There is
already some value in the memory. After all, you don’t get freshly minted transistors—just
an area of memory that is currently available and that you give up again when main ends. Its
uninitialized values are just flotsam left over from prior computations. Thus, it takes no
effort at all to give you a random initial value, whereas it does take a tiny effort to initialize a
new memory location with zero or another value.

If you don’t specify an initialization, the compiler assumes that you are not quite ready to
come up with the value that you want to store in the variable. Maybe the value needs to be
computed from other variables, like the total in our example, and you haven’t defined all
components yet. It is quite reasonable not to waste time initializing a variable if that initial
value is never used and will be overwritten with the truly intended value momentarily.

QUAL ITY T IP 2.1

nickels =

nickels = 0

2.1 • Number Types 37

However, suppose you have the following sequence of events:

int nickels; // I’ll get around to setting it presently
int dimes = 3;
double total = nickels * 0.05 + dimes * 0.10; // Error
nickels = 2 * dimes;
// Now I remember—I have twice as many nickels as dimes

This is a problem. The value of nickels has been used before it has been set. The value for
total is computed as follows: Take a random number and multiply it by 0.05, then add the
value of the dimes. Of course, what you get is a totally unpredictable value, which is of no
use at all.

There is an additional danger here. Because the value of nickels is random, it may be dif-
ferent every time you run the program. Of course, you would get tipped off pretty soon if
you ran the program twice and you got two different answers. However, suppose you ran the
program ten times at home or in the lab, and it always came up with one value that looked
reasonable. Then you turned the program in to be graded, and it came up with a different and
unreasonable answer when the grader ran it. How can this happen? Aren’t computer pro-
grams supposed to be predictable and deterministic? They are—as long as you initialize all
your variables. On the grader’s computer, the uninitialized value for nickels might have been
15,054, when on your machine on that particular day it happened to have been 6.

What is the remedy? Reorder the definitions so that all of the variables are initialized. This
is usually simple to do:

int dimes = 3;
int nickels = 2 * dimes; // I have twice as many nickels as dimes
double total = nickels * 0.05 + dimes * 0.10; // OK

Choose Descriptive Variable Names

We could have saved ourselves a lot of typing by using shorter variable names, as in

int main()
{
 int p = 8;
 int d = 4;
 int q = 3;

 double t = p * 0.01 + d * 0.10 + q * 0.25; // Total value of the coins

 cout << "Total value = " << t << "\n";

 return 0;
}

Compare this program with the previous one, though. Which one is easier to read? There is
no comparison. Just reading pennies is a lot less trouble than reading p and then figuring out
it must mean “pennies”.

In practical programming, this is particularly important when programs are written by
more than one person. It may be obvious to you that p must stand for pennies and not per-
centage (or maybe pressure), but is it obvious to the person who needs to update your code

QUAL ITY T IP 2.2

38 CHAPTER 2 • Numbers and Objects

years later, long after you were promoted (or laid off)? For that matter, will you remember
yourself what p means when you look at the code six months from now?

Of course, you could use comments:

int main()
{
 int p = 8; // Pennies
 int d = 4; // Dimes
 int q = 3; // Quarters

 double t = p * 0.01 + d * 0.10 + q * 0.25; // Total value of the coins

 cout << "Total value = " << t << "\n";

 return 0;
}

That makes the definitions pretty clear, but the computation p * 0.01 + d * 0.10 + q *
0.25 is still cryptic.

If you have the choice between comments and self-commenting code, choose the latter. It
is better to have clear code with no comments than cryptic code with comments. There is a
good reason for this. In actual practice, code is not written once and handed to a grader, to be
subsequently forgotten. Programs are modified and enhanced all the time. If the code
explains itself, you just have to update it to new code that explains itself. If the code requires
explanation, you have to update both the code and the explanation. If you forget to update
the explanation, you end up with a comment that is worse than useless because it no longer
reflects what is actually going on. The next person reading it must waste time trying to
understand whether the code is wrong or the comment.

Numeric Ranges and Precisions

Unfortunately, int and double values do suffer from one problem. They cannot represent
arbitrary integer or floating-point numbers. On some compilers for personal computers, the
int type can represent numbers in the range from –2,147,483,648 to 2,147,483,647, or about
2 billion. (These strange-looking limits are the result of the use of binary numbers in com-
puters.) You can use floating-point numbers to represent larger quantities. You should keep
in mind that the double type has a precision of about fifteen decimal digits. For example, the
number 299,999,999,999,999.95 cannot be represented exactly—it is rounded to
299,999,999,999,999.9375. For most programs, the precision of the double type is sufficient,
but read Common Error 2.3 on page 49 for information about a related issue: roundoff errors.

C++ has another floating-point type, called float, which has a much more limited preci-
sion—only about seven decimal digits. You should not normally use the float type in your
programs. The limited precision can be a problem in some programs, and all mathematical
functions return results of type double. If you save those results in a variable of type float,
the compiler will warn about possible information loss (see Advanced Topic 2.2 on page 49).

In addition to the int type, C++ has integer types short, long and long long. For each
integer type, there is an unsigned equivalent. For example, the short type typically has a
range from –32768 to 32767, whereas unsigned short has a range from 0 to 65535. The

ADVANCED TOPIC 2.1

2.1 • Number Types 39

ranges for integer types are not standardized, and they differ among compilers. Table 1 con-
tains typical values.

The Pentium Floating-Point Bug

In 1994, Intel Corporation released what was then its most powerful processor, the Pentium.
Unlike previous generations of its processors, it had a very fast floating-point unit. Intel’s
goal was to compete aggressively with the makers of higher-end processors for engineering
workstations. The Pentium was an immediate huge success.

In the summer of 1994, Dr. Thomas Nicely of Lynchburg College in Virginia ran an
extensive set of computations to analyze the sums of reciprocals of certain sequences of
prime numbers. The results were not always what his theory predicted, even after he took
the Pentium in Intel’s lineup. This should not have happened. The optimal roundoff behav-
ior of floating-point calculations has been standardized by the Institute for Electrical and
Electronic Engineers (IEEE) and Intel claimed to adhere to the IEEE standard in both the
486 and the Pentium processors. Upon further checking, Dr. Nicely discovered that indeed
there was a very small set of numbers for which the product of two numbers was computed
differently on the two processors. For example,

is mathematically equal to 0, and it did compute as 0 on a 486 processor. On his Pentium
processor the result was 256.

As it turned out, Intel had independently discovered the bug in its testing and had started
to produce chips that fixed it. The bug was caused by an error in a table that was used to
speed up the floating-point multiplication algorithm of the processor. Intel determined that

Table 1 Number Types

Type Typical Range Typical Size

int –2,147,483,648 . . . 2,147,483,647 (about 2 billion) 4 bytes

unsigned 0 . . . 4,294,967,295 4 bytes

short –32,768 . . . 32,767 2 bytes

unsigned
short 0 . . . 65,535 2 bytes

long long –9,223,372,036,854,775,808 . . . 9,223,372,036,854,775,807 8 bytes

double The double-precision floating-point type, with a range of
about ±10308 and about 15 significant decimal digits

8 bytes

float The single-precision floating-point type, with a range of
about ±1038 and about 7 significant decimal digits

4 bytes

RANDOM FACT 2.1

4 195 835 4 195 835 3 145 727 3 145 727, , , , , , , ,− () ×()

40 CHAPTER 2 • Numbers and Objects

the problem was exceedingly rare. They claimed that under normal use, a typical consumer
would only notice the problem once every 27,000 years. Unfortunately for Intel, Dr. Nicely
had not been a normal user.

Now Intel had a real problem on its hands. It figured that the cost of replacing all Pen-
tium processors that it had already sold would cost a great deal of money. Intel already had
more orders for the chip than it could produce, and it would be particularly galling to have
to give out the scarce chips as free replacements instead of selling them. Intel’s management
decided to punt on the issue and initially offered to replace the processors only for those
customers who could prove that their work required absolute precision in mathematical cal-
culations. Naturally, that did not go over well with the hundreds of thousands of customers
who had paid retail prices of $700 and more for a Pentium chip and did not want to live with
the nagging feeling that perhaps, one day, their income tax program would produce a faulty
return.

Ultimately, Intel caved in to public demand and replaced all defective chips, at a cost of
about 475 million dollars.

What do you think? Intel claims that the probability of the bug occurring in any calcula-
tion is extremely small—smaller than many chances we take every day, such as driving to
work in an automobile. Indeed, many users had used their Pentium computer for many
months without reporting any ill effects, and the computations that Professor Nicely was
doing are hardly examples of typical user needs. As a result of its public relations blunder,
Intel ended up paying a large amount of money. Undoubtedly, some of that money was
added to chip prices and thus actually paid by Intel’s customers. Also, a large number of pro-
cessors, whose manufacture consumed energy and caused some environmental impact, were
destroyed without benefiting anyone. Could Intel have been justified in wanting to replace
only the processors of those users who could reasonably be expected to suffer an impact
from the problem?

Suppose that, instead of stonewalling, Intel had offered you the choice of a free replace-
ment processor or a $200 rebate. What would you have done? Would you have replaced
your faulty chip, or would you have taken your chances and pocketed the money?

Most programs ask for input and produce output that depends on
the values supplied by the program user. For example, the program
of the preceding section can be improved by allowing the user to
supply the coin quantities. Here is the improved program.

ch02/coins2.cpp

2.2 Input

Use the >> operator to
read a value from an
input stream and place
it in a variable.

1 #include <iostream>
2
3 using namespace std;
4
5 int main()
6 {
7 cout << "How many pennies do you have? ";
8 int pennies;

2.2 • Input 41

Program Run

When this program runs, it will ask, or prompt, you:
How many pennies do you have?

The cursor will stay on the same line as the prompt, and you should enter a number,
followed by the Enter key. Then there will be three more prompts, and finally the
answer is printed and the program terminates.

Reading a number into the variable pennies is achieved by the statement
cin >> pennies;

When this statement is executed, the program waits for the user to type in a number
and press the Enter key. The number is then placed into the variable, and the pro-
gram executes the next statement.

In this case, we did not initialize the variables that count the coins because the
input statements move values into these variables. We moved the variable defini-
tions as close as possible to the input statements to indicate where the values are set.

You can read floating-point values as well:
double balance;
cin >> balance;

When you specify that an integer is to be read from the keyboard, zero and negative
numbers are allowed as inputs but floating-point numbers are not. If the user

9 cin >> pennies;
10
11 cout << "How many nickels do you have? ";
12 int nickels;
13 cin >> nickels;
14
15 cout << "How many dimes do you have? ";
16 int dimes;
17 cin >> dimes;
18
19 cout << "How many quarters do you have? ";
20 int quarters;
21 cin >> quarters;
22
23 double total = pennies * 0.01 + nickels * 0.05
24 + dimes * 0.10 + quarters * 0.25;
25 // Total value of the coins
26
27 cout << "Total value = " << total << "\n";
28
29 return 0;
30 }

How many pennies do you have? 3
How many nickels do you have? 2
How many dimes do you have? 1
How many quarters do you have? 4
Total value = 1.23

42 CHAPTER 2 • Numbers and Objects

nevertheless provides a floating-point input, only the integer part is read. See Com-
mon Error 2.2 on page 44.

It is possible to read more than one value at a time. For example, the input
statement

cin >> pennies >> nickels >> dimes >> quarters;

reads four values from the keyboard (see Syntax 2.4). The values can be all on one
line, such as

8 0 4 3

or on separate lines, such as
8
0
4
3

All that matters is that the numbers are separated by white space: that is, blank spaces,
tabs, or newlines. You enter a blank space by hitting the space bar, a tab by hitting the
tab key (often marked with an arrow and vertical bar →|), and a newline by hitting
the Enter key. These key strokes are used by the input reader to separate input.

Buffered Input

Keyboard input is buffered. All input is placed into a buffer until the user hits the Enter key.
At that time, input is read from the buffer. When the buffer is empty, the user can provide
more input. This buffering can have surprising effects. For example, suppose the coin calcu-
lation program prompts you

How many pennies do you have?

As a response, you enter

8 0 4 3

Nothing happens until you hit the Enter key (see Steps 1 and 2 in Figure 1).

SYNTAX 2.4 Input Statement

cin >> variable1 >> variable2 >> ... >> variablen;

Example:

cin >> pennies;
cin >> first >> middle >> last;

Purpose:

Read the value for one or more variables from the input.

COMMON ERROR 2.1

2.2 • Input 43

Suppose you hit it. The line is now sent for processing by cin. The first input command
reads the 8 and removes it from the input stream buffer (see Steps 3 and 4 in Figure 1). The
other three numbers are left in the buffer for subsequent input operations.

Then the prompt

How many nickels do you have?

is displayed, and the program immediately reads the 0 from the buffer. You don’t get a
chance to type another number. Then the other two prompts are displayed, and the other
two numbers are processed.

Figure 1 Separating Input

After cin >> pennies;

8 SpacebarUser input:

pennies =

nickels =

cin =

buffer = empty

2

1

0 SpacebarUser input:
3

4 Spacebar 3 Enter

Program waits
for user input

Program continues
to wait for Enter key

Input line is
placed into buffer

Buffer is no longer
empty and input

can proceed

pennies =

nickels =

cin =

buffer =
8 0 4 3\n

4 Buffer is still not
empty; next input is
taken from buffer
without waiting

pennies =

nickels =

cin =

buffer =
0 4 3\n

8

After cin >> nickels;

pennies =

nickels =

cin =

buffer = 4 3\n

5

8

0

44 CHAPTER 2 • Numbers and Objects

Of course, if you know what input the program wants, this type-ahead feature can be
handy, but it is surprising to most users who are used to more orderly input processing.

Failed Input

Frankly, input from cin is not all that well suited for interaction with human users. If a user
provides input in the wrong format, your programs can behave in a confusing way. Suppose,
for example, that a user types 10.75 as the first input in the coins2 program. The 10 will be
read and placed into the pennies variable. The .75 remains in the buffer. It will be considered
in the next input statement. (See Steps 1 and 2 in Figure 2.) This is not intuitive and probably
not what you expected.

The next input statement runs into a bigger problem. The buffer contains .75 which is not
suitable for an integer. Therefore, no input is carried out (that is, the old value of the nickels
variable is unchanged, see Step 3 in Figure 2.). What’s more, the cin input stream sets itself to
a “failed” state. This means, cin has lost confidence in the data it receives, so all subsequent

Figure 2 Processing Input

COMMON ERROR 2.2

After cin >> pennies;

1 0 . 7 5 EnterUser input:

pennies =

nickels =

dimes =

cin =

buffer = 10.75\n
state = good

pennies = 10

nickels =

dimes =

cin =

buffer = .75\n
state = good

1

2

After cin >> nickels;

pennies = 10

nickels =

dimes =

cin =

buffer = .75\n
state = fail

3

Unchanged
because the next input is

not an integer

2.3 • Assignment 45

input statements will be ignored. (See Step 4 in Figure 2.) Unfortunately, there is no warning
beep or error message that alerts the user to this problem. You will learn in Chapter 3 how to
recognize and solve input problems. Of course, that is a necessary skill for building pro-
grams that can survive untrained or careless users. At this point we must just ask you to type
in the right kind of responses to the input prompts.

The contents of a variable can vary over time. To change the value of
a variable, you use an assignment statement (see Syntax 2.5 on page
48). The left hand of an assignment statement consists of a variable.
The right hand is an expression that has a value. That value is stored
in the variable, overwriting its previous contents.

For example, consider this statement:
total = pennies * 0.01;

The value of the expression pennies * 0.01 is stored in total, replacing the previous
value of total.

The following program demonstrates the use of assignment statements. Let us
compute the value of the coins by keeping a running total. First, ask for the number
of pennies and set the total to the value of the pennies. Then ask for the number of
nickels and add the value of the nickels to the total. Then do the same for the dimes
and quarters. Here is the program.

ch02/coins3.cpp

Figure 2 Processing Input, continued

After cin >> dimes;

pennies = 10

nickels =

dimes =

cin =

buffer = .75\n
state = fail

4

Unchanged
because cin is in

the failed state

2.3 Assignment

An assignment statement
stores a new value in a
variable, replacing the
previously stored value.

1 #include <iostream>
2
3 using namespace std;
4
5 int main()
6 {

46 CHAPTER 2 • Numbers and Objects

In this program, we only need one count variable, because we process the value
right away, accumulating it into the total.

The first processing statement, double total = count * 0.01, is straightforward.
The second statement is much more interesting:

total = count * 0.05 + total;

It means, “Compute the value of the nickel contribution (count * 0.05), add to it
the value of the running total, and place the result again into the variable total” (see
Figure 3).

Figure 3 Assignment

7 cout << "How many pennies do you have? ";
8 int count;
9 cin >> count;
10 double total = count * 0.01;
11
12 cout << "How many nickels do you have? ";
13 cin >> count;
14 total = count * 0.05 + total;
15
16 cout << "How many dimes do you have? ";
17 cin >> count;
18 total = count * 0.10 + total;
19
20 cout << "How many quarters do you have? ";
21 cin >> count;
22 total = count * 0.25 + total;
23
24 cout << "Total value = " << total << "\n";
25
26 return 0;
27 }

total =

total = count * 0.05 + total

count = 4

0.03

total = 0.23

0.23

Afterward:

2.3 • Assignment 47

When you make an assignment of an expression into a variable, the types of the
variable and the expression need to match. For example, it is an error to assign

total = "a lot";

because total is a floating-point variable and "a lot" is a string. It is, however, legal,
to store an integer in a floating-point variable.

total = count;

If you assign a floating-point expression to an integer, the expression will be trun-
cated to an integer. Unfortunately, that will not necessarily be the closest integer;
Common Error 2.3 on page 49 contains a dramatic example. Therefore it is never a
good idea to make an assignment from floating-point to integer. In fact, many com-
pilers emit a warning if you do.

There is a subtle difference between the statements
double total = count * 0.01;

and
total = count * 0.05 + total;

The first statement is the definition of total. It is a command to create a new vari-
able of type double, to give it the name total, and to initialize it with count * 0.01.
The second statement is an assignment statement: an instruction to replace the con-
tents of the existing variable total with another value.

It is not possible to have multiple definitions of the same variable. The sequence
of statements

double total = count * 0.01;
...
double total = count * 0.05 + total; // Error

is illegal. The compiler will complain about an attempt to redefine total, because it
thinks you want to define a new variable in the second statement. On the other
hand, it is perfectly legal, and indeed very common, to make multiple assignments
to the same variable:

total = count * 0.05 + total;
...
total = count * 0.10 + total;

The = sign doesn’t mean that the left-hand side is equal to the right-hand side but
that the right-hand side value is copied into the left-hand side variable. You should
not confuse this assignment operation with the = used in algebra to denote equality.
The assignment operator is an instruction to do something, namely place a value
into a variable. The mathematical equality states the fact that two values are equal.
For example, in C++, it is perfectly legal to write

month = month + 1;

It means to look up the value stored in the variable month, to add 1 to it, and to stuff
the sum back into month. (See Figure 4.) The net effect of executing this statement is
to increment month by 1. Of course, in mathematics it would make no sense to write
that month = month + 1; no value can equal itself plus 1.

48 CHAPTER 2 • Numbers and Objects

The concepts of assignment and equality have no relationship with each other,
and it is a bit unfortunate that the C++ language uses = to denote assignment. Other
programming languages use a symbol such as <- or :=, which avoids the confusion.

Consider once more the statement month = month + 1. This state-
ment increments the month counter. For example, if month was 3
before execution of the statement, it is set to 4 afterwards. This incre-
ment operation is so common when writing programs that there is a
special shorthand for it, namely

month++;

This statement has the exact same effect, namely to add 1 to month, but it is easier to
type. As you might have guessed, there is also a decrement operator --. The
statement

month--;

subtracts 1 from month.
The ++ increment operator gave the C++ programming language its name. C++ is

the incremental improvement of the C language.

Figure 4 Incrementing a Variable

month =

month + 1

The ++ operator adds 1 to
a variable; the --
operator subtracts 1.

SYNTAX 2.5 Assignment

variable = expression;

Example:

total = pennies * 0.01;

Purpose:

Store the value of an expression in a variable.

2.3 • Assignment 49

Roundoff Errors

Roundoff errors are a fact of life when calculating with floating-point numbers. You proba-
bly have encountered that phenomenon yourself with manual calculations. If you calculate

 to two decimal places, you get 0.33. Multiplying again by 3, you obtain 0.99, not 1.00.
In the processor hardware, numbers are represented in the binary number system, not in

decimal. You still get roundoff errors when binary digits are lost. They just may crop up at
different places than you might expect. Here is an example.

#include <iostream>

using namespace std;

int main()
{
 double x = 4.35;
 int n = x * 100;
 cout << n << "\n"; // Prints 434!
 return 0;
}

Of course, one hundred times 4.35 is 435, but the program prints 434.
Most computers represent numbers in the binary system. In the binary system, there is no

exact representation for 4.35, just as there is no exact representation for in the decimal
system. The representation used by the computer is just a little less than 4.35, so 100 times
that value is just a little less than 435. When a floating-point value is converted to an integer,
the entire fractional part, which is almost 1, is thrown away, and the integer 434 is stored in n.

To avoid this problem, you should always add 0.5 to a positive floating-point value before
converting it to an integer:

double y = x * 100;
int n = y + 0.5;

Adding 0.5 works, because it turns all values above 434.5 into values above 435.
Of course, the compiler will still issue a warning that assigning a floating-point value to an

integer variable is unsafe. See Advanced Topic 2.2 on how to avoid this warning.

Casts

Occasionally, you need to store a value into a variable of a different type. Whenever there is
the risk of information loss, the compiler issues a warning. For example, if you store a double
value into an int variable, you can lose information in two ways:
• The fractional part is lost.
• The magnitude may be too large.
For example,

int p = 1.0E100; // NO

is not likely to work, because 10100 is larger than the largest representable integer.

COMMON ERROR 2.3

1 3

1 3

ADVANCED TOPIC 2.2

50 CHAPTER 2 • Numbers and Objects

Nevertheless, sometimes you do want to convert a floating-point value into an integer
value. If you are prepared to lose the fractional part and you know that this particular float-
ing-point number is not larger than the largest possible integer, then you can turn off the
warning by using a cast: a conversion from one type (such as double) to another type (such as
int) that is not safe in general, but that you know to be safe in a particular circumstance. You
express this in C++ as follows:

int n = static_cast<int>(y + 0.5);

Before the static_cast notation (see Syntax 2.6) was invented, C++ programmers used a dif-
ferent notation, shown below:

int n = (int)(y + 0.5);

Combining Assignment and Arithmetic

In C++, you can combine arithmetic and assignment. For example, the instruction

total += count * 0.05;

is a shortcut for

total = total + count * 0.05;

Similarly,

total -= count * 0.05;

means the same as

total = total - count * 0.05;

and

total *= 2;

is another way of writing

total = total * 2;

Many programmers find this a convenient shortcut. If you like it, go ahead and use it in your
own code. For simplicity, we won’t use it in this book, though.

SYNTAX 2.6 Cast

static_cast<type_name>(expression)

Example:

static_cast<int>(x + 0.5)

Purpose:

Change an expression to a different type.

ADVANCED TOPIC 2.3

2.4 • Constants 51

Using descriptive variable names makes a program easier to read. The
same is true for constant values. Using a descriptive name is better
than using the value itself.

Consider the following program:
int main()
{
 double bottles;
 cout << "How many bottles do you have? ";
 cin >> bottles;

 double cans;
 cout << "How many cans do you have? ";
 cin >> cans;

double total = bottles * 2 + cans * 0.355;

 cout << "The total volume is " << total << "\n";

 return 0;
}

What is going on here? What is the significance of the 0.355?
This formula computes the amount of soda in a refrigerator that is filled with

two-liter bottles and 12-oz. cans. (See Table 2 for conversion factors between metric
and nonmetric units.) Let us make the computation clearer by using constants (see
Syntax 2.7 on page 53).

2.4 Constants

A constant is a
named value that
cannot be changed.

Table 2 Conversion Between
Metric and Nonmetric Units

English Metric

1 (fluid) ounce (oz.) 29.586 milliliter (ml)

1 gallon 3.785 liter (l)

1 ounce (oz.) 28.3495 grams (g)

1 pound (lb.) 453.6 grams

1 inch 2.54 centimeter (cm)

1 foot 30.5 centimeter

1 mile 1.609 kilometer (km)

52 CHAPTER 2 • Numbers and Objects

ch02/volume.cpp

Program Run

In C++, you use the const keyword to declare a constant:
const double CAN_VOLUME = 0.355;

Now CAN_VOLUME is a named entity. Unlike total, it is constant. After initialization
with 0.355, it never changes.

In fact, you can do even better and explain where the value for the can volume
came from.

const double LITER_PER_OZ = 0.029586;
const double CAN_VOLUME = 12 * LITER_PER_OZ; // 12-oz. cans

Sure, it is more trouble to type the constant definitions and use the constant names
in the formulas. But it makes the code much more readable. It also makes the code
much easier to change. Suppose the program does computations involving volumes
in several different places. And suppose you need to switch from two-liter bottles
to half-gallon bottles. If you simply multiply by 2 to get bottle volumes, you must
now replace every 2 by 1.893 … well, not every number 2. There may have been
other uses of 2 in the program that had nothing to do with bottles. You have to look
at every number 2 and see if you need to change it. If, on the other hand, the con-
stant BOTTLE_VOLUME is conscientiously used throughout the program, one need only

1 #include <iostream>
2
3 using namespace std;
4
5 int main()
6 {
7 double bottles;
8
9 cout << "How many bottles do you have? ";
10 cin >> bottles;
11
12 double cans;
13 cout << "How many cans do you have? ";
14 cin >> cans;
15
16 const double BOTTLE_VOLUME = 2.0;
17 const double CAN_VOLUME = 0.355;
18 double total = bottles * BOTTLE_VOLUME
19 + cans * CAN_VOLUME;
20
21 cout << "The total volume is " << total << " liter.\n";
22
23 return 0;
24 }

How many bottles do you have? 2
How many cans do you have? 6
The total volume is 6.13 liter.

2.4 • Constants 53

update it in one location. Named constants are very important for program mainte-
nance. See Quality Tip 2.3 on page 53 for more information.

Constants are commonly written using capital letters to distinguish them visually
from variables.

Do Not Use Magic Numbers

A magic number is a numeric constant that appears in your code without explanation. For
example,

if (col >= 66) ...

Why 66? Maybe this program prints in a 12-point font on 8.5 × 11-inch paper with a 1-inch
margin on the left- and right-hand sides? Indeed, then you can fit 65 characters on a line.
Once you reach column 66, you are beyond the right margin and must do something special.
However, these are awfully fragile assumptions. To make the program work for a different
paper size, one must locate all values of 65 (and 66 and 64) and replace them, taking care not
to touch those 65s (and 66s and 64s) that have nothing to do with paper size. In a program
that is more than a few pages long, that is incredibly tedious and error-prone.

The remedy is to use a named constant instead:

const int RIGHT_MARGIN = 65;

if (col > RIGHT_MARGIN) ...

Even the most reasonable cosmic constant is going to change one day. You think there are
365 days per year? Your customers on Mars are going to be pretty unhappy about your silly
prejudice. Make a constant

const int DAYS_PER_YEAR = 365;

By the way, the device

const int THREE_HUNDRED_AND_SIXTY_FIVE = 365;

is counterproductive and frowned upon.
You should never use magic numbers in your code. As a rule of thumb, when you find

yourself writing a number other than 0 or 1, consider using a named constant instead.

SYNTAX 2.7 Constant Definition

const type_name constant_name = initial_value;

Example:

const double LITER_PER_OZ = 0.029586;

Purpose:

Define a new constant of a particular type and supply its value.

QUAL ITY T IP 2.3

54 CHAPTER 2 • Numbers and Objects

Enumerated Types

Sometimes a variable should only take values from a limited set of possibilities. For example,
a variable describing a weekday (Monday, Tuesday, …, Sunday) can have one of seven states.

In C++, we can define such enumerated types:

enum Weekday { MONDAY, TUESDAY, WEDNESDAY, THURSDAY,
 FRIDAY, SATURDAY, SUNDAY };

This makes Weekday a type, similar to int. As with any type, we can declare variables of that
type.

Weekday homework_due_day = WEDNESDAY;
// Homework due every Wednesday

Of course, you could have declared homework_due_day as an integer. Then you would need to
encode the weekdays into numbers.

int homework_due_day = 2;

That violates our rule against “magic numbers”. You could go on and define constants

const int MONDAY = 0;
const int TUESDAY = 1;
const int WEDNESDAY = 2;
const int THURSDAY = 3;
const int FRIDAY = 4;
const int SATURDAY = 5;
const int SUNDAY = 6;

However, the Weekday enumerated type is clearer, and it is a convenience that you need not
come up with the integer values yourself. It also allows the compiler to catch programming
errors. For example, the following is a compile-time error:

Weekday homework_due_day = 10; // Compile-time error

In contrast, the following statement will compile without complaint and create a logical
problem when the program runs:

int homework_due_day = 10; // Logic error

It is a good idea to use an enumerated type whenever a variable can have a finite set of values.

You already saw how to add and multiply values:
double total = bottles * BOTTLE_VOLUME + cans * CAN_VOLUME;

All four basic arithmetic operations—addition, subtraction, multipli-
cation, and division—are supported. You must write a * b to denote
multiplication, not ab or a . b. Division is indicated with a /, not a
fraction bar.

ADVANCED TOPIC 2.4

2.5 Ari thmet ic

In C++, you use
* for multiplication and
/ for division.

2.5 • Arithmetic 55

For example,

becomes
(a + b) / 2

Parentheses are used just as in algebra: to indicate in which order the subexpressions
should be computed. For example, in the expression (a + b) / 2, the sum a + b is
computed first, and then the sum is divided by 2. In contrast, in the expression

a + b / 2

only b is divided by 2, and then the sum of a and b / 2 is formed. Just as in regular
algebraic notation, multiplication and division take precedence over addition and
subtraction. For example, in the expression a + b / 2, the / is carried out first, even
though the + operation occurs further to the left.

Division works as you would expect, as long as at least one of the
numbers involved is a floating-point number. That is,

7.0 / 4.0
7 / 4.0
7.0 / 4

all yield 1.75. However, if both numbers are integers, then the result
of the division is always an integer, with the remainder discarded.

That is,
7 / 4

evaluates to 1 because 7 divided by 4 is 1 with a remainder of 3 (which is discarded).
This can be a source of subtle programming errors; see Common Error 2.4 on page 58.

If you are just interested in the remainder, use the % operator:
7 % 4

is 3, the remainder of the integer division of 7 by 4. The % operator must be applied
to integers only, not to floating-point values. For example, 7.0 % 4 is an error. The %
symbol has no analog in algebra. It was chosen because it looks similar to /, and the
remainder operation is related to division.

Here is a typical use for the integer / and % operations. Suppose we want to know
the value of the coins in a purse in dollar and cents. We can compute the value as an
integer, denominated in cents, and then compute the whole dollar amount and the
remaining change:

ch02/coins4.cpp

a b+
2

If both arguments of / are
integers, the remainder is
discarded. The % operator
computes the remainder
of an integer division.

1 #include <iostream>
2
3 using namespace std;
4
5 int main()
6 {

56 CHAPTER 2 • Numbers and Objects

Program Run

To take the square root of a number, you use the sqrt function (see
Syntax 2.8). For example, is written as sqrt(x). To compute xn,
you write pow(x, n). However, to compute x2, it is significantly more
efficient simply to write x * x. To use sqrt and pow, you must place
the line #include <cmath> at the top of your program file. The header
file cmath is a standard C++ header that is available with all C++ sys-
tems, just like iostream.

As you can see, the effect of the /, sqrt, and pow operations is to flatten out math-
ematical terms. In algebra, you use fractions, exponents, and roots to arrange

7 cout << "How many pennies do you have? ";
8 int pennies;
9 cin >> pennies;
10
11 cout << "How many nickels do you have? ";
12 int nickels;
13 cin >> nickels;
14
15 cout << "How many dimes do you have? ";
16 int dimes;
17 cin >> dimes;
18
19 cout << "How many quarters do you have? ";
20 int quarters;
21 cin >> quarters;
22
23 const int PENNIES_PER_NICKEL = 5;
24 const int PENNIES_PER_DIME = 10;
25 const int PENNIES_PER_QUARTER = 25;
26 const int PENNIES_PER_DOLLAR = 100;
27
28 int value = pennies + PENNIES_PER_NICKEL * nickels
29 + PENNIES_PER_DIME * dimes + PENNIES_PER_QUARTER * quarters;
30 int dollar = value / PENNIES_PER_DOLLAR;
31 int cents = value % PENNIES_PER_DOLLAR;
32
33 cout << "Total value = " << dollar << " dollars and "
34 << cents << " cents.\n";
35
36 return 0;
37 }

How many pennies do you have? 3
How many nickels do you have? 2
How many dimes do you have? 1
How many quarters do you have? 4
Total value = 1 dollars and 23 cents

The C++ library defines
many mathematical
functions such as sqrt
(square root) and pow
(raising to a power).

x

2.5 • Arithmetic 57

expressions in a compact two-dimensional form. In C++, you have to write all
expressions in a linear arrangement. For example, the subexpression

of the quadratic formula becomes
(-b + sqrt(b * b - 4 * a * c)) / (2 * a)

Figure 5 shows how to analyze such an expression. With complicated expressions
like these, it is not always easy to keep the parentheses matched—see Common
Error 2.5 on page 59.

Table 3 on page 58 shows additional functions that are declared in the cmath
header. Inputs and outputs are floating-point numbers.

Figure 5 Analyzing an Expression

(–b + sqrt(b * b – 4 * a * c)) / (2 * a)

b2

b2–4ac

b2–4ac

4ac 2a

2a

–b + b2–4ac

–b + b2–4ac

− + −b b ac
a

2 4
2

SYNTAX 2.8 Function Call

function_name(expression1, expression2, ..., expressionn)

Example:

sqrt(x)
pow(z + y, n)

Purpose:

Call a function and supply the values for the function parameters.

58 CHAPTER 2 • Numbers and Objects

Integer Division

It is unfortunate that C++ uses the same symbol, namely /, for both integer and floating-
point division. These are really quite different operations. It is a common error to use integer
division by accident. Consider this program segment that computes the average of three
integers.

cout << "Please enter your last three test scores: ";
int s1;
int s2;
int s3;
cin >> s1 >> s2 >> s3;
double average = (s1 + s2 + s3) / 3; // Error
cout << "Your average score is " << average << "\n";

Table 3 Other Mathematical Functions

Function Description

sin(x) sine of x (x in radians)

cos(x) cosine of x

tan(x) tangent of x

asin(x)

acos(x)

atan(x)

 atan2(y, x)

exp(x) ex

log(x)

log10(x)

sinh(x) hyperbolic sine of x

cosh(x) hyperbolic cosine of x

tanh(x) hyperbolic tangent of x

ceil(x) smallest integer

floor(x) largest integer

fabs(x) absolute value

arc sine() ∈ −[] ∈ −⎡⎣ ⎤⎦
−sin , , ,1 2 2 1 1x xπ π

arc cosine arc() ∈ ⎡⎣ ⎤⎦ ∈ −⎡⎣ ⎤⎦
−1 0 1 1x x, , ,π

arc tangent() ∈ −()−tan ,1 2 2x π π

arc tangent may() () ∈ −⎡⎣ ⎤⎦
−tan , ,1 2 2y x xπ π bbe 0

natural log() () >log ,e x x 0

decimal log() () >log ,10 0x x

≥ x

≤ x

x

COMMON ERROR 2.4

2.5 • Arithmetic 59

What could be wrong with that? Of course, the average of s1, s2, and s3 is

Here, however, the / does not mean division in the mathematical sense. It denotes integer
division since both s1 + s2 + s3 and 3 are integers. For example, if the scores add up to 14,
the average is computed to be 4, the result of the integer division of 14 by 3. That integer 4 is
then moved into the floating-point variable average. The remedy is to make the numerator
or denominator into a floating-point number:

double total = s1 + s2 + s3;
double average = total / 3;

or

double average = (s1 + s2 + s3) / 3.0;

Unbalanced Parentheses

Consider the expression

1.5 * ((-(b - sqrt(b * b - 4 * a * c)) / (2 * a))

What is wrong with it? Count the parentheses. There are five (and four). The parentheses
are unbalanced. This kind of typing error is very common with complicated expressions.
Now consider this expression.

1.5 * (sqrt(b * b - 4 * a * c))) - ((b / (2 * a))

This expression has five (and five), but it still is not correct. In the middle of the expression,

1.5 * (sqrt(b * b - 4 * a * c))) - ((b / (2 * a))
↑

there are only two (but three), which is an error. In the middle of an expression, the count
of (must be greater or equal than the count of), and at the end of the expression the two
counts must be the same.

Here is a simple trick to make the counting easier without using pencil and paper. It is dif-
ficult for the brain to keep two counts simultaneously. Keep only one count when scanning
the expression. Start with 1 at the first opening parenthesis, add 1 whenever you see an open-
ing parenthesis, and subtract one whenever you see a closing parenthesis. Say the numbers
aloud as you scan the expression. If the count ever drops below zero, or is not zero at the
end, the parentheses are unbalanced. For example, when scanning the previous expression,
you would mutter

1.5 * (sqrt(b * b - 4 * a * c))) - ((b / (2 * a))
1 2 1 0 -1

and you would find the error.

s1 s2 s3+ +

3

COMMON ERROR 2.5

60 CHAPTER 2 • Numbers and Objects

Forgetting Header Files

Every program that you write needs at least one header file, to include facilities for input and
output; that file is normally iostream.

If you use mathematical functions such as sqrt, you need to include cmath. If you forget
to include the appropriate header file, the compiler will not know symbols such as sqrt or
cout. If the compiler complains about an undefined function or symbol, check your header
files.

Sometimes you may not know which header file to include. Suppose you want to com-
pute the absolute value of an integer using the abs function. As it happens, abs is not defined
in cmath but in cstdlib. How can you find the correct header file? You need to locate the
documentation of the abs function, preferably using the online help of your development
environment or a reference site on the Internet such as http://www.cplusplus.com [1]. The
documentation includes a short description of the function and the name of the header file
that you must include (see Figure 6).

Figure 6 Online Documentation

COMMON ERROR 2.6

http://www.cplusplus.com

2.5 • Arithmetic 61

Remainder of Negative Integers

You often compute a remainder (a % n) to obtain a number in the range between 0 and n - 1.
However, if a is a negative number, the remainder a % n yields a negative number. For
example, -7 % 4 is −3. That result is inconvenient, because it does not fall into the range
between 0 and 3 and because it is different from the usual mathematical definition; in math-
ematics, the remainder is the number that you reach by starting with a and adding or sub-
tracting n until you reach a number between 0 and n - 1. For example, the remainder of 11
by 4 is 11 − 4 − 4 = 3. The remainder of −7 by 4 is −7 + 4 + 4 = 1, which is different from -7 %
4. To compute the correct remainder for negative numbers, use the following formula:

int rem = n - 1 - (-a - 1) % n; // If a is negative

For example, if a is −7 and n is 4, this formula computes 3 − (7 − 1) % 4 = 3 − 2 = 1.

White Space

The compiler does not care whether you write your entire program onto a single line or
place every symbol on a separate line. The human reader cares very much. You should use
blank lines to group your code visually into sections. For example, you can signal to the
reader that an output prompt and the corresponding input statement belong together by
inserting a blank line before and after the group. You will find many examples in the source
code listings in this book.

White space inside expressions is also important. It is easier to read

x1 = (-b + sqrt(b * b - 4 * a * c)) / (2 * a);

than

x1=(-b+sqrt(b*b-4*a*c))/(2*a);

Simply put spaces around all operators + - * / % =. However, don’t put a space after a
unary minus: a – used to negate a single quantity, such as -b. That way, it can be easily distin-
guished from a binary minus, as in a - b. Don’t put spaces between a function name and the
parentheses, but do put a space after every C++ keyword. That makes it easy to see that the
sqrt in sqrt(x) is a function name, whereas the if in if (x > 0) is a keyword.

Factor Out Common Code

Suppose we want to find both solutions of the quadratic equation . The
quadratic formula tells us that the solutions are

ADVANCED TOPIC 2.5

QUAL ITY T IP 2.4

QUAL ITY T IP 2.5

ax bx c2 0+ + =

62 CHAPTER 2 • Numbers and Objects

In C++, there is no analog to the ± operation, which indicates how to obtain two solutions
simultaneously. Both solutions must be computed separately.

x1 = (-b + sqrt(b * b - 4 * a * c)) / (2 * a);
x2 = (-b - sqrt(b * b - 4 * a * c)) / (2 * a);

This approach has two problems. The computation of sqrt(b * b - 4 * a * c) is carried
out twice, which wastes time. Second, whenever the same code is replicated, the possibility
of a typing error increases. The remedy is to factor out the common code:

double root = sqrt(b * b - 4 * a * c);
x1 = (-b + root) / (2 * a);
x2 = (-b - root) / (2 * a);

We could go even further and factor out the computation of 2 * a, but the gain from factor-
ing out very simple computations is small, and the resulting code can be hard to read.

Next to numbers, strings are the most important data type that most
programs use. A string is a sequence of characters, such as "Hello". In
C++, strings are enclosed in quotation marks, which are not them-
selves part of the string.

You can declare variables that hold strings.
string name = "John";

The string type is a part of the C++ standard. To use it, simply include the header
file, string:

#include <string>

Use assignment to place a different string into the variable.
name = "Carl";

You can also read a string from the keyboard:
cout << "Please enter your name: ";
cin >> name;

When a string is read from an input stream, only one word is placed into the string
variable. (Words are separated by white space.) For example, if the user types

Harry Hacker

as the response to the prompt, then only Harry is placed into name. To read the sec-
ond string, another input statement must be used. This constraint makes it tricky to
write an input statement that deals properly with user responses. Some users might

x
b b ac

a1 2

2 4
2, = − ± −

2.6 Str ings

2.6.1 String Variables

Strings are sequences
of characters.

2.6 • Strings 63

type just their first names, others might type their first and last names, and others
might even supply their middle initials.

To handle such a situation, use the getline command. The statement
getline(cin, name);

reads all keystrokes until the Enter key, makes a string containing all of the key-
strokes, and places it into the name variable. With the preceding input example, name
is set to the string "Harry Hacker". This is a string containing 12 characters, one of
which is a space. You should always use the getline function if you are not sure that
the user input consists of a single word.

The number of characters in a string is called the length of the
string. For example, the length of "Harry Hacker" is 12, and the
length of "Hello, World!\n" is 14—the newline character counts as
one character only. You can compute the length of a string with the

length function. Unlike sqrt or getline, the length function is invoked with the dot
notation. You write first the variable name of the string whose length you want,
then a period, then the name of the function, followed by parentheses:

int n = name.length();

Many C++ functions require you to use this dot notation, and you must memorize
(or look up) which do and which don’t. These functions are called member func-
tions (see Syntax 2.9 on page 64). We say that the member function length is
invoked on the variable name. Member functions are always invoked on objects such
as strings or streams, never on numbers.

A string of length zero, containing no characters, is called the
empty string. It is written as "". Unlike number variables, string vari-
ables are guaranteed to be initialized; they are initialized with the
empty string.

string response; // Initialized as ""

Once you have a string, what can you do with it? You can extract substrings, and
you can glue smaller strings together to form larger ones. To extract a substring, use
the substr member function. The call

s.substr(start, length)

returns a string that is made from the characters in the string s, starting at character
start, and containing length characters. Just like length, substr uses the dot nota-
tion. Inside the parentheses, you write the parameters that describe which substring
you want. Here is an example:

string greeting = "Hello, World!\n";
string sub = greeting.substr(0, 4);
// sub is "Hell"

A member function is
invoked on an object,
using the dot notation.

The length member
function yields the number
of characters in a string.

2.6.2 Substrings

64 CHAPTER 2 • Numbers and Objects

The substr operation makes a string that consists of four characters
taken from the string greeting. Indeed, "Hell" is a string of length 4
that occurs inside greeting. The only curious aspect of the substr
operation is the starting position. Starting position 0 means “start
at the beginning of the string”. For technical reasons that used to be

important but are no longer relevant, string position numbers start at 0. The first
item in a sequence is labeled 0, the second one 1, and so on. For example, here are
the position numbers in the greeting string: The position number of the last charac-
ter (13) is always one less than the length of the string.

Let us figure out how to extract the substring "World". Count characters starting
at 0, not 1. You find that W, the 8th character, has position number 7. The string you
want is 5 characters long. Therefore, the appropriate substring command is

string w = greeting.substr(7, 5);

The string functions you have seen so far are summarized in Table 4.

Use the substr member
function to extract a
substring of a string.

0 1 2 3 4 5 6 7 8 9 10 11 12 13

H e l l o , W o r l d ! \n

0 1 2 3 4 5 6 7 8 9 10 11 12

H e l l o , W o r l d !

13

\n

5

Table 4 String Functions

Name Purpose

s.length() The length of s

s.substr(i) The substring of s from index i to the end of the string

s.substr(i, n) The substring of s of length n starting at index i

getline(f, s) Read string s from the input stream f

SYNTAX 2.9 Member Function Call

expression.function_name(expression1, expression2, ..., expressionn)

Example:

name.length()
name.substr(0, n - 1)

Purpose:

Call a member function and supply the values for the function parameters.

2.6 • Strings 65

Now that you know how to take strings apart, let’s see how to put
them back together. Given two strings, such as "Harry" and "Hacker",
we can concatenate them to one long string:

string fname = "Harry";
string lname = "Hacker";
string name = fname + lname;

The + operator concatenates two strings. The resulting string is "HarryHacker".
Actually, that isn’t really what we are after. We’d like the first and last name sepa-
rated by a space. No problem:

string name = fname + " " + lname;

Now we concatenate three strings, "Harry", " ", and "Hacker". The result is
"Harry Hacker"

You must be careful when using + for strings. One or both of the strings surround-
ing the + must be a string object. The expression fname + " " is OK, but the expres-
sion "Harry" + " " is not. This is not a big problem; in the second case, you can just
write "Harry ".

Here is a simple program that puts these concepts to work. The program asks for
your full name and prints out your initials.

ch02/initials.cpp

Program Run

The operation first.substr(0, 1) makes a string consisting of one character, taken
from the start of first. The program does the same for the middle and last strings.

2.6.3 Concatenation

Use the + operator to
concatenate strings; that
is, put them together to
yield a longer string.

1 #include <iostream>
2 #include <string>
3
4 using namespace std;
5
6 int main()
7 {
8 cout << "Enter your full name (first middle last): ";
9 string first;
10 string middle;
11 string last;
12 cin >> first >> middle >> last;
13 string initials = first.substr(0, 1)
14 + middle.substr(0, 1) + last.substr(0, 1);
15 cout << "Your initials are " << initials << "\n";
16
17 return 0;
18 }

Enter your full name (first middle last): Harold Joseph Hacker
Your initials are HJH

66 CHAPTER 2 • Numbers and Objects

Then it concatenates the three one-character strings to get a string of length 3, the
initials string. (See Figure 7.)

Characters and C Strings

C++ has a data type char to denote individual characters. In the C language, the precursor to
C++, the only way to implement strings was as sequences of individual characters. You can
recognize C strings in C or C++ code by looking for types like char* or char[]. Individual
characters are enclosed in single quotes. For example, 'a' is the character a, whereas "a" is a
string containing the single character a.

Using character sequences for strings puts a tremendous burden on the programmer to
locate storage space for these sequences manually. In C, a common error is moving a string
into a variable that is too small to hold all of its characters. For efficiency’s sake, there is no
check against this possibility, and it is all too easy for the inexperienced programmer to cor-
rupt adjacent variables.

The standard C++ strings handle all these chores completely automatically. For most pro-
gramming tasks, you do not need the data type char at all. Instead, just use strings of length 1
for individual characters. Chapter 6 contains a brief introduction to C strings.

When you display several numbers, each of them is printed with the minimum
number of digits needed to show the value. This often yields ugly output. Here is an
example.

cout << pennies << " " << pennies * 0.01 << "\n";
cout << nickels << " " << nickels * 0.05 << "\n";
cout << dimes << " " << dimes * 0.10 << "\n";
cout << quarters << " " << quarters * 0.25 << "\n";

A typical output might look like this.
1 0.01
12 0.6
4 0.4
120 30

Figure 7
Building the initials String 0 1 2

H J Hinitials =

0 1 2 3 4 5
H a c k e rlast =

0 1 2 3 4 5
J o s e p hmiddle =

0 1 2 3 4 5
H a r o l dfirst =

ADVANCED TOPIC 2.6

2.6.4 Formatted Output

2.6 • Strings 67

What a mess! The columns don’t line up, and the money values don’t show dollars
and cents. We need to format the output. Let us make each column eight characters
wide, and use two digits of precision for the floating-point numbers.

You use the setw manipulator to set the width of the next output field. For exam-
ple, if you want the next number to be printed in a column that is eight characters
wide, you use

cout << setw(8);

This command does not produce any output; it just manipulates the stream so that
it will change the output format for the next value. To use stream manipulators, you
must include the iomanip header:

#include <iomanip>

Another manipulator, setprecision, is used to set the precision of subsequent float-
ing-point numbers:

cout << setprecision(2);

You can combine manipulators with output values:

cout << setprecision(2) << setw(8) << x;

This command prints the value x in a field of width 8 and with two digits of preci-
sion, for example

···34.95

(where each · represents a space). The precision setting has no influence on integer
fields.

Unfortunately, simply using setprecision is not sufficient for printing trailing
zeroes. For example, 0.1 will still print as 0.1, not as 0.10. You have to select fixed
format, with the command

cout << fixed;

Combining these three manipulators finally achieves the desired result:

cout << fixed << setprecision(2) << setw(8) << x;

Mercifully, the setprecision and fixed manipulators need only to be used once; the
stream remembers the formatting directives. However, setw must be specified anew
for every item.

Here is a sequence of instructions that can be used to beautify the table.
cout << fixed << setprecision(2);
cout << setw(8) << pennies << " "
 << setw(8) << pennies * 0.01 << "\n";
cout << setw(8) << nickels << " "
 << setw(8) << nickels * 0.05 << "\n";
cout << setw(8) << dimes << " "
 << setw(8) << dimes * 0.10 << "\n";
cout << setw(8) << quarters << " "
 << setw(8) << quarters * 0.25 << "\n";

68 CHAPTER 2 • Numbers and Objects

Now the output is
 1 0.01
 12 0.60
 4 0.40
120 30.00

An object is a value that can be manipulated in a computer program
without having to know its internal structure. For example, the
stream cout is an object. When you use it to produce output, you do
not need to know how the output is sent to its destination.

In C++ every object must belong to a class. A class is a data type,
just like int or double. However, classes are programmer-defined,
whereas int and double are defined by the designers of the C++ lan-
guage. At this point, you haven’t learned how to define your own
classes, so the distinction between the built-in types and program-
mer-defined class types is not yet important.

In this chapter you will learn to work with the class Time, the class Employee, and
four classes that represent graphical shapes. These classes are not part of standard
C++; they have been created for use in this book.

Suppose you want to know how many seconds will elapse between now and mid-
night. This sounds like a pain to compute by hand. However, the Time class makes
the job easy. You will see how, in this section and the next.

First, you will learn how to specify an object of type Time. The end of the day is
11:59 P.M. and 59 seconds. Here is a Time object representing that time:

Time(23, 59, 59)

You specify a Time object by giving three values: hours, minutes, and
seconds. The hours are given in “military time”: between 0 and 23
hours.

When a Time object is specified from three integer values such as
23, 59, 59, we say that the object is constructed from these values, and
the values used in the construction are the construction parameters.
In general, an object value is constructed as shown in Syntax 2.10 on
page 69.

You should think of Time(23, 59, 59) as an entity that is very similar to a num-
ber such as 7.5 or a string such as "Hello". In particular, when using a Time object
you should not worry about its internals, just as you probably don’t worry about
the bits that make up a floating-point number.

2.7 Using Objects

An object is a value that
can be manipulated
without knowledge of its
internal structure.

Every object belongs to a
class. A class determines
the behavior of its objects.

2.7.1 Time Objects

The act of creating an
object is called
construction. To specify
the initial state of an
object, you supply
construction parameters.

2.7 • Using Objects 69

Just as floating-point values can be stored in double variables, Time objects can be
stored in Time variables:

Time day_end = Time(23, 59, 59);

Think of this as the analog of
double interest_rate = 7.5;

or
string greeting = "Hello";

There is a shorthand for this very common situation (See Syntax 2.11 on page 70).
Time day_end(23, 59, 59);

This defines a variable day_end that is initialized to the Time object Time(23,59,59).
(See Figure 8.)

Many classes have more than one construction mechanism. For example, there
are two methods for constructing times: by specifying hours, minutes, and seconds,
and by specifying no parameters at all.

The expression
Time()

creates an object representing the current time, that is, the time when
the object is constructed. Making an object with no construction
parameter is called default construction.

Figure 8 A Time Object and Variable

day_end =

23:59:59

Time

When defining an object
with default construction,
you do not supply any
construction parameters.

SYNTAX 2.10 Object Construction

ClassName(construction parameters)
ClassName()

Example:

Time(19, 0, 0)
Time()

Purpose:

Construct a new object for use in an expression. The first version uses the given param-
eters to set the object’s initial state. The second version sets the object to a default state.

70 CHAPTER 2 • Numbers and Objects

Of course, you can store a default Time object in a variable:
Time now = Time();

The shorthand notation for using default construction is slightly inconsistent:
Time now; // OK. This defines a variable and invokes the default constructor.

and not
Time now(); // NO! This does not define a variable.

If you are unhappy with the current object stored in a variable, you can overwrite it
with another one:

homework_due = Time(23, 59, 59);

Figure 9 shows this replacement.

SYNTAX 2.11 Object Variable Definition

ClassName variable_name(construction parameters);
ClassName variable_name;

Example:

Time homework_due(19, 0, 0);
Time homework_due;

Purpose:

Define a new object variable. The first version uses the given parameters to set the
object’s initial state. The second version sets the object to a default state.

Figure 9 Replacing an Object with Another

1

homework_due =

2 After homework_due = Time(23, 59, 59);

homework_due =

homework_due = Time(23, 59, 59);

19:00:00

Time

23:59:59

Time

23:59:59

Time

2.7 • Using Objects 71

What can you do with a Time object after constructing it? The Time class specifies
the operations that you can carry out (see Table 5). Here is one of them. You can
add a certain number of seconds to the time:

wake_up.add_seconds(1000);

Afterward, the object in the variable wake_up is changed. It is no longer the time
value assigned when the object was constructed, but a time object representing a
time that is exactly 1,000 seconds (16 minutes and 40 seconds) from the time previ-
ously stored in wake_up. (See Figure 10.)

Whenever you apply a function (such as add_seconds) to an object variable (such
as wake_up), you use the same dot notation that we already used for string member
functions:

int n = greeting.length();
cout << greeting.substr(0, 4);

Table 5 Member Functions of the Time Class

Name Purpose

Time() Constructs the current time

Time(h, m, s) Constructs the time with hours h, minutes m,
and seconds s

t.get_seconds() Returns the seconds value of t

t.get_minutes() Returns the minutes value of t

t.get_hours() Returns the hours value of t

t.add_seconds(n) Changes t to move by n seconds

t.seconds_from(t2) Computes the number of seconds between t and t2

Figure 10 Changing the State of an Object

1

wake_up =

7:00:00

Time

2 After wake_up.add_seconds(1000);

wake_up =

7:16:40

Time

Before function call

72 CHAPTER 2 • Numbers and Objects

Now that you’ve seen how to change the state of a Time object, how can you find
out the current time stored in the object? You have to ask it. There are three mem-
ber functions for this purpose, called

get_seconds()
get_minutes()
get_hours()

They too are applied to objects using the dot notation. (See Figure 11.)
Since you can get the hours of a time, it seems natural to suggest that you can set it
as well:

homework_due.set_hours(2); // No! Not a supported member function

Time objects do not support this member function. There is a good reason, of
course. Not all hour values make sense. For example,

homework_due.set_hours(9999); // Doesn’t make sense

Of course, one could try to come up with some meaning for such a call, but the
author of the Time class decided simply not to supply these member functions.
Whenever you use an object, you need to find out which member functions are sup-
plied; other operations, however useful they may be, are simply not possible.

Finally, a Time object can figure out the number of seconds between itself and
another time. For example, here is how you can compute how many seconds are left
before the homework is due:

Time now;
int seconds_left = homework_due.seconds_from(now)

Note that you pass the now object (a value of type Time) to the seconds_from func-
tion. In general, objects behave just like numbers—you can store them, copy them,
and pass them to functions, just as you do numbers.

To use objects of the Time class, you must include the file ccc_time.h. Unlike the
iostream or cmath headers, this file is not part of the standard C++ headers. Instead,
the Time class is supplied with this book to illustrate simple objects. Because the
ccc_time.h file is not a system header, you do not use angle brackets < > in the
#include directive; instead, you use quotation marks:

#include "ccc_time.h"

Figure 11 Querying the State of an Object

wake_up.get_hours()
 is 7

wake_up =

7:16:40

Time

2.7 • Using Objects 73

The online documentation of the code library that accompanies this book gives
more instructions on how to compile programs that use the book’s class library.

The following program computes the time that is 1,000 seconds after 7 A.M., and
the number of seconds between the current time and the last second of the day.

ch02/time.cpp

Program Run

Trying to Call a Member Function Without an Object

Suppose your code contains the instruction

add_seconds(30); // Error

The compiler will not know which time to advance. You need to supply an object of class
Time:

Time liftoff(19, 0, 0);
liftoff.add_seconds(30);

1 #include <iostream>
2
3 using namespace std;
4
5 #include "ccc_time.h"
6
7 int main()
8 {
9 Time wake_up(7, 0, 0);
10 wake_up.add_seconds(1000); // A thousand seconds later
11 cout << wake_up.get_hours()
12 << ":" << wake_up.get_minutes()
13 << ":" << wake_up.get_seconds() << "\n";
14
15 Time now;
16 int seconds_left = Time(23, 59, 59).seconds_from(now);
17
18 cout << "There are "
19 << seconds_left
20 << " seconds left in this day.\n";
21
22 return 0;
23 }

7:16:40

There are 43517 seconds left in this day.

COMMON ERROR 2.7

74 CHAPTER 2 • Numbers and Objects

One reason for the popularity of object-oriented programming is that it is easy to
model entities from real life in computer programs, making programs easy to
understand and modify. As an example, we provide a simple Employee class, whose
member functions are listed in Table 6. Consider the following program that
manipulates an object of the Employee class:

ch02/employee.cpp

Program Run

This program creates a variable harry and initializes it with an object of type
Employee. There are two construction parameters: the name of the employee and the
starting salary.

2.7.2 Employee Objects

1 #include <iostream>
2
3 using namespace std;
4
5 #include "ccc_empl.h"
6
7 int main()
8 {
9 Employee harry("Hacker, Harry", 45000.00);
10
11 double new_salary = harry.get_salary() + 3000;
12 harry.set_salary(new_salary);
13
14 cout << "Name: " << harry.get_name() << "\n";
15 cout << "Salary: " << harry.get_salary() << "\n";
16
17 return 0;
18 }

1

2
3

Name: Hacker, Harry
Salary: 48000

Table 6 Member Functions of the Employee Class

Name Purpose

Employee(n, s) Constructs an employee with name n and salary s

e.get_name() Returns the name of e

e.get_salary() Returns the salary of e

e.set_salary(s) Sets salary of e to s

2.7 • Using Objects 75

We then give Harry a $3,000 raise (see Figure 12). We first find his current salary
with the get_salary member function. We determine the new salary by adding
$3,000 and storing the result in new_salary. We use the set_salary member function
to set the new salary.

Finally, we print out the name and salary of the Employee object. We use the
get_name and get_salary member functions to get the name and salary.

As you can see, this program is easy to read because it carries out its computa-
tions with meaningful entities, namely Employee objects.

Note that you can change the salary of an employee with the set_salary member
function. However, you cannot change the name of an Employee object.

Figure 12 Invoking Member Functions on an Employee Object

2

3

After double new_salary = harry.get_salary() + 3000;

After harry.set_salary(new_salary);

new_salary = 48000

new_salary = 48000

harry =

name =

Employee

Hacker, Harry
salary = 45000

1 Employee harry("Hacker, Harry", 45000.00):

harry =

name =

Employee

Hacker, Harry
salary = 45000

harry =

name =

Employee

Hacker, Harry
salary = 48000

76 CHAPTER 2 • Numbers and Objects

This Employee class has been kept as simple as possible. In a real data-processing
program, Employee objects would also have ID numbers, addresses, job titles, and so
on. As you will see in Chapter 5, it is easy to enhance the Employee class to model
these additional attributes.

You need to include the header file ccc_empl.h in all programs that use the
Employee class.

In the following sections you will learn how to use a number of useful classes to
render simple graphics. The graphics classes will provide a basis for interesting
programming examples. This material is optional, and you can safely skip it if you
are not interested in writing programs that draw graphical shapes.

There are two kinds of C++ programs that you will write in this course: console
applications and graphics applications. Console applications read input from the
keyboard (through cin) and display text output on the screen (through cout).
Graphics programs read keystrokes and mouse clicks, and they display graphical
shapes such as lines and circles, through a window object called cwin.

You already know how to write console programs. You include the header file
iostream and use the >> and << operators. To activate graphics for your programs,
you must include the header file ccc_win.h into your program. Moreover, you need
to supply the function ccc_win_main instead of main as the entry point to your
program.

Unlike the iostream library, which is available on all C++ systems, this graphics
library was created for use in this textbook. As with the Time and Employee classes,
you need to add the code for the graphics objects to your programs. The online
documentation for the code library describes this process.

Points, circles, lines, and messages are the four types of graphical
objects that you will use to create diagrams. A point has an x- and a
y-coordinate. For example,

Point(1, 3)

is a Point object with x-coordinate 1 and y-coordinate 3. You fre-
quently use points to construct more complex graphical objects, such as a circle (see
Figure 13). The expression

Circle(Point(1, 3), 2.5)

yields a Circle object whose center is the point with coordinates (1, 3) and whose
radius is 2.5.

The following code defines and initializes a Point variable and then displays the
point. Then a circle with center p is created and also displayed.

2.8 Display ing Graphica l Shapes (Opt iona l)

2.8.1 Graphics Objects

Points, lines, circles, and
messages can be
displayed in a window on
the computer screen.

2.8 • Displaying Graphical Shapes (Optional) 77

ch02/circle.cpp

Two points can be joined by a line (see Figure 14), represented by a Line object that
is constructed from two Point objects, its start and end points.

Point p(1, 3);
Point q(4, 7);
Line s(p, q);

The get_start and get_end member functions return the start and end points from
which the line was constructed.

In a graphics window you can display text anywhere you like using the Message
class. When constructing a Message object, you need to specify what you want to
show and where it should appear (see Figure 15).

Point p(1, 3);
Message greeting(p, "Hello, Window!");

The point parameter specifies the upper left corner of the message. The second
parameter can be either a string or a number.

There is one member function that all our graphical classes implement: move. If
obj is a Point, Circle, Line, or Message, then

obj.move(dx, dy)

changes the position of the object, moving the entire object by dx units in the x-
direction and dy units in the y-direction. Either or both of dx and dy can be zero or

Figure 13 A Circle Figure 14 A Line

Figure 15 A Message

get_center()

get_radius()

get_end()

get_start()

1 #include "ccc_win.h"
2
3 int ccc_win_main()
4 {
5 Point p(1, 3);
6 cwin << p << Circle(p, 2.5);
7
8 return 0;
9 }

get_start()

78 CHAPTER 2 • Numbers and Objects

negative (see Figure 16). For example, the following code draws a square (see
Figure 17). The program first constructs two Line objects that represent the lines at
the top and left. Then the move member function is applied to move the lines to the
right and the bottom of the square.

ch02/square.cpp

After a graphical object has been constructed and perhaps moved, you sometimes
want to know where it is currently located. There are two member functions for
Point objects: get_x and get_y. They get the x- and y-positions of the point.

The Circle get_center and get_radius member functions return the center and
radius of a circle. The Line get_start and get_end member functions return the

Figure 16 The move Operation

dx

dy

dx

dy

dx

dy

dx

dy

Figure 17
Square Drawn by square.cpp

1 #include "ccc_win.h"
2
3 int ccc_win_main()
4 {
5 Point top_left(1, 3);
6 Point top_right(1, 4);
7 Point bottom_left(2, 3);
8
9 Line horizontal(top_left, top_right);
10 Line vertical(top_left, bottom_left);
11
12 cwin << horizontal << vertical;
13
14 horizontal.move(1, 0);
15 vertical.move(0, 1);
16
17 cwin << horizontal << vertical;
18
19 return 0;
20 }

2.8 • Displaying Graphical Shapes (Optional) 79

starting point and end point of a line. The get_start and get_text member func-
tions of a Message object return the starting point and the message text. Because
get_center, get_start, and get_end return Point objects, you may need to apply
get_x or get_y to them to determine their x- and y-coordinates. For example,

Circle c(...);
...
double cx = c.get_center().get_x();

You now know how to construct graphical objects, and you have seen all member
functions for manipulating and querying them (summarized in Tables 7 through
10). The design of these classes was purposefully kept simple, so some common
tasks require a little ingenuity.

Table 7 Member Functions of the Point Class

Name Purpose

Point(x, y) Constructs a point at location (x, y)

p.get_x() Returns the x-coordinate of point p

p.get_y() Returns the y-coordinate of point p

p.move(dx, dy) Moves point p by (dx, dy)

Table 8 Member Functions of the Circle Class

Name Purpose

Circle(p, r) Constructs a circle with center p and radius r

c.get_center() Returns the center point of circle c

c.get_radius() Returns the radius of circle c

c.move(dx, dy) Moves circle c by (dx, dy)

Table 9 Member Functions of the Line Class

Name Purpose

Line(p, q) Constructs a line joining points p and q

l.get_start() Returns the starting point of line l

l.get_end() Returns the ending point of line l

l.move(dx, dy) Moves line l by (dx, dy)

80 CHAPTER 2 • Numbers and Objects

Computer Graphics

The generation and manipulation of visual images is one of the most exciting applications of
the computer. We distinguish between different kinds of graphics.

Diagrams, such as numeric charts or maps, are artifacts that convey information to the
viewer (see Figure 18). They do not directly depict anything that occurs in the natural world,
but are a tool for visualizing information.

Scenes are computer-generated images that attempt to depict images of the real or an
imagined world (see Figure 19). It turns out to be quite a challenge to render light and shad-
ows accurately. Special effort must be taken so that the images do not look too neat and
simple; clouds, rocks, leaves, and dust in the real world have a complex and somewhat ran-
dom appearance. The degree of realism in these images is constantly improving.

Table 10 Member Functions of the Message Class

Name Purpose

Message(p, s) Constructs a message with starting point p
and text string s

Message(p, x) Constructs a message with starting point p
and a label equal to the number x

m.get_start() Returns the starting point of message m

m.get_text() Gets the text string of message m

m.move(dx, dy) Moves message m by (dx, dy)

Figure 18 Diagrams

RANDOM FACT 2.2

2.8 • Displaying Graphical Shapes (Optional) 81

Manipulated images are photographs or film footage of actual events that have been con-
verted to digital form and edited by the computer (see Figure 20). For example, film
sequences of the movie Apollo 13 were produced by starting from actual images and chang-
ing the perspective, showing the launch of the rocket from a more dramatic viewpoint.

Computer graphics is one of the most challenging fields in computer science. It requires
processing of massive amounts of information at very high speed. New algorithms are con-
stantly invented for this purpose. Viewing overlapping three-dimensional objects with
curved boundaries requires advanced mathematical tools. Realistic modeling of textures and
biological entities requires extensive knowledge of mathematics, physics, and biology.

When displaying graphical shapes, you need to know how x- and y-coordinates are
mapped to the screen. For example, where is the point with x-coordinate 1 and y-
coordinate 3 located? Some graphics systems use pixels, the individual dots on the
display, as coordinates, but different displays have different pixel counts and densi-
ties. Using pixels makes it difficult to write programs that look pleasant on every
display screen. The library supplied with this book uses a coordinate system that is
independent of the display.

Figure 21 shows the default coordinate system used by this book’s library. The
origin is at the center of the screen, and the x-axis and y-axis are 10 units long in
either direction. The axes do not actually appear (unless you create them yourself
by drawing Line objects).

Figure 19 Scene Figure 20 Manipulated Image

2.8.2 Choosing a Coordinate System

82 CHAPTER 2 • Numbers and Objects

If your data has x- and y-values that don’t fall between –10 and 10,
you need to change the coordinate system. For example, suppose we
want to show a graph plotting the average temperature (degrees Cel-
sius) in Phoenix, Arizona, for every month of the year (see Table 11).

Here, the x-coordinates are the month values, ranging from 1 to
12. The y-coordinates are the temperature values, ranging from 11 (in
January) to 33 (in July). Figure 22 shows the coordinate system that

we need. As you can see, the top left corner is (1, 33) and the bottom right corner is
(12, 11).

Figure 21
Default Coordinate System
for Graphics Library

10

10–10

–10

Figure 22
Coordinate System for Temperature

When writing programs
that display data sets,
you should select a
coordinate system that
fits the data points.

121
11

33

2.8 • Displaying Graphical Shapes (Optional) 83

To select this coordinate system, use the following instruction:
cwin.coord(1, 33, 12, 11);

Following a common convention in graphics systems, you must first specify the
desired coordinates for the top left corner (which has x-coordinate 1 and y-coordi-
nate 33), then the desired coordinates for the bottom right corner (x = 12, y = 11) of
the graphics window.

After setting the coordinate system, you can plot the points without adjusting
the x- and y-values. The graphics window makes the necessary adjustments to
ensure that the points are displayed in the correct location.

Here is the complete program:

ch02/phoenix.cpp

Table 11 Average Temperatures in Phoenix, Arizona

Month Average Temperature Month Average Temperature

January 11˚C July 33˚C

February 13˚C August 32˚C

March 16˚C September 29˚C

April 20˚C October 23˚C

May 25˚C November 16˚C

June 31˚C December 12˚C

1 #include "ccc_win.h"
2
3 int ccc_win_main()
4 {
5 cwin.coord(1, 33, 12, 11);
6 cwin << Point(1, 11);
7 cwin << Point(2, 13);
8 cwin << Point(3, 16);
9 cwin << Point(4, 20);
10 cwin << Point(5, 25);
11 cwin << Point(6, 31);
12 cwin << Point(7, 33);
13 cwin << Point(8, 32);
14 cwin << Point(9, 29);
15 cwin << Point(10, 23);
16 cwin << Point(11, 16);
17 cwin << Point(12, 12);
18
19 return 0;
20 }

84 CHAPTER 2 • Numbers and Objects

Figure 23 shows the output of the program.

The graphics library supplies a set of member functions for getting
text and mouse input from the user. (In a graphics program, you can-
not read the input from cin.) The command for reading string input
is

string response = cwin.get_string(prompt);

This is how you inquire about the user name:
string name = cwin.get_string("Please type your name:");

The prompt and a field for typing the input are displayed in a special input area.
Depending on your computer system, the input area is in a dialog box or at the top
or bottom of the graphics window. The user can then type input. After the user hits
the Enter key, the user’s keystrokes are placed into the name string. The message
prompt is then removed from the screen.

The get_string function always returns a string. Use get_int or get_double to
read an integer or floating-point number:

int age = cwin.get_int("Please enter your age:");

The user can specify a point with the mouse. To prompt the user for mouse input,
use

Point response = cwin.get_mouse(prompt);

For example,
Point center = cwin.get_mouse("Click center of circle");

Figure 23 Average Temperatures in Phoenix, Arizona

2.8.3 Getting Input from the Graphics Window

Graphical programs
can obtain both
text and mouse input
from the user.

2.8 • Displaying Graphical Shapes (Optional) 85

The user can move the mouse to the desired location. Once the user clicks on the
mouse button, the prompt is cleared and the selected point is returned.

Here is a program that puts these functions (summarized in Table 12) to work. It
asks the user to enter a name and to try to click inside a circle. Then the program
displays the point that the user specified.

ch02/click.cpp

Table 12 Member Functions of the GraphicWindow Class

Name Purpose

w.coord(x1, y1, x2, y2) Sets the coordinate system for subsequent
 drawing: (x1, y1) is the top left corner,

(x2, y2) the bottom right corner

w << x Displays the object x (a point, circle, line,
or message) in window w

w.clear() Clears window w (erases its contents)

w.get_string(p) Displays prompt p in window w and
returns the entered string

w.get_int(p) Displays prompt p in window w and
returns the entered integer

w.get_double(p) Displays prompt p in window w and
returns the entered floating-point value

w.get_mouse(p) Displays prompt p in window w and
returns the mouse click point

1 #include "ccc_win.h"
2
3 int ccc_win_main()
4 {
5 string name = cwin.get_string("Please type your name:");
6 Circle c(Point(0, 0), 1);
7 cwin << c;
8 Point m = cwin.get_mouse("Please click inside the circle.");
9 cwin << m << Message(m, name + ", you clicked here");
10
11 return 0;
12 }

86 CHAPTER 2 • Numbers and Objects

1. The most common number types in C++ are double (floating-point number)
and int (integer).

2. A variable is a storage location with a name. In C++, you also specify the type
of the values that can be stored.

3. Use the >> operator to read a value from an input stream and place it in a
variable.

4. An assignment statement stores a new value in a variable, replacing the previ-
ously stored value.

5. The ++ operator adds 1 to a variable; the -- operator subtracts 1.

6. A constant is a named value that cannot be changed.

7. In C++, you use * for multiplication and / for division.

8. If both arguments of / are integers, the remainder is discarded. The % operator
computes the remainder of an integer division.

9. The C++ library defines many mathematical functions such as sqrt (square
root) and pow (raising to a power).

10. Strings are sequences of characters.

11. A member function is invoked on an object, using the dot notation.

12. The length member function yields the number of characters in a string.

13. Use the substr member function to extract a substring of a string.

14. Use the + operator to concatenate strings; that is, put them together to yield a
longer string.

15. An object is a value that can be manipulated without knowledge of its internal
structure.

16. Every object belongs to a class. A class determines the behavior of its objects.

17. The act of creating an object is called construction. To specify the initial state of
an object, you supply construction parameters.

18. When defining an object with default construction, you do not supply any con-
struction parameters.

19. Points, lines, circles, and messages can be displayed in a window on the com-
puter screen.

20. When writing programs that display data sets, you should select a coordinate
system that fits the data points.

21. Graphical programs can obtain both text and mouse input from the user.

CHAPTER SUMMARY

Review Exercises 87

1. http://www.cplusplus.com Online documentation for C++.

Exercise R2.1. Write the following mathematical expressions in C++.

Exercise R2.2. Write the following C++ expressions in mathematical notation.
a. dm = m * (sqrt(1 + v / c) / sqrt(1 - v / c) - 1);

b. volume = PI * r * r * h;

c. volume = 4 * PI * pow(r, 3) / 3;

d. p = atan2(z, sqrt(x * x + y * y));

Exercise R2.3. What is wrong with this version of the quadratic formula?
x1 = (-b - sqrt(b * b - 4 * a * c)) / 2 * a;
x2 = (-b + sqrt(b * b - 4 * a * c)) / 2 * a;

Exercise R2.4. What happens when you multiply two integers whose product is
larger than the largest int value? Try out an example and report your findings. Give
an example of multiplying two floating-point numbers that demonstrates limited
precision.

Exercise R2.5. Let n be an integer and x a floating-point number. Explain the differ-
ence between

n = x;

and
n = static_cast<int>(x + 0.5);

For what values of x do they give the same result? For what values of x do they give
different results? What happens if x is negative?

FURTHER READING

REVIEW EXERCISES

s s v t gt

G
a

p m m

= + +

=
+

= ⋅ +

0 0
2

2
3

2
1 2

1
2

4

1

π
()

FV PV
INT
1000

YRS⎛
⎝⎜

⎞
⎠⎟

= + −c a b ab2 2 2 cosγ

http://www.cplusplus.com

88 CHAPTER 2 • Numbers and Objects

Exercise R2.6. Find at least five syntax errors in the following program.
#include iostream

int main();
{
 cout << "Please enter two numbers:"
 cin << x, y;
 cout << "The sum of << x << "and" << y
 << "is: " x + y << "\n";
 return;
}

Exercise R2.7. Find at least three logic errors in the following program.
#include <iostream>

using namespace std;

int main()
{
 int total;
 int x1;
 cout << "Please enter a number:";
 cin >> x1;
 total = total + x1;
 cout << "Please enter another number:";
 int x2;
 cin >> x2;
 total = total + x1;
 float average = total / 2;
 cout << "The average of the two numbers is "
 << average << "\n";
 return 0;
}

Exercise R2.8. Explain the differences between 2, 2.0, "2", and "2.0".

Exercise R2.9. Explain what each of the following program segments computes:
a. x = 2;

y = x + x;

b. s = "2";

t = s + s;

Exercise R2.10. How do you get the first character of a string? The last character?
How do you remove the first character? The last character?

Exercise R2.11. How do you get the last digit of a number? The first digit? That is, if
n is 23456, how do you find out 2 and 6? Hint: %, log.

Exercise R2.12. Suppose a C++ program contains the two input statements
cout << "Please enter your name: ";
string fname, lname;
cin >> fname >> lname;

Review Exercises 89

and
cout << "Please enter your age: ";
int age;
cin >> age;

What is contained in the variables fname, lname, and age if the user enters the follow-
ing inputs?

a. James Carter

56

b. Lyndon Johnson

49

c. Hodding Carter 3rd

44

d. Richard M. Nixon

62

Exercise R2.13. What are the values of the following expressions? In each line,
assume that

double x = 2.5;
double y = -1.5;
int m = 18;
int n = 4;
string s = "Hello";
string t = "World";

a. x + n * y - (x + n) * y

b. m / n + m % n

c. 5 * x - n / 5

d. sqrt(sqrt(n));

e. static_cast<int>(x + 0.5)

f. s + t;

g. t + s;

h. 1 - (1 - (1 - (1 - (1 - n))))

i. s.substr(1, 2)

j. s.length() + t.length()

Exercise R2.14. Explain the difference between an object and a class.

Exercise R2.15. Give the C++ code for an object of class Time and for an object vari-
able of class Time.

Exercise R2.16. Explain the differences between a member function and a nonmem-
ber function.

90 CHAPTER 2 • Numbers and Objects

Exercise R2.17. Explain the difference between
Point(3, 4);

and
Point p(3, 4);

Exercise R2.18. Give the C++ code to construct the following objects:
a. Lunch time
b. The current time
c. The top right corner of the graphics window in the default coordinate system
d. Your instructor as an employee (make a guess for the salary)
e. A circle filling the entire graphics window in the default coordinate system
f. A line representing the x-axis from –10 to 10.

Write the code for objects, not object variables.

Exercise R2.19. Repeat Exercise R2.18, but now define variables that are initialized
with the required values.

Exercise R2.20. Find the errors in the following statements:
a. Time now();

b. Point p = (3, 4);

c. p.set_x(-1);

d. cout << Time

e. Time due_date(2004, 4, 15);

f. due_date.move(2, 12);

g. seconds_from(millennium);

h. Employee harry("Hacker", "Harry", 35000);

i. harry.set_name("Hacker, Harriet");

Exercise R2.21. Describe all constructors of the Time class. List all member functions
that can be used to change a Time object. List all member functions that don’t
change the Time object.

Exercise R2.22. What is the value of t after the following operations?
Time t;
t = Time(20, 0, 0);
t.add_seconds(1000);
t.add_seconds(-400);

Exercise R2.23. What is the value of c.get_center and c.get_radius after the follow-
ing operations?

Circle c(Point(1, 2), 3);
c.move(4, 5);

G

Programming Exercises 91

Exercise R2.24. You want to plot a bar chart showing the grade distribution of all
students in your class (where A = 4.0, F = 0). What coordinate system would you
choose to make the plotting as simple as possible?

Exercise R2.25. Let c be any circle. Write C++ code to plot the circle c and another
circle that touches c. Hint: Use move.

Exercise R2.26. Write C++ instructions to display the letters X and T in a graphics
window, by plotting line segments.

Exercise P2.1. Write a program that prints the values
1
10
100
1000
10000
100000
1000000
10000000
100000000
1000000000
10000000000
100000000000
as integers and as floating-point numbers. Explain the results.

Exercise P2.2. Write a program that displays the squares, cubes, and fourth powers
of the numbers 1 through 5.

Exercise P2.3. Write a program that prompts the user for two integers and then
prints

• The sum
• The difference
• The product
• The average
• The distance (absolute value of the difference)
• The maximum (the larger of the two)
• The minimum (the smaller of the two)

Hint: The max and min functions are defined in the algorithm header.

G

G

G

PROGRAMMING EXERCISES

92 CHAPTER 2 • Numbers and Objects

Exercise P2.4. Write a program that prompts the user for a measurement in meters
and then converts it to miles, feet, and inches.

Exercise P2.5. Write a program that prompts the user for a radius and then prints
• The area and circumference of a circle with that radius
• The volume and surface area of a sphere with that radius

Exercise P2.6. Write a program that asks the user for the lengths of the sides of a
rectangle. Then print

• The area and perimeter of the rectangle
• The length of the diagonal (use the Pythagorean theorem)

Exercise P2.7. Write a program that prompts the user for
• The lengths of two sides of a triangle
• The size of the angle between the two sides (in degrees)

Then the program displays
• The length of the third side
• The sizes of the other two angles

Hint: Use the law of cosines.

Exercise P2.8. Write a program that prompts the user for
• The length of a side of a triangle
• The sizes of the two angles adjacent to that side (in degrees)

Then the program displays
• The lengths of the other two sides
• The size of the third angle

Hint: Use the law of sines.

Exercise P2.9. Giving change. Implement a program that directs a cashier how to
give change. The program has two inputs: the amount due and the amount received
from the customer. It should compute the difference, and compute the dollars,
quarters, dimes, nickels, and pennies that the customer should receive in return.
Hint: First transform the difference into an integer balance, denominated in pen-
nies. Then compute the whole dollar amount. Subtract it from the balance. Com-
pute the number of quarters needed. Repeat for dimes and nickels. Display the
remaining pennies.

Exercise P2.10. Write a program that asks the user to input
• The number of gallons of gas in the tank
• The fuel efficiency in miles per gallon
• The price of gas per gallon

Then print out how far the car can go with the gas in the tank and print the cost per
100 miles.

Programming Exercises 93

Exercise P2.11. File names and extensions. Write a program that prompts the user for
the drive letter (C), the path (\Windows\System), the file name (Readme), and the exten-
sion (TXT). Then print the complete file name C:\Windows\System\Readme.TXT. (If you
use UNIX or a Macintosh, use / or : instead of \ to separate directories.)

Exercise P2.12. Write a program that reads a number greater than or equal to 1,000
from the user and prints it with a comma separating the thousands. Here is a sample
dialog; the user input is in boldface:

Please enter an integer >= 1000: 23456
23,456

Exercise P2.13. Write a program that reads a number between 1,000 and 999,999
from the user, where the user enters a comma in the input. Then print the number
without a comma. Here is a sample dialog; the user input is in boldface:

Please enter an integer between 1,000 and 999,999: 23,456
23456

Hint: Read the input as a string. Measure the length of the string. Suppose it con-
tains n characters. Then extract substrings consisting of the first n – 4 characters and
the last three characters.

Exercise P2.14. Printing a grid. Write a program that prints the following grid to
play tic-tac-toe.

+--+--+--+
| | | |
+--+--+--+
| | | |
+--+--+--+
| | | |
+--+--+--+

Of course, you could simply write seven statements of the form
cout << "+--+--+--+";

You should do it the smart way, though. Define string variables to hold two kinds
of patterns: a comb-shaped pattern and the bottom line. Print the comb three times
and the bottom line once.

Exercise P2.15. Write a program that reads in an integer and breaks it into a sequence
of individual digits. For example, the input 16384 is displayed as

1 6 3 8 4

You may assume that the input has no more than five digits and is not negative.

Exercise P2.16. Write a program that reads two times in military format (0900, 1730)
and prints the number of hours and minutes between the two times. Here is a sam-
ple run. User input is in boldface.

Please enter the first time: 0900
Please enter the second time: 1730
8 hours 30 minutes

94 CHAPTER 2 • Numbers and Objects

Extra credit if you can deal with the case that the first time is later than the second
time:

Please enter the first time: 1730
Please enter the second time: 0900
15 hours 30 minutes

Exercise P2.17. Run the following program, and explain the output you get.
#include <iostream>

using namespace std;

int main()
{
 int total;
 cout << "Please enter a number: ";
 double x1;
 cin >> x1;

cout << "total = " << total << "\n";

 total = total + x1;
cout << "total = " << total << "\n";

 cout << "Please enter a number: ";
 double x2;
 cin >> x2;
 total = total + x2;

cout << "total = " << total << "\n";

 total = total / 2;
cout << "total = " << total << "\n";

 cout << "The average is " << total << "\n";
 return 0;
}

Note the trace messages that are inserted to show the current contents of the total
variable. Then fix up the program, run it with the trace messages in place to verify it
works correctly, and remove the trace messages.

Exercise P2.18. Writing large letters. A large letter H can be produced like this:
* *
* *

* *
* *

It can be declared as a string constant like this:
const string LETTER_H =
 "* *\n* *\n*****\n* *\n* *\n";

Do the same for the letters E, L, and O. Then write the message
H
E
L
L
O

in large letters.

Programming Exercises 95

Exercise P2.19. Write a program that transforms numbers 1, 2, 3, …, 12 into the cor-
responding month names January, February, March, …, December. Hint: Make a very
long string "January February March ...", in which you add spaces such that each
month name has the same length. Then use substr to extract the month you want.

Exercise P2.20. Write a program that asks for the due date of the next assignment
(hour, minutes). Then print the number of minutes between the current time and
the due date.

Exercise P2.21. Write a program that prompts the user for the first name and last
name of an employee and a starting salary. Then give the employee a 5 percent raise,
and print out the name and salary information stored in the employee object.

Exercise P2.22. Write a program to plot the following face.

Exercise P2.23. Write a program to plot the string “HELLO”, using just lines and
circles. Do not use the Message class, and do not use cout.

Exercise P2.24. Plotting a data set. Make a bar chart to plot a data set such as this:

Prompt the user to type in four names and measurements. Then display a bar graph.
Make the bars horizontal for easier labeling.

Hint: Set the window coordinates to 5,000 in the x-direction and 4 in the
y-direction.

G

G

G

Name Longest Span (ft)

Golden Gate 4,200

Brooklyn 1,595

Delaware
Memorial 2,150

Mackinaw 3,800

Golden Gate

Brooklyn

Delaware Memorial

Mackinaw

96 CHAPTER 2 • Numbers and Objects

Exercise P2.25. Write a graphics program that prompts the user to click on three
points. Then draw a triangle joining the three points. Hint: To give the user feed-
back about the click, it is a nice touch to draw the point after each click.

Point p = cwin.get_mouse("Please click on the first point");
cwin << p; // Feedback for the user

Exercise P2.26. Write a program that displays the Olympic rings. Hint: Construct
and display the first circle, then call move four times.

Exercise P2.27. Write a graphics program that asks the user to enter four data values.
Then draw a pie chart showing the data values.

Exercise P2.28. Write a graphics program that draws a clock face with the current
time:

Hint: You need to determine the angles of the hour hand and the minute hand. The
angle of the minute hand is easy: The minute hand travels 360 degrees in 60 minutes.
The angle of the hour hand is harder; it travels 360 degrees in 12 × 60 minutes.

Exercise P2.29. Write a program that tests how fast a user can type. Get the time. Ask
the user to type “The quick brown fox jumps over the lazy dog”. Read a line of
input. Get the current time again in another variable of type Time. Print out the sec-
onds between the two times.

Exercise P2.30. Your boss, Juliet Jones, is getting married and decides to change her
name. Complete the following program so that you can type in the new name for
the boss:

int main()
{
 Employee boss("Jones, Juliet", 45000.00);
 // Your code goes here; leave the code above and below unchanged

G

G

G

G

G

G

Programming Exercises 97

 cout << "Name: " << boss.get_name() << "\n";
 cout << "Salary: " << boss.get_salary() << "\n";

 return 0;
}

The problem is that there is no set_name member function for the Employee class.
Hint: Make a new object of type Employee with the new name and the same salary.
Then assign the new object to boss.

Exercise P2.31. Write a program that draws the picture of a house. It could be as sim-
ple as the figure below, or if you like, make it more elaborate (3-D, skyscraper, mar-
ble columns in the entryway, whatever).

G

This page intentionally left blank

Chapter 3
Control Flow

• To be able to implement branches and loops

• To learn how to compare integers, floating-point numbers,
and strings

• To be able to use the Boolean data type

• To avoid infinite loops and off-by-one errors

• To understand nested branches and loops

• To learn how to process text input

• To implement approximations and simulations

CHAPTER GOALS

One of the essential features of nontrivial computer programs is their ability to

make decisions and to carry out different actions, depending on the nature of the

inputs. In this chapter, you will learn how to program simple and complex decisions,

as well as how to implement instruction sequences that are repeated multiple times.

You will learn to apply these techniques in practical programming situations,

for processing text files and for implementing simulations.

100 CHAPTER 3 • Control Flow

CHAPTER CONTENTS

The if statement is used to implement a decision. It has two parts: a condition and a
body (see Syntax 3.1 on page 102). If the condition is true, the body of the statement
is executed.

The body of the if statement can consist of a single statement:
if (area < 0)
 cout << "Error: Negative area\n";

This warning message is displayed only when the area is negative (see Figure 1).

3.1 The if S t a tement

The body of an if
statement is executed
when a condition is true.

3.1 The if Statement 100
SYNTAX 3.1: if Statement 102
SYNTAX 3.2: Block Statement 102
QUALITY TIP 3.1: Brace Layout 103
PRODUCTIVITY HINT 3.1: Tabs 103
ADVANCED TOPIC 3.1: The Selection Operator 104

3.2 Relational Operators 105
COMMON ERROR 3.1: Confusing = and == 107
QUALITY TIP 3.2: Compile with Zero Warnings 107
COMMON ERROR 3.2: Comparison of Floating-

Point Numbers 108

3.3 Multiple Alternatives 109
ADVANCED TOPIC 3.2: The switch Statement 110
COMMON ERROR 3.3: The Dangling else Problem 112

3.4 Nested Branches 112

3.5 Boolean Operations 115
COMMON ERROR 3.4: Multiple Relational

Operators 117
COMMON ERROR 3.5: Confusing && and ||

Conditions 118
ADVANCED TOPIC 3.3: De Morgan’s Law 119
RANDOM FACT 3.1: Artificial Intelligence 120

3.6 The while Loop 121
SYNTAX 3.3: while Statement 123
COMMON ERROR 3.6: Infinite Loops 123
COMMON ERROR 3.7: Off-by-One Errors 124

3.7 The for Loop 125
SYNTAX 3.4: for Statement 127
QUALITY TIP 3.3: Use for Loops for Their Intended

Purpose Only 128
QUALITY TIP 3.4: Don’t Use != to Test the End of a

Numeric Range 128
COMMON ERROR 3.8: Forgetting a Semicolon 129
QUALITY TIP 3.5: Symmetric and

Asymmetric Bounds 130
QUALITY TIP 3.6: Count Iterations 130

3.8 The do Loop 131
SYNTAX 3.5: do Statement 132

3.9 Nested Loops 132

3.10 Processing Inputs 133
ADVANCED TOPIC 3.4: The Loop-and-a-

Half Problem 135
PRODUCTIVITY HINT 3.2: Redirection of Input

and Output 136
ADVANCED TOPIC 3.5: End-of-File Detection 136
ADVANCED TOPIC 3.6: Clearing the Failure State

of a Stream 137
RANDOM FACT 3.2: The Denver Airport Luggage

Handling System 138

3.11 Simulations 139

3.1 • The if Statement 101

Quite often, the body of the if statement consists of multiple statements that
must be executed in sequence whenever the test is successful. These statements must
be grouped together to form a block statement by enclosing them in braces { } (see
Syntax 3.2 on page 102).

For example,
if (area < 0)
{
 cout << "Error: Negative area\n";
 length = 0;
}

If the area is negative, then all statements inside the braces are executed: a message is
printed, and the variable length is set to 0.

Often, you want to take an action when a condition is fulfilled and a different
action in all other cases. In this situation you add else followed by another
statement.

Here is a typical example. When the area of a square is positive or
zero, we display its side length. Otherwise, we display an error
message.

if (area >= 0)
 cout << "The side length is " << sqrt(area) << "\n";
else
 cout << "Error: Negative area\n";

The flowchart in Figure 2 gives a graphical representation of the branching
behavior.

Figure 1 A Decision Figure 2 Flowchart for if/else Statement

area < 0 ?

True

False

Print
message

Condition

Body

area ≥ 0 ?
True False

Compute and
print root

Display
error message

A block statement
contains a sequence
of statements, enclosed
in braces.

The else part of an
if/else statement is
executed when a
condition is false.

102 CHAPTER 3 • Control Flow

Strictly speaking, the if/else statement is not necessary. You can always replace
it with two if statements that have complementary conditions:

if (area >= 0)
 cout << "The side length is " << sqrt(area) << "\n";
if (area < 0)
 cout << "Error: Negative area\n";

However, the if/else statement is a better choice than a pair of if statements. If you
need to modify the condition area >= 0 for some reason, you don’t have to remem-
ber to update the complementary condition area < 0 as well.

SYNTAX 3.1 if Statement

if (condition) statement1
if (condition) statement1 else statement2

Example:

if (x >= 0) y = sqrt(x);
if (x >= 0) y = sqrt(x); else { y = 0; cout << "Error"; }

Purpose:

Execute a statement if the condition is true. When paired with else, execute the second
statement if the condition is false. The statement can be a simple statement (ending in a
semicolon) or a block statement.

SYNTAX 3.2 Block Statement

{
statement1;
statement2;

 ...
statementn;

}

Example:

{
 double length = sqrt(area);
 cout << area << "\n";
}

Purpose:

Group several statements into a block that can be controlled by another statement.

3.1 • The if Statement 103

Brace Layout

The compiler doesn’t care where you place braces, but we strongly recommend that you fol-
low the simple rule of making { and } line up.

int main()
{
 double area;
 cin >> area;
 if (area >= 0)
 {
 double length = sqrt(area);
 ...
 }
 ...
 return 0;
}

This scheme makes it easy to spot matching braces. Some programmers put the opening
brace on the same line as the if:

if (area >= 0) {
 double length = sqrt(area);
 ...
}

which makes it harder to match the braces, but it saves a line of code, allowing you to view
more code on the screen without scrolling. There are passionate advocates of both styles.

It is important that you pick a layout scheme and stick with it consistently within a given
programming project. Which scheme you choose may depend on your personal preference
or a coding style guide that you need to follow.

Tabs

Block-structured code has the property that nested statements are indented one or more levels:

int main()
{
| double area;
| ...
| if (area >= 0)
| {
| | double length = sqrt(area);
| | ...
| } |

| ...
| return 0;
} | |

0 1 2

Indentation level

QUAL ITY T IP 3.1

PRODUCT IV ITY HINT 3.1

104 CHAPTER 3 • Control Flow

How many spaces should you use per indentation level? Some programmers use eight spaces
per level, but that isn’t a good choice:

int main()
{
 double area;
 ...
 if (area >= 0)
 {
 double length = sqrt(area);
 ...
 }
 ...
 return 0;
}

It crowds the code too much to the right side of the screen. As a consequence, long expres-
sions frequently must be broken into separate lines. More common values are 2, 3, or 4
spaces per indentation level.

How do you move the cursor from the leftmost column to the appropriate indentation
level? A perfectly reasonable strategy is to hit the space bar a sufficient number of times.
However, many programmers use the Tab key instead. A tab moves the cursor to the next
tab stop. By default, there are tab stops every 8 columns, but most editors let you change that
value; you should find out how to set your editor’s tab stops to, say, every 3 columns. (Note
that the Tab key does not simply enter three spaces. It moves the cursor to the next tab
column.)

Some editors actually help you out with an autoindent feature. They automatically insert
as many tabs or spaces as the preceding line had, because it is quite likely that the new line is
supposed to be on the same indentation level. If it isn’t, you must add or remove a tab, but
that is still faster than tabbing all the way from the left margin.

As nice as tabs are for data entry, they have one disadvantage: They can mess up printouts.
If you send a file with tabs to a printer, the printer may either ignore the tabs altogether or
set tab stops every eight columns. It is therefore best to save and print your files with spaces
instead of tabs. Most editors have settings to automatically convert tabs to spaces when sav-
ing or printing. Look at the documentation of your editor to find out how to activate this
useful setting.

The Selection Operator

C++ has a selection operator of the form

test ? value1 : value2

The value of that expression is either value1 if the test passes or value2 if it fails. For example,
we can compute the absolute value as

y = x >= 0 ? x : -x;

which is a convenient shorthand for

ADVANCED TOPIC 3.1

3.2 • Relational Operators 105

if (x >= 0) y = x;
else y = -x;

The selection operator is similar to the if/else statement, but it works on a different syntac-
tical level. The selection operator combines expressions and yields another expression. The
if/else statement combines statements and yields another statement.

Expressions have values. For example, -b + sqrt(r) is an expression, as is x >= 0 ? x : -x.
Any expression can be made into a statement by adding a semicolon. For example, y = x is
an expression (with value x), but y = x; is a statement. Statements do not have values.
Because if/else forms a statement and does not have a value, you cannot write

y = if (x > 0) x; else -x; // Error

We don’t use the selection operator in this book, but it is a convenient and legitimate con-
struct that you will find in many C++ programs.

Every if statement performs a test. In many cases, the test compares
two values. For example, in the previous examples we tested area < 0
and area >= 0. The comparisons < and >= are called relational opera-
tors. C++ has six relational operators:

As you can see, only two C++ relational operators (> and <) look as you would
expect from the mathematical notation. Computer keyboards do not have keys for
≥, ≤, or ≠, but the >=, <=, and != operators are easy to remember because they look
similar. The == operator is initially confusing to most newcomers to C++. In C++,
= already has a meaning, namely assignment. The == operator denotes equality
testing:

a = 5; // Assign 5 to a
if (a == 5) // Test whether a equals 5

3.2 Relat iona l Operators

Relational operators are
used to compare numbers
and strings.

C++ Math Notation Description

> > Greater than

>= ≥ Greater than or equal

< < Less than

<= ≤ Less than or equal

== = Equal

!= ≠ Not equal

106 CHAPTER 3 • Control Flow

You must remember to use == inside tests and to use = outside tests.
(See Common Error 3.1 on page 107 for more information.)

You can compare strings as well:

if (name == "Harry") ...

In C++, letter case matters. For example, "Harry" and "HARRY" are not the same
string.

If you compare strings using < <= > >=, they are compared in dic-
tionary order. For example, the test

string name = "Tom";
if (name < "Dick") ...

fails, because in the dictionary Dick comes before Tom. Actually, the dictionary
ordering used by C++ is slightly different from that of a normal dictionary. C++ is
case-sensitive and sorts characters by listing numbers first, then uppercase charac-
ters, then lowercase characters. For example, 1 comes before B, which comes before
a. The space character comes before all other characters. Strictly speaking, the char-
acter sort order is implementation-dependent, but the majority of systems use the
so-called ASCII code (American Standard Code for Information Interchange), or
one of its extensions, whose characters are sorted as described.

When comparing two strings, corresponding letters are compared until one of
the strings ends or the first difference is encountered. If one of the strings ends, the
longer string is considered the later one. If a character mismatch is found, compare
the characters to determine which string comes later in the dictionary sequence.
This process is called lexicographic comparison. For example, compare "car" with
"cargo". The first three letters match, and we reach the end of the first string. There-
fore "car" comes before "cargo" in the lexicographic ordering. Now compare
"cathode" with "cargo". The first two letters match. Since t comes after r, the string
"cathode" comes after "cargo" in lexicographic ordering. (See Figure 3.)

You can only compare numbers with numbers and strings with strings. The test

string name = "Harry";
if (name > 5) // Error

is not valid.
You cannot use relational operators to compare objects of arbitrary classes. For

example, if s and t are two objects of the Time class, then the comparison s == t is
an error.

Use == for equality
testing, = for assignment.

The lexicographic or
dictionary order is used to
compare strings.

Figure 3 Lexicographic Ordering

c a r g o

c a t h o d

Letters
match

e

r comes
before t

3.2 • Relational Operators 107

Confusing = and ==

The rule for the correct usage of = and == is very simple: In tests, always use == and never
use =. If it is so simple, why can’t the compiler be helpful and flag any errors?

Actually, the C++ language allows the use of = inside tests. To understand this, we have to
go back in time. For historical reasons, the expression inside an if () need not be a logical
condition. Any numeric value can be used inside a condition, with the convention that 0
denotes false and any non-0 value denotes true. Furthermore, in C++ assignments are also
expressions and have values. For example, the value of the expression a = 5 is 5. That can be
convenient—you can capture the value of an intermediate expression in a variable:

x1 = (-b - (r = sqrt(b * b - 4 * a * c))) / (2 * a);
x2 = (- b + r) / (2 * a);

The expression r = sqrt(b * b - 4 * a * c) has a value, namely the value that is assigned to
r, and thus can be nested inside the larger expression. We don’t recommend this style of pro-
gramming, because it is not much more trouble to set r first and then set x1 and x2, but there
are situations in which the construction is useful.

These two features—namely that numbers can be used as truth values and that assign-
ments are expressions with values—conspire to make a horrible pitfall. The test

if (x = y) ...

is legal C++, but it does not test whether x and y are equal. Instead, the code sets x to y, and if
that value is not zero, the body of the if statement is executed.

Fortunately, most compilers issue a warning when they encounter such a statement. You
should take such warnings seriously. (See Quality Tip 3.2 for more advice about compiler
warnings.)

Some shell-shocked programmers are so nervous about using = that they use == even
when they want to make an assignment:

x2 == (-b + r) / (2 * a);

Again, this is legal C++. This statement tests whether x2 equals the expression of the right-
hand side. It doesn’t do anything with the outcome of the test, but that is not an error. Some
compilers will warn that “the code has no effect”, but others will quietly accept the code.

Compile with Zero Warnings

There are two kinds of messages that the compiler gives you: errors and warnings. Error
messages are fatal; the compiler will not translate a program with one or more errors. Warn-
ing messages are advisory; the compiler will translate the program, but there is a good chance
that the program will not do what you expect it to do.

You should make an effort to write code that emits no warnings at all. Usually, you can
avoid warnings by convincing the compiler that you know what you are doing. For example,
many compilers warn of a possible loss of information when you assign a floating-point
expression to an integer variable:

int pennies = 100 * (amount_due - amount_paid);

COMMON ERROR 3.1

QUAL ITY T IP 3.2

108 CHAPTER 3 • Control Flow

Use an explicit cast (see Common Error 3.2), and the compiler will stop complaining:

int pennies = static_cast<int>(100 * (amount_due - amount_paid));

Some compilers emit warnings that can only be turned off with a great deal of skill or trouble.
If you run into such a warning, confirm with your instructor that it is indeed unavoidable.

Comparison of Floating-Point Numbers

Floating-point numbers have only a limited precision, and calculations can introduce round-
off errors. For example, the following code multiplies the square root of 2 by itself. We
expect to get the answer 2:

double r = sqrt(2);
if (r * r == 2) cout << "sqrt(2) squared is 2\n";
else cout << "sqrt(2) squared is not 2 but " << r * r << "\n".

Strangely enough, this program displays

sqrt(2) squared is not 2 but 2

To see what really happens, we need to see the output with higher precision. Then the
answer is

sqrt(2) squared is not 2 but 2.0000000000000004

This explains why r * r didn’t compare to be equal to 2. Unfortunately, roundoff errors are
unavoidable. It does not make sense in most circumstances to compare floating-point num-
bers exactly. Instead, we should test whether they are close enough. That is, the magnitude of
their difference should be less than some threshold. Mathematically, we would write that x
and y are close enough if

for a very small number, ε. ε is the Greek letter epsilon, a letter commonly used to denote a
very small quantity. It is common to set ε to 10–14 when comparing double numbers.

However, this test is often not quite good enough. Suppose x and y are rather large, say a
few million each. Then one could be a roundoff error for the other even if their difference
was quite a bit larger than 10–14. To overcome this problem, we really need to test whether

This formula has one limitation. Suppose either x or y is zero. Then

has the value 1. Conceptually, there is not enough information to compare the magnitudes in
this situation. In that situation, you need to set ε to a value that is appropriate for the prob-
lem domain, and check whether .

COMMON ERROR 3.2

x y− ≤ ε

x y
x y

−
() ≤

max ,
ε

x y

x y

−

()max ,

x y− ≤ ε

3.3 • Multiple Alternatives 109

Up to this point, you saw how to program a two-way branch with an
if/else statement. In many situations, there are more than two cases.

Consider the task of translating a value on the Richter scale, a
measurement of the strength of an earthquake, into a description the
likely impact. You use a sequence of if/else statements, like this:

if (richter >= 8.0)
 cout << "Most structures fall";
else if (richter >= 7.0)
 cout << "Many buildings destroyed";
else if (richter >= 6.0)
 cout << "Many buildings considerably damaged, some collapse";
else if (richter >= 4.5)
 cout << "Damage to poorly constructed buildings";
else
 cout << "Generally no damage";

As soon as one of the tests succeeds, a description is displayed, and no further tests
are attempted. If none of the four cases applies, an error message is printed. Figure 4
shows the flowchart for this multiple-branch statement. (See ch03/richter.cpp for
the complete program.)

Note that the order of the tests is important. Suppose we reverse
the order:

if (richter >= 4.5)
 cout << "Damage to poorly constructed buildings";
else if (richter >= 6.0)
 cout << "Many buildings considerably damaged,"
 << "some collapse";
else if (richter >= 7.0)
 cout << "Many buildings destroyed";
else if (richter >= 8.0)
 cout << "Most structures fall";

This does not work. Suppose richter has the value 7.1. That value matches the first
condition, and a wrong description is displayed.

In this example, it is also important that we use an if/else/else test, not just
multiple independent if statements. Consider this sequence of independent tests:

if (richter >= 8.0) // Didn’t use else
 cout << "Most structures fall";
if (richter >= 7.0)
 cout << "Many buildings destroyed";
if (richter >= 6.0)
 cout << "Many buildings considerably damaged, some collapse";
if (richter >= 4.5)
 cout << "Damage to poorly constructed buildings";

Now the alternatives are no longer exclusive. If richter is 7.1, then the last three
tests all match, and three messages are printed.

3.3 Mult ip le Al ternat ives

Multiple if/else
statements can be
combined to evaluate
complex decisions.

When using multiple
if/else statements,
pay attention to the
order of the conditions.

110 CHAPTER 3 • Control Flow

The switch Statement

A sequence of if/else/else that compares a single integer value against several constant
alternatives can be implemented as a switch statement. For example,

int digit;
...

Figure 4
Multiple Alternatives

richter ≥ 8.0?

richter ≥ 7.0?

richter ≥ 6.0?

richter ≥ 4.5?

No destruction
of buildings

False

False

False

False

True

True

True

True

Most
structures

fall

Many
buildings
destroyed

Many buildings
considerably

damaged,
some collapse

Damage to
poorly constructed

buildings

ADVANCED TOPIC 3.2

3.3 • Multiple Alternatives 111

switch(digit)
{
 case 1: digit_name = "one"; break;
 case 2: digit_name = "two"; break;
 case 3: digit_name = "three"; break;
 case 4: digit_name = "four"; break;
 case 5: digit_name = "five"; break;
 case 6: digit_name = "six"; break;
 case 7: digit_name = "seven"; break;
 case 8: digit_name = "eight"; break;
 case 9: digit_name = "nine"; break;
 default: digit_name = ""; break;
}

This is a shortcut for

int digit;
if (digit == 1) digit_name = "one";
else if (digit == 2) digit_name = "two";
else if (digit == 3) digit_name = "three";
else if (digit == 4) digit_name = "four";
else if (digit == 5) digit_name = "five";
else if (digit == 6) digit_name = "six";
else if (digit == 7) digit_name = "seven";
else if (digit == 8) digit_name = "eight";
else if (digit == 9) digit_name = "nine";
else digit_name = "";

Well, it isn’t much of a shortcut. It has one advantage—it is obvious that all branches test the
same value, namely digit—but the switch statement can be applied only in narrow circum-
stances. The test cases must be constants, and they must be integers. You cannot use

switch(name)
{
 case "penny": value = 0.01; break; // Error
 ...
}

There is a reason for these limitations. The compiler can generate efficient test code (using
so-called jump tables or binary searches) only in the situation that is permitted in a switch
statement. Of course, modern compilers will be happy to perform the same optimization for
a sequence of alternatives in an if/else/else statement, so the need for the switch has
largely gone away.

We forgo the switch statement in this book for a different reason. Every branch of the
switch must be terminated by a break instruction. If the break is missing, execution falls
through to the next branch, and so on, until finally a break or the end of the switch is
reached. There are a few cases in which this is actually useful, but they are very rare. Peter
van der Linden [1, p. 38] describes an analysis of the switch statements in the Sun C compiler
front end. Of the 244 switch statements, each of which had an average of 7 cases, only 3 per-
cent used the fall-through behavior. That is, the default—falling through to the next case
unless stopped by a break—is wrong 97 percent of the time. Forgetting to type the break is an
exceedingly common error, yielding wrong code.

We leave it to you to use the switch statement for your own code or not. At any rate, you
need to have a reading knowledge of switch in case you find it in the code of other
programmers.

112 CHAPTER 3 • Control Flow

The Dangling else Problem

When an if statement is nested inside another if statement, the following error may occur.

double shipping_charge = 5.00; // $5 inside continental U.S.

if (country == "USA")
 if (state == "HI")
 shipping_charge = 10.00; // Hawaii is more expensive
else // Pitfall!
 shipping_charge = 20.00; // as are foreign shipments

The indentation level seems to suggest that the else is grouped with the test country ==
"USA". Unfortunately, that is not the case. The compiler ignores all indentation and follows
the rule that an else always belongs to the closest if. That is, the code is actually

double shipping_charge = 5.00; // $5 inside continental U.S.
if (country == "USA")

if (state == "HI")
 shipping_charge = 10.00; // Hawaii is more expensive

else // Pitfall!
 shipping_charge = 20.00;

That isn’t what you want. You want to group the else with the first if. This problem is
called a dangling else. To resolve it, you must use braces.

double shipping_charge = 5.00; // $5 inside continental U.S.
if (country == "USA")
{
 if (state == "HI")
 shipping_charge = 10.00; // Hawaii is more expensive
}
else
 shipping_charge = 20.00; // as are foreign shipments

To avoid having to think about the pairing of the else, we recommend that you always use a
set of braces when the body of an if contains another if.

It is often necessary to include an if/else statement inside another. Such an
arrangement is called a nested set of statements. Here is a typical example.

In the United States different tax rates are used depending on the taxpayer’s mar-
ital status. There are two main tax schedules, for single and for married taxpayers.
Married taxpayers add their income together and pay taxes on the total. (In fact,
there are two other schedules, “head of household” and “married filing separately”,
which we will ignore for simplicity.) Table 1 gives the tax rate computations for
each of the filing categories, using the values for the 1992 federal tax return (which
had a particularly simple structure).

COMMON ERROR 3.3

3.4 Nested Branches

3.4 • Nested Branches 113

Now compute the taxes due, given a filing status and an income figure. The key
point is that there are two levels of decision making. First, you must branch on the
filing status. Then, for each filing status, you must have another branch on income
level. (See Figure 5 for a flowchart.)

Table 1 Federal Tax Rate Schedule

If your status is Single and
if the taxable income is over but not over the tax is of the amount over

$0 $21,450 15% $0

$21,450 $51,900 $3,217.50 � 28% $21,450

$51,900 $11,743.50 � 31% $51,900

If your status is Married and
if the taxable income is over but not over the tax is of the amount over

$0 $35,800 15% $0

$35,800 $86,500 $5,370.00 + 28% $35,800

$86,500 $19,566.00 + 31% $86,500

Figure 5 Income Tax Computation

15%
bracket

28%
bracket

31%
bracket

Single

income
≤ 21,450

income
≤ 51,900

15%
bracket

28%
bracket

31%
bracket

income
≤ 35,800

income
≤ 86,500

FalseTrue

True

True

False

False

True

True

False

False

114 CHAPTER 3 • Control Flow

The two-level decision process is reflected in two levels of if statements in the
program at the end of this section. In theory, nesting can go deeper than two levels.
A three-level decision process (first by state, then by status, then by income level)
requires three nesting levels.

ch03/tax.cpp

1 #include <iostream>
2 #include <string>
3
4 using namespace std;
5
6 int main()
7 {
8 const double SINGLE_LEVEL1 = 21450.00;
9 const double SINGLE_LEVEL2 = 51900.00;
10
11 const double SINGLE_TAX1 = 3217.50;
12 const double SINGLE_TAX2 = 11743.50;
13
14 const double MARRIED_LEVEL1 = 35800.00;
15 const double MARRIED_LEVEL2 = 86500.00;
16
17 const double MARRIED_TAX1 = 5370.00;
18 const double MARRIED_TAX2 = 19566.00;
19
20 const double RATE1 = 0.15;
21 const double RATE2 = 0.28;
22 const double RATE3 = 0.31;
23
24 double income;
25 double tax;
26
27 cout << "Please enter your income: ";
28 cin >> income;
29
30 cout << "Please enter s for single, m for married: ";
31 string marital_status;
32 cin >> marital_status;
33
34 if (marital_status == "s")
35 {
36 if (income <= SINGLE_LEVEL1)
37 tax = RATE1 * income;
38 else if (income <= SINGLE_LEVEL2)
39 tax = SINGLE_TAX1
40 + RATE2 * (income - SINGLE_LEVEL1);
41 else
42 tax = SINGLE_TAX2
43 + RATE3 * (income - SINGLE_LEVEL2);
44 }
45 else
46 {

3.5 • Boolean Operations 115

When you make complex decisions, you often need to combine conditions that can
be true or false. An operator that combines conditions is called a Boolean operator,
named after the mathematician George Boole (1815–1864), a pioneer in the study of
logic.

In C++, you use the && operator to combines several tests into a new
test that passes only when all conditions are true. The || logical oper-
ator also combines two or more conditions. The resulting test suc-
ceeds if at least one of the conditions is true.

Suppose that a discount shipping rate applies to packages inside
the U.S. that weigh at most one pound. The test for the discount

passes only if both conditions are true. You use the && operator to join the condi-
tions. (This operator is pronounced and.)

if (country == "USA" && weight <= 1)
 shipping_charge = 2.50;

If either one of the conditions is false, then the test fails.

47 if (income <= MARRIED_LEVEL1)
48 tax = RATE1 * income;
49 else if (income <= MARRIED_LEVEL2)
50 tax = MARRIED_TAX1
51 + RATE2 * (income - MARRIED_LEVEL1);
52 else
53 tax = MARRIED_TAX2
54 + RATE3 * (income - MARRIED_LEVEL2);
55 }
56 cout << "The tax is $" << tax << "\n";
57 return 0;
58 }

3.5 Boolean Operat ions

C++ has two boolean
operators that combine
conditions: && (and)
and || (or).

116 CHAPTER 3 • Control Flow

To test whether at least one condition is true, use the || operator (pronounced
or). For example, in the following test we test whether an order is shipped to Alaska
or Hawaii.

if (state == "HI" || state == "AK")
 shipping_charge = 10.00;

Figure 6 shows flowcharts for these examples.
The && and || operators are computed using lazy evaluation. In

other words, logical expressions are evaluated from left to right, and
evaluation stops as soon as the truth value is determined. When an or
is evaluated and the first condition is true, the second condition is
not evaluated, because it does not matter what the outcome of the
second test is. Here is an example:

if (r >= 0 && -b / 2 + sqrt(r) >= 0) ...

If r is negative, then the first condition is false, and thus the combined statement is
false, no matter what the outcome of the second test is. The second test is never
evaluated for negative r, and there is no danger of computing the square root of a
negative number.

Sometimes, you need to evaluate a logical condition in one part of
a program and use it elsewhere. To store a condition that can be true
or false, you use a variable of a special data type bool. That type has
exactly two values, denoted false and true. These values are not
strings or integers; they are special values, just for Boolean operations.

For example, you may want to remember whether a shipment gets a discount:
bool discounted = country == "USA" && weight <= 1;

The variable is set to the value of the Boolean expression on the right, that is, true if
both conditions are true and false otherwise.

Figure 6 Flowcharts for and and or Combinations

True True True

True

False

False

False False
country ==
 "USA" ?

weight ≤ 1?

shipping_
charge
= 2.50

shipping_
charge
= 10.00

state ==
 "HI" ?

state ==
 "AK" ?

The && and || operators
are computed lazily: As
soon as the truth value is
determined, no further
conditions are evaluated.

The Boolean type bool
has two values, false
and true.

3.5 • Boolean Operations 117

The ! operator (pronounced not) inverts a Boolean value. For
example,

!discounted

is true if discounted is false.
Here is a summary of the three logical operations:

Multiple Relational Operators

Consider the expression

if (-0.5 <= x <= 0.5) // Error

This looks just like the mathematical test –0.5 ≤ x ≤ 0.5. Unfortunately, it is not.
Let us dissect the expression -0.5 <= x <= 0.5. The first half, -0.5 <= x, is a test with

outcome true or false, depending on the value of x. The outcome of that test (true or false)
is then compared against 0.5. This seems to make no sense. Can one compare truth values
and floating-point numbers? Is true larger than 0.5 or not? Unfortunately, to stay compati-
ble with the C language, C++ converts false to 0 and true to 1.

You therefore must be careful not to mix logical and arithmetic expressions in your pro-
grams. Instead, use and to combine two separate tests:

if (-0.5 <= x && x <= 0.5) ...

To invert a Boolean value,
use the ! (not) operator.

A B A && B

true true true

true false false

false Any false

A B A || B

true Any true

false true true

false false false

A !A

true false

false true

COMMON ERROR 3.4

118 CHAPTER 3 • Control Flow

Another common error, along the same lines, is to write

if (x && y > 0) ... // Error

instead of

if (x > 0 && y > 0) ...

Unfortunately, the compiler will not issue an error message. Instead, it does the opposite
conversion, converting x to true or false. Zero is converted to false, and any nonzero value
is converted to true. If x is not zero, then it tests whether y is greater than 0, and finally it
computes the and of these two truth values. Naturally, that computation makes no sense.

Confusing && and || Conditions

It is a surprisingly common error to confuse and and or conditions. A value lies between 0
and 100 if it is at least 0 and at most 100. It lies outside that range if it is less than 0 or greater
than 100. There is no golden rule; you just have to think carefully.

Often the and or or is clearly stated, and then it isn’t too hard to implement it. But some-
times the wording isn’t as explicit. It is quite common that the individual conditions are
nicely set apart in a bulleted list, but with little indication of how they should be combined.
The instructions for the 1992 tax return say that you can claim single filing status if any one
of the following is true:
• You were never married.
• You were legally separated or divorced on December 31, 1992.
• You were widowed before January 1, 1992, and did not remarry in 1992.
Since the test passes if any one of the conditions is true, you must combine the conditions
with or. Elsewhere, the same instructions state that you may use the more advantageous sta-
tus of married filing jointly if all five of the following conditions are true:
• Your spouse died in 1990 or 1991 and you did not remarry in 1992.
• You have a child whom you can claim as dependent.
• That child lived in your home for all of 1992.
• You paid over half the cost of keeping up your home for this child.
• You filed (or could have filed) a joint return with your spouse the year he or she died.
Because all of the conditions must be true for the test to pass, you must combine them with
an and.

COMMON ERROR 3.5

3.5 • Boolean Operations 119

De Morgan’s Law

Humans generally have a hard time comprehending logical
conditions with not operators applied to and/or expressions.
De Morgan’s Law, named after the logician Augustus De
Morgan, can be used to simplify these Boolean expressions.

Suppose we want to charge a higher shipping rate if we
don’t ship within the continental United States.

if (!(country == "USA"
 && state != "AK"
 && state != "HI"))
 shipping_charge = 20.00;

This test is a little bit complicated, and you have to think carefully through the logic. When it
is not true that the country is USA and the state is not Alaska and the state is not Hawaii,
then charge $20.00. Huh? It is not true that some people won’t be confused by this code.

The computer doesn’t care, but it takes human programmers to write and maintain the
code. Therefore, it is useful to know how to simplify such a condition.

 De Morgan’s Law has two forms: one for the negation of an and expression and one for
the negation of an or expression:

!(A && B) is the same as !A || !B
!(A || B) is the same as !A && !B

Pay particular attention to the fact that the and and or operators are reversed by moving the
not inward. For example, the negation of “the state is Alaska or it is Hawaii”,

!(state == "AK" || state == "HI")

is “the state is not Alaska and it is not Hawaii”:

!(state == "AK") && !(state == "HI")

That is, of course, the same as

state != "AK" && state != "HI"

Now apply the law to our shipping charge computation:

!(country == "USA"
 && state != "AK"
 && state != "HI")

is equivalent to

!(country == "USA")
 || !(state != "AK")
 || !(state != "HI")

That yields the simpler test

country != "USA"
 || state == "AK"
 || state == "HI"

To simplify conditions with negations of and or or expressions, it is usually a good idea to
apply De Morgan’s Law to move the negations to the innermost level.

ADVANCED TOPIC 3.3

De Morgan’s law tells you
how to negate an &&/||
condition: Reverse the
operator and move the !
inward.

120 CHAPTER 3 • Control Flow

Artificial Intelligence

When one uses a sophisticated computer program such as a tax preparation package, one is
bound to attribute some intelligence to the computer. The computer asks sensible questions
and makes computations that we find a mental challenge. After all, if doing one’s taxes were
easy, we wouldn’t need a computer to do it for us.

As programmers, however, we know that all this apparent intelligence is an illusion.
Human programmers have carefully “coached” the software in all possible scenarios, and it
simply replays the actions and decisions that were programmed into it.

Would it be possible to write computer programs that are genuinely intelligent in some
sense? From the earliest days of computing, there was a sense that the human brain might be
nothing but an immense computer, and that it might well be feasible to program computers
to imitate some processes of human thought. Serious research into artificial intelligence
began in the mid-1950s, and the first twenty years brought some impressive successes. Pro-
grams that play chess—surely an activity that appears to require remarkable intellectual
powers—have become so good that they now routinely beat all but the best human players.
As far back as 1975, an expert-system program called Mycin gained fame for being better in
diagnosing meningitis in patients than the average physician.

However, there were serious setbacks as well. From 1982 to 1992, the Japanese govern-
ment embarked on a massive research project, funded at over 40 billion Japanese yen. It was
known as the Fifth-Generation Project. Its goal was to develop new hardware and software
to improve the performance of expert system software greatly. At its outset, the project cre-
ated great fear in other countries that the Japanese computer industry was about to become
the undisputed leader in the field. However, the end results were disappointing and did little
to bring artificial intelligence applications to market.

From the very outset, one of the stated goals of the AI community was to produce soft-
ware that could translate text from one language to another, for example from English to
Russian. That undertaking proved to be enormously complicated. Human language appears
to be much more subtle and interwoven with the human experience than had originally been
thought. Even the grammar-checking tools that come with word-processing programs today
are more of a gimmick than a useful tool, and analyzing grammar is just the first step in
translating sentences.

The CYC (from encyclopedia) project, started by Douglas Lenat in 1984, tries to codify
the implicit assumptions that underlie human speech and writing. The team members started
out analyzing news articles and asked themselves what unmentioned facts are necessary to
actually understand the sentences. For example, consider the sentence “Last fall she enrolled
in Michigan State”. The reader automatically realizes that “fall” is not related to falling down
in this context, but refers to the season. While there is a state of Michigan, here Michigan
State denotes the university. A priori, a computer program has none of this knowledge. The
goal of the CYC project is to extract and store the requisite facts—that is, (1) people enroll in
universities; (2) Michigan is a state; (3) many states have universities named X State Univer-
sity, often abbreviated as X State; (4) most people enroll in a university in the fall. By 1995,
the project had codified about 100,000 common-sense concepts and about a million facts of
knowledge relating them. Even this massive amount of data has not proven sufficient for
useful applications.

In recent years, artificial intelligence technology has seen substantial advances. One of the
most astounding examples is the outcome of a series of “grand challenges” for autonomous
vehicles by the Defense Advanced Research Projects Agency (DARPA). Competitors were

RANDOM FACT 3.1

3.6 • The while Loop 121

invited to submit computer-controlled vehicles which had to complete obstacle courses,
without a human driver or remote control. The first event, in 2004, was a disappointment,
with none of the entrants finishing the route. In 2005, five vehicles completed a grueling 212
km course in the Mojave desert. Stanford’s Stanley came in first, with an average speed of 30
km/h. In 2007, DARPA moved the competition to an “urban” environment, an abandoned
air force base. Vehicles had to be able to interact with each other, following California traffic
laws. As Stanford’s Sebastian Thrun explained: “In the last Grand Challenge, it didn't really
matter whether an obstacle was a rock or a bush, because either way you’d just drive around
it. The current challenge is to move from just sensing the environment to understanding the
environment.”

In an if statement, a condition is evaluated and an action is taken. However, this
process only happens once. In many situations, you want to repeat an action multi-
ple times, depending on a condition. In this section, you will see how to use the
while statement for repeating an action.

Recall the investment problem from Chapter 1. You put $10,000 into a bank
account that earns 5 percent interest per year. How many years does it take for the
account balance to be double the original investment?

In Chapter 1 we developed an algorithm for this problem, but we didn’t present
enough C++ syntax to implement it. Here is the algorithm.

Step 1 Start with the table.

Figure 7 The Winner of the 2007 DARPA Urban Challenge

3.6 The while Loop

Year Balance

0 $10,000.00

122 CHAPTER 3 • Control Flow

Step 2 Repeat steps 2a … 2c while the balance is less than $20,000.

Step 2a Add a new row to the table.

Step 2b In column 1 of the new row, put one more than the preceding year’s
value.

Step 2c In column 2 of the new row, place the value of the preceding balance,
multiplied by 1.05 (5 percent).

Step 3 Report the last number in the year column as the answer.

You now know that each column in that table corresponds to a C++ variable, and
you know how to update and print the variables. What you don’t yet know is how
to carry out “Repeat steps 2a … 2c while the balance is less than $20,000”.

In C++, the while statement (see Syntax 3.3 on page 123) imple-
ments such a repetition. The code

while (condition)
statement

keeps executing the statement while the condition is true. The state-
ment can be a block statement if you need to carry out multiple actions in the loop.

A while statement is often called a loop. If you draw a flowchart, the control
loops backwards to the test after every iteration (see Figure 8).

Here is the program that solves the investment problem:

A while loop executes a
block of code repeatedly,
while a condition remains
true.

Figure 8 Flowchart of a while Loop

False

True

Increment
year

Add interest
to balance

balance <
2 × initial_
balance

?

3.6 • The while Loop 123

ch03/doublinv.cpp

Program Run

Infinite Loops

The most annoying loop error is an infinite loop: a loop that runs forever and can be stopped
only by killing the program or restarting the computer. If there are output statements in the
loop, then reams and reams of output flash by on the screen. Otherwise, the program just sits
there and hangs, seeming to do nothing. On some systems, you can kill a hanging program

1 #include <iostream>
2
3 using namespace std;
4
5 int main()
6 {
7 double rate = 5;
8 double initial_balance = 10000;
9 double balance = initial_balance;
10 int year = 0;
11
12 while (balance < 2 * initial_balance)
13 {
14 double interest = balance * rate / 100;
15 balance = balance + interest;
16 year++;
17 }
18
19 cout << "The investment doubled after "
20 << year << " years.\n";
21
22 return 0;
23 }

The investment doubled after 15 years.

SYNTAX 3.3 while Statement

while (condition) statement

Example:

while (x >= 10) x = sqrt(x);

Purpose:

Execute the statement while the condition remains true.

COMMON ERROR 3.6

124 CHAPTER 3 • Control Flow

by hitting Ctrl + Break or Ctrl + C. On others, you can close the window in which the pro-
gram runs.

A common reason for infinite loops is forgetting to update the variable that controls the
loop:

year = 1;
while (year <= 20)
{
 double interest = balance * rate / 100;
 balance = balance + interest;
}

Here the programmer forgot to add a year++ command in the
loop. As a result, the year always stays at 1, and the loop
never comes to an end.

Another common reason for an infinite loop is acciden-
tally incrementing a counter that should be decremented (or

vice versa). Consider this example:

year = 20;
while (year > 0)
{
 double interest = balance * rate / 100;
 balance = balance + interest;
 year++;
}

The year variable really should have been decremented, not incremented. This is a common
error because incrementing counters is so much more common than decrementing that your
fingers may type the ++ on autopilot. As a consequence, year is always larger than 0, and the
loop never terminates. (Actually, eventually year may exceed the largest representable posi-
tive integer and wrap around to a negative number. Then the loop exits—of course, with a
completely wrong result.)

Off-by-One Errors

Consider our computation of the number of years that are required to double an investment:

int year = 0;
while (balance < 2 * initial_balance)
{
 double interest = balance * rate / 100;
 balance = balance + interest;
 year++;
}
cout << "The investment doubled after "
 << year << " years.\n";

Should year start at 0 or at 1? Should you test for balance < 2 * initial_balance or for
balance <= 2 * initial_balance? It is easy to be off by one in these expressions.

An infinite loop keeps
running until the program
is forcibly terminated.

COMMON ERROR 3.7

3.7 • The for Loop 125

Some people try to solve off-by-one errors by randomly
inserting +1 or -1 until the program seems to work—a terri-
ble strategy. It can take a long time to compile and test all the
various possibilities. Expending a small amount of mental
effort is a real time saver.

Fortunately, off-by-one errors are easy to avoid, simply
by thinking through a couple of test cases and using the

information from the test cases to come up with a rationale for your decisions.
Should year start at 0 or at 1? Look at a scenario with simple values: an initial balance of

$100 and an interest rate of 50 percent. After year 1, the balance is $150, and after year 2 it is
$225, or over $200. So the investment doubled after 2 years. The loop executed two times,
incrementing years each time. Hence years must start at 0, not at 1.

In other words, the balance variable denotes the balance after the end of the year. At the
outset, the balance variable contains the balance after year 0 and not after year 1.

Next, should you use a < or <= comparison in the test? This is harder to figure out,
because it is rare for the balance to be exactly twice the initial balance. There is one case when
this happens, namely when the interest is 100 percent. The loop executes once. Now year is
1, and balance is exactly equal to 2 * initial_balance. Has the investment doubled after
one year? It has. Therefore, the loop should not execute again. If the test condition is
balance < 2 * initial_balance, the loop stops, as it should. If the test condition had
been balance <= 2 * initial_balance, the loop would have executed once more.

In other words, you keep adding interest while the balance has not yet doubled.

Far and away the most common loop has the form
i = start;
while (i <= end)
{
 ...
 i++;
}

Because this loop is so common, there is a special form for it (see Syntax 3.4 on page
127) that amplifies the pattern:

for (i = start; i <= end; i++)
{
 ...
}

You can optionally define the loop variable in the loop. It then persists until the
loop exits.

for (int i = 1; i <= 10; i++)
{
 ...
} // i no longer defined here

An off-by-one error occurs
when a programmer
mistakenly uses a value
that is one more or less
than the correct value.

3.7 The for Loop

The for loop is used when
a value runs from a
starting point to an ending
point with a constant
increment or decrement.

126 CHAPTER 3 • Control Flow

The three slots in the for header can contain any three expressions. We can count
down instead of up:

for (int i = 10; i >= 0; i--)
{
 ...
}

The increment or decrement need not be in steps of 1:
for (int i = 0; i <= 10; i = i + 2) ...

It is possible—but a sign of unbelievably bad taste—to put unrelated conditions
into the loop:

for (rate = 6; month--; cout >> balance) ... // Bad taste

We won’t even begin to decipher what that might mean. You should stick with for
loops that initialize, test, and update a single variable.

The following program uses a for loop to print a table of values. Figure 9 shows
the corresponding flowchart.

Figure 9
Flowchart of a for Loop

True

False

year++

year ≤ 10 ?

year = 1

Update balance;
Print year and

balance

3.7 • The for Loop 127

ch03/baltable.cpp

Program Run

1 #include <iostream>
2 #include <iomanip>
3
4 using namespace std;
5
6 int main()
7 {
8 double rate = 5;
9 double balance = 10000;
10
11 for (int year = 1; year <= 10; year++)
12 {
13 double interest = balance * rate / 100;
14 balance = balance + interest;
15 cout << setw(2) << year << ": "
16 << fixed << setprecision(2) << balance << "\n";
17 }
18 return 0;
19 }

 1: 10500.00
 2: 11025.00
 3: 11576.25
 4: 12155.06
 5: 12762.82
 6: 13400.96
 7: 14071.00
 8: 14774.55
 9: 15513.28
10: 16288.95

SYNTAX 3.4 for Statement

for (initialization_statement; condition; update_expression) statement

Example:

for (int i = 1; i <= 10; i++) sum = sum + i;

Purpose:

Repeatedly execute a statement, typically while updating a variable in regular
increments. The initialization statement is executed once. While the condition
remains true, the statement and the update expression are executed.

128 CHAPTER 3 • Control Flow

Use for Loops for Their Intended Purpose Only

A for loop is an idiom for a while loop of a particular form. A counter runs from the start to
the end, with a constant increment:

for (i = start; i < (or <=) end; i = i + increment)
{
 ...
 // i, start, end, increment not changed here
}

If your loop doesn’t match this pattern, don’t use the for construction. The compiler won’t
prevent you from writing idiotic for loops:

// Bad style—unrelated header expressions
for (cout << "Inputs: "; cin >> x; sum = sum + x)
 count++;

for (i = 0; i < s.length(); i++)
{
 // Bad style—modifies counter inside loop
 if (s.substr(i, 1) == ".") i++;
 count++;
}

These loops will work, but they are plainly bad style. Use a while loop for iterations that do
not fit into the for pattern.

Don’t Use != to Test the End of a Numeric Range

Here is a loop with a hidden danger:

for (i = 1; i != nyear; i++)
{
 ...
}

The test i != nyear is a poor idea. What would happen if nyear happened to be negative? Of
course, nyear should never be negative, because it makes no sense to have a negative number
of years—but the impossible and unthinkable do happen with distressing regularity. If nyear
is negative, the test i != nyear is never true, because i starts at 1 and increases with every
step. The program dies in an infinite loop.

The remedy is simple. Test

for (i = 0; i < nyear; i++) ...

For floating-point values there is another reason not to use the != operator: Because of
roundoff errors, the exact termination point may never be reached.

Of course, you would never write

for (rate = 5; rate != 10; rate = rate + 0.3333333) ...

QUAL ITY T IP 3.3

QUAL ITY T IP 3.4

3.7 • The for Loop 129

because it looks highly unlikely that rate would match 10 exactly after 15 steps. But the
same problem may happen for the harmless-looking

for (rate = 5; rate != 10; rate = rate + 0.1) ...

The number 0.1 is exactly representable in the decimal system, but the computer represents
floating-point numbers in binary. There is a slight error in any finite binary representation of
1/10, just as there is a slight error in a decimal representation 0.3333333 of 1/3. Maybe rate is
exactly 10 after 50 steps; maybe it is off by a tiny amount. There is no point in taking
chances. Just use < instead of !=:

for (rate = 5; rate < 10; rate = rate + 0.1) ...

Forgetting a Semicolon

It occasionally happens that all the work of a loop is already done in the loop header. This
code looks for the position of the first period in a filename:

string filename; // e.g., hello.cpp
string name;
...
for (i = 0; filename.substr(i, 1) != "."; i++)

;

name = filename.substr(0, i); // e.g., hello

The body of the for loop is completely empty, containing just one empty statement termi-
nated by a semicolon.

We are not advocating this strategy. This loop doesn’t work correctly if filename doesn’t
happen to contain a period. Such an anemic loop is often a sign of poor error handling.

If you do run into a loop without a body, it is important that you really make sure the
semicolon is not forgotten. If the semicolon is accidentally omitted, then the code

for (i = 0; filename.substr(i, 1) != "."; i++)

name = filename.substr(0, i); // e.g., hello

repeats the statement name = filename.substr(0, i) until a period is found, and then it
doesn’t execute it again. (If filename is "hello.cpp", the last assignment into name is "hell".)

You can avoid this error by using an empty block {} instead of an empty statement:

for (i = 0; filename.substr(i, 1) != "."; i++)
{}

Or, even better, follow Quality Tip 3.3 on page 128, and rewrite the loop as a while loop:

int i = 0;
while (filename.substr(i, 1) != ".")
 i++;

COMMON ERROR 3.8

130 CHAPTER 3 • Control Flow

Symmetric and Asymmetric Bounds

It is easy to write a loop with i going from 1 to n.

for (i = 1; i <= n; i++) ...

The values for i are bounded by the relation 1 ≤ i ≤ n. Because there are ≤ on both bounds,
the bounds are called symmetric.

When traversing the characters in a string, the bounds are asymmetric.

for (i = 0; i < s.length(); i++) ...

The values for i are bounded by 0 ≤ i < s.length(), with a ≤ to the left and a < to the right.
That is appropriate, because s.length() is not a valid position.

It is not a good idea to force symmetry artificially:

for (i = 0; i <= s.length() - 1; i++) ...

That is more difficult to read and understand.
For every loop, consider which form is most natural according to the needs of the prob-

lem and use that.

Count Iterations

Finding the correct lower and upper bounds for an iteration can be confusing. Should you
start at 0? Should you use <= b or < b as a termination condition?

Counting the number of iterations is a very useful device for better understanding a loop.
Counting is easier for loops with asymmetric bounds. The loop

for (i = a; i < b; i++) ...

is executed b - a times. For example, the loop traversing the characters in a string,

for (i = 0; i < s.length(); i++) ...

runs s.length() times. That makes perfect sense, as there are s.length() characters in a string.
The loop with symmetric bounds,

for (i = a; i <= b; i++)

is executed b - a + 1 times. That “+1” is the source of many programming errors. For example,

for (x = 0; x <= 10; x++)

runs 11 times. Maybe that is what you want; if not, start at 1 or use < 10.
One way to visualize this “+1” error is by looking at a fence. A fence with ten sections (=)

has eleven fence posts (|).
|=|=|=|=|=|=|=|=|=|=|

Each section has one fence post to the left, and there is a final post on the right of the last sec-
tion. Forgetting to count the last value is often called a “fence post error”.

If the increment is a value c other than 1, then the counts are

(b - a)/c for the asymmetric loop
(b - a)/c + 1 for the symmetric loop

QUAL ITY T IP 3.5

QUAL ITY T IP 3.6

3.8 • The do Loop 131

For example, consider the loop

for (i = 10; i <= 40; i = i + 5)

Here, a is 10, b is 40, and c is 5. Therefore, the loop executes times.

Sometimes you want to execute the body of a loop at least once and
perform the loop test after the body is executed. The do loop (see
Syntax 3.5 on page 132) serves that purpose:

do
{

statements
}
while (condition);

A typical example of such a loop is ensuring that a user supplies a correct input (see
Figure 10).

do
{
 cout << "Please enter a positive number;
 cin >> x;
} while (x <= 0);

40 10 5 1 7−() + =

3.8 The do Loop

The do loop is appropriate
when the loop body must
be executed at least once.

Figure 10
Flowchart of a do Loop

True

False

value ≤ 0?

Prompt user
to enter

a value > 0

Copy the input
to x

132 CHAPTER 3 • Control Flow

The do loop is the right choice for this situation. We must first read the input before
we can decide whether it passes the test.

In Section 3.4, you saw how to nest two if statements. Similarly, complex iterations
sometimes require nested loops: a loop inside another loop statement. As an exam-
ple, consider the task of printing a triangle shape such as this one:

[]
[][]
[][][]
[][][][]

The first row contains one box, the second row contains two boxes, and so on.
To print a triangle consisting of n rows, we use a loop:
for (int i = 1; i <= n; i++)
{

print triangle row
}

Each row contains i boxes. To print a triangle row, a second loop is required.
for (int j = 1; j <= i; j++)
 cout << "[]";
cout << "\n";

That loop is nested inside the outer loop, as shown in the following program.

ch03/triangle.cpp

SYNTAX 3.5 do Statement

do statement while (condition);

Example:

do x = sqrt(x); while (x >= 10);

Purpose:

Execute the statement, then test the condition, and repeat the statement while the
condition remains true.

3.9 Nested Loops

1 #include <iostream>
2
3 using namespace std;
4
5 int main()
6 {

3.10 • Processing Inputs 133

When processing a sequence of inputs, you need to have a way of knowing when
you have reached the end of the sequence.

Sometimes you are lucky and no input value can be zero. Then
you can prompt the user to keep entering numbers, or 0 to finish that
data set. If zero is allowed but negative numbers are not, you can use
–1 to indicate termination. Such a value, which is not an actual input,
but serves as a signal for termination, is called a sentinel.

The following program computes the average of a sequence of values, using –1 as
a sentinel.

ch03/average.cpp

7 cout << "Enter number of rows: ";
8 int n;
9 cin >> n;
10
11 for (int i = 1; i <= n; i++)
12 {
13 for (int j = 1; j <= i; j++)
14 cout << "[]";
15 cout << "\n";
16 }
17
18 return 0;
19 }

3.10 Process ing Inputs

A sentinel value denotes
the end of a sequence of
values, without being a
part of the sequence.

1 #include <iostream>
2
3 using namespace std;
4
5 int main()
6 {
7 double sum = 0;
8 int count = 0;
9 bool more = true;
10
11 while (more)
12 {
13 double input;
14 cout << "Enter a value, -1 to finish: ";
15 cin >> input;
16
17 if (input == -1)
18 more = false;
19 else
20 {
21 sum = sum + input;
22 count++;
23 }

134 CHAPTER 3 • Control Flow

Program Run

Sentinels only work if there is some restriction on the input. In many cases, though,
there isn’t. Suppose you want to compute the average of a data set that may contain
0 or negative values. Then you cannot use 0 or –1 to indicate the end of the input.
One option is to use a sentinel that is not a number.

Consider a program processing the statement cin >> value. If the
user types an input that is not a number then the variable value is not
set. Instead, the stream is set to a “failed” state. You can test for that
special state by calling the fail member function:

if (cin.fail())
{
 cout << "End of input.\n";
 more = false;
}

Because testing for input failure is so common, there is a shortcut. You can simply
use a stream variable as a condition:

if (cin)
{
 // The stream did not fail
 ...
}
else
{
 // The stream failed
 ...
}

That is, the test
if (cin)

is exactly the same as the test
if (!cin.fail()).

It tests whether cin is still in a good state. Many people find this a bit confusing, and
we recommend that you explicitly query cin.fail().

24 }
25
26 if (count > 0)
27 cout << "Average: " << sum / count << "\n";
28
29 return 0;
30 }

Enter a value, -1 to finish: 10
Enter a value, -1 to finish: 30
Enter a value, -1 to finish: 5
Enter a value, -1 to finish: -1
Average: 15

When an input stream
senses an input error, it
enters the failed state. You
can test for failure with
the fail function.

3.10 • Processing Inputs 135

There is, however, one popular idiom that relies on treating a stream as a condi-
tion. The expression cin >> x has a value, namely cin. (That is what makes it possi-
ble to chain the >> operators: cin >> x >> y first executes cin >> x, which reads
input into x and again yields cin, which is combined with y. The operation cin >> y
then reads y.)

Because the expression cin >> x has cin as its value, and you can use a stream as
the condition of an if statement, you can use the following test:

if (cin >> x) ...

This means “Read x, and if that didn’t make cin fail, then continue”. That idiom is
compelling for loops:

cout << "Enter values, Q to quit.\n";
while (cin >> values)
{
 sum = sum + input;
 count++;
}

The loop is executed while the input succeeds.

The Loop-and-a-Half Problem

Some programmers dislike loops that are controlled by a Boolean variable, such as:

bool more = true;
while (more)
{
 cin >> input;
 if (cin.fail())
 more = false;
 else
 {

process input
 }
}

The true test for loop termination is in the middle of the loop, not at the top. This is called a
loop and a half because one must go halfway into the loop before knowing whether one
needs to terminate.

As an alternative, you can use the break keyword.

while (true)
{
 cin >> input;
 if (cin.fail()) break;

process input
}

The break statement breaks out of the enclosing loop, independent of the loop condition.

ADVANCED TOPIC 3.4

136 CHAPTER 3 • Control Flow

In the loop-and-a-half case, break statements can be beneficial. But in other situations, the
break statement can lead to code that is confusing or plainly wrong. We do not use the break
statement in this book.

Redirection of Input and Output

Consider the program that computes the average value of an
input sequence. If you use such a program, then it is quite
likely that you already have the values in a file, and it seems a
shame that you have to type them all in again. The command
line interface of your operating system provides a way to link
a file to the input of a program, as if all the characters in the
file had actually been typed by a user. If you type

average < numbers.txt

the program is executed. Its input instructions no longer expect input from the keyboard. All
input commands get their input from the file numbers.txt. This process is called input redi-
rection.

Input redirection is an excellent tool for testing programs. When you develop a program
and fix its bugs, it is boring to keep entering the same input every time you run the program.
Spend a few minutes putting the inputs into a file, and use redirection.

You can also redirect output. In this program, that is not terribly useful. If you run

average < numbers.txt > output.txt

the file output.txt contains a single line such as “Average: 15”. However, redirecting output
is obviously useful for programs that produce lots of output. You can print the file contain-
ing the output or edit it before you turn it in for grading.

End-of-File Detection

When reading input from a file, it is not common to use a sentinel value. Instead, simply
detect the end of the file. When the end of the file has been reached, the next input will fail.
Simply place all your data into a file, use input redirection, and read the data with a loop

while (cin >> input)
{

process input
}

This mechanism works equally well for reading numbers and strings. However, there is one
trick you need to know if you process strings and occasionally supply input from the key-
board. When reading input from the console, you indicate the end of input with a special

PRODUCT IV ITY HINT 3.2

Use input redirection to
read input from a file. Use
output redirection to
capture program output
in a file.

ADVANCED TOPIC 3.5

3.10 • Processing Inputs 137

character, Ctrl + Z on a Windows system or Ctrl + D on UNIX, after you have entered all val-
ues. That value signals to cin that the end of the console “file” has been reached.

Sometimes, you may want to know whether input has failed because the end of the file
has been reached or because one of the input values was bad. After determining that the
stream has failed, call the eof method:

if (cin.fail())
{
 if (cin.eof())
 {
 // End of file has been reached
 }
 else
 {
 // Bad input
 }
}

Be careful that you call eof only after the input stream has failed. The following loop does
not work:

while (more)
{
 cin >> value;
 if (cin.eof()) // Don’t!
 {
 more = false;
 }
 else
 {
 sum = sum + value;
 }
}

If the stream input fails for another reason (usually because a non-number was encountered
in the input), then all further input operations fail, and the end of the file is never reached.
The loop then becomes an infinite loop. For example, consider the input

Clearing the Failure State of a Stream

Once a stream fails, all further input operations also fail. If you want to read two number
sequences and use a letter as a sentinel, you need to clear the failure state after reading the
first sentinel. Call the clear method:

3 \n 4 \n f i v e

cin fails here,
but end of file not yet encountered

ADVANCED TOPIC 3.6

138 CHAPTER 3 • Control Flow

cout << "Enter values, Q to quit.\n";
while (cin >> values)
{

process input
}
cin.clear();

Suppose the user has entered 30 10 5 Q. The input of Q has caused the failure. Because only
successfully processed characters are removed from the input, the Q character is still present.
Read it into a dummy variable:

string sentinel;
cin >> sentinel;

Now you can go on and read more inputs.

The Denver Airport Luggage Handling System

Making decisions is an essential part of any computer program. Nowhere can this be seen
more than with a computer system that helps sort luggage at an airport. After scanning the
luggage identification codes, the system sorts the items and routes them to different con-
veyor belts. Human operators then place the items onto trucks. When the city of Denver

Figure 11
The Denver airport originally
had a fully automatic system for
moving luggage, replacing human
operators with robotic carts.
Unfortunately, the system never
worked and was dismantled
before the airport was opened.

RANDOM FACT 3.2

3.11 • Simulations 139

built a huge airport to replace an outdated and congested facility, the luggage system contrac-
tor went a step further. The new system was designed to replace the human operators with
robotic carts. Unfortunately, the system plainly did not work. It was plagued by mechanical
problems, such as luggage falling onto the tracks and jamming carts. Just as frustrating were
the software glitches. Carts would uselessly accumulate at some locations when they were
needed elsewhere.

The airport had been scheduled for opening in 1993, but without a functioning luggage
system, the opening was delayed for over a year while the contractor tried to fix the prob-
lems. The contractor never succeeded, and ultimately a manual system was installed. The
delay cost the city and airlines close to a billion dollars, and the contractor, once the leading
luggage systems vendor in the United States, went bankrupt.

Clearly, it is very risky to build a large system based on a technology that has never been
tried on a smaller scale. As robots and the software that controls them will get better over
time, they will take on a larger share of luggage handling in the future. But it is likely that
this will happen in an incremental fashion.

In a simulation we generate random events and evaluate their out-
comes. Here is a typical problem that can be decided by running a
simulation, the Buffon needle experiment, devised by Comte
Georges-Louis Leclerc de Buffon (1707–1788), a French naturalist. A
needle of length 1 inch is dropped onto paper that is ruled with lines
2 inches apart. If the needle drops onto a line, we count it as a hit.
Buffon conjectured that the quotient tries/hits approximates π. (See
Figure 12.)

Now, how can you run this experiment in the computer? You don’t actually
want to build a robot that drops needles on paper. The C++ library has a random
number generator, which produces numbers that appear to be completely random.
Calling rand() yields a random integer between 0 and RAND_MAX (which is an imple-
mentation-dependent constant, typically 32767 or 2147483647). The rand function
is defined in the cstdlib header. The following program calls the rand function ten
times.

3.11 Simulat ions

In a simulation program,
you use the computer to
simulate an activity. You
can introduce randomness
by calling the random
number generator.

Figure 12 The Buffon Needle Experiment

140 CHAPTER 3 • Control Flow

ch03/random.cpp

Program Run

Actually, the numbers are not completely random. They are drawn from very long
sequences of numbers that don’t repeat for a long time. These sequences are actually
computed from fairly simple formulas; they just behave like random numbers. For
that reason, they are often called pseudorandom numbers. How to generate good
sequences of numbers that behave like truly random sequences is an important and
well-studied problem in computer science. We won’t investigate this issue further.
Just use the random numbers produced by rand.

Try running the program again. You will get the exact same output! This con-
firms that the random numbers are generated by formulas. However, when running
simulations, you don’t always want to get the same results. To overcome this prob-
lem, you need to specify a seed for the random number sequence. Every time you
use a new seed, the random number generator starts generating a new sequence. The
seed is set with the srand function. A simple value to use as a seed is the number of
seconds that have elapsed since midnight:

Time now;
int seed = now.seconds_from(Time(0, 0, 0));
srand(seed);

Alternatively, you can use the standard time function defined in the ctime header,
and set the seed with the call:

srand(time(0));

1 #include <iostream>
2 #include <cstdlib>
3
4 using namespace std;
5
6 int main()
7 {
8 int i;
9 for (i = 1; i <= 10; i++)
10 {
11 int r = rand();
12 cout << r << "\n";
13 }
14 return 0;
15 }

41
18467
6334
26500
19169
15724
11478
29358
26962
24464

3.11 • Simulations 141

Simply place these instructions at the beginning of your program, before generating
any random numbers. Then the random numbers will be different in every program
run.

Of course, in actual applications, you want to generate random numbers in dif-
ferent ranges. For example, to simulate the throw of a die, you need random num-
bers between 1 and 6. In general, consider the problem of generating random
integers between two bounds a and b. As you know from Quality Tip 3.6 on page
130, there are b - a + 1 values between a and b, including the bounds themselves.
First compute rand() % (b - a + 1) to obtain a random value between 0 and b - a,
then add that to a, yielding a random value between a and b:

int r = a + rand() % (b - a + 1);

For example, here is a program that simulates the throw of a pair of dice.

ch03/dice.cpp

Program Run

1 #include <iostream>
2 #include <string>
3 #include <cstdlib>
4 #include <ctime>
5
6 using namespace std;
7
8 int main()
9 {
10 // Sets the seed of the random number generator.
11 srand(time(0));
12
13 for (int i = 1; i <= 10; i++)
14 {
15 int d1 = 1 + rand() % 6;
16 int d2 = 1 + rand() % 6;
17 cout << d1 << " " << d2 << "\n";
18 }
19 cout << "\n";
20 return 0;
21 }

5 1
2 1
1 2
5 1
1 2
6 4
4 4
6 1
6 3
5 2

142 CHAPTER 3 • Control Flow

To run the Buffon needle experiment you have to work a little harder. When you
throw a die, it has to come up with one of six faces. When throwing a needle, how-
ever, there are many possible outcomes.

You must generate a random floating-point number. First, note that the quantity
rand() * 1.0 / RAND_MAX is a random floating-point value between 0 and 1. (You
have to multiply by 1.0 to ensure that one of the operands of the / operator is a
floating-point value. The division rand() / RAND_MAX would be an integer division—
see Common Error 2.2.) To generate a random value ranging between a and b, you
have to make a simple transformation:

double r = a + (b - a) * (rand() * 1.0 / RAND_MAX);

For the Buffon needle experiment, you must generate two random numbers: one to
describe the starting position and one to describe the angle of the needle with the x-
axis. Then test whether the needle touches a grid line. Stop after 10,000 tries.

Generate the lower point of the needle. Its x-coordinate is irrelevant, and you
may assume its y-coordinate ylow to be any random number between 0 and 2. The
angle α between the needle and the x-axis can be any value between 0 and 180
degrees. The upper end of the needle has y-coordinate

The needle is a hit if yhigh is at least 2, as shown in Figure 13.
Here is the program that carries out the simulation of the needle experiment.

ch03/buffon.cpp

Figure 13
A Hit in the Buffon Needle Experiment

2

0

yhigh

ylow
α

y yhigh low= + sinα

1 #include <iostream>
2 #include <cstdlib>
3 #include <cmath>
4 #include <ctime>
5
6 using namespace std;
7
8 int main()
9 {

Chapter Summary 143

Program Run

The point of this program is not to compute π (after all, we needed the value of π
when converting degrees to radians). Rather, the point is to show how a physical
experiment can be simulated on the computer. Buffon had to drop the needle phys-
ically thousands of times and record the results, which must have been a rather dull
activity. We can have the computer execute the experiment quickly and accurately.

Simulations are very common computer applications. Many simulations use
essentially the same pattern as the code of this example: In a loop, a large number of
sample values are generated. The values of certain observations are recorded for
each sample. Finally, when the simulation is completed, the averages of the
observed values are printed out.

A typical example of a simulation is the modeling of customer queues at a bank
or a supermarket. Rather than observing real customers, one simulates their arrival
and their transactions at the teller window or checkout stand in the computer. One
can try out different staffing or building layout patterns in the computer simply by
making changes in the program. In the real world, making many such changes and
measuring their effect would be impossible, or at least very expensive.

1. The body of an if statement is executed when a condition is true.

2. A block statement contains a sequence of statements, enclosed in braces.

3. The else part of an if/else statement is executed when a condition is false.

4. Relational operators are used to compare numbers and strings.

10 // Sets the seed of the random number generator.
11 srand(time(0));
12
13 const int NTRIES = 10000;
14 const double PI = 3.141592653589793;
15
16 int hits = 0;
17 for (int i = 1; i <= NTRIES; i++)
18 {
19 double ylow = 2 * (rand() * 1.0 / RAND_MAX);
20 double angle = 180 * (rand() * 1.0 / RAND_MAX);
21 double yhigh = ylow + sin(angle * PI / 180);
22 if (yhigh >= 2) hits++;
23 }
24 cout << "Tries / Hits = "
25 << NTRIES * (1.0 / hits) << "\n";
26 return 0;
27 }

Tries / Hits = 3.16256

CHAPTER SUMMARY

144 CHAPTER 3 • Control Flow

5. Use == for equality testing, = for assignment.

6. The lexicographic or dictionary order is used to compare strings.

7. Multiple if/else statements can be combined to evaluate complex decisions.

8. When using multiple if/else statements, pay attention to the order of the
conditions.

9. C++ has two boolean operators that combine conditions: && (and) and || (or).

10. The && and || operators are computed lazily: As soon as the truth value is deter-
mined, no further conditions are evaluated.

11. The Boolean type bool has two values, false and true.

12. To invert a Boolean value, use the ! (not) operator.

13. De Morgan’s law tells you how to negate an &&/|| condition: Reverse the oper-
ator and move the ! inward.

14. A while loops executes a block of code repeatedly, while a condition remains
true.

15. An infinite loop keeps running until the program is forcibly terminated.

16. An off-by-one error occurs when a programmer mistakenly uses a value that is
one more or less than the correct value.

17. The for loop is used when a value runs from a starting point to an ending point
with a constant increment or decrement.

18. The do loop is appropriate when the loop body must be executed at least once.

19. A sentinel value denotes the end of a sequence of values, without being a part of
the sequence.

20. When an input stream senses an input error, it enters the failed state. You can
test for failure with the fail function.

21. Use input redirection to read input from a file. Use output redirection to cap-
ture program output in a file.

22. In a simulation program, you use the computer to simulate an activity. You can
introduce randomness by calling the random number generator.

1. Peter van der Linden, Expert C Programming, Prentice-Hall, 1994.

2. Rudolf Flesch, How to Write Plain English, Barnes & Noble Books, 1979.

FURTHER READING

Review Exercises 145

Exercise R3.1. Find the errors in the following if statements.
a. if quarters > 0 then cout << quarters << " quarters";

b. if (1 + x > pow(x, sqrt(2)) y = y + x;

c. if (x = 1) y++; else if (x = 2) y = y + 2;

d. if (x && y == 0) cwin << Point(0, 0);

e. if (1 <= x <= 10) cout << "Enter y: "; cin >> y;

f. if (s != "nick" || s != "penn"

 || s != "dime" || s != "quar")

 cout << "Input error!";

g. if (input == "N" or "NO")

 return 0;

h. cin >> x; if (cin.fail()) y = y + x;

i. language = "English";

if (country == "USA")

 if (state == "PR") language = "Spanish";

else if (country = "China")

 language = "Chinese";

Exercise R3.2. Explain why it is more difficult to compare floating-point numbers
than integers. Write C++ code to test whether an integer n equals 10 and whether a
floating-point number x equals 10.

Exercise R3.3. Of the following pairs of strings, which comes first in lexicographic
order?

a. "Tom", "Dick"

b. "Tom", "Tomato"

c. "church", "Churchill"

d. "car manufacturer", "carburetor"

e. "Harry", "hairy"

f. "C++", " Car"

g. "Tom", "Tom"

h. "Car", "Carl"

i. "car", "bar"

Exercise R3.4. When reading a number in, there are two possible ways for a stream to
be set to the “failed” state. Give examples for both. How is the situation different
when reading a string?

REVIEW EXERCISES

146 CHAPTER 3 • Control Flow

Exercise R3.5. What is wrong with the following program?
cout << "Enter the number of quarters: ";
cin >> quarters;
total = total + quarters * 0.25;
if (cin.fail()) cout << "Input error.";

Exercise R3.6. Reading numbers is surprisingly difficult, because a C++ input stream
looks at the input one character at a time. First, white space is skipped. Then the
stream consumes those input characters that can be a part of a number. Once the
stream has recognized a number, it stops reading if it finds a character that cannot
be a part of a number. However, if the first non-white space character is not a digit
or a sign, or if the first character is a sign and the second one is not a digit, then the
stream fails.
Consider a program reading an integer:

cout << "Enter the number of quarters: ";
int quarters;
cin >> quarters;

For each of the following user inputs, circle how many characters have been read
and whether the stream is in the failed state or not.

a. 15.9

b. 15 9

c. +159

d. -15A9

e. Fifteen

f. -Fifteen

g. + 15

h. 1.5E3

i. +1+5

Exercise R3.7. Explain the difference between an if/else/else statement and nested
if statements. Give an example for each.

Exercise R3.8. Give an example for an if/else/else statement where the order of the
tests does not matter. Give an example where the order of the tests matters.

Exercise R3.9. Before implementing any complex algorithm, it is a good idea to
understand and analyze it. The purpose of this exercise is to gain a better under-
standing of the tax computation algorithm.
Some people object to the fact that the tax rates increase with higher incomes,
claiming that certain taxpayers are then better off not to work hard and get a raise,
since they would then have to pay a higher tax rate and actually end up with less
money after taxes. Can you find such an income level? If not, why?
Another feature of the tax code is the marriage penalty. Under certain circum-
stances, a married couple pays higher taxes than the sum of what the two partners
would pay if they both were single. Find examples for such income levels.

Review Exercises 147

Exercise R3.10. True or false? A && B is the same as B && A for any Boolean condi-
tions A and B.

Exercise R3.11. Complete the following truth table by finding the truth values of the
Boolean expressions for all combinations of the Boolean inputs p, q, and r.

Exercise R3.12. Explain the difference between
s = 0;
if (x > 0) s++;
if (y > 0) s++;

and
s = 0;
if (x > 0) s++;
else if (y > 0) s++;

Exercise R3.13. Use De Morgan’s Law to simplify the following Boolean
expressions.

a. !(x > 0 && y > 0)

b. !(x != 0 || y != 0)

c. !(country == "USA" && state != "HI" && state != "AK")

d. !(x % 4 != 0 || !(x % 100 == 0 && x % 400 != 0))

Exercise R3.14. Make up another C++ code example that shows the dangling else
problem using the following statement: A student with a GPA of at least 1.5, but
less than 2, is on probation. With a GPA of less than 1.5, the student is failing.

Exercise R3.15. What is an infinite loop? On your computer, how can you terminate
a program that executes an infinite loop?

Exercise R3.16. What is an “off-by-one” error? Give an example from your own
programming experience.

Exercise R3.17. What is a sentinel value? Give simple rules when it is better to use a
sentinel value and when it is better to use the end of the input file to denote the end
of a data sequence.

p q r (p && q) || !r !(p && (q || !r))

false false false

false false true

false true false

. . .

5 more combinations

. . .

148 CHAPTER 3 • Control Flow

Exercise R3.18. What is a “loop and a half”? Give two strategies to implement the
following loop and a half:

loop
read employee name
if not OK, exit loop
read employee salary
if not OK, exit loop
give employee 5 percent raise
print employee data

Use a Boolean variable and a break statement. Which of these approaches do you
find clearer?

Exercise R3.19. Give a set of test cases for the tax program in Section 3.4. Manually
compute the expected results.

Exercise R3.20. Which loop statements does C++ support? Give simple rules when
to use each loop type.

Exercise R3.21. How often do the following loops execute? Assume that i is not
changed in the loop body.

a. for (int i = 1; i <= 10; i++) ...

b. for (int i = 0; i < 10; i++) ...

c. for (int i = 10; i > 0; i--) ...

d. for (int i = -10; i <= 10; i++) ...

e. for (int i = 10; i >= 0; i++) ...

f. for (int i = -10; i <= 10; i = i + 2) ...

g. for (int i = -10; i <= 10; i = i + 3) ...

Exercise R3.22. Rewrite the following for loop into a while loop.
int i;
int s = 0;
for (i = 1; i <= 10; i++) s = s + i;

Exercise R3.23. Rewrite the following do/while loop into a while loop.
int n;
cin >> n;
double x = 0;
double s;
do
{
 s = 1.0 / (1 + n * n);
 n++;
 x = x + s;
}
while (s > 0.01);

Review Exercises 149

Exercise R3.24. What are the values of s and n after the following loops?
a. int s = 1;

int n = 1;
while (s < 10) s = s + n;
n++;

b. int s = 1;
int n;
for (n = 1; n < 5; n++) s = s + n;

c. int s = 1;
int n = 1;
do
{
 s = s + n;
 n++;
}
while (s < 10 * n);

Exercise R3.25. What do the following loops print? Work out the answer without
using the computer.

a. int s = 1;
int n;
for (n = 1; n <= 5; n++)
{
 s = s + n;
 cout << s;
}

b. int s = 1;
int n;
for (n = 1; n <= 5; cout << s)
{
 n = n + 2;
 s = s + n;
}

c. int s = 1;
int n;
for (n = 1; n <= 5; n++)
{
 s = s + n;
 n++;
}
cout << s << " " << n;

Exercise R3.26. What do the following program segments print? Find the answers by
hand, not by using the computer.

a. int i;
int n = 1;
for (i = 2; i < 5; i++) n = n + i;
cout << n;
int i;
double n = 1 / 2;
for (i = 2; i <= 5; i++) n = n + 1.0 / i;
cout << i;

150 CHAPTER 3 • Control Flow

b. double x = 1;
double y = 1;
int i = 0;
do
{
 y = y / 2;
 x = x + y;
 i++;
}
while (x < 1.8);
cout << i;

c. double x = 1;
double y = 1;
int i = 0;
while (y >= 1.5)
{
 x = x / 2;
 y = x + y;
 i++;
}
cout << i;

Exercise R3.27. Give an example of a for loop where symmetric bounds are more
natural. Give an example of a for loop where asymmetric bounds are more natural.

Exercise P3.1. Write a program that prints all solutions to the quadratic equation
. Read in a, b, c and use the quadratic formula. If the discriminant

is negative, display a message stating that there are no solutions.

Exercise P3.2. Write a program that takes user input describing a playing card in the
following shorthand notation:

A Ace
2 ... 10 Card values
J Jack
Q Queen
K King
D Diamonds
H Hearts
S Spades
C Clubs

Your program should print the full description of the card. For example,
Enter the card notation: QS
Queen of spades

PROGRAMMING EXERCISES

ax bx c2 0+ + =
b ac2 4−

Programming Exercises 151

Exercise P3.3. Write a program that reads in three floating-point numbers and prints
the largest of the three inputs. For example:

Please enter three numbers: 4 9 2.5
The largest number is 9.

Exercise P3.4. Write a program that translates a letter grade into a number grade.
Letter grades are A, B, C, D, and F, possibly followed by + or –. Their numeric val-
ues are 4, 3, 2, 1, and 0. There is no F+ or F–. A + increases the numeric value by 0.3,
a – decreases it by 0.3. However, an A+ has value 4.0.

Enter a letter grade: B-
The numeric value is 2.7.

Exercise P3.5. Write a program that translates a number between 0 and 4 into the
closest letter grade. For example, the number 2.8 (which might have been the aver-
age of several grades) would be converted to B–. Break ties in favor of the better
grade; for example 2.85 should be a B.

Exercise P3.6. Roman numbers. Write a program that converts a positive integer into
the Roman number system. The Roman number system has digits

I 1
V 5
X 10
L 50
C 100
D 500
M 1,000

Numbers are formed according to the following rules. (1) Only numbers up to
3,999 are represented. (2) As in the decimal system, the thousands, hundreds, tens,
and ones are expressed separately. (3) The numbers 1 to 9 are expressed as

I 1
II 2
III 3
IV 4
V 5
VI 6
VII 7
VIII 8
IX 9

As you can see, a I preceding a V or X is subtracted from the value, and you can
never have more than three I’s in a row. (4) Tens and hundreds are done the same
way, except that the letters X, L, C and C, D, M are used instead of I and V, X,
respectively.

152 CHAPTER 3 • Control Flow

Your program should take an input, such as 1978, and convert it to Roman
numerals, MCMLXXVIII.

Exercise P3.7. Write a program that reads in three strings and sorts them
lexicographically.

Enter three strings: Charlie Able Baker
Able
Baker
Charlie

Exercise P3.8. Write a program that reads in two floating-point numbers and tests
whether they are the same up to two decimal places. Here are two sample runs.

Enter two floating-point numbers: 2.0 1.99998
They are the same up to two decimal places.
Enter two floating-point numbers: 2.0 1.98999
They are different.

Exercise P3.9. Write a program that reads in the name and salary of an employee
object. Here the salary will denote an hourly wage, such as $9.25. Then ask how
many hours the employee worked in the past week. Be sure to accept fractional
hours. Compute the pay. Any overtime work (over 40 hours per week) is paid at
150 percent of the regular wage. Print a paycheck for the employee.

Exercise P3.10. Write a unit conversion program using the conversion factors of
Table 2 in Chapter 2. Ask the users from which unit they want to convert (fl. oz,
gal, oz, lb, in, ft, mi) and which unit they want to convert to (ml, l, g, kg, mm, cm,
m, km). Reject incompatible conversions (such as gal → km). Ask for the value to
be converted; then display the result:

Convert from? gal
Convert to? ml
Value? 2.5

2.5 gal = 9462.5 ml

Exercise P3.11. If you look at the tax tables in Section 3.4, you will note that the per-
centages 15%, 28%, and 31% are identical for both single and married taxpayers,
but the cutoffs for the tax brackets are different. Married people get to pay 15% on
their first $35,800, then pay 28% on the next $50,700, and 31% on the remainder.
Single people pay 15% on their first $21,450, then pay 28% on the next $30,450,
and 31% on the remainder. Write a tax program with the following logic: Set vari-
ables cutoff15 and cutoff28 that depend on marital status. Then have a single for-
mula that computes the tax, depending on the incomes and the cutoffs. Verify that
your results are identical to that of the tax.cpp program.

Exercise P3.12. A year with 366 days is called a leap year. A year is a leap year if it is
divisible by four (for example, 1980), except that it is not a leap year if it is divisible
by 100 (for example, 1900); however, it is a leap year if it is divisible by 400 (for
example, 2000). There were no exceptions before the introduction of the Gregorian
calendar on October 15, 1582 (1500 was a leap year). Write a program that asks the
user for a year and computes whether that year is a leap year. Your program should
contain a single if statement.

Programming Exercises 153

Exercise P3.13. Write a program that asks the user to enter a month (1 for January,
2 for February, and so on) and then prints the number of days in the month. For
February, print “28 or 29 days”.

Enter a month: 5
30 days

Exercise P3.14. Projectile flight. Suppose a cannonball is propelled straight into the
air with a starting velocity v0. Any calculus book will state that the position of the
ball after t seconds is , where is the gravita-
tional force of the earth. No calculus book ever mentions why someone would
want to carry out such an obviously dangerous experiment, so we will do it in the
safety of the computer.
In fact, we will confirm the theorem from calculus by a simulation. In our simula-
tion, we will consider how the ball moves in very short time intervals . In a short
time interval the velocity v is nearly constant, and we can compute the distance the
ball moves as . In our program, we will simply set

const double delta_t = 0.01;

and update the position by
s = s + v * delta_t;

The velocity changes constantly—in fact, it is reduced by the gravitational force of
the earth. In a short time interval, , we must keep the velocity updated as

v = v - g * delta_t;

In the next iteration the new velocity is used to update the distance.
Now run the simulation until the cannonball falls back to the earth. Get the initial
velocity as an input (100 m/sec is a good value). Update the position and velocity
100 times per second, but print out the position only every full second. Also print
out the values from the exact formula for comparison.
What is the benefit of this kind of simulation when an exact formula is available?
Well, the formula from the calculus book is not exact. Actually, the gravitational
force diminishes the farther the cannonball is away from the surface of the earth.
This complicates the algebra sufficiently that it is not possible to give an exact for-
mula for the actual motion, but the computer simulation can simply be extended to
apply a variable gravitational force. For cannonballs, the calculus-book formula is
actually good enough, but computers are necessary to compute accurate trajectories
for higher-flying objects such as ballistic missiles.

Exercise P3.15. Currency conversion. Write a program that first asks the user to type
today’s exchange rate between U.S. dollars and Japanese yen, then reads U.S. dollar
values and converts each to yen. Use 0 or a negative input as a sentinel.

Exercise P3.16. Write a program that first asks the user to type in today’s exchange
rate between U.S. dollars and Japanese yen, then reads U.S. dollar values and con-
verts each to Japanese yen. Use 0 as the sentinel value to denote the end of dollar
inputs. Then the program reads a sequence of yen amounts and converts them to
dollars. The second sequence is terminated by the end of the input file.

s t gt v t() = − +1
2

2
0 g = 9 81. m sec2

Δt

Δ = Δs v t

Δ = − Δv g t

s t gt v t() = − +1
2

2
0

154 CHAPTER 3 • Control Flow

Exercise P3.17. Mean and standard deviation. Write a program that reads a set of
floating-point data values from the input. When the end of file is reached, print out
the count of the values, the average, and the standard deviation. The average of a
data set {x1, ..., xn} is , where is the sum of the
input values. The standard deviation is

However, this formula is not suitable for the task. By the time the program has
computed , the individual xi are long gone. Until you know how to save these val-
ues, use the numerically less stable formula

You can compute this quantity by keeping track of the count, the sum, and the sum
of squares as you process the input values.

Exercise P3.18. The Fibonacci numbers are defined by the sequence

As in the algorithm to compute the square root of a number, reformulate that as
fold1 = 1;
fold2 = 1;
fnew = fold1 + fold2;

After that, the value of fold2 is no longer needed. Set fold2 to fold1 and fold1 to
fnew. Repeat fnew for an appropriate number of times.
Implement a program that computes the Fibonacci numbers in that way.

Exercise P3.19. Flesch Readability Index. The following index [2] was invented by
Flesch as a simple tool to gauge the legibility of a document without linguistic analy-
sis.

1. Count all words in the file. A word is any sequence of characters delimited by
white space, whether or not it is an actual English word.

2. Count all syllables in each word. To make this simple, use the following rules:
Each group of adjacent vowels (a, e, i, o, u, y) counts as one syllable (for exam-
ple, the “ea” in “real” contributes one syllable, but the “e ... a” in “regal”
counts as two syllables). However, an “e” at the end of a word doesn’t count

x x ni= ∑ ∑ = + +x x xi n1 …

s
x x

n
i=

−()
−

∑ 2

1

x

s
x x

n
i n i=

− ()
−

∑∑ 2 1 2

1

f

f

f f fn n n

1

2

1 2

1

1

=

=

= +− −

Programming Exercises 155

as a syllable. Also each word has at least one syllable, even if the previous rules
give a count of 0.

3. Count all sentences. A sentence is ended by a period, colon, semicolon, ques-
tion mark, or exclamation mark.

4. The index is computed by

rounded to the nearest integer.
This index is a number, usually between 0 and 100, indicating how difficult the text
is to read. Some examples of random material from various publications are

Comics 95
Consumer ads 82
Sports Illustrated 65
Time 57
New York Times 39
Auto insurance policy 10
Internal Revenue Code –6

Translated into educational levels, the indices are

91–100 5th grader
81–90 6th grader
71–80 7th grader
66–70 8th grader
61–65 9th grader
51–60 High school student
31–50 College student
0–30 College graduate
Less than 0 Law school graduate

The purpose of the index is to force authors to rewrite their text until the index is
high enough. This is achieved by reducing the length of sentences and by removing
long words. For example, the sentence

The following index was invented by Flesch as a simple tool to estimate the legibility
of a document without linguistic analysis.

can be rewritten as

Flesch invented an index to check whether a document is easy to read. To compute
the index, you need not look at the meaning of the words.

His book [2] contains delightful examples of translating government regulations
into “plain English”.

Index
Number of syllables
Numbe

= − ×206 835 84 6. .
rr of words

Number of words
Number of

− ×1 015.
ssentences

156 CHAPTER 3 • Control Flow

Your program should read in a text file, one word at a time, and compute the legi-
bility index.

Exercise P3.20. Factoring of integers. Write a program that asks the user for an inte-
ger and then prints out all its factors. For example, when the user enters 150, the
program should print

2
3
5
5

Exercise P3.21. Prime numbers. Write a program that prompts the user for an integer
and then prints out all prime numbers up to that integer. For example, when the
user enters 20, the program should print

2
3
5
7
11
13
17
19

Recall that a number is a prime number if it is not divisible by any number except 1
and itself.

Exercise P3.22. The game of Nim. This is a well-known game with a number of vari-
ants. The following variant has an interesting winning strategy. Two players alter-
nately take marbles from a pile. In each move, a player chooses how many marbles
to take. The player must take at least one but at most half of the marbles. Then the
other player takes a turn. The player who takes the last marble loses.
You will write a program in which the computer plays against a human opponent.
Generate a random integer between 10 and 100 to denote the initial size of the pile.
Generate a random integer between 0 and 1 to decide whether the computer or the
human takes the first turn. Generate a random integer between 0 and 1 to decide
whether the computer plays smart or stupid. In stupid mode the computer simply
takes a random legal value (between 1 and n/2) from the pile whenever it has a turn.
In smart mode the computer takes off enough marbles to make the size of the pile a
power of two minus 1—that is, 3, 7, 15, 31, or 63. That is always a legal move,
except if the size of the pile is currently one less than a power of two. In that case,
the computer makes a random legal move.
You will note that the computer cannot be beaten in smart mode when it has the
first move, unless the pile size happens to be 15, 31, or 63. Of course, a human
player who has the first turn and knows the winning strategy can win against the
computer.

Exercise P3.23. Program the following simulation: Darts are thrown at random
points onto a square with corners (1, 1) and (–1, –1). If the dart lands inside the unit
circle (that is, the circle with center (0, 0) and radius 1), it is a hit. Otherwise it is a

Programming Exercises 157

miss. Run this simulation and use it to determine an approximate value for π. Explain
why this is a better method for estimating π than the Buffon needle program.

Exercise P3.24. Write a program that draws a square with corner points (0, 0) and
(1, 1). Prompt the user for a mouse click. If the user clicked inside the square, then
show a message “Congratulations”. Otherwise, show a message “You missed”.

Exercise P3.25. Write a graphics program that asks the user to specify two circles.
Each circle is input by clicking on the center and typing in the radius. Draw the cir-
cles. If they intersect, then display the message “Circles intersect”. Otherwise, dis-
play “Circles don’t intersect”. Hint: Compute the distance between the centers and
compare it to the radii. Your program should terminate if the user enters a negative
radius.

Exercise P3.26. Random walk. Simulate the walk of a drunkard in a square street
grid. Draw a grid of 10 streets horizontally and 10 streets vertically. Place a simu-
lated inebriated person in the middle of the grid, denoted by a point. For 100 times,
have the simulated person randomly pick a direction (east, west, north, south),
move one block in the chosen direction, and redraw the dot. After the iterations,
display the distance that the drunkard has covered. (One might expect that on aver-
age the person might not get anywhere because the moves in different directions
cancel each other out in the long run, but in fact it can be shown that with probabil-
ity 1 the person eventually moves outside any finite region.)

Exercise P3.27. Most cannonballs are not shot upright but at an angle. If the starting
velocity has magnitude v and the starting angle is α, then the velocity is actually
a vector with components . In the x-direction the velocity
does not change. In the y-direction the gravitational force takes its toll. Repeat the
simulation from Exercise P3.14, but store the position of the cannonball as a Point
variable. Update the x- and y-positions separately, and also update the x- and
y-components of the velocity separately. Every full second, plot the location of the
cannonball on the graphics display. Repeat until the cannonball has reached the
earth again.
This kind of problem is of historical interest. The first computers were designed to
carry out just such ballistic calculations, taking into account the diminishing gravity
for high-flying projectiles and wind speeds.

Exercise P3.28. Write a program that plots a regression line: that is, the line with the
best fit through a collection of points. First ask the user to specify the data points by
clicking on them in the graphics window. To find the end of the input, place a small
rectangle labeled “Stop” at the bottom of the screen; when the user clicks inside that
rectangle, then stop gathering input. The regression line is the line with equation

 is the mean of the x-values and is the mean of the y-values.

G

G

G

G

v v v vx y= =cos , sinα α

G

y y m x x m
x y nx y

x nx
i i

i

= + −() =
−

−
∑
∑

, where
2 2

x y

158 CHAPTER 3 • Control Flow

As in the preceding exercise, you need to keep track of
• the count of input values
• the sum of x, y, x2, and xy values

To draw the regression line, compute its endpoints at the left and right edges of the
screen, and draw a segment.

Exercise P3.29. It is easy and fun to draw graphs of curves with the C++ graphics
library. Simply draw 100 line segments joining the points and

, where x ranges from to and .
Draw the curve , where x ranges from –10 to 10 in this
fashion.

Exercise P3.30. Draw a picture of the “four-leaved rose” whose equation in polar
coordinates is . Let θ go from 0 to 2π in 100 steps. Each
time, compute r and then compute the (x, y) coordinates from the polar coordinates
by using the formula

You will get extra credit if you can vary the number of petals.

G
(, ())x f x

(, ())x d f x d+ + xmin xmax d x x= −()max min 100
f x x x() = − +3 100 10

G
r = ≤ ≤cos ,2 0 2θ θ π

x r
y r

=
=

cos
sin

θ
θ

Chapter 4
Functions

• To be able to program functions and procedures

• To become familiar with the concept of parameter passing

• To recognize when to use value and reference parameters

• To appreciate the importance of function comments

• To be able to determine the scope of variables

• To minimize the use of side effects and global variables

• To develop strategies for decomposing complex tasks into
simpler ones

• To document the responsibilities of functions and their callers
with preconditions

• To learn the fundamental principles of testing and debugging

CHAPTER GOALS

Functions are a fundamental building block of C++ programs. A function packages

a computation in a form that can be easily understood and reused. In this chapter,

you will learn how to design and implement your own functions, and how to break

up complex tasks into sets of cooperating functions.

160 CHAPTER 4 • Functions

CHAPTER CONTENTS

You have used a number of functions that were provided with the
C++ system library. Examples are

sqrt Computes the square root of a floating-point number
getline Reads a line from a stream

You probably don’t know how these functions perform their jobs. For example,
how does sqrt compute square roots? By looking up values in a table? By repeated
guessing of the answer? As it happens, computing square roots requires only a sim-
ple loop and basic arithmetic, but you don’t need to know the details of the compu-
tation to use the square root function. You can think of sqrt as a black box, as
shown in Figure 1.

4.1 Funct ions as B lack Boxes

A function receives input
parameters and computes
a result that depends on
those inputs.

4.1 Functions as Black Boxes 160

4.2 Implementing Functions 162
SYNTAX 4.1: Function Definition 165
PRODUCTIVITY HINT 4.1: Write Functions with Reuse

in Mind 165

4.3 Function Comments 166
PRODUCTIVITY HINT 4.2: Global Search

and Replace 168
PRODUCTIVITY HINT 4.3: Regular Expressions 168

4.4 Return Values 169
SYNTAX 4.2: return Statement 171
COMMON ERROR 4.1: Missing Return Value 171

4.5 Parameters 171
QUALITY TIP 4.1: Use Meaningful Names

for Parameters 173
COMMON ERROR 4.2: Type Mismatch 173
ADVANCED TOPIC 4.1: Function Declarations 173
SYNTAX 4.3: Function Declaration

(or Prototype) 174

4.6 Side Effects 175

4.7 Procedures 176

4.8 Reference Parameters 178
SYNTAX 4.4: Reference Parameter 180

ADVANCED TOPIC 4.2: Constant References 180
SYNTAX 4.5: Constant Reference Parameter 181
RANDOM FACT 4.1: The Explosive Growth of

Personal Computers 181

4.9 Variable Scope and
Global Variables 183

QUALITY TIP 4.2: Minimize Global Variables 185

4.10 Stepwise Refinement 186
QUALITY TIP 4.3: Keep Functions Short 188

4.11 Case Study: From Pseudocode
to Code 188

4.12 Walkthroughs 195
PRODUCTIVITY HINT 4.4: Commenting Out a Section

of Code 198
PRODUCTIVITY HINT 4.5: Stubs 199

4.13 Preconditions 200
SYNTAX 4.6: Assertion 201
RANDOM FACT 4.2: The Therac-25 Incidents 202

4.14 Unit Testing 203

4.15 The Debugger 205
RANDOM FACT 4.3: The First Bug 205

4.1 • Functions as Black Boxes 161

When you use sqrt(x) inside main, the input or parameter value x
is transferred, or passed, to the sqrt function. The execution of the
main function is temporarily suspended. The sqrt function becomes
active and computes the output or return value—the square root of
the input value—using some method that (we trust) will yield the
correct result. That return value is transferred back to main,

which resumes the computation using the return value. The input value to a func-
tion need not be a single variable; it can be any expression, as in sqrt(b * b -
4 * a * c). Figure 2 shows the flow of execution when a function is called.

Figure 1
The sqrt Function as a Black Box

x

x

sqrt

Parameter

Return value

Parameter values are
supplied in the function
call. The return value is
the result that the function
computes.

Figure 2
Execution Flow During a Function Call

Wait

Pass parameter to
sqrt

Use result

main

Compute
parameter

b * b - 4 * a * c

Pass result
to caller

Compute

sqrt

162 CHAPTER 4 • Functions

Some functions have more than one input. For example, the pow function has two
parameters: pow(x, y) computes xy. Functions can have multiple inputs, but they
only have one output.

Each function takes inputs of particular types. For example, sqrt receives only
numbers as parameter values, whereas getline expects a stream and a string. It is an
error to call sqrt with a string input.

Each function returns a value of a particular type: sqrt returns a floating-point
number, substr returns a string, and main returns an integer.

In this section, you will learn how to implement a function from a given specifica-
tion. Consider this example. Our task is compute the value of a savings account
with an initial balance of $1,000 after 10 years. If the interest rate is p percent, then
the balance after 10 years is

For example, if the interest rate is 5 percent per year, then the initial investment of
$1,000 will have grown to $1,628.94 after 10 years.

We will place this computation inside a function called future_value. Before
implementing the function, it is a good idea to think about how we will use it. Here
is a typical example:

cout << "Please enter the interest rate in percent: ";
double rate;
cin >> rate;

double balance = future_value(rate);

cout << "After 10 years, the balance is "
 << balance << "\n";

Now write the function. The function receives a floating-point input
and returns a floating-point value. You must give a name to the input
value so you can use it in the computation. Let us call it p, just like in
the formula.

double future_value(double p)
{
 ...
}

This declares a function future_value that returns a value of type double and that
takes a parameter of type double. Just as with main, the body of the function is
delimited by braces; see Syntax 4.1 on page 165.

4.2 Implement ing Funct ions

b p= × +()1000 1 100
10

When defining a function,
you provide a name and
type for each parameter
and a type for the result.

4.2 • Implementing Functions 163

Next you need to compute the function result:
double future_value(double p)
{
 double b = 1000 * pow(1 + p / 100, 10);
 ...
}

Finally, you need to return that result to the caller of the function:
double future_value(double p)
{
 double b = 1000 * pow(1 + p / 100, 10);
 return b;
}

This completes the definition of the future_value function. Figure 3 shows the flow
of data into and out of the function.

The program is now composed of two functions: future_value and main. Both
function definitions must be placed into the program file. Because main calls
future_value, the future_value function must be known before the main function
executes. The easiest way to achieve this is to place future_value first and main last
in the source file. (See Advanced Topic 4.1 on page 173 for an alternative.)

Figure 3 A Function Receiving a Parameter Value and Returning a Result

The main function calls the future_value function1

future_value

main

p =

b =

rate =

balance =

5

The parameter is initialized when function is called2

The body of the future_value function is executed3

The result is returned when function is finished4

p =

b =

rate =

balance =

5

5future_value

main

p =

b =

rate =

balance =

5

5

1628.89

future_value

main

p =

b =

rate =

balance =

5

5

1628.89

1628.89

future_value

main

164 CHAPTER 4 • Functions

ch04/futval.cpp

Program Run

The future_value function has a major blemish: The starting amount of the invest-
ment ($1,000) and the number of years (10) are hard-wired into the function code.
It is not possible to use this function to compute the balance after 20 years. Of
course, you could write a different function future_value20, but that would be a
very clumsy solution. Instead, make the initial balance and the number of years into
additional parameters:

double future_value(double initial_balance, double p, int n)
{
 double b = initial_balance * pow(1 + p / 100, n);
 return b;
}

We now need to supply those values in the function call:
double b = future_value(1000, rate, 10);

Now our function is much more valuable, because it is reusable. For example, we
can trivially modify main to print the balance after 10 and 20 years.

double b = future_value(1000, rate, 10);
cout << "After 10 years, the balance is " << b << "\n";

b = future_value(1000, rate, 20);
cout << "After 20 years, the balance is " << b << "\n";

1 #include <iostream>
2 #include <cmath>
3
4 using namespace std;
5
6 double future_value(double p)
7 {
8 double b = 1000 * pow(1 + p / 100, 10);
9 return b;
10 }
11
12 int main()
13 {
14 cout << "Please enter the interest rate in percent: ";
15 double rate;
16 cin >> rate;
17
18 double balance = future_value(rate);
19 cout << "After 10 years, the balance is "
20 << balance << "\n";
21
22 return 0;
23 }

Please enter the interest rate in percent: 5
After 10 years, the balance is 1628.89

4.2 • Implementing Functions 165

Why are we using a function in the first place? We could have made the computa-
tions directly, without a function call.

double b = 1000 * pow(1 + p / 100, 10);
cout << "After 10 years, the balance is " << b << "\n";

b = 1000 * pow(1 + p / 100, 20);
cout << "After 20 years, the balance is " << b << "\n";

If you look at these two solutions in comparison, it should be quite apparent why
functions are valuable. The function allows you to abstract an idea—namely, the
computation of compound interest. Once you understand the idea, it is clear what
the change from 10 to 20 means in the two function calls. Now compare the two
expressions that compute the balances directly. To understand them, you have to
look closely to find that they differ only in the last number, and then you have to
remember the significance of that number.

When you find yourself coding the same computation more than
once, or coding a computation that is likely to be useful in other pro-
grams, you should make it into a function.

Write Functions with Reuse in Mind

Functions are fundamental building blocks of C++ programs. When properly written, they
can be reused from one project to the next. As you design the interface and implementation
of a function, you should keep reuse in mind.

Keep the focus of the function specific enough that it performs only one task, and solve
that task completely. For example, when computing the future value of an investment, just

SYNTAX 4.1 Function Definition

return_type function_name(parameter1, parameter2, ..., parametern)
{

statements
}

Example:

double abs(double x)
{
 if (x >= 0) return x;
 else return -x;
}

Purpose:

Define a function and supply its implementation.

Turn computations that
can be reused into
functions.

PRODUCT IV ITY HINT 4.1

166 CHAPTER 4 • Functions

compute the value; don’t display it. Another programmer may need the computation, but
might not want to display the result on the terminal.

Take the time to handle even those inputs that you may not need immediately. Now you
understand the problem, and it will be easy for you to do this. If you or another programmer
needs an extended version of the function later, that person must rethink the problem. This
takes time, and misunderstandings can cause errors. For this reason, we turned the initial bal-
ance and interest rate into parameters of the future_value function.

Then you need to check for the legal range of all inputs. Does it make sense to allow neg-
ative percentages? Negative investment amounts? Fractional years? Generalizations with
clear benefits should be implemented.

There is one final important enhancement that we need to make to
the future_value function. We must comment its behavior. Com-
ments are for human readers, not compilers, and there is no universal
standard for the layout of a function comment. In this book, we will
always use the following layout:

/**
Computes the value of an investment with compound interest.

 @param initial_balance the initial value of the investment
 @param p the interest rate per period in percent
 @param n the number of periods the investment is held
 @return the balance after n periods
*/
double future_value(double initial_balance, double p, int n)
{
 double b = initial_balance * pow(1 + p / 100, n);
 return b;
}

Whoa; the comment is longer than the function! Indeed it is, but that is irrelevant.
We were just lucky that this particular function was easy to compute. The function
comment does not document the implementation but the idea—ultimately a more
valuable property.

According to the documentation style used in this book, every function (except
main) must have a comment. The first part of the comment is a brief explanation of
the function. Then supply an @param entry for each parameter, and an @return entry
to describe the return value. As you will see later, some functions have no parame-
ters or return values. For those functions, @param or @return can be omitted.

This particular documentation style is borrowed from the Java programming
language—it is often called the javadoc style. There are a number of tools available
that process C++ files and extract HTML pages containing a hyperlinked set of
comments—see Figure 4. The companion web site for this book contains instruc-
tions for downloading and using such a tool.

4.3 Funct ion Comments

Function comments
explain the purpose of the
function and the meaning
of the parameters and
return value, as well as
any special requirements.

4.3 • Function Comments 167

Occasionally, you will find that the documentation comments are silly to write.
That is particularly true for general-purpose functions:

/**
Computes the maximum of two integers.

 @param x an integer
 @param y another integer
 @return the larger of the two inputs
*/
int max(int x, int y)
{
 if (x > y)
 return x;
 else
 return y;
}

It should be pretty clear that max computes the maximum, and it is obvious that the
function receives two integers x and y. Indeed, in this case, the comment is some-
what overblown. We nevertheless strongly recommend writing the comment for
every function. It is easy to spend more time pondering whether the comment is too
trivial to write than it takes just to write it. In practical programming, very simple
functions are rare. It is harmless to have a trivial function overcommented, whereas
a complicated function without any comment can cause real grief to future mainte-
nance programmers.

Practical experience has shown that comments for individual variables are rarely
useful, provided the variable names are chosen to be self-documenting. Functions
make up a very important logical division of a C++ program, and a large part of the
documentation effort should be concentrated on explaining their black-box behavior.

Figure 4 HTML Documentation of a Function

168 CHAPTER 4 • Functions

It is always a good idea to write the function comment first, before writing the
function code. This is an excellent test to see that you firmly understand what you
need to program. If you can’t explain the function’s inputs and outputs, you aren’t
ready to implement it.

Global Search and Replace

Suppose you chose an unfortunate name for a function, say fv instead of future_value, and
you regret your choice. Of course, you can locate all occurrences of fv in your code and
replace them manually. However, most programming editors have a command to search for
all occurrences of fv automatically and replace them with future_value.

You need to specify some details for the search.
• Do you want your search to ignore case? That is, should FV be a match? In C++ you

usually don’t want that.
• Do you want it to match whole words only? If not, the fv in Golfville is also a match. In

C++ you usually want to match whole words.
• Is this a regular expression search? No, but regular expressions can make searches even

more powerful—see Productivity Hint 4.3.
• Do you want to confirm each replace or simply go ahead and replace all matches? Con-

firm the first three or four matches, and when you see that it works as expected, give the
go-ahead to replace the rest. (By the way, a global replace means to replace all occurrences
in the document.) Good text editors can undo a global replace that has gone awry. Find
out whether or not yours will.

• Do you want the search to go from the cursor through the rest of the program file, or
should it search the currently selected text? Restricting replacement to a portion of the file
can be very useful, but in this example you would want to move the cursor to the top of
the file and then replace until the end of the file.

Not every editor has all these options. You should investigate what your editor offers.

Regular Expressions

Regular expressions describe character patterns. For example, numbers have a simple form.
They contain one or more digits. The regular expression describing numbers is [0-9]+. The
set [0-9] denotes any digit between 0 and 9, and the + means “one or more”.

What good is it? A number of utility programs use regular expressions to locate matching
text. Also, the search commands of some programming editors understand regular
expressions. The most popular program that uses regular expressions is grep (which stands
for “global regular expression print”). You can run grep from a command prompt or from
inside some compilation environments. It needs a regular expression and one or more files to
search. When grep runs, it displays a set of lines that match the regular expression.

Suppose you want to find all magic numbers (see Quality Tip 2.3) in a file. The command

grep [0-9]+ homework.cpp

PRODUCT IV ITY HINT 4.2

PRODUCT IV ITY HINT 4.3

4.4 • Return Values 169

lists all lines in the file homework.cpp that contain sequences of digits. This isn’t terribly use-
ful; lines with variable names x1 will be listed. You want sequences of digits that do not
immediately follow letters:

grep [^A-Za-z][0-9]+ homework.cpp

The set [^A-Za-z] denotes any characters that are not between A and Z or between a and z.
This works much better, and it shows only lines that contain actual numbers.

There are a bewildering number of symbols (sometimes called wildcards) with special
meanings in the regular expression syntax, and unfortunately, different programs use differ-
ent styles of regular expressions. It is best to consult the program documentation for details.

You use the return statement to specify the result of a function. When
the return statement is processed, the function exits immediately.
This is convenient for handling exceptional cases at the beginning:

double future_value(double initial_balance, double p, int n)
{

if (n < 0) return 0;

 if (p < 0) return 0;

 double b = initial_balance * pow(1 + p / 100, n);
 return b;
}

If the function is called with a negative value for p or n, then the function returns 0
and the remainder of the function is not executed. (See Figure 5.)

4.4 Return Va lues

The return statement
terminates a function call
and yields the function
result.

Figure 5
return Statements Exit
a Function Immediately

p < 0 ? return 0

n < 0 ? return 0

return b

b =
initial_balance

× (1 +
 p)n100

170 CHAPTER 4 • Functions

In the preceding example, each return statement returned a constant or a vari-
able. Actually, the return statement can return the value of any expression, as
shown in Syntax 4.2 on page 171. Instead of saving the return value in a variable and
returning the variable, it is often possible to eliminate the variable and return a more
complex expression:

double future_value(double initial_balance, double p, int n)
{

 return initial_balance * pow(1 + p / 100, n);

}

This is commonly done for very simple functions.
It is important that every branch of a function return a value. Consider the fol-

lowing incorrect version of the future_value function:
double future_value(double initial_balance, double p, int n)
{
 if (p >= 0)
 return initial_balance * pow(1 + p / 100, n);
 // Error
}

Suppose you call future_value with a negative value for the interest rate. Of course,
you aren’t supposed to call that, but it might happen as the result of a coding error.
Because the if condition is not true, the return statement is not executed. However,
the function must return something. Depending on circumstances, the compiler
might flag this as an error, or a random value might be returned. This is always bad
news, and you must protect against this by returning some safe value.

double future_value(double initial_balance, double p, int n)
{
 if (p >= 0)
 return initial_balance * pow(1 + p / 100, n);
 return 0;
}

The last statement of every function ought to be a return statement. This ensures
that some value gets returned when the function reaches the end.

A function that returns a truth value is called a predicate function.
Here is a typical example, a function that tests whether a value is an
even number:

bool is_even(int n)
{
 return n % 2 == 0;
}

The function returns a value of type bool, which can be used inside a test.
if (is_even(input)) ...

You have already seen another predicate function: the fail function that checks for
failure of an input stream.

if (cin.fail()) cout << "Input error!\n";

A predicate function
returns a Boolean value.

4.5 • Parameters 171

Missing Return Value

A function always needs to return something. If the code of the function contains several if/
else branches, make sure that each one of them returns a value:

int sign(double x)
{
 if (x < 0) return -1;
 if (x > 0) return +1;
 // Error: missing return value if x equals 0
}

This function computes the sign of a number: –1 for negative numbers and +1 for positive
numbers. If the parameter x is zero, however, no value is returned. Most compilers will issue
a warning in this situation, but if you ignore the warning and the function is ever called with
a parameter value of 0, a random quantity will be returned.

When you implement a function, you define variables that hold the parameter val-
ues. We call such a variable a parameter variable, or, if there is no ambiguity, simply
parameter. Another commonly used term is formal parameter. When you call a
function, you supply expressions for each parameter. We call the value of such an
expression a parameter value. Other commonly used terms are actual parameter
and argument.

When a function starts, its parameter variables are initialized with
the expressions in the function call. Suppose you call

b = future_value(total / 2, rate, year2 - year1)

SYNTAX 4.2 return Statement

return expression;

Example:

return pow(1 + p / 100, n);

Purpose:

Exit a function, returning the value of the expression as the function result.

COMMON ERROR 4.1

4.5 Parameters

Parameter variables hold
the parameter values
supplied in the
function call.

172 CHAPTER 4 • Functions

The future_value function has three parameter variables: initial_balance, p, and n.
Before the function starts, the values of the expressions total / 2 and year2 - year1
are computed. Each parameter variable is initialized with the corresponding param-
eter value. Thus, initial_balance becomes total / 2, p becomes rate, and n becomes
year2 - year1. Figure 6 shows the parameter-passing process.

The term parameter variable is appropriate in C++. It is entirely legal to modify
the values of the parameter variables later. Here is an example, using p as a variable:

double future_value(double initial_balance, double p, int n)
{

p = 1 + p / 100;

 double b = initial_balance * pow(p, n);
 return b;
}

Actually, many programmers consider this practice bad style. It is best not to mix
the concept of a parameter (input to the function) with that of a variable (local stor-
age needed for computing the function result).

In this book we will always treat parameter variables as constants and never
modify them. However, in Section 4.8 you will encounter reference parameters that
refer to variables outside the function, not to local variables. Modifying a reference
parameter is useful—it changes the parameter value not just inside the function, but
outside it as well.

Figure 6 Parameter Passing

future_value

main

Values are
copied into parameter

variables

Expressions
computed by

the caller

rate =

p =

total =

initial_balance =

year1 =

n =

year2 =

b =

Parameter
variables

total / 2

rate

year2 - year1

4.5 • Parameters 173

Use Meaningful Names for Parameters

You can give any name you like to function parameters. Choose explicit names for parame-
ters that have specific roles; choose simple names for those that are completely generic. The
goal is to make the reader understand the purpose of the parameter without having to read
the description.

double sin(double x) is not as good as double sin(double radian). Naming the param-
eter radian gives additional information: namely, that the angle cannot be given in degrees.

The C++ standard library contains a function that is declared as

double atan2(double y, double x)

I can never remember whether it computes . I wish they had named
the parameters more sensibly:

double atan2(double numerator, double denominator)

If a function is designed to take any parameter of a given type, then simple parameter names
are appropriate.

bool is_even(double n)

Type Mismatch

The compiler takes the function parameter and return types very seriously. It is an error to
call a function with a value of an incompatible type. The compiler converts between integers
and floating-point numbers, but it does not convert between numbers and strings or objects.
For this reason, C++ is called a strongly typed language. This is a useful feature, because it
lets the compiler find programming errors before they create havoc when the program runs.

For example, you cannot give a string to a numerical function, even if the string contains
only digits:

string num = "1024";
double x = sqrt(num); // Error

You cannot store a numerical return value in a string variable:

string root = sqrt(2); // Error

Function Declarations

Functions need to be known before they can be used. This can be achieved easily if you first
define lower-level helper functions, then the midlevel workhorse functions, and finally main
in your program. Sometimes that ordering does not work. Suppose function f calls function

QUAL ITY T IP 4.1

tan tan− −() ()1 1x y y xor

COMMON ERROR 4.2

ADVANCED TOPIC 4.1

174 CHAPTER 4 • Functions

g, and g calls f again. That setup is not common, but it does happen. Another situation is
much more common. The function f may use a function such as sqrt that is defined in a sep-
arate file. To make f compile, it suffices to declare the functions g and sqrt. A declaration of
a function lists the return value, function name, and parameters, but it contains no body:

int g(int n);
double sqrt(double x);

These are advertisements that promise that the function is implemented elsewhere, either
later in the current file or in a separate file. It is easy to distinguish declarations from defini-
tions: Declarations end in a semicolon, whereas definitions are followed by a {...} block
(see Syntax 4.3 on page 174). Declarations are also called prototypes.

 The declarations of common functions such as sqrt are contained in header files. If you
have a look inside cmath, you will find the declaration of sqrt and the other math functions.

Some programmers like to list all function declarations at the top of the file and then write
main and then the other functions. For example, the futval.cpp file can be organized as fol-
lows:

#include <iostream>
#include <cmath>

using namespace std;

// Declaration of future_value
double future_value(double initial_balance, double p, int n);

int main()
{
 ...
 // Use of future_value
 double balance = future_value(1000, rate, 5);
 ...
}

// Definition of future_value
double future_value(double initial_balance, double p, int n)
{
 double b = initial_balance * pow(1 + p / 100, n);
 return b;
}

SYNTAX 4.3 Function Declaration (or Prototype)

return_type function_name(parameter1, parameter2, ..., parametern);

Example:

double abs(double x);

Purpose:

Declare a function so that it can be called before it is defined.

4.6 • Side Effects 175

This arrangement has one advantage: It makes the code easier to read. You first read the top-
level function main, then the helper functions such as future_value. There is, however, a
drawback. Whenever you change the name of a function or one of the parameter types, you
need to fix it in both places: in the declaration and in the definition.

For short programs, such as the ones in this book, this is a minor issue, and you can safely
choose either approach. For longer programs, it is useful to separate declarations from defi-
nitions. Chapter 5 contains more information on how to break up larger programs into mul-
tiple files and how to place declarations into header files. As you will see in Chapter 5,
member functions of classes are first declared in the class definition and then defined else-
where.

Consider the future_value function, which returns a number. Why
didn’t we have the function print the value at the same time?

double future_value(double initial_balance, double p, int n)
{
 double b = initial_balance * pow(1 + p / 100, n);
 cout << "The balance is now " << b << "\n";
 return b;
}

It is a general design principle that a function had best leave no trace of its existence
except for returning a value. If a function prints out a message, it will be worthless
in an environment that has no output stream, such as a graphics program or the
controller of a bank teller machine.

One particularly reprehensible practice is printing error messages inside func-
tions. You should never do that:

double future_value(double initial_balance, double p, int n)
{
 if (p < 0)
 {
 cout << "Bad value of p."; // Bad style
 return 0;
 }

 double b = initial_balance * pow(1 + p / 100, n);
 return b;
}

Printing an error message severely limits the reusability of the future_value func-
tion. It can be used only in programs that can print to cout, eliminating graphics
programs. It can be used only in applications in which a user actually reads the out-
put, eliminating background processing. Also, it can be used only in applications
where the user can understand an error message in the English language, eliminating
the majority of your potential customers. Of course, your programs must contain
some messages, but you should group all the input and output activity together—

4.6 Side Ef fects

A side effect is an
externally observable
effect caused by a
function call, other than
the returning of a result.

176 CHAPTER 4 • Functions

for example, in main if your program is short. Let the functions do the computation,
not the error report to the user.

An externally observable effect of a function is called a side effect. Displaying
characters on the screen, updating variables outside the function, and terminating
the program are examples of side effects.

In particular, a function that has no side effects can be run over and over with no
surprises. Whenever it is given the same inputs, it will faithfully produce the same
outputs. This is a desirable property for functions, and indeed most functions have
no side effects.

Sometimes, you need to carry out similar action sequences, but the
actions do not yield a value. You can place the actions into a proce-
dure. Like a function, a procedure can have parameters, but it returns
no value.

Here is a typical example. Suppose you need to print an object of
type Time:

Time now;
cout << now.get_hours() << ":"
 << setw(2) << setfill('0') << now.get_minutes() << ":"
 << setw(2) << now.get_seconds() << setfill(' ');

An example printout is 9:05:30. The setw and setfill manipulators serve to supply
a leading zero if the minutes or seconds are single digits.

Of course, this is a pretty common task that may well occur again:
cout << liftoff.get_hours() << ":"
 << setw(2) << setfill('0') << liftoff.get_minutes() << ":"
 << setw(2) << liftoff.get_seconds() << setfill(' ');

The solution is to define a procedure for printing a Time value:
void print_time(Time t)
{
 cout << t.get_hours() << ":"
 << setw(2) << setfill('0') << t.get_minutes() << ":"
 << setw(2) << t.get_seconds() << setfill(' ');
}

Note that this code doesn’t compute any value. It performs some
actions and then returns to the caller. The missing return value is
indicated by the keyword void.

Procedures are called just as functions are, but there is no return
value to use in an expression:

print_time(now);

Because a procedure does not return a value, it must have some other side effect;
otherwise it would not be worth calling. This procedure has the side effect of print-
ing the time.

4.7 Procedures

A procedure is a sequence
of actions that depends on
parameters and does not
yield a result.

Use a return type of void
to indicate that a function
does not return a value.

4.7 • Procedures 177

Ideally, a function computes a single value and has no other observable effect.
Calling the function multiple times with the same parameter values returns the same
value every time and leaves no other trace. Ideally, a procedure has only a side
effect, such as setting variables or performing output, and returns no value.

Sometimes these ideals get muddied by the necessities of reality. Commonly,
procedures return a status value. For example, a procedure print_paycheck might
return a bool to indicate successful printing without a paper jam. However, comput-
ing that return value is not the principal purpose of calling the operation—you
wouldn’t print a check just to find out whether there is still paper in the printer.
Hence, we would still call print_paycheck a procedure, not a function, even though
it returns a value.

ch04/printtime.cpp

Program Run

1 #include <iostream>
2 #include <iomanip>
3
4 using namespace std;
5
6 #include "ccc_time.h"
7
8 /**
9 Prints a time in the format h:mm:ss.
10 @param t the time to print
11 */
12 void print_time(Time t)
13 {
14 cout << t.get_hours() << ":"
15 << setw(2) << setfill('0') << t.get_minutes() << ":"
16 << setw(2) << t.get_seconds() << setfill(' ');
17 }
18
19 int main()
20 {
21 Time liftoff(7, 0, 15);
22 Time now;
23 cout << "Liftoff: ";
24 print_time(liftoff);
25 cout << "\n";
26
27 cout << "Now: ";
28 print_time(now);
29 cout << "\n";
30
31 return 0;
32 }

Liftoff: 7:00:15
Now: 12:14:57

178 CHAPTER 4 • Functions

If you want to write a function or procedure that changes the values of a parameter,
you must use a reference parameter in order to allow the change. We first explain
why a different parameter type is necessary, and then we show you the syntax for
reference parameters.

Consider a procedure that raises the salary of an employee by a given percentage.
We want to call the procedure in the following way:

Employee harry;
...
raise_salary(harry, 5); // Now Harry earns 5 percent more

Here is a first attempt:
void raise_salary(Employee e, double by) // Does not work
{
 double new_salary = e.get_salary() * (1 + by / 100);
 e.set_salary(new_salary);
}

But this doesn’t work. Let’s walk through the procedure. As the procedure starts,
the parameter variable e is set to the same value as harry, and by is set to 5. Then e is
modified, but that modification had no effect on harry, because e is a separate vari-
able. When the procedure exits, e is forgotten, and harry didn’t get a raise.

A parameter such as e or by is called a value parameter, because it is a variable
that is initialized with a value supplied by the caller. All parameters in the functions
and procedures that we have written so far have been value parameters. In this situ-
ation, though, we don’t just want e to have the same value as harry. We want e to
refer to the actual variable harry (or joe or whatever employee is supplied in the
call). The salary of that variable should be updated.

You use a reference parameter when you want to update a variable
that was supplied in the method call. When we make e into a refer-
ence parameter, then e is not a new variable but a reference to an
existing variable, and any change in e is actually a change in the vari-
able to which e refers in that particular call. Figure 7 shows the dif-
ference between value and reference parameters.

4.8 Reference Parameters

Figure 7 Reference and Value Parameters

A reference parameter
denotes a reference to a
variable that is supplied in
a function call.

raise_salary main

by =

e =

Reference
parameter

Value
parameter

5

harry =
Employee

4.8 • Reference Parameters 179

 The syntax for a reference parameter is cryptic, as shown in Syntax 4.4. You
place an & after the type name to denote a reference parameter. Employee& is read
“employee reference” or, more briefly, “employee ref”.

void raise_salary(Employee& e, double by)
{
 double new_salary = e.get_salary() * (1 + by / 100);
 e.set_salary(new_salary);
}

The raise_salary procedure has two parameters: one of type “employee ref” and
the other a floating-point number.

The raise_salary procedure clearly has an observable side effect: It modifies the
variable supplied in the call. Apart from producing output, reference parameters are
the most common mechanism for achieving a side effect.

Note that the parameter e refers to different variables in different procedure calls.
If raise_salary is called twice,

raise_salary(harry, 5 + bonus);
raise_salary(charley, 1.5);

then e refers to harry in the first call, raising his salary by 5 percent plus the amount
bonus. In the second call, e refers to charley, raising his salary by just 1.5 percent.

Should the second parameter be a reference?
void raise_salary(Employee& e, double& by)

That is not desirable. The parameter by is never modified in the procedure; hence,
we gain nothing from making it a reference parameter. All we accomplish is to
restrict the call pattern. A reference parameter must be bound to a variable in the
call, whereas a value parameter can be bound to any expression. With by a reference
parameter, the call

raise_salary(harry, 5 + bonus)

becomes illegal, because you cannot have a reference to the expression 5 + bonus. It
makes no sense to change the value of an expression.

ch04/raisesal.cpp

1 #include <iostream>
2
3 using namespace std;
4
5 #include "ccc_empl.h"
6
7 /**
8 Raises an employee salary.
9 @param e employee receiving raise
10 @param by the percentage of the raise
11 */
12 void raise_salary(Employee& e, double by)
13 {
14 double new_salary = e.get_salary() * (1 + by / 100);
15 e.set_salary(new_salary);

180 CHAPTER 4 • Functions

Program Run

Constant References

It is not very efficient to pass variables of type Employee to a function by value. An employee
record contains several data items, and all of them must be copied into the parameter vari-
able. Reference parameters are more efficient. Only the location of the variable, not its value,
needs to be communicated to the function.

You can instruct the compiler to give you the efficiency of call by reference and the mean-
ing of call by value, by using a constant reference as shown in Syntax 4.5. The procedure

void print_employee(const Employee& e)
{
 cout << "Name: " << e.get_name()
 << " Salary: " << e.get_salary() << "\n";
}

works exactly the same as the procedure

void print_employee(Employee e)
{
 cout << "Name: " << e.get_name()
 << " Salary: " << e.get_salary() << "\n";
}

16 }
17
18 int main()
19 {
20 Employee harry("Hacker, Harry", 45000.00);
21 raise_salary(harry, 5);
22 cout << "New salary: " << harry.get_salary() << "\n";
23 return 0;
24 }

New salary: 47250

SYNTAX 4.4 Reference Parameter

type_name& parameter_name

Example:

Employee& e
int& result

Purpose:

Define a parameter that is bound to a variable in the function call, to allow the
function to modify that variable.

ADVANCED TOPIC 4.2

4.8 • Reference Parameters 181

There is just one difference: Calls to the first procedure execute faster.
Adding const& to value parameters is generally worthwhile for objects but not for num-

bers. Using a constant reference for an integer or floating-point number is actually slower
than using a value parameter. It would be nice if the compiler could perform this optimiza-
tion on its own initiative, but there are unfortunate technical reasons why it cannot.

Adding const& to speed up the passing of objects works only if the function or procedure
never modifies its value parameters. While it is legal to modify a value parameter, changing a
constant reference is an error. In Section 4.5 it was recommended to treat value parameters as
constants. If you follow that recommendation, you can apply the const& speedup.

For simplicity, const& is rarely used in this book, but you will always find it in production
code.

The Explosive Growth of Personal Computers

In 1971, Marcian E. “Ted” Hoff, an engineer at Intel Corporation was working on a chip for
a manufacturer of electronic calculators. He realized that it would be a better idea to develop
a general-purpose chip that could be programmed to interface with the keys and display of a
calculator, rather than to do yet another custom design. Thus, the microprocessor was born.
At the time, its primary application was as a controller for calculators, washing machines,
and the like. It took years for the computer industry to notice that a genuine central process-
ing unit was now available as a single chip.

Hobbyists were the first to catch on. In 1974 the first computer kit, the Altair 8800, was
available from MITS Electronics for about $350. The kit consisted of the microprocessor, a
circuit board, a very small amount of memory, toggle switches, and a row of display lights.
Purchasers had to solder and assemble it, then program it in machine language through the
toggle switches. It was not a big hit.

The first big hit was the Apple II. It was a real computer with a keyboard, a monitor, and
a floppy disk drive. When it was first released, users had a $3,000 machine that could play
Space Invaders, run a primitive bookkeeping program, or let users program it in BASIC. The
original Apple II did not even support lowercase letters, making it worthless for word pro-
cessing. The breakthrough came in 1979, with a new spreadsheet program, VisiCalc (see
Figure 8). In a spreadsheet, you enter financial data and their relationships into a grid of rows
and columns. Then you modify some of the data and watch in real time how the others

SYNTAX 4.5 Constant Reference Parameter

const type_name& parameter_name

Example:

const Employee& e

Purpose:

Define a parameter that is bound to a variable in the function call, to avoid the cost of
copying that variable into a parameter variable.

RANDOM FACT 4.1

182 CHAPTER 4 • Functions

change. For example, you can see how changing the mix of widgets in a manufacturing plant
might affect estimated costs and profits. Middle managers in companies, who understood
computers and were fed up with having to wait for hours or days to retrieve their data runs
from the computing center, snapped up VisiCalc and the computer that was needed to run it.
For them, the computer was a spreadsheet machine.

The next big hit was the IBM Personal Computer, ever after known as the PC. It was the
first widely available personal computer that used Intel’s 16-bit processor, the 8086, whose
successors are still being used in personal computers today. The success of the PC was based
not on any engineering breakthroughs, but on the fact that it was easy to clone. IBM
published specifications for plug-in cards, and it went one step further. It published the exact
source code of the so-called BIOS (Basic Input/Output System), which controls the key-
board, monitor, ports, and disk drives and must be installed in ROM form in every PC. This
allowed third-party vendors of plug-in cards to ensure that the BIOS code, and third-party
extensions of it, interacted correctly with the equipment. Of course, the code itself was the
property of IBM and could not be copied legally. Perhaps IBM did not foresee that function-

Figure 8 The Visicalc Spreadsheet Running on an Apple II

4.9 • Variable Scope and Global Variables 183

ally equivalent versions of the BIOS nevertheless could be recreated by others. Compaq, one
of the first clone vendors, had fifteen engineers, who certified that they had never seen the
original IBM code, write a new version that conformed precisely to the IBM specifications.
Other companies did the same, and soon there were a number of vendors selling computers
that ran the same software as IBM’s PC but distinguished themselves by a lower price,
increased portability, or better performance. In time, IBM lost its dominant position in the
PC market. It is now one of many companies producing IBM PC-compatible computers.

IBM never produced an operating system for its PCs. An operating system organizes the
interaction between the user and the computer, starts application programs, and manages
disk storage and other resources. Instead, IBM offered customers the option of three sepa-
rate operating systems. Most customers couldn’t care less about the operating system. They
chose the system that was able to launch most of the few applications that existed at the time.
It happened to be DOS (Disk Operating System) by Microsoft. Microsoft cheerfully
licensed the same operating system to other hardware vendors and encouraged software
companies to write DOS applications. A huge number of useful application programs for
PC-compatible machines was the result.

PC applications were certainly useful, but they were not easy to learn. Every vendor
developed a different user interface: the collection of keystrokes, menu options, and settings
that a user needed to master to use a software package effectively. Data exchange between
applications was difficult, because each program used a different data format. The Apple
Macintosh changed all that in 1984. The designers of the Macintosh had the vision to supply
an intuitive user interface with the computer and to force software developers to adhere to it.
It took Microsoft and PC-compatible manufacturers years to catch up.

At the time of this writing, most personal computers are used for accessing information
from online sources, entertainment, word processing, and home finance. Some analysts pre-
dict that the personal computer will merge with the television set and cable network into an
entertainment and information appliance.

It is sometimes possible to define the same variable name more than once in a pro-
gram. When the variable name is used, you need to know to which definition it
belongs. In this section, we discuss the rules for dealing with multiple definitions of
the same name.

Consider the variable r in the following example:
double future_value(double initial_balance, double p, int n)
{

double r = initial_balance * pow(1 + p / 100, n);
 return r;
}

int main()
{
 cout << "Please enter the interest rate in percent: ";

double r;

 cin >> r;

4.9 Var iab le Scope and Global Var iab les

184 CHAPTER 4 • Functions

 double balance = future_value(10000, r, 10);
 cout << "After 10 years, the balance is "
 << balance << "\n";

 return 0;
}

Perhaps the programmer chose r to denote the return value in the future_value
function, and independently chose r to denote the rate in the main function. These
variables are independent of each other. You can have variables with the same name
r in different functions, just as you can have different motels with the same name
“Bates’ Motel” in different cities.

In a program, the part within which a variable is visible is known
as the scope of the variable. The scope of a variable that is defined in a
function extends from its definition to the end of the block in which
it was defined. The scopes of the variables r are indicated with color.

Variables that are defined inside functions are sometimes called local
variables. C++ also supports global variables: variables that are
defined outside functions. A global variable is visible to all functions
that are defined after it.

In the following code, balance is a global variable. Note how it is
set in main and read in future_value.

ch04/global.cpp

The scope of a variable is
the part of the program in
which it is visible.

double future_value(double initial_balance, double p, int n)
{
 double r = initial_balance * pow(1 + p / 100, n);
 return r;
}

int main()
{
 cout << "Please enter the interest rate in percent: ";
 double r;
 cin >> r;

 double balance = future_value(10000, r, 10);
 cout << "After 10 years, the balance is "
 << balance << "\n";

 return 0;
}

A local variable is defined
inside a function. A global
variable is defined outside
a function.

1 #include <iostream>
2 #include <cmath>
3
4 using namespace std;
5
6 double balance;
7

4.9 • Variable Scope and Global Variables 185

Program Run

Of course, this is not considered a good way of transmitting data from one function
to another. For example, suppose a programmer accidentally calls future_value
before balance is set. Then the function computes the wrong investment result.
Especially as a program gets long, these kinds of errors are extremely difficult to
find. Of course, there is a simple remedy: Rewrite future_value and add a parameter
for the initial balance.

Sometimes global variables cannot be avoided (for example, cin, cout, and cwin
are global variables), but you should make every effort to avoid global variables in
your programs.

Minimize Global Variables

There are a few cases where global variables are required, but they are quite rare. If you find
yourself using many global variables, you are probably writing code that will be difficult to
maintain and extend. As a rule of thumb, you should have no more than two global variables
for every thousand lines of code.

How can you avoid global variables? Use parameters and use classes. You can always use
function parameters to transfer information from one part of a program to another. If your
program manipulates many variables, that can get tedious. In this case, you need to design
classes that cluster related variables together. You will learn more about this process in
Chapter 5.

8 /**
9 Accumulates interest in the global variable balance.
10 @param p the interest rate in percent
11 @param n the number of periods the investment is held
12 */
13 void future_value(double p, int n)
14 {
15 balance = balance * pow(1 + p / 100, n);
16 }
17
18 int main()
19 {
20 balance = 10000;
21 future_value(5, 10);
22 cout << "After ten years, the balance is "
23 << balance << "\n";
24 return 0;
25 }

After ten years, the balance is 16288.9

QUAL ITY T IP 4.2

186 CHAPTER 4 • Functions

One of the most powerful strategies for problem solving is the pro-
cess of stepwise refinement. To solve a difficult task, break it down
into simpler tasks. Then keep breaking down the simpler tasks into
even simpler ones, until you are left with tasks that you know how to
solve.

Now apply this process to a problem of everyday life. You get up in the morning
and simply must get coffee. How do you get coffee? You see whether you can get

4.10 Stepwise Refinement

Use the process of
stepwise refinement to
decompose complex tasks
into simpler ones.

Figure 9 Flowchart of Coffee-Making Solution

Yes No

Get
coffee

Ask for
coffee

Can you
ask someone

?

Make
coffee

Yes No

Do you
have instant

coffee?

Brew
coffee

Add coffee
beans to
grinderPut cup

in micro-
wave

Bring to
a boil

Fill cup
with water

Fill kettle
with water

Heat
3 min.

Grind
60 sec.

Add water
to coffee

maker

Add filter
to coffee

maker

Add coffee
beans to

filter

Grind
coffee
beans

Turn coffee
maker on

Make
instant
coffee

Boil
water

Mix water
and instant

coffee

Do you
have a micro-

wave?

Yes No

4.10 • Stepwise Refinement 187

someone else, such as your mother or mate, to bring you some. If that fails, you
must make coffee. How do you make coffee? If there is instant coffee available, you
can make instant coffee. How do you make instant coffee? Simply boil water and
mix the boiling water with the instant coffee. How do you boil water? If there is a
microwave, then you fill a cup with water, place it in the microwave and heat it for
three minutes. Otherwise, you fill a kettle with water and heat it on the stove until
the water comes to a boil. On the other hand, if you don’t have instant coffee, you
must brew coffee. How do you brew coffee? You add water to the coffee maker, put
in a filter, grind coffee, put the coffee in the filter, and turn the coffee maker on.
How do you grind coffee? You add coffee beans to the coffee grinder and push the
button for 60 seconds.

The solution to the coffee problem breaks down tasks in two ways: with deci-
sions and with refinements. We are already familiar with decisions: “If there is a
microwave, use it, else use a kettle.” Decisions are implemented as if/else in C++.
A refinement gives a name to a composite task and later breaks that task down fur-
ther: “… put in a filter, grind coffee, put the coffee in the filter …. To grind coffee,
add coffee beans to the coffee grinder … .” Refinements are implemented as func-
tions in C++. Figure 9 shows a flowchart view of the coffee-making solution. Deci-
sions are shown as branches, refinements as expanding boxes. Figure 10 shows a
second view: a call tree of the tasks. The call tree shows which tasks are subdivided
into which other tasks. It does not show decisions or loops, though. The name “call
tree” is simple to explain: When you program each task as a C++ function, the call
tree shows which functions call each other.

Figure 10 Call Tree of Coffee-Making Process

Get coffee
Ask for coffee
Make coffee

Make instant coffee
Boil water

Fill cup with water
Put cup in microwave

Heat 3 minutes
Fill kettle with water
Bring to a boil

Mix water and instant coffee

Brew coffee

Add water to coffee maker

Add filter to coffee maker
Grind coffee beans

Add coffee beans to grinder
Grind 60 seconds

Add coffee beans to filter
Turn coffee maker on

188 CHAPTER 4 • Functions

Keep Functions Short

There is a certain cost for writing a function. The function needs to be documented; parame-
ter values need to be passed; the function must be tested. Some effort should be made to find
whether the function can be made reusable rather than tied to a specific context. To avoid
this cost, it is always tempting just to stuff more and more code in one place rather than
going through the trouble of breaking up the code into separate functions. It is quite com-
mon to see inexperienced programmers produce functions that are several hundred lines
long.

Ideally, each function should contain no more than one screenful of text, making it easy to
read the code in the text editor. Of course, this is not always possible. As a rule of thumb, a
function that is longer than 50 lines is usually suspect and should probably be broken up.

When printing a check, it is customary to write the check amount both as a number
(“$274.15”) and as a text string (“two hundred seventy four dollars and 15 cents”).
Doing so reduces the recipient’s temptation to add a few digits in front of the
amount (see Figure 11). For a human, this isn’t particularly difficult, but how can a
computer do this? There is no built-in function that turns 274 into "two hundred
seventy four". We need to program this function. Here is the description of the
function we want to write:

/**
Turns a number into its English name.

 @param n a positive integer < 1,000,000
 @return the name of n (e.g., “two hundred seventy four”)
*/
string int_name(int n)

Before starting the programming, we need to have a plan. Consider a simple case. If
the number is between 1 and 9, we need to compute "one" … "nine". In fact, we
need the same computation again for the hundreds (two hundred). Any time you
need something more than once, it is a good idea to turn that into a function. Rather
than writing the entire function, write only the comment:

/**
Turns a digit into its English name.

 @param n an integer between 1 and 9
 @return the name of n (“one” ... “nine”)
*/
string digit_name(int n)

This sounds simple enough to implement, using an if/else statement with nine
branches, so we will worry about the implementation later.

QUAL ITY T IP 4.3

4.11 Case Study: From Pseudocode to Code

4.11 • Case Study: From Pseudocode to Code 189

Numbers between 10 and 19 are special cases. Let us have a separate function
teen_name that converts them into strings "eleven", "twelve", "thirteen", and so
forth:

/**
Turns a number between 10 and 19 into its English name.

 @param n an integer between 10 and 19
 @return the name of n (“ten” ... “nineteen”)
*/
string teen_name(int n)

Next, suppose that the number is between 20 and 99. Then we show the tens as
"twenty", "thirty", …, "ninety". For simplicity and consistency, put that computa-
tion into a separate function:

/**
Gives the English name of a multiple of 10.

 @param n an integer between 2 and 9
 @return the name of 10 * n (“twenty” ... “ninety”)
*/
string tens_name(int n)

Now suppose the number is at least 20 and at most 99. If the number is evenly
divisible by 10, we use tens_name, and we are done. Otherwise, we print the tens
with tens_name and the ones with digit_name. If the number is between 100 and 999,
then we show a digit, the word "hundred", and the remainder as described
previously.

If the number is 1,000 or larger, then we convert the multiples of a thousand, in
the same format, followed by the word "thousand", then the remainder. For exam-
ple, to convert 23,416, we first make 23 into a string "twenty three", follow that
with "thousand", and then convert 416.

Figure 11 Check Showing the Amount as Both a Number and a String

AmountDate

CHECK
NUMBER 063331 74-39

311 567390
Publishers, Bank Minnesota
2000 Prince Blvd
Jonesville, MN 55400

4659484PAY

TEN THOUSAND NINE HUNDRED SEVENTY FOUR AND 79 / 100 **************************
TO THE ORDER OF:

John Wiley & Sons, Inc.
111 River Street
Hoboken, NJ 07030-5774

JOHN DOE
1009 Franklin Blvd
Sunnyvale, CA 95014

04/29/09 $****10,974.79

190 CHAPTER 4 • Functions

This sounds complicated enough that it is worth turning it into
pseudocode. Pseudocode is code that looks like C++, but the
descriptions it contains are not explicit enough for the compiler to
understand.

Here is the pseudocode of the verbal description of the algorithm.

string int_name(int n)
{
 int c = n; // The part that still needs to be converted
 string r; // The return value

 if (c >= 1000)
 {
 r = name of thousands in c + "thousand";

remove thousands from c;
 }

 if (c >= 100)
 {
 r = r + name of hundreds in c + "hundred";

remove hundreds from c;
 }

 if (c >= 20)
 {
 r = r + name of tens in c;

remove tens from c;
 }

 if (c >= 10)
 {
 r = r + name of c;
 c = 0;
 }

 if (c > 0)
 r = r + name of c;

 return r;
}

This pseudocode has a number of important improvements over the verbal descrip-
tion. It shows how to arrange the tests, starting with the comparisons against the
larger numbers, and it shows how the smaller number is subsequently processed in
further if statements.

On the other hand, this pseudocode is vague about the actual conversion of the
pieces, just referring to “name of tens” and the like. Furthermore, we lied about
spaces. As it stands, the code would produce strings with no spaces, twohundredsev-
entyfour, for example. Compared to the complexity of the main problem, one
would hope that spaces are a minor issue. It is best not to muddy the pseudocode
with minor details.

Pseudocode is a mixture
of English and source code
that is used in the early
stages of implementing
complex code.

4.11 • Case Study: From Pseudocode to Code 191

Some people like to write pseudocode on paper and use it as a guide for the
actual coding. Others type the pseudocode into an editor and then transform it into
the final code. You may want to try out both methods and see which one works
better for you.

Now turn the pseudocode into real code. The last three cases are easy, because
helper functions are already developed for them:

if (c >= 20)
{
 r = r + " " + tens_name(c / 10);
 c = c % 10;
}

if (c >= 10)
{
 r = r + " " + teen_name(c);
 c = 0;
}

if (c > 0)
 r = r + " " + digit_name(c);

The case of numbers between 100 and 999 is also easy, because you know that
c / 100 is a single digit:

if (c >= 100)
{
 r = r + " " + digit_name(c / 100) + " hundred";
 c = c % 100;
}

Only the case of numbers larger than 1,000 is somewhat vexing, because the num-
ber c / 1000 is not necessarily a digit. If c is 23,416, then c / 1000 is 23, and how
are we going to obtain the name of that? We have helper functions for the ones,
teens, and tens, but not for a value like 23. However, we know that c / 1000 is less
than 1,000, because we assume that c is less than one million. We also have a per-
fectly good function that can convert any number < 1,000 into a string—namely the
function int_name itself.

if (c >= 1000)
{
 r = int_name(c / 1000) + " thousand";
 c = c % 1000;
}

Here is the function in its entirety:
/**

Turns a number into its English name.
 @param n a positive integer < 1,000,000
 @return the name of n (e.g., “two hundred seventy four”)
*/

string int_name(int n)
{

192 CHAPTER 4 • Functions

 int c = n; // The part that still needs to be converted
 string r; // The return value

 if (c >= 1000)
 {
 r = int_name(c / 1000) + " thousand";
 c = c % 1000;
 }

 if (c >= 100)
 {
 r = r + " " + digit_name(c / 100) + " hundred";
 c = c % 100;
 }

 if (c >= 20)
 {
 r = r + " " + tens_name(c / 10);
 c = c % 10;
 }

 if (c >= 10)
 {
 r = r + " " + teen_name(c);
 c = 0;
 }

 if (c > 0)
 r = r + " " + digit_name(c);

 return r;
}

You may find it odd that a function can call itself, not just other functions. This is
actually not as far-fetched as it sounds at first. Here is an example from basic alge-
bra. You probably learned in your algebra class how to compute a square of a num-
ber such as 25.4 without the benefit of a calculator. This is a handy trick if you are
stuck on a desert island and need to find out how many square millimeters are in a
square inch. (There are 25.4 millimeters in an inch.) Here is how you do it. You use
the binomial formula

with a = 25 and b = 0.4. To compute 25.42, you first compute the simpler squares
252and 0.42: 252 = 625 and 0.42 = 0.16. Then you put everything together: 25.42 =
625 + 2 × 25 × 0.4 + 0.16 = 645.16.

The same phenomenon happens with the int_name function. It receives a number
like 23,456. It is stuck on the 23, so it suspends itself and calls a function to solve
that task. It happens to be another copy of the same function. That function returns
"twenty three". The original function resumes, threads together "twenty three
thousand", and works on the remainder, 456.

a b a ab b+() = + +2 2 22

4.11 • Case Study: From Pseudocode to Code 193

There is one important caveat. When a function invokes itself, it must give a sim-
pler assignment to the second copy of itself. For example, int_name couldn’t just call
itself with the value that it received or with 10 times that value; then the calls would
never stop. That is, of course, a general truth for solving problems by a series of
functions. Each function must work on a simpler part of the whole. In Chapter 10,
we will examine functions that call themselves in greater detail.

Now you have seen all the important building blocks for the int_name function.
As mentioned previously, the helper functions must be declared or defined before
the int_name function. Here is the complete program.

ch04/intname.cpp

1 #include <iostream>
2 #include <string>
3
4 using namespace std;
5
6 /**
7 Turns a digit into its English name.
8 @param n an integer between 1 and 9
9 @return the name of n (“one” ... “nine”)
10 */
11 string digit_name(int n)
12 {
13 if (n == 1) return "one";
14 if (n == 2) return "two";
15 if (n == 3) return "three";
16 if (n == 4) return "four";
17 if (n == 5) return "five";
18 if (n == 6) return "six";
19 if (n == 7) return "seven";
20 if (n == 8) return "eight";
21 if (n == 9) return "nine";
22 return "";
23 }
24
25 /**
26 Turns a number between 10 and 19 into its English name.
27 @param n an integer between 10 and 19
28 @return the name of n (“ten” ... “nineteen”)
29 */
30 string teen_name(int n)
31 {
32 if (n == 10) return "ten";
33 if (n == 11) return "eleven";
34 if (n == 12) return "twelve";
35 if (n == 13) return "thirteen";
36 if (n == 14) return "fourteen";
37 if (n == 15) return "fifteen";
38 if (n == 16) return "sixteen";
39 if (n == 17) return "seventeen";
40 if (n == 18) return "eighteen";
41 if (n == 19) return "nineteen";

194 CHAPTER 4 • Functions

42 return "";
43 }
44
45 /**
46 Gives the English name of a multiple of 10.
47 @param n an integer between 2 and 9
48 @return the name of 10 * n (“twenty” ... “ninety”)
49 */
50 string tens_name(int n)
51 {
52 if (n == 2) return "twenty";
53 if (n == 3) return "thirty";
54 if (n == 4) return "forty";
55 if (n == 5) return "fifty";
56 if (n == 6) return "sixty";
57 if (n == 7) return "seventy";
58 if (n == 8) return "eighty";
59 if (n == 9) return "ninety";
60 return "";
61 }
62
63 /**
64 Turns a number into its English name.
65 @param n a positive integer < 1,000,000
66 @return the name of n (e.g. “two hundred seventy four”)
67 */
68 string int_name(int n)
69 {
70 int c = n; // The part that still needs to be converted
71 string r; // The return value
72
73 if (c >= 1000)
74 {
75 r = int_name(c / 1000) + " thousand";
76 c = c % 1000;
77 }
78
79 if (c >= 100)
80 {
81 r = r + " " + digit_name(c / 100) + " hundred";
82 c = c % 100;
83 }
84
85 if (c >= 20)
86 {
87 r = r + " " + tens_name(c / 10);
88 c = c % 10;
89 }
90
91 if (c >= 10)
92 {
93 r = r + " " + teen_name(c);
94 c = 0;
95 }

4.12 • Walkthroughs 195

Program Run

When you implement a complex set of functions, it is a good idea to
carry out a manual walkthrough before entrusting it to the computer.
In this section, you will see how to carry out a walkthrough. All you
need is a stack of index cards.

Consider the int_name function of the preceding section. There are a number of
other subtleties that are worth analyzing. For example, consider

if (c >= 20)
{
 r = r + " " + tens_name(c);
 c = c % 10;
}

if (c >= 10)
{
 r = r + " " + teen_name(c);
 c = 0;
}

Why does the first branch set c = c % 10, whereas the second branch sets c = 0?
Actually, when I first wrote the code, both branches set c = c % 10, and then I real-
ized my error when testing the code in my mind with a few examples. A walk-
through is simply a systematic mental test of a piece of code.

Take an index card, or some other piece of paper; write down the function call
that you want to study.

96
97 if (c > 0)
98 r = r + " " + digit_name(c);
99
100 return r;
101 }
102
103 int main()
104 {
105 int n;
106 cout << "Please enter a positive integer: ";
107 cin >> n;
108 cout << int_name(n);
109 return 0;
110 }

Please enter a positive integer: 1729
one thousand seven hundred twenty nine

4.12 Walkthroughs

A walkthrough is a
manual simulation of
program code.

196 CHAPTER 4 • Functions

Then write the names of the function variables. Write them in a table, since you will
update them as you walk through the code.

Skip past the test c >= 1000 and enter the test c >= 100. c / 100 is 4 and c % 100 is
16. digit_name(4) is easily seen to be "four".

Write the value that you expect at the top of a separate index card.

Had digit_name been complicated, you would have started another index card to
figure out that function call. This could get out of hand if that function calls a third
function. Computers have no trouble suspending one task, working on a second
one, and coming back to the first, but people lose concentration when they have to
switch their mental focus too often. So, instead of walking through subordinate

int_name(n = 416)

c r

416 ""

int_name(n = 416)

Returns "four"?

digit_name(n = 4)

4.12 • Walkthroughs 197

function calls, you can just assume that they return the correct value, as you did
with digit_name.

Set this card aside and walk through it later. You may accumulate numerous
cards in this way. In practice, this procedure is necessary only for complex function
calls, not simple ones like digit_name.

Now you are ready to update the variables. r has changed to r + " " + digit_
name(c / 100) + " hundred", that is "four hundred", and c has changed to c % 100,
or 16. You can cross out the old values and write the new ones under them.

Now you enter the branch c >= 10. teens_name(16) is sixteen, so the variables now
have the values

Now it becomes clear why you need to set c to 0, not to c % 10. You don’t want to
get into the c > 0 branch. If you did, the result would be "four hundred

sixteen six". However, if c is 36, you want to produce "thirty" first and then send
the leftover 6 to the c > 0 branch.

In this case the walkthrough was successful. However, you will very commonly
find errors during walkthroughs. Then you fix the code and try the walkthrough
again. In a team with many programmers, regular walkthroughs are a useful method
of improving code quality and understanding.

c r

416 ""

16 "four hundred"

int_name(n = 416)

c r

416 ""

16 "four hundred"

0 "four hundred sixteen"

int_name(n = 416)

198 CHAPTER 4 • Functions

Commenting Out a Section of Code

Sometimes you are running tests on a long program, and a part of the program is incomplete
or hopelessly messed up. You may want to ignore that part for some time and focus on get-
ting the remainder of the code to work. Of course, you can cut out that text, paste it into
another file, and paste it back later, but that is a hassle. Alternatively, you could just enclose
the code to be ignored in comments.

The obvious method is to place a /* at the beginning of the offending code and a */ at the
end. Unfortunately, that does not work in C++, because comments do not nest. That is, the
/* and */ do not pair up as parentheses or braces do:

/*

/**
Turns a number between 10 and 19 into its English name.

 @param n an integer between 10 and 19
 @return the name of n (“ten” ... “nineteen”)
*/

string teen_name(int n)
{
 if (n == 11) return "eleven";
 else ...
}

*/

The */ closing delimiter after the @return comment matches up with the /* opening delim-
iter at the top. All remaining code is compiled, and the */ at the end of the function causes an
error message. This isn’t very smart, of course. Some compilers do let you nest comments,
but others don’t. Some people recommend that you use only // comments. If you do, you
can comment out a block of code with the /* ... */ comments—well, kind of: If you first
comment out a small block and then a larger one, you run into the same problem.

There is another way of masking out a block of code: by using so-called preprocessor
directives.

#if 0

/**
Turns a number between 10 and 19 into its English name.

 @param n an integer between 10 and 19
 @return the name of n (“ten” ... “nineteen”)
*/
string teen_name(int n)
{
 if (n == 11) return "eleven";
 else ...
}

#endif

Preprocessing is the phase before compilation, in which #include files are included, macros
are expanded, and portions of code are conditionally included or excluded. All lines starting
with a # are instructions to the preprocessor. Selective inclusion of code with #if ... #endif is

PRODUCT IV ITY HINT 4.4

4.12 • Walkthroughs 199

useful if you need to write a program that has slight variations to run on different platforms.
Here we use the feature to exclude the code. If you want to include it temporarily, change the
#if 0 to #if 1. Of course, once you have completed testing, you must clean it up and remove
all #if 0 directives and any unused code. Unlike /* ... */ comments, the #if ... #endif
directives can be nested.

Stubs

Some people first write all code and then start compiling and testing. Others prefer to see
some results quickly. If you are among the impatient, you will like the technique of stubs.

A stub is a function that is completely empty and returns a trivial value. The stub can be
used to test that the code compiles and to debug the logic of other parts of the program.

/**
Turns a digit into its English name.

 @param n an integer between 1 and 9
 @return the name of n (“one” ... “nine”)
*/
string digit_name(int n)
{
 return "mumble";
}

/**
Turns a number between 10 and 19 into its English name.

 @param n an integer between 10 and 19
 @return the name of n (“ten” ... “nineteen”)
*/
string teen_name(int n)
{
 return "mumbleteen";
}

/**
Gives the English name of a multiple of 10.

 @param n an integer between 2 and 9
 @return the name of 10 * n (“twenty” ... “ninety”)
*/
string tens_name(int n)
{
 return "mumblety";
}

If you combine these stubs with the int_name function and test it with an input of 274, you
will get an output of "mumble hundred mumblety mumble", which shows you that you are on
the right track. You can then flesh out one stub at a time.

This method is particularly helpful if you like composing your programs directly on the
computer. Of course, the initial planning requires thought, not typing, and is best done at a
desk. Once you know what functions you need, however, you can enter their interface

PRODUCT IV ITY HINT 4.5

200 CHAPTER 4 • Functions

descriptions and stubs, compile, implement one function, compile and test, implement the
next function, compile and test, until you are done.

What should a function do when it is called with inappropriate inputs? For exam-
ple, how should sqrt(-1) react? What should digit_name(-1) do? There are two
choices.

• A function can choose to accept all inputs and return default values when the
inputs are inappropriate. For example, the digit_name function simply returns an
empty string when it is called with an unexpected input.

• A function can choose to notify programmers which inputs it will accept. Such a
notification is called a precondition. If an inappropriate input is provided despite
the notification, the function may do anything it chooses, perhaps computing a
wrong result or even terminating the program.

Perhaps surprisingly, the “nice” approach—always returning a
default value—is not such a good idea. Consider a square root func-
tion. It would be an easy matter to return 0 for negative inputs and
the actual square root for positive inputs. Suppose you use that func-
tion to compute the intersection points of a circle and a line. Sup-
pose they don’t intersect, but you forgot to take that possibility into

account. Now the square root of a negative number will return a wrong value,
namely 0, and you will obtain bogus intersection points. You may miss that during
testing, and the faulty program may make it into production. This isn’t a big deal
for a student program, but suppose the program directs a dental drill robot. It
would start drilling somewhere outside the tooth.

It would be much better if the function complained loudly during testing, by
printing an error message that clearly indicates the problem with the parameter
value.

The assert macro, shown in Syntax 4.6 on page 201, was designed for this pur-
pose. (A macro is a special instruction to the compiler that inserts code into the pro-
gram text.) If the condition inside the assert macro is false, then the program aborts
with an error message that shows the line number and file name. If the condition
inside the macro is true when the macro is encountered, then nothing happens. For
example, the macro

assert(x >= 0);

can be used to protect against negative values of x.
For efficiency, it is possible to change the behavior of assert when a program has

been fully tested. After a certain switch has been set in the compiler, assert state-
ments are simply ignored. No time-consuming test takes place, no error message is
generated, and the program never aborts.

4.13 Precondi t ions

Preconditions are
documented restrictions
on the function
parameters.

4.13 • Preconditions 201

Here is what you should do when writing a function:

1. Establish clear preconditions for all inputs. Write in the @param comment what
values you are not willing to handle for each parameter.

2. Write assert statements that enforce the preconditions.
3. Be sure to supply correct results for all inputs that fulfill the precondition.

Let’s apply this strategy to the future_value function:
/**

Computes the value of an investment with compound interest.
 @param initial_balance the initial value of the investment
 @param p the interest rate in percent; must be ≥ 0
 @param n the number of periods the investment is held; must be ≥ 0
 @return the balance after n periods
*/
double future_value(double initial_balance, double p, int n)
{

assert(p >= 0);

 assert(n >= 0);

 return initial_balance * pow(1 + p / 100, n);
}

We advertised that p and n must be ≥ 0. These are the preconditions of our
future_value function. The function is responsible only for handling inputs that
conform to the precondition. Calling the function with bad inputs causes the pro-
gram to terminate. That may not be “nice”, but it is legal. Remember that the func-
tion can do anything if the precondition is not fulfilled.

Bertrand Meyer [1] compares preconditions to contracts. The function promises
to compute the correct answer for all inputs that fulfill the precondition. The caller
promises never to call the function with illegal inputs. If the caller fulfills its prom-
ise and gets a wrong answer, it can take the function to programmer’s court. If the
caller doesn’t fulfill its promise and something terrible happens as a consequence, it
has no recourse.

SYNTAX 4.6 Assertion

assert(expression);

Example:

assert(x >= 0);

Purpose:

If the expression is true, do nothing. If it is false, terminate the program, displaying an
error message with the file name, line number, and expression.

202 CHAPTER 4 • Functions

The Therac-25 Incidents

The Therac-25 is a computerized device that delivers radiation treatment to cancer patients
(see Figure 12). Between June 1985 and January 1987, several of these machines delivered
serious overdoses to at least six patients, killing some of them and seriously maiming the
others.

The machines were controlled by a computer program. Bugs in the program were directly
responsible for the overdoses. According to [1], the program was written by a single pro-
grammer, who had since left the manufacturing company producing the device and could not
be located. None of the company employees interviewed could say anything about the edu-
cational level or qualifications of the programmer.

The investigation by the federal Food and Drug Administration (FDA) found that the
program was poorly documented and that there was neither a specification document nor a
formal test plan. (This should make you think. Do you have a formal test plan for your pro-
grams?)

The overdoses were caused by an amateurish design of the software that controlled differ-
ent devices concurrently, namely the keyboard, the display, the printer, and the radiation
device itself. Synchronization and data sharing between the tasks were done in an ad hoc
way, even though safe multitasking techniques were known at the time. Had the program-
mer enjoyed a formal education that involved these techniques or taken the effort to study
the literature, a safer machine could have been built. Such a machine would have probably
involved a commercial multitasking system, which might have required a more expensive
computer.

The same flaws were present in the software controlling the predecessor model, the
Therac-20, but that machine had hardware interlocks that mechanically prevented overdoses.

Figure 12 Typical Therac-25 Facility

RANDOM FACT 4.2

Therac-25 unit

Treatment table

Motion
power switch

Therapy room
intercom

Room
emergency
switch

Door
interlock
switch

Beam
on/off light

Motion enable
switch (footswitch)

Display
terminal

TV monitor Printer
Control
console

Turntable
position
monitor

Room
emergency
switchesTV

camera

4.14 • Unit Testing 203

The hardware safety devices were removed in the Therac-25 and replaced by checks in the
software, presumably to save cost.

Frank Houston of the FDA wrote in 1985 [1]: “A significant amount of software for life-
critical systems comes from small firms, especially in the medical device industry; firms that
fit the profile of those resistant to or uninformed of the principles of either system safety or
software engineering”.

Who is to blame? The programmer? The manager who not only failed to ensure that the
programmer was up to the task but also didn’t insist on comprehensive testing? The hospi-
tals that installed the device, or the FDA, for not reviewing the design process? Unfortu-
nately, even today there are no firm standards of what constitutes a safe software design
process.

Testing the functionality of a computer program without consider-
ation of its internal structure is called black-box testing. You proba-
bly performed some black-box testing when you provided inputs to
your homework programs and checked the results.

However, it is impossible to ensure absolutely that a program will
work correctly on all inputs, just by supplying a finite number of test

cases. As the famous computer scientist Edsger Dijkstra pointed out, testing can
only show the presence of bugs—not their absence. To gain more confidence in the
correctness of a program, it is useful to consider its internal structure. Testing
strategies that look inside a program are called white-box testing.

One important part of white-box testing is to test functions of a
program in isolation. You write a short program, called a test harness,
that calls the function to be tested and verifies that the results are cor-
rect. This process is called unit testing.

For example, a unit test for the int_name function might look like this:
int main()
{
 assert(int_name(19) == "nineteen");
 assert(int_name(29) == "twenty nine");
 assert(int_name(1093) == "one thousand ninety three");
 assert(int_name(30000) == "thirty thousand");
}

When the program completes without an error message, then all the
tests have passed. If a test fails, then you get an error message, telling
you which line failed. This approach works fine for a small set of test
cases. Various unit test frameworks have been developed for C++
to make it easier to organize unit tests (see [2] and[3]). These testing

frameworks are excellent for testing larger programs, providing good error report-
ing and the ability to keep going when some test cases fail or crash.

4.14 Unit Test ing

A black-box test does not
consider the internal
structure of a program; a
white-box test does.

A unit test checks a
function in isolation.

A unit test framework
allows you to organize
your unit tests.

204 CHAPTER 4 • Functions

Selecting test cases is an important skill. Of course, you want to
test your program with inputs that a typical user might supply.

Next, you should include boundary cases. Boundary cases are
still legitimate inputs, and you expect that the function that is being

tested will handle them correctly. Boundary cases for the int_name function are 1
and 999999, the smallest and largest valid input.

You want to make sure that each part of your code is exercised at
least once by one of your test cases. This is called test coverage. If
some code is never executed by any of your test cases, you have no
way of knowing whether that code would perform correctly if it ever
were executed by user input. That means that you need to look at every

if/else branch to see that each of them is reached by some test case. Many condi-
tional branches are in the code only to take care of strange and abnormal inputs, but
they still do something. It is a common phenomenon that they end up doing some-
thing incorrect but that those faults are never discovered during testing because
nobody supplied the strange and abnormal inputs. Of course, these flaws become
immediately apparent when the program is released and the first user types in a bad
input and is incensed when the program crashes. Your test cases should ensure that
each part of the code is covered by some input.

For example, in testing the int_name function, you want to make sure that every
if statement is entered for at least one test case and that it is skipped for another test
case. For example, you might test the inputs 1234 and 1034 to see what happens if
the test if (c >= 100) is entered and what happens if it is skipped.

It is a good idea to write the first test cases before the program is written com-
pletely. Designing a few test cases can give you insight into what the program
should do, which is valuable for implementing it. You will also have something to
throw at the program when it compiles for the first time.

It is a common and useful practice to make a new test case whenever you find a
program bug. You can use that test case to verify that your bug fix really works.
Don’t throw it away; feed it to the next version after that and all subsequent ver-
sions. Such a collection of test cases is called a test suite.

You will be surprised how often a bug that you fixed will reappear
in a future version. This is a phenomenon known as cycling. Some-
times you don’t quite understand the reason for a bug and apply a
quick fix that appears to work. Later, you apply a different quick fix
that solves a second problem but makes the first problem reappear.

Of course, it is always best to really think through what causes a bug and fix the
root cause instead of doing a sequence of “Band-Aid” solutions. If you don’t suc-
ceed in doing that, however, at least you want to have an honest appraisal of how
well the program works. By keeping all old test cases and testing them all against
every new version, you get that feedback. The process of testing against a set of past
failures is called regression testing.

In summary, the most important principles of testing are to aim for complete
coverage (executing all code at least once), and to use regression testing (never
throwing a test case away). Organize your test cases in one or more test harnesses,

A boundary case is a test
case that is at the
boundary of valid inputs.

To ensure good test
coverage, select test cases
that cover each branch of
the function.

In regression testing,
you test new versions
of a program against
past failures.

4.15 • The Debugger 205

and run them whenever you fix a bug. Use a test framework when simple test har-
nesses become unwieldy.

Modern development environments contain special programs, so-
called debuggers, that help you locate bugs by letting you follow the
execution of a program. You can stop and restart your program and
see the contents of variables whenever your program is temporarily
stopped. At each stop, you have the choice of what variables to
inspect and how many program steps to run until the next stop.

Some people don’t want to learn a new tool and try to get by with inserting trace
statements. However, for larger programs, that approach becomes quite unprod-
ductive. You will find that the time invested in learning about the debugger is amply
repaid in your programming career.

Some people feel that debuggers are just a tool to make programmers lazy.
Admittedly some people write sloppy programs and fix them up with the debugger,
but that is not smart. It takes time to set up and carry out an effective debugging
session. Effective programmers design their programs carefully and use a debugger
only when necessary.

The First Bug

According to legend, the first bug was found in the Mark II, a huge electromechanical com-
puter at Harvard University. It really was caused by a bug—a moth was trapped in a relay
switch.

Actually, from the note that the operator left in the log book next to the moth (see
Figure 13), it appears as if the term “bug” had already been in active use at the time.

The pioneering computer scientist Maurice Wilkes wrote: “Somehow, at the Moore
School and afterwards, one had always assumed there would be no particular difficulty in

4.15 The Debugger

With a debugger, you can
control the execution of a
program and observe the
contents of program
variables.

Figure 13 The First Bug

RANDOM FACT 4.3

206 CHAPTER 4 • Functions

getting programs right. I can remember the exact instant in time at which it dawned on me
that a great part of my future life would be spent finding mistakes in my own programs.”

Like compilers, debuggers vary widely from one system to another.
On some systems they are quite primitive and require you to memo-
rize a small set of arcane commands; on others they have an intuitive
window interface.

You will have to find out how to prepare a program for debugging
and how to start the debugger on your system. If you use an inte-
grated development environment, which contains an editor, com-
piler, and debugger, this step is usually very easy. You just build the

program in the usual way and pick a menu command to start debugging. On many
UNIX systems, you must manually build a debug version of your program and
invoke the debugger.

Once you have started the debugger, you can go a long way with just three
debugging commands: “run until this line”, “step to next line”, and “inspect vari-
able”. The names and keystrokes or mouse clicks for these commands differ widely
between debuggers, but all debuggers support these basic commands. You can find
out how either from the documentation or a lab manual, or by asking someone who
has used the debugger before.

The “run until this line” command is the most important. Many debuggers show
you the source code of the current program in a window. Select a line with the
mouse or cursor keys. Then hit a key or select a menu command to run the program
to the selected line. On other debuggers, you have to type in a command or a line
number. In either case, the program starts execution and stops as soon as it reaches
the line you selected (see Figure 14). Of course, you may have selected a line that
will not be reached at all during a particular program run. Then the program termi-
nates in the normal way. The very fact that the program has or has not reached a
particular line can be valuable information.

4.15.1 Using a Debugger

You can make effective
use of the debugger by
mastering just three
commands: “run until this
line”, “step to next line”,
and “inspect variable”.

Figure 14 Debugger Stopped at Selected Line

4.15 • The Debugger 207

The “step to next line” command executes the current line and stops at the next
program line.

Once the program has stopped, you can look at the current values of variables.
Again, the method for selecting the variables differs among debuggers. On some
debuggers you select the variable name with the mouse or cursor keys and then
issue a menu command such as “inspect variable”. In other debuggers you must
type the name of the variable into a dialog box. Some debuggers automatically show
the values of all local variables of a function.

The debugger displays the name and contents of the inspected variable
(Figure 15). If all variables contain what you expected, you can run the program
until the next point where you want to stop.

The program also stops to read data, just as it does when you run it without the
debugger. Just enter the inputs in the normal way, and the program will continue
running.

Finally, when the program has completed running, the debug session is also fin-
ished. You can no longer inspect variables. To run the program again, you may be
able to reset the debugger, or you may need to exit the debugging program and start
over. Details depend on the particular debugger.

Consider the following program, whose purpose is to compute all prime numbers
up to a number n. An integer is defined to be prime if it is not evenly divisible by
any number except by 1 and itself. Also, mathematicians find it convenient not to
call 1 a prime. Thus, the first few prime numbers are 2, 3, 5, 7, 11, 13, 17, 19.

ch04/primebug.cpp

Figure 15
Inspecting Variables
in the Debugger

4.15.2 A Sample Debugging Session

1 #include <iostream>
2
3 using namespace std;
4

208 CHAPTER 4 • Functions

Program Run

Have a close look at the program output. This is not very promising; it looks as if
the program just prints all odd numbers. Let us find out what it does wrong by
using the debugger. Actually, for such a simple program, it is easy to correct mis-
takes simply by looking at the faulty output and the program code. However, we
want to learn to use the debugger.

Let us first go to line 31. On the way, the program will stop to read the input into
n. Supply the input value 10.

23 int main()
24 {

5 /**
6 Tests if an integer is a prime.
7 @param n any positive integer
8 @return true if n is a prime
9 */
10 bool isprime(int n)
11 {
12 if (n == 2) return true;
13 if (n % 2 == 0) return false;
14 int k = 3;
15 while (k * k < n)
16 {
17 if (n % k == 0) return false;
18 k = k + 2;
19 }
20 return true;
21 }
22
23 int main()
24 {
25 int n;
26 cout << "Please enter the upper limit: ";
27 cin >> n;
28 int i;
29 for (i = 1; i <= n; i = i + 2)
30 {
31 if (isprime(i))
32 cout << i << "\n";
33 }
34 return 0;
35 }

Please enter the upper limit: 10
1
3
5
7
9

4.15 • The Debugger 209

25 int n;
26 cout << "Please enter the upper limit: ";
27 cin >> n;
28 int i;
29 for (i = 1; i <= n; i = i + 2)
30 {
31 if (isprime(i))

32 cout << i << "\n";
33 }
34 return 0;
35 }

Start by investigating why the program treats 1 as a prime. Go to line 12.

10 bool isprime(int n)
11 {
12 if (n == 2) return true;

13 if (n % 2 == 0) return false;
14 int k = 3;
15 while (k * k < n)
16 {
17 if (n % k == 0) return false;
18 k = k + 2;
19 }
20 return true;
21 }

Convince yourself that the argument of isprime is currently 1 by inspecting n. Then
execute the “run to next line” command. You will notice that the program goes to
lines 13, 14, and 15, and then directly to line 20.

Inspect the value of k. It is 3, and therefore the while loop was never entered. It
looks like the isprime function needs to be rewritten to treat 1 as a special case.

Next, we would like to know why the program doesn’t print 2 as a prime even
though the isprime function does recognize that 2 is a prime, whereas all other even
numbers are not. Go again to line 10, the next call of isprime. Inspect n; you will
note that n is 3. Now it becomes clear: The for loop in main tests only odd numbers.
The main function should either test both odd and even numbers or, better, just han-
dle 2 as a special case.

Finally, we would like to find out why the program believes 9 is a prime. Go
again to line 10 and inspect n; it should be 5. Repeat that step twice until n is 9. (With
some debuggers, you may need to go from line 10 to line 11 before you can go back
to line 10.) Now use the “run to next line” command repeatedly. You will notice
that the program again skips past the while loop; inspect k to find out why. You will
find that k is 3. Look at the condition in the while loop. It tests whether k * k < n.
Now k * k is 9 and n is also 9, so the test fails. Actually, it does make sense to test
divisors only up to ; if n has any divisors except 1 and itself, at least one of them
must be less than . However, that isn’t quite true; if n is a perfect square of a
prime, then its sole nontrivial divisor is equal to . That is exactly the case for
9 = 32.

n

n

n

210 CHAPTER 4 • Functions

By running the debugger, we have now discovered three bugs in the program:

• isprime falsely claims 1 to be a prime.
• main doesn’t handle 2.
• The test in isprime should be while (k * k <= n).

Here is the improved program:

ch04/goodprime.cpp

Program Run

1 #include <iostream>
2
3 using namespace std;
4
5 /**
6 Tests if an integer is a prime.
7 @param n any positive integer
8 @return true if n is a prime
9 */
10 bool isprime(int n)
11 {
12 if (n == 1) return false; // Fixed
13 if (n == 2) return true;
14 if (n % 2 == 0) return false;
15 int k = 3;
16 while (k * k <= n) // Fixed
17 {
18 if (n % k == 0) return false;
19 k = k + 2;
20 }
21 return true;
22 }
23
24 int main()
25 {
26 int n;
27 cout << "Please enter the upper limit: ";
28 cin >> n;
29 int i;
30 if (n >= 2) cout << "2\n"; // Fixed
31 for (i = 3; i <= n; i = i + 2)
32 {
33 if (isprime(i))
34 cout << i << "\n";
35 }
36 return 0;
37 }

Please enter the upper limit: 10
2
3
5
7

4.15 • The Debugger 211

Is the program now free from bugs? That is not a question the
debugger can answer. Remember: Testing can show only the pres-
ence of bugs, not their absence.

You have learned how to run a program until it reaches a particular line. Variations
of this strategy are often useful.

There are two methods of running the program in the debugger. You can tell it to
run to a particular line; then it gets speedily to that line, but you don’t know how it
got there. You can also single-step with the “run to next line” command. Then you
know how the program flows, but it can take a long time to step through it.

Actually, there are two kinds of single-stepping commands, often called “step
over” and “step into”. The “step over” command always goes to the next program
line. The “step into” command steps into function calls. For example, suppose the
current line is

r = future_value(balance, p, n);

cout << setw(10) << r;

When you “step over” function calls, you get to the next line:
r = future_value(balance, p, n);
cout << setw(10) << r;

However, if you “step into” function calls, you enter the first line of the
future_value function.

double future_value(double initial_balance,
 double p, int n)
{
 double b = initial_balance * pow(1 + p / 100), n);

 return b;
}

You should step into a function to check whether it carries out its job correctly. You
should step over a function if you know it works correctly.

If you single-step past the last line of a function, either with the “step over” or
the “step into” command, you return to the line in which the function was called.

You should not step into system functions like setw. It is easy to get lost in them,
and there is no benefit in stepping through system code. If you do get lost, there are
three ways out. You can just choose “step over” until you are finally again in famil-
iar territory. Many debuggers have a command “run until function return” that exe-
cutes to the end of the current function, and then you can select “step over” to get
out of the function.

The techniques you’ve seen so far let you trace through the code in various incre-
ments. All debuggers support a second navigational approach: You can set so-called
breakpoints in the code. Breakpoints are set at specific code lines, with a command
“add breakpoint here”; again, the exact command depends on the debugger. You

The debugger can be used
to analyze the presence of
bugs, but not to show that
a program is bug-free.

4.15.3 Stepping Through a Program

212 CHAPTER 4 • Functions

can set as many breakpoints as you like. When the program reaches any one of
them, execution stops and the breakpoint that causes the stop is displayed.

Breakpoints are particularly useful when you know at which point your program
starts doing the wrong thing. You can set a breakpoint, have the program run at full
speed to the breakpoint, and then start tracing slowly to observe the program’s
behavior.

Some debuggers let you set conditional breakpoints. A conditional breakpoint
stops the program only when a certain condition is met. You could stop at a partic-
ular line only if a variable n has reached 0, or if that line has been executed for the
twentieth time. Conditional breakpoints are an advanced feature that can be indis-
pensable in knotty debugging problems.

You have learned how to inspect variables in the debugger with the “inspect” com-
mand. The “inspect” command works well to show numeric values. When inspect-
ing an object variable, all fields are displayed (see Figure 16). With some debuggers,
you must “open up” the object, usually by clicking on an icon in the variable display.

To inspect a string object, you need to select the variable that contains the actual
character sequence in memory. That variable is called _Ptr, _str, _M_p or a similarly
obscure name, depending on the library implementation. With some debuggers,
you may need to select that variable to view its contents. The debugger may also
show other values, such as npos or allocator, which you should ignore.

Figure 16 Inspecting an Object

4.15.4 Inspecting Objects

4.15 • The Debugger 213

Now you know about the mechanics of debugging, but all that knowledge may still
leave you helpless when you fire up the debugger to look at a sick program. There
are a number of strategies that you can use to recognize bugs and their causes.

As you test your program, you notice that your program some-
times does something wrong. It gives the wrong output, it seems to
print something completely random, it runs in an infinite loop, or it
crashes. Find out exactly how to reproduce the behavior. What
inputs did you provide? If you run the program again with the same
inputs, does it exhibit the same behavior? If so, then you are ready to

fire up the debugger to study this particular problem. Debuggers are good for
analyzing particular failures. They aren’t terribly useful for studying a program in
general.

Once you have a particular failure, you want to get as close to it as
possible. Use a technique of divide and conquer. Step over the func-
tions in main, but don’t step inside them. Eventually, the failure will
happen again.

Now you know which function contains the bug: It is the last
function that was called from main before the error manifested itself.

Restart the debugger and go back to that line in main, then step inside that function.
Repeat the process. Eventually, you will have pinpointed the line that contains the
error.

Always keep in mind that the debugger shows you what the pro-
gram does do. You must know what the program should do, or you
will not be able to find bugs. Before you trace through a loop, ask
yourself how many iterations you expect the program to make.
Before you inspect a variable, ask yourself what you expect to see.

If you have no clue, set aside some time and think first. Have a calculator handy to
make independent computations. When you know what the value should be,
inspect the variable. This is the moment of truth. If the program is still on the right
track, then that value is what you expected, and you must look further for the bug.
If the value is different, you may be on to something.

Once you find that a loop makes too many iterations, or a variable
has the wrong content, it is very tempting to apply a “Band-Aid”
solution. Such a quick fix has an overwhelming probability of creating
trouble elsewhere. You really need to have a thorough understanding
of how the program should be written before you apply a fix.

It does occasionally happen that you find bug after bug and apply fix after fix,
and the problem just moves around. That usually is a symptom of a larger problem
with the program logic. There is little you can do with the debugger. You must
rethink the program design and reorganize it.

4.15.5 Debugging Strategies

For effective debugging,
you need to be able to
reproduce the buggy
behavior.

Use the “divide-and-
conquer” technique to
locate the point of failure
of a program.

You must know what a
program should do in
order to debug it.

When fixing an error,
understand the cause and
the fix.

214 CHAPTER 4 • Functions

1. A function receives input parameters and computes a result that depends on
those inputs.

2. Parameter values are supplied in the function call. The return value is the result
that the function computes.

3. When defining a function, you provide a name and type for each parameter and
a type for the result.

4. Turn computations that can be reused into functions.

5. Function comments explain the purpose of the function and the meaning of the
parameters and return value, as well as any special requirements.

6. The return statement terminates a function call and yields the function result.

7. A predicate function returns a Boolean value.

8. Parameter variables hold the parameter values supplied in the function call.

9. A side effect is an externally observable effect caused by a function call, other
than the returning of a result.

10. A procedure is a sequence of actions that depends on parameters and does not
yield a result.

11. Use a return type of void to indicate that a function does not return a value.

12. A reference parameter denotes a reference to a variable that is supplied in a
function call.

13. The scope of a variable is the part of the program in which it is visible.

14. A local variable is defined inside a function. A global variable is defined outside
a function.

15. Use the process of stepwise refinement to decompose complex tasks into
simpler ones.

16. Pseudocode is a mixture of English and source code that is used in the early
stages of implementing complex code.

17. A walkthrough is a manual simulation of program code.

18. Preconditions are documented restrictions on the function parameters.

19. A black-box test does not consider the internal structure of a program; a
white-box test does.

20. A unit test checks a function in isolation.

21. A unit test framework allows you to organize your unit tests.

22. A boundary case is a test case that is at the boundary of valid inputs.

CHAPTER SUMMARY

Review Exercises 215

23. To ensure good test coverage, select test cases that cover each branch of the
function.

24. In regression testing, you test new versions of a program against past failures.

25. With a debugger, you can control the execution of a program and observe the
contents of program variables.

26. You can make effective use of the debugger by mastering just three commands:
“run until this line”, “step to next line”, and “inspect variable”.

27. The debugger can be used to analyze the presence of bugs, but not to show that
a program is bug-free.

28. For effective debugging, you need to be able to reproduce the buggy behavior.

29. Use the “divide-and-conquer” technique to locate the point of failure of a
program.

30. You must know what a program should do in order to debug it.

31. When fixing an error, understand the cause and the fix.

1. Bertrand Meyer, Object-Oriented Software Construction, Prentice-Hall, 1989, Chapter 7.

2. cppunit.sourceforge.net/ The CppUnit testing framework.

3. boost.org/libs/test/doc/index.html The Boost.Test framework.

Exercise R4.1. Give realistic examples of the following:
a. A function with a double parameter and a double return value
b. A function with an int parameter and a double return value
c. A function with an int parameter and a string return value
d. A function with two double parameters and a bool return value
e. A procedure with two int& parameters and no return value
f. A function with no parameter and an int return value
g. A function with a Circle parameter and a double return value
h. A function with a Line parameter and a Point return value

Just describe what these functions do. Do not program them. For example, an
answer to the first question is “sine” or “square root”.

FURTHER READING

REVIEW EXERCISES

G

G

216 CHAPTER 4 • Functions

Exercise R4.2. True or false?
a. A function has exactly one return statement.
b. A function has at least one return statement.
c. A function has at most one return value.
d. A procedure (with return value void) never has a return statement.
e. When executing a return statement, the function exits immediately.
f. A function without parameters always has a side effect.
g. A procedure (with return value void) always has a side effect.
h. A function without side effects always returns the same value when called

with the same parameter values.

Exercise R4.3. Write detailed function comments for the following functions. Be sure
to describe all conditions under which the function cannot compute its result. Just
write the comments, not the functions.

a. double sqrt(double x)

b. string roman_numeral(int n)

c. bool is_leap_year(year y)

d. string weekday(int w)

e. Point midpoint(Point a, Point b)

f. double area(Circle c)

g. double slope(Line a)

Exercise R4.4. Consider these functions:
double f(double x) { return g(x) + sqrt(h(x)); }
double g(double x) { return 4 * h(x); }
double h(double x) { return x * x + k(x) - 1; }
double k(double x) { return 2 * (x + 1); }

Without actually compiling and running a program, determine the results of the fol-
lowing function calls.

a. double x1 = f(2);

b. double x2 = g(h(2));

c. double x3 = k(g(2) + h(2));

d. double x4 = f(0) + f(1) + f(2);

e. double x5 = f(-1) + g(-1) + h(-1) + k(-1);

Exercise R4.5. What is a predicate function? Give a definition, an example of a predi-
cate function, and an example of how to use it.

Exercise R4.6. What is the difference between a parameter value and a return value?
What is the difference between a parameter value and a parameter variable? What is
the difference between a parameter value and a value parameter?

G

G

G

Review Exercises 217

Exercise R4.7. Ideally, a function should have no side effect. Can you write a pro-
gram in which no function has a side effect? Would such a program be useful?

Exercise R4.8. For the following functions and procedures, circle the parameters that
must be implemented as reference parameters.

a. y = sin(x);

b. print_paycheck(harry);

c. raise_salary(harry, 5.5);

d. make_uppercase(message);

e. key = uppercase(input);

f. change_name(harry, "Horton");

Exercise R4.9. For each of the variables in the following program, indicate the scope.
Then determine what the program prints, without actually running the program.

int a = 0;
int b = 0;
int f(int c)
{
 int n = 0;
 a = c;
 if (n < c)
 n = a + b;
 return n;
}

int g(int c)
{
 int n = 0;
 int a = c;
 if (n < f(c))
 n = a + b;
 return n;
}

int main()
{
 int i = 1;
 int b = g(i);
 cout << a + b + i << "\n";
 return 0;
}

Exercise R4.10. We have seen three kinds of variables in C++: global variables,
parameter variables, and local variables. Classify the variables of the preceding exer-
cise according to these categories.

Exercise R4.11. Use the process of stepwise refinement to describe the process of
making scrambled eggs. Discuss what you do if you do not find eggs in the refriger-
ator. Produce a call tree.

218 CHAPTER 4 • Functions

Exercise R4.12. How many parameters does the following function have? How
many return values does it have? Hint: The C++ notions of “parameter” and
“return value” are not the same as the intuitive notions of “input” and “output”.

void average(double& avg)
{
 cout << "Please enter two numbers: ";
 double x;
 double y;
 cin >> x >> y;
 avg = (x + y) / 2;
}

Exercise R4.13. What is the difference between a function and a procedure? A func-
tion and a program? The main procedure and a program?

Exercise R4.14. Perform a walkthrough of the int_name function with the following
inputs:

Exercise R4.15. What preconditions do the following functions from the standard
C++ library have?

a. sqrt

b. tan

c. log

d. exp

e. pow

f. fabs

Exercise R4.16. When a function is called with parameters that violate its precondi-
tion, it can terminate or fail safely. Give two examples of library functions (standard
C++ or the library functions used in this book) that fail safely when called with
invalid parameter values, and give two examples of library functions that terminate.

Exercise R4.17. Consider the following function:
int f(int n)
{
 if (n <= 1) return 1;
 if (n % 2 == 0) // n is even
 return f(n / 2);
 else return f(3 * n + 1);
}

Perform walkthroughs of the computation f(1), f(2), f(3), f(4), f(5), f(6), f(7),
f(8), f(9), and f(10). Can you conjecture what value this function computes for
arbitrary n? Can you prove that the function always terminates? If so, please let the

a. 5

b. 12

c. 21

d. 321

e. 1024

f. 11954

g. 0

h. -2

Review Exercises 219

author know. At the time of this writing, this is an unsolved problem in mathemat-
ics, sometimes called the “3n + 1 problem” or the “Collatz problem”.

Exercise R4.18. Consider the following procedure that is intended to swap the values
of two integers:

void false_swap1(int& a, int& b)
{
 a = b;
 b = a;
}

int main()
{
 int x = 3;
 int y = 4;
 false_swap1(x, y);
 cout << x << " " << y << "\n";
 return 0;
}

Why doesn’t the procedure swap the contents of x and y? How can you rewrite the
procedure to work correctly?

Exercise R4.19. Consider the following procedure that is intended to swap the values
of two integers:

void false_swap2(int a, int b)
{
 int temp = a;
 a = b;
 b = temp;
}

int main()
{
 int x = 3;
 int y = 4;
 false_swap2(x, y);
 cout << x << " " << y << "\n";
 return 0;
}

Why doesn’t the procedure swap the contents of x and y? How can you rewrite the
procedure to work correctly?

Exercise R4.20. Prove that the following procedure swaps two integers, without
requiring a temporary variable, provided that a and b refer to different objects?

void tricky_swap(int& a, int& b)
{
 a = a - b;
 b = a + b;
 a = b - a;
}

What happens when the parameters refer to the same object?

220 CHAPTER 4 • Functions

Exercise R4.21. Define the terms unit test and test harness.

Exercise R4.22. If you want to test a program that is made up of four different func-
tions, one of which is main, how many test harnesses do you need?

Exercise R4.23. What is an oracle?

Exercise R4.24. Define the terms regression testing and test suite.

Exercise R4.25. What is the debugging phenomenon known as “cycling”? What can
you do to avoid it?

Exercise R4.26. Explain the differences between these debugger operations:
• Stepping into a function
• Stepping over a function

Exercise R4.27. Explain the differences between these debugger operations:
• Running until the current line
• Setting a breakpoint to the current line

Exercise R4.28. Explain in detail how to inspect the string stored in a string object in
your debugger.

Exercise P4.1. Enhance the program computing bank balances in Section 4.2 by
prompting for the initial balance and the interest rate. Then print the balance after
10, 20, and 30 years.

Exercise P4.2. Write a procedure void sort2(int& a, int& b) that swaps the values
of a and b if a is greater than b and otherwise leaves a and b unchanged. For example,

int u = 2;
int v = 3;
int w = 4;
int x = 1;
sort2(u, v); // u is still 2, v is still 3
sort2(w, x); // w is now 1, x is now 4

Exercise P4.3. Write a procedure sort3(int& a, int& b, int& c) that swaps its three
inputs to arrange them in sorted order. For example,

int v = 3;
int w = 4;
int x = 1;
sort3(v, w, x); // v is now 1, w is now 3, x is now 4

Hint: Use sort2 of Exercise P4.2.

Exercise P4.4. Enhance the int_name function so that it works correctly for values ≤
10,000,000.

PROGRAMMING EXERCISES

Programming Exercises 221

Exercise P4.5. Enhance the int_name function so that it works correctly for negative
values and zero. Caution: Make sure the improved function doesn’t print 20 as
"twenty zero".

Exercise P4.6. For some values (for example, 20), the int_name function returns a
string with a leading space (" twenty"). Repair that blemish and ensure that spaces
are inserted only when necessary. Hint: There are two ways of accomplishing this.
Either ensure that leading spaces are never inserted, or remove leading spaces from
the result before returning it.

Exercise P4.7. Write functions
double sphere_volume(double r);
double sphere_surface(double r);
double cylinder_volume(double r, double h);
double cylinder_surface(double r, double h);
double cone_volume(double r, double h);
double cone_surface(double r, double h);

that compute the volume and surface area of a sphere with radius r, a cylinder with
a circular base with radius r and height h, and a cone with a circular base with radius
r and height h. Then write a program that prompts the user for the values of r and h,
calls the six functions, and prints the results.

Exercise P4.8. Write a function
double get_double(string prompt)

that displays the prompt string, followed by a space, reads a floating-point number
in, and returns it. (In other words, write a console version of cwin.get_double.)
Here is a typical usage:

salary = get_double("Please enter your salary:");
perc_raise =
 get_double("What percentage raise would you like?");

If there is an input error, abort the program by calling exit(1). (You will see in
Chapter 5 how to improve this behavior.)

Exercise P4.9. Leap years. Write a predicate function
bool leap_year(int year)

that tests whether a year is a leap year: that is, a year with 366 days. Leap years are
necessary to keep the calendar synchronized with the sun because the earth revolves
around the sun once every 365.25 days. Actually, that figure is not entirely precise,
and for all dates after 1582 the Gregorian correction applies. Usually years that are
divisible by 4 are leap years, for example 1996. However, years that are divisible by
100 (for example, 1900) are not leap years, but years that are divisible by 400 are
leap years (for example, 2000).

Exercise P4.10. Julian dates. Suppose you would like to know how many days ago
Columbus was born. It is tedious to figure this out by hand, because months have
different lengths and because you have to worry about leap years. Many people,
such as astronomers, who deal with dates a lot have become tired of dealing with

222 CHAPTER 4 • Functions

the craziness of the calendar and instead represent days in a completely different
way: the so-called Julian day number. That value is defined as the number of days
that have elapsed since Jan. 1, 4713 B.C. A convenient reference point is that Octo-
ber 9, 1995, is Julian day 2,450,000.
Here is an algorithm to compute the Julian day number: Set jd, jm, jy to the day,
month, and year. If the year is negative, add 1 to jy. (There was no year 0. Year 1
B.C. was immediately followed by year A.D. 1) If the month is larger than February,
add 1 to jm. Otherwise, add 13 to jm and subtract 1 from jy. Then compute

long jul = floor(365.25 * jy) + floor(30.6001 * jm) + d
 + 1720995.0

We store the result in a variable of type long; simple integers may not have enough
digits to hold the value. If the date was before October 15, 1582, return this value.
Otherwise, perform the following correction:

int ja = 0.01 * jy;
jul = jul + 2 - ja + 0.25 * ja;

Now write a function
long julian(int year, int month, int day)

that converts a date into a Julian day number. Use that function in a program that
prompts the user for a date in the past, then prints out how many days that is away
from today’s date.

Exercise P4.11. Write a procedure
void jul_to_date(long jul, int& year, int& month, int& day)

that performs the opposite conversion, from Julian day numbers to dates. Here is
the algorithm. Starting with October 15, 1582 (Julian day number 2,299,161), apply
the correction

long jalpha = ((jul - 1867216) - 0.25) / 36524.25;
jul = jul + 1 + jalpha - (int)(0.25 * jalpha);

Then compute
long jb = jul + 1524;
long jc = 6680.0 + (jb - 2439870 - 122.1)/365.25;
long jd = 365 * jc + (0.25 * jc);
int je = (jb - jd)/30.6001;

The day, month, and year are computed as
day = jb - jd - (long)(30.6001 * je);
month = je - 1;
year = (int)(jc - 4715);

If the month is greater than 12, subtract 12. If the month is greater than 2, subtract
one from the year. If the year is not positive, subtract 1.
Use the function to write the following program. Ask the user for a date and a num-
ber n. Then print the date that is n days away from the input date. You can use that
program to find out the exact day that was 100,000 days ago. The computation is

Programming Exercises 223

simple. First convert the input date to the Julian day number, using the function of
the preceding exercise, then subtract n, and then convert back using jul_to_date.

Exercise P4.12. In Exercise P3.6 you were asked to write a program to convert a
number to its representation in Roman numerals. At the time, you did not know
how to factor out common code, and as a consequence the resulting program was
rather long. Rewrite that program by implementing and using the following
function:

string roman_digit(int n, string one, string five,
 string ten)

That function translates one digit, using the strings specified for the one, five, and
ten values. You would call the function as follows:

roman_ones = roman_digit(n % 10, "I", "V", "X");
n = n / 10;
roman_tens = roman_digit(n % 10, "X", "L", "C");
...

Exercise P4.13. Write a program that converts a Roman number such as MCMLXX-
VIII to its decimal number representation. Hint: First write a function that yields
the numeric value of each of the letters. Then convert a string as follows: Look at
the first two characters. If the first has a larger value than the second, then simply
convert the first, call the conversion function again for the substring starting with
the second character, and add both values. If the first one has a smaller value than
the second, compute the difference and add to it the conversion of the tail. This
algorithm will convert “Pig Roman” numbers like “IC”. Extra credit if you can
modify it to process only genuine Roman numbers.

Exercise P4.14. Write a program that prints instructions to get coffee, asking the user
for input whenever a decision needs to be made. Decompose each task into a proce-
dure, for example:

void brew_coffee()
{
 cout << "Add water to the coffee maker.\n";
 cout << "Put a filter in the coffee maker.\n";
 grind_coffee();
 cout << "Put the coffee in the filter.\n";
 ...
}

Exercise P4.15. Consider the following buggy function:
Employee read_employee()
{
 cout << "Please enter the name: ";
 string name;
 getline(cin, name);
 cout << "Please enter the salary: ";
 double salary;
 cin >> salary;
 Employee r(name, salary);
 return r;

224 CHAPTER 4 • Functions

}

When you call this function once, it works fine. When you call it again in the same
program, it won’t return the second employee record correctly. Write a test harness
that verifies the problem. Then step through the function. Inspect the contents of
the string name and the Employee object r after the second call. What values do you
get?

Exercise P4.16. Postal bar codes. For faster sorting of letters, the United States Postal
Service encourages companies that send large volumes of mail to use a bar code
denoting the zip code (see Figure 17).
The encoding scheme for a five-digit zip code is shown in Figure 18. There are full-
height frame bars on each side. The five encoded digits are followed by a check
digit, which is computed as follows: Add up all digits, and choose the check digit to
make the sum a multiple of 10. For example, the zip code 95014 has a sum of 19, so
the check digit is 1 to make the sum equal to 20.
Each digit of the zip code, and the check digit, is encoded according to the follow-
ing table where 0 denotes a half bar and 1 a full bar.

Note that they represent all combinations of two full and three half bars. The digit
can be easily computed from the bar code using the column weights 7, 4, 2, 1, 0. For
example, 01100 is 0 × 7 + 1 × 4 + 1 × 2 + 0 × 1 × 0 × 0 = 6. The only exception is 0,
which would yield 11 according to the weight formula.
Write a program that asks the user for a zip code and prints the bar code. Use : for
half bars, | for full bars. For example, 95014 becomes

||:|:::|:|:||::::::||:|::|:::|||

7 4 2 1 0

1 0 0 0 1 1

2 0 0 1 0 1

3 0 0 1 1 0

4 0 1 0 0 1

5 0 1 0 1 0

6 0 1 1 0 0

7 1 0 0 0 1

8 1 0 0 1 0

9 1 0 1 0 0

0 1 1 0 0 0

Programming Exercises 225

Exercise P4.17. Write a program that reads in a bar code (with : denoting half bars
and | denoting full bars) and prints out the zip code it represents. Print an error
message if the bar code is not correct.

Exercise P4.18. Write a program that displays the bar code, using actual bars, on
your graphics screen. Hint: Write functions half_bar(Point start) and
full_bar(Point start).

Exercise P4.19. Write functions
double perimeter(Circle c);
double area(Circle c);

that compute the area and the perimeter of the circle c. Use these functions in a
graphics program that prompts the user to specify a circle. Then display messages
with the perimeter and area of the circle.

Exercise P4.20. Write a function
double distance(Point p, Point q)

that computes the distance between two points. Write a test program that asks the
user to select two points. Then display the distance.

Exercise P4.21. Write a function
bool is_inside(Point p, Circle c)

that tests if a point is inside a circle. (You need to compute the distance between p
and the center of the circle, and compare it to the radius.) Write a test program that
asks the user to click on the center of the circle, then asks for the radius, then asks
the user to click on any point on the screen. Display a message that indicates
whether the user clicked inside the circle.

Exercise P4.22. Write functions
display_H(Point p);
display_E(Point p);
display_L(Point p);
display_O(Point p);

that show the letters H, E, L, O on the graphics window, where the point p is the
top left corner of the letter. Fit the letter in a 1 × 1 square. Then call the functions to

Figure 17 A Postal Bar Code Figure 18 Encoding for Five-Digit Bar Codes

*************** ECRLOT ** CO57

CODE C671RTS2
JOHN DOE CO57
1009 FRANKLIN BLVD
SUNNYVALE CA 95014 – 5143

Frame bars

Digit 1 Digit 2 Digit 3 Digit 4 Digit 5 Check
Digit

G

G

G

G

G

226 CHAPTER 4 • Functions

draw the words “HELLO” and “HOLE” on the graphics display. Draw lines and
circles. Do not use the Message class. Do not use cout.

Exercise P4.23. Write procedures to rotate and scale a point.
void rotate(Point& p, double angle);
void scale(Point& p, double scale);

Here are the equations for the transformations. If p is the original point, α the angle
of the rotation, and q the point after rotation, then

If p is the original point, s the scale factor, and q the point after scaling, then

However, note that your functions need to replace the point with its rotated or
scaled image.
Now write the following graphics program. Start out with the point (5,5). Rotate it
five times by 10 degrees, then scale it five times by 0.95. Then start with the point
(–5,–5). Repeat the following five times.

rotate(b, 10 * PI / 180);
scale(b, 0.95);

That is, interleave the rotation and scaling five times.

G

q p p

q p p
x x y

y x y

= +

= − +

cos sin

sin cos

α α

α α

q sp

q sp
x x

y y

=

=

Chapter 5
Classes

• To be able to implement your own classes

• To master the separation of interface and implementation

• To understand the concept of encapsulation

• To design and implement accessor and mutator
member functions

• To understand object construction

• To learn how to distribute a program over multiple source files

CHAPTER GOALS

At this point, you are familiar with using objects from existing classes, such as

strings, streams, and the classes that were designed for this book. You have seen

how to construct objects, and you have applied member functions with the dot

notation.

In this chapter you will learn how to implement your own classes. You will see

how to design classes that help you solve programming problems, and you will

study the mechanics of defining classes, constructors, and member functions.

228 CHAPTER 5 • Classes

CHAPTER CONTENTS

If you find yourself defining a number of related variables that all
refer to the same concept, stop coding and think about that concept
for a while. Then define a class that abstracts the concept and con-
tains these variables as data fields.

Suppose you read in information about computers. Each record
contains the model name, the price, and a score between 0 and 100.

You are trying to find the “best bang for the buck”: the product for which the value
(score/price) is highest. The following program finds this information for you.

ch05/bestval.cpp

5.1 Discover ing Classes

A class represents a
concept. Instead of groups
of related variables, try
designing a class for the
underlying concept.

1 #include <iostream>
2 #include <string>
3
4 using namespace std;
5
6 int main()
7 {
8 string best_name = "";
9 double best_price = 1;
10 int best_score = 0;

1

5.1 Discovering Classes 228
COMMON ERROR 5.1: Mixing >> and

getline Input 230

5.2 Interfaces 231
SYNTAX 5.1: Class Definition 234
COMMON ERROR 5.2: Forgetting a Semicolon 234

5.3 Encapsulation 235

5.4 Member Functions 237
SYNTAX 5.2: Member Function Definition 239
COMMON ERROR 5.3: const Correctness 240

5.5 Default Constructors 241
RANDOM FACT 5.1: Programmer Productivity 243

5.6 Constructors with Parameters 244
SYNTAX 5.3: Constructor Definition 246
COMMON ERROR 5.4: Forgetting to Initialize All

Fields in a Constructor 246

COMMON ERROR 5.5: Trying to Reset an Object by

Calling a Constructor 247
ADVANCED TOPIC 5.1: Calling Constructors

from Constructors 247
SYNTAX 5.4: Constructor with Field

Initializer List 248
ADVANCED TOPIC 5.2: Overloading 248

5.7 Accessing Data Fields 249

5.8 Comparing Member Functions with
Nonmember Functions 250

QUALITY TIP 5.1: File Layout 252

5.9 Separate Compilation 253
RANDOM FACT 5.2: Programming—Art

or Science? 257

5.1 • Discovering Classes 229

Program Run

11
12 bool more = true;
13 while (more)
14 {
15 string next_name;
16 double next_price;
17 int next_score;
18
19 cout << "Please enter the model name: ";
20 getline(cin, next_name);
21 cout << "Please enter the price: ";
22 cin >> next_price;
23 cout << "Please enter the score: ";
24 cin >> next_score;
25 string remainder; // Read remainder of line
26 getline(cin, remainder);
27
28 if (next_score / next_price > best_score / best_price)
29 {
30 best_name = next_name;
31 best_score = next_score;
32 best_price = next_price;
33 }
34
35 cout << "More data? (y/n) ";
36 string answer;
37 getline(cin, answer);
38 if (answer != "y") more = false;
39 }
40
41 cout << "The best value is " << best_name
42 << " Price: " << best_price
43 << " Score: " << best_score << "\n";
44
45 return 0;
46 }

2

Please enter the model name: ACMA P600
Please enter the price: 995
Please enter the score: 75
More data? (y/n) y
Please enter the model name: Blackship NX-600
Please enter the price: 695
Please enter the score: 60
More data? (y/n) y
Please enter the model name: Kompac 690
Please enter the price: 598
Please enter the score: 60
More data? (y/n) n
The best value is Kompac 690 Price: 598 Score: 60

230 CHAPTER 5 • Classes

Pay special attention to the two sets of variables: best_name, best_price, best_score
 and next_name, next_price, next_score . The very fact that you have two sets

of these variables suggests that a common concept is lurking just under the surface.
Each of these two sets of variables describes a product. One of them describes the

best product, the other one the next product to be read in. In the following sections
we will develop a Product class to simplify this program. We will then define two
objects, best and next, of the Product class.

Mixing >> and getline Input

It is tricky to mix >> and getline input. Consider how a product is being read in by the
bestval.cpp program:

cout << "Please enter the model name: ";
getline(cin, next_name);
cout << "Please enter the price: ";
cin >> next_price;
cout << "Please enter the score: ";
cin >> next_score;

The getline function reads an entire line of input, including the newline character at the end
of the line. It places all characters except for that newline character into the string next_name.
The >> operator reads all white space (that is, spaces, tabs, and newlines) until it reaches a
number. Then it reads only the characters in that number. It does not consume the character
following the number, typically a newline. This is a problem when a call to getline immedi-
ately follows a call to >>. Then the call to getline reads only the newline, considering it as
the end of an empty line.

Perhaps an example will make this clearer. Consider the first input lines of the product
descriptions. Calling getline consumes the colored characters.

After the call to getline, the first line has been read completely, including the newline at the
end. Next, the call to cin >> next_price reads the digits.

After the call to cin >> next_price, the digits of the number have been read, but the newline
is still unread. This is not a problem for the next call to cin >> next_score. That call first
skips all leading white space, including the newline, then reads the next number.

It again leaves the newline in the input stream, because the >> operators never read any more
characters than absolutely necessary. Now we have a problem. The next call to getline reads
a blank line.

1 2

COMMON ERROR 5.1

A C M A P 6 0 0 \n 9 9 5 \n 7 5 \n y \ncin =

9 9 5 \n 7 5 \n y \ncin =

\n 7 5 \n y \ncin =

\n y \ncin =

5.2 • Interfaces 231

That call happens in the following context:

cout << "More data? (y/n) ";
string answer;
getline(cin, answer);
if (answer != "y") more = false;

It reads only the newline and sets answer to the empty string!

The empty string is not the string "y", so more is set to false, and the loop terminates.
This is a problem whenever an input with the >> operator is followed by a call to getline.

The intention, of course, is to skip the rest of the current line and have getline read the next
line. This purpose is achieved by the following statements, which must be inserted after the
last call to the >> operator:

string remainder; // Read remainder of line
getline(cin, remainder);
// Now you are ready to call getline again

To define a class, we first need to specify its public interface. The
interface of the Product class consists of all functions that we want to
apply to product objects. Looking at the program of the preceding
section, we need to be able to perform the following:

• Make a new product object
• Read in a product object
• Compare two products and find out which one is better
• Print a product

The interface of a class is specified in the class definition (see Syntax 5.1 on page
234). Here is a partial definition of the Product class that describes the public
interface:

class Product
{

public:

 Product();

 void read();

 bool is_better_than(Product b) const;
 void print() const;

private:

implementation details—see Section 5.3
};

y \ncin =

5.2 Inter faces

Every class has a public
interface: a collection of
member functions through
which the objects of the
class can be manipulated.

232 CHAPTER 5 • Classes

The interface is made up of three parts. First we list the constructors:
the functions that are used to initialize new objects. Constructors
always have the same name as the class. The Product class has one
constructor, with no parameters. Such a constructor is called a
default constructor. It is used when you define an object without con-
struction parameters, like this:

Product best; // Uses default constructor Product()

As a general rule, every class should have a default constructor. All
classes used in this book do.

Then we list the mutator functions. A mutator is an operation that
modifies the object. The Product class has a single mutator: read.
After you call

p.read();

the contents of p have changed.
Finally, we list the accessor functions. Accessors just query the

object for some information without changing it. The Product class
has two accessors: is_better_than and print. Applying one of these
functions to a product object does not modify the object. In C++,
accessor operations are tagged as const. Note the position of the
const keyword: after the closing parenthesis of the parameter list, but

before the semicolon that terminates the function declaration. See Common Error
5.3 on page 240 for the importance of the const keyword.

Now we know what a Product object can do, but not how it does it. Of course, to
use objects in our programs, we only need to use the interface. To enable any func-
tion to access the interface functions, they are placed in the public section of the
class definition. As we will see in the next section, the variables used in the imple-
mentation will be placed in the private section. That makes them inaccessible to the
users of the objects.

Figure 1 shows the interface of the Product class. The mutator functions are
shown with arrows pointing inside the private data to indicate that they modify the
data. The accessor functions are shown with arrows pointing the other way to indi-
cate that they just read the data.

Now that you have this interface, put it to work to simplify the program of the
preceding section.

A constructor is used to
initialize objects when
they are created. A
constructor with no
parameters is called a
default constructor.

A mutator member
function changes the state
of the object on which it
operates.

An accessor member
function does not modify
the object. Accessors must
be tagged with const.

Figure 1 The Interface of the Product Class

is_better_than

print

Product

Private data

read

ConstructorMutator
Accessors

5.2 • Interfaces 233

ch05/product1.cpp

Wouldn’t you agree that this program is much easier to read than the first version?
Making Product into a class really pays off.

However, this program will not yet run. The interface definition of the class just
declares the constructors and member functions. The actual code for these functions
must be supplied separately. You will see how starting in Section 5.4.

1 /*
2 This program compiles but doesn’t run.
3 See product2.cpp for the complete program.
4 */
5
6 #include <iostream>
7 #include <string>
8
9 using namespace std;
10
11 class Product
12 {
13 public:
14 Product();
15
16 void read();
17
18 bool is_better_than(Product b) const;
19 void print() const;
20 private:
21 };
22
23 int main()
24 {
25 Product best;
26
27 bool more = true;
28 while (more)
29 {
30 Product next;
31 next.read();
32 if (next.is_better_than(best))
33 best = next;
34
35 cout << "More data? (y/n) ";
36 string answer;
37 getline(cin, answer);
38 if (answer != "y")
39 more = false;
40 }
41
42 cout << "The best value is ";
43 best.print();
44
45 return 0;
46 }

234 CHAPTER 5 • Classes

Forgetting a Semicolon

Braces { } are common in C++ code, and usually you do not place a semicolon after the
closing brace. However, class definitions always end in };. A common error is to forget that
semicolon:

class Product
{
public:
 ...
private:
 ...
} // Forgot semicolon

int main()
{
 Product best; // Many compilers report the error in this line
 ...
}

SYNTAX 5.1 Class Definition

class ClassName
{
public:

constructor declarations
member function declarations

private:
data fields

};

Example:

class Point
{
public:
 Point (double xval, double yval);
 void move(double dx, double dy);
 double get_x() const;
 double get_y() const;
private:
 double x;
 double y;
};

Purpose:

Define the interface and data fields of a class.

COMMON ERROR 5.2

5.3 • Encapsulation 235

This error can be extremely confusing to many compilers. There is syntax, now obsolete but
supported for compatibility with old code, to define class types and variables of that type
simultaneously. Because the compiler doesn’t know that you don’t use that obsolete con-
struction, it tries to analyze the code wrongly and ultimately reports an error. Unfortunately,
it may report the error several lines away from the line in which you forgot the semicolon.

If the compiler reports bizarre errors in lines that you are sure are correct, check that each
of the preceding class definitions is terminated by a semicolon.

Each object of a class stores certain values that are set in the constructor and that
may change through the application of mutator functions. These values are collec-
tively called the state of an object.

The state of a Product object consists of the name, price, and score of the product.
These data items are defined as fields in the private section of the class definition.

class Product
{
public:
 Product();

 void read();

 bool is_better_than(Product b) const;
 void print() const;
private:

string name;

double price;

int score;

};

Every product object has a name field, a price field, and a score field
(see Figure 2). However, there is a catch. Because these fields are
defined to be private, only the constructors and member functions of
the class can access them.

5.3 Encapsula t ion

Every class has a private
implementation: data
fields that store the state
of an object.

Figure 2 Encapsulation

name =

Product

price =

score =

Accessible
only by Product
member functions

236 CHAPTER 5 • Classes

You cannot access the data fields directly:
int main()
{
 ...
 cout << best.name; // Error—use print() instead
 ...
}

All data access must occur through the public interface. Thus, the
data fields of an object are effectively hidden from the programmer.
They are a part of the implementation details that are of no concern
to the user of the class. The act of hiding implementation details is
called encapsulation. While it is theoretically possible in C++ to leave

data fields unencapsulated (by placing them into the public section), this is very
uncommon in practice. We will always make all data fields private in this book.

The Product class is so simple that it is not obvious what benefit we gain from the
encapsulation.

One benefit of the encapsulation mechanism is the guarantee that
the object data cannot accidentally be put in an incorrect state. To
understand that benefit better, consider the Time class:

class Time
{
public:
 Time();
 Time(int hrs, int min, int sec);

 void add_seconds(long s);

 int get_seconds() const;
 int get_minutes() const;
 int get_hours() const;
 long seconds_from() const;
private:
 ... // Hidden data representation
};

Because the data fields are private, there are only three functions that
can change these fields: the two constructors and the add_seconds
mutator function. The four accessor functions cannot modify the
fields, because the functions are declared as const.

Suppose that programmers could access data fields of the Time
class directly. This would open the possibility of a type of bug,

namely the creation of invalid times:
Time liftoff(19, 30, 0);
...
// Looks like the liftoff is getting delayed by another six hours
// Won’t compile, but suppose it did
liftoff.hours = liftoff.hours + 6;

Encapsulation is the act
of hiding implementation
details.

Encapsulation protects the
integrity of object data.

By keeping the
implementation private,
we protect it from being
accidentally corrupted.

5.4 • Member Functions 237

At first glance, there appears to be nothing wrong with this code. But if you look
carefully, liftoff happens to be 19:30:00 before the hours are modified. Thus, it is
25:30:00 after the increment—an invalid time.

Fortunately, this error cannot happen with the Time class. The constructor that
makes a time out of three integers checks that the construction parameters denote a
valid time. If not, an error message is displayed and the program terminates. The
Time() constructor sets a time object to the current time, which is always valid, and
the add_seconds function knows about the length of a day and always produces a
valid result. Since no other function can mess up the private data fields, we can
guarantee that all times are always valid, thanks to the encapsulation mechanism.

There is a second benefit of encapsulation that is particularly
important in larger programs. Typically, implementation details need
to change over time. You want to be able to make your classes more
efficient or more capable, without affecting the programmers that use
your classes. As long as those programmers do not depend on the
implementation details, you are free to change them at any time.

You must provide an implementation for every member function that is advertised
in the class interface. Here is an example: the read function of the Product class.

void Product::read()

{
 cout << "Please enter the model name: "
 getline(cin, name);
 cout << "Please enter the price: ";
 cin >> price;
 cout << "Please enter the score: ";
 cin >> score;
 string remainder; // Read the remainder of the line
 getline(cin, remainder);
}

The Product:: prefix makes it clear that we are defining the read function of the
Product class. In C++ it is perfectly legal to have read functions in other classes as
well, and it is important to specify exactly which read function we are defining. (See
Syntax 5.2 on page 239.) You use the ClassName::read() syntax only when defin-
ing the function, not when calling it. When you call the read member function, the
call has the form object.read().

When defining an accessor member function, you must supply the
keyword const following the closing parenthesis of the parameter
list. For example, the call best.print() only inspects the object best
without modifying it.

Encapsulation enables
changes in the
implementation without
affecting users of a class.

5.4 Member Funct ions

Use the const keyword
when defining accessor
member functions.

238 CHAPTER 5 • Classes

Hence print is an accessor function that should be tagged as const:
void Product::print() const
{
 cout << name
 << " Price: " << price
 << " Score: " << score << "\n";
}

Whenever you refer to a data field, such as name or price, in a member function, it
denotes that data field of the object for which the member function was called. For
example, when called with

best.print();

the Product::print() function prints best.name, best.score, and best.price. (See
Figure 3.)

Note that the code for the member function makes no mention at
all of the object to which a member function is applied. It is called
the implicit parameter of the member function. You can visualize the
code of the print function like this:

void Product::print() const
{
 cout << implicit_parameter.name
 << " Price: " << implicit_parameter.price
 << " Score: " << implicit_parameter.score << "\n";
}

In contrast, a parameter that is explicitly mentioned in the function
definition, such as the b parameter of the is_better_than function, is
called an explicit parameter. Every member function has exactly one
implicit parameter and zero or more explicit parameters.

For example, the is_better_than function has one implicit param-
eter and one explicit parameter. In the call

if (next.is_better_than(best))

next is the implicit parameter and best is the explicit parameter (see Figure 4).

Figure 3 The Member Function Call best.print()

best =

name =

price =

score =

Austin 600

1499

95

Product

print

Implicit
parameter

The object on which a
member function is
applied is the implicit
parameter. Every member
function has an implicit
parameter.

Explicit parameters of a
member function are
listed in the function
definition.

5.4 • Member Functions 239

You may find it helpful to visualize the code of Product::is_better_than in this way:
bool Product::is_better_than(Product b) const
{
 if (implicit_parameter.price == 0) return true;
 if (b.price == 0) return false;
 return implicit_parameter.score / implicit_parameter.price
 > b.score / b.price;
}

Figure 4 Implicit and Explicit Parameters of the Call next.is_better_than(best)

next =

name =

price =

score =

Blackship NX600

1495

60

Product

is_better_than best =

name =

price =

score =

Austin 600

1499

95

Product

Implicit
parameter

Explicit
parameter b

SYNTAX 5.2 Member Function Definition

return_type ClassName::function_name(parameter1, parameter2, ...,
parametern)[const]opt

{
statements

}

Example:

void Point::move(double dx, double dy)
{
 x = x + dx;
 y = y + dy;
}
double Point::get_x() const
{
 return x;
}

Purpose:

Supply the implementation of a member function.

240 CHAPTER 5 • Classes

const Correctness

You should declare all accessor functions in C++ with the const keyword. (Recall that an
accessor function is a member function that does not modify its implicit parameter.)

For example,

class Product
{
 ...
 void print() const;
 ...
};

If you fail to follow this rule, you build classes that other programmers cannot reuse. For
example, suppose Product::print was not declared const, and another programmer used the
Product class to build an Order class.

class Order
{
public:
 ...
 void print() const;
private:
 string customer;
 Product article;
 ...
};

void Order::print() const
{
 cout << customer << "\n";
 article.print(); // Error if Product::print not const

 ...
}

The compiler refuses to compile the expression article.print(). Why? Because article is
an object of class Product, and Product::print is not tagged as const, the compiler suspects
that the call article.print() may modify article. But article is a data field of Order, and
Order::print promises not to modify any data fields of the order. The programmer of the
Order class uses const correctly and must rely on all other programmers to do the same.

If you write a program with other team members who do use const correctly, it is very
important that you do your part as well. You should therefore get into the habit of using the
const keyword for all member functions that do not modify their implicit parameter.

COMMON ERROR 5.3

5.5 • Default Constructors 241

Every class should have one or more constructors. A constructor ini-
tializes the data fields of an object. By supplying constructors, you
can ensure that all data fields are properly set before any member
functions act on an object.

In this section, you will see how to define a default constructor—a
constructor without parameters. The next section covers construc-
tors with parameters.

As we already discussed, the name of a constructor is identical to the name of a
class. Here is the definition of the default constructor for the Product class:

Product::Product()
{
 price = 1;
 score = 0;
}

Note the curious name of the constructor function: Product::Product. The Prod-
uct:: indicates that we are about to define a member function of the Product class.
The second Product is the name of that member function.

Most default constructors set all data fields to a default value. The Product default
constructor sets the score to 0 and the price to 1 (to avoid division by zero). The
product name is automatically set to the empty string, as will be explained shortly.
Not all default constructors act like that. For example, the Time default constructor
sets the time object to the current time.

In the code for the default constructor, you need to worry about
initializing only numeric data fields. For example, in the Product class
you must set price and score to a value, because numeric types are
not classes and have no constructors. But the name field is automati-
cally set to the empty string by the default constructor of the string
class. In general, all data fields of class type are automatically con-
structed when an object is created, but the numeric fields must be set

in the class constructors.
We now have all the pieces for the version of the product comparison program

that uses the Product class. Here is the program:

ch05/product2.cpp

5.5 Defaul t Constructors

The purpose of a
constructor is to initialize
an object’s data fields.

A default constructor has
no parameters.

It is particularly important
to initialize all numeric
fields in a constructor
because they are not
automatically initialized.

1 #include <iostream>
2 #include <string>
3
4 using namespace std;
5
6 class Product
7 {
8 public:

242 CHAPTER 5 • Classes

9 /**
10 Constructs a product with score 0 and price 1.
11 */
12 Product();
13
14 /**
15 Reads in this product object.
16 */
17 void read();
18
19 /**
20 Compares two product objects.
21 @param b the object to compare with this object
22 @return true if this object is better than b
23 */
24 bool is_better_than(Product b) const;
25
26 /**
27 Prints this product object.
28 */
29 void print() const;
30 private:
31 string name;
32 double price;
33 int score;
34 };
35
36 Product::Product()
37 {
38 price = 1;
39 score = 0;
40 }
41
42 void Product::read()
43 {
44 cout << "Please enter the model name: ";
45 getline(cin, name);
46 cout << "Please enter the price: ";
47 cin >> price;
48 cout << "Please enter the score: ";
49 cin >> score;
50 string remainder; // Read remainder of line
51 getline(cin, remainder);
52 }
53
54 bool Product::is_better_than(Product b) const
55 {
56 if (price == 0) return true;
57 if (b.price == 0) return false;
58 return score / price > b.score / b.price;
59 }
60
61 void Product::print() const
62 {

5.5 • Default Constructors 243

Programmer Productivity

If you talk to your friends in this programming class, you will find that some of them consis-
tently complete their assignments much more quickly than others. Perhaps they have more
experience. Even when comparing programmers with the same education and experience,
however, wide variations in competence are routinely observed and measured. It is not
uncommon to have the best programmer in a team be five to ten times as productive as the
worst, using any of a number of reasonable measures of productivity [1].

That is a staggering range of performance among trained professionals. In a marathon
race, the best runner will not run five to ten times faster than the slowest one. Software prod-
uct managers are acutely aware of these disparities. The obvious solution is, of course, to hire
only the best programmers, but even in recent periods of economic slowdown, the demand
for good programmers has greatly outstripped the supply.

Fortunately for all of us, joining the ranks of the best is not necessarily a question of raw
intellectual power. Good judgment, experience, broad knowledge, attention to detail, and
superior planning are at least as important as mental brilliance. These skills can be acquired
by individuals who are genuinely interested in improving themselves.

63 cout << name
64 << " Price: " << price
65 << " Score: " << score;
66 }
67
68 int main()
69 {
70 Product best;
71
72 bool more = true;
73 while (more)
74 {
75 Product next;
76 next.read();
77 if (next.is_better_than(best))
78 best = next;
79
80 cout << "More data? (y/n) ";
81 string answer;
82 getline(cin, answer);
83 if (answer != "y")
84 more = false;
85 }
86
87 cout << "The best value is ";
88 best.print();
89
90 return 0;
91 }

RANDOM FACT 5.1

244 CHAPTER 5 • Classes

Even the most gifted programmer can deal with only a finite number of details in a given
time period. Suppose a programmer can implement and debug one procedure every two
hours, or one hundred procedures per month. (This is a generous estimate. Few program-
mers are this productive.) If a task requires 10,000 procedures (which is typical for a
medium-sized program), then a single programmer would need 100 months to complete the
job. Such a project is sometimes expressed as a “100-man-month” project. But as Brooks
explains in his famous book [2], the concept of “man-month” is a myth. One cannot trade
months for programmers. One hundred programmers cannot finish the task in one month.
In fact, 10 programmers probably couldn’t finish it in 10 months. First of all, the 10 pro-
grammers need to learn about the project before they can get productive. Whenever there is
a problem with a particular procedure, both the author and its users need to meet and discuss
it, taking time away from all of them. A bug in one procedure may have all of its users twid-
dling their thumbs until it is fixed.

It is difficult to estimate these inevitable delays. They are one reason why software is
often released later than originally promised. What is a manager to do when the delays
mount? As Brooks points out, adding more manpower will make a late project even later,
because the productive people have to stop working and train the newcomers.

You will experience these problems when you work on your first team project with other
students. Be prepared for a major drop in productivity, and be sure to set ample time aside
for team communications.

There is, however, no alternative to teamwork. Most important and worthwhile projects
transcend the ability of one single individual. Learning to function well in a team is as impor-
tant for your education as it is to be a competent programmer.

It is common for a class to have multiple constructors. This allows you to define
objects in different ways. Consider for example the Employee class that has two con-
structors:

class Employee
{
public:

Employee();

Employee(string employee_name, double initial_salary);

 void set_salary(double new_salary);

 string get_name() const;
 double get_salary() const;
private:
 string name;
 double salary;
};

5.6 Constructors wi th Parameters

5.6 • Constructors with Parameters 245

Both constructors have the same name as the class, Employee. But the default con-
structor has no parameters, whereas the second constructor has a string and a dou-
ble parameter. Whenever two functions have the same name but are distinguished
by their parameter types, the function name is overloaded. (See Advanced Topic 5.2
on page 248 for more information on overloading in C++.)

When you construct an object, the compiler chooses the construc-
tor that matches the parameter values that you supply. For example,

Employee joe;
 // Uses default constructor
Employee lisa("Lisa Lee", 105000);
 // Uses Employee(string, double) constructor

Here is the implementation of the second constructor:
Employee::Employee(string employee_name, double initial_salary)
{
 name = employee_name;
 salary = initial_salary;
}

This is a straightforward situation; the constructor simply sets all data fields. Some-
times a constructor gets more complex because one of the data fields is itself an
object of another class with its own constructor.

To see how to cope with this situation, suppose the Employee class stores the
scheduled work hours of the employee:

class Employee
{
public:
 Employee(string employee_name, double initial_salary,
 int arrive_hour, int leave_hour);
 ...
private:
 string name;
 double salary;

Time arrive;

Time leave;

};

This constructor must set the name, salary, arrive, and leave fields. Since the last
two fields are themselves objects of a class, they must be initialized with objects:

Employee::Employee(string employee_name, double initial_salary,
 int arrive_hour, int leave_hour)
{
 name = employee_name;
 salary = initial_salary;

arrive = Time(arrive_hour, 0, 0);

leave = Time(leave_hour, 0, 0);

}

The Employee class in the library of this book does not actually store the work
hours. This is just an illustration to show how to construct a data field that is itself
an object of a class.

A function name is
overloaded if there are
different versions of the
function, distinguished by
their parameter types.

246 CHAPTER 5 • Classes

Forgetting to Initialize All Fields in a Constructor

Just as it is a common error to forget the initialization of a variable, it is easy to forget about
data fields. Every constructor needs to ensure that all data fields are set to appropriate values.

Here is a variation on the Employee class. The constructor receives only the name of the
employee. The class user is supposed to call set_salary explicitly to set the salary.

class Employee
{
public:
 Employee(string n);
 void set_salary(double s);
 double get_salary() const;
 ...
private:
 string name;
 double salary;
};

Employee::Employee(string n)
{
 name = n;
 // Oops—salary not initialized
}

If someone calls get_salary before set_salary has been called, a random salary will be
returned. The remedy is simple: Just set salary to 0 in the constructor.

SYNTAX 5.3 Constructor Definition

ClassName::ClassName(parameter1, parameter2, ..., parametern)
{

statements
}

Example:

Point::Point(double xval, double yval)
{
 x = xval; y = yval;
}

Purpose:

Supply the implementation of a constructor.

COMMON ERROR 5.4

5.6 • Constructors with Parameters 247

Trying to Reset an Object by Calling a Constructor

The constructor is invoked only when an object is first created. You cannot call the construc-
tor to reset an object:

Time homework_due(19, 0, 0);
...
homework_due.Time(); // Error

It is true that the default constructor sets a new time object to the current time, but you can-
not invoke a constructor on an existing object.

The remedy is simple: Make a new time object and overwrite the current object stored in
the variable.

homework_due = Time(); // OK

Calling Constructors from Constructors

Consider again the variation of the Employee class with work hour fields of type Time. There
is an unfortunate inefficiency in the constructor:

Employee::Employee(string employee_name, double initial_salary,
 int arrive_hour, int leave_hour)
{
 name = employee_name;
 salary = initial_salary;

arrive = Time(arrive_hour, 0, 0);

leave = Time(leave_hour, 0, 0);

}

Before the constructor code starts executing, the default constructors are automatically
invoked on all data fields that are objects. In particular, the arrive and leave fields are initial-
ized with the current time through the default constructor of the Time class. Immediately
afterwards, those values are overwritten with the objects Time(arrive_hour, 0, 0) and
Time(leave_hour, 0, 0).

It would be more efficient to construct the arrive and leave fields with the correct values
right away. That is achieved as follows with the form described in Syntax 5.4.

Employee::Employee(string employee_name, double initial_salary,
 int arrive_hour, int leave_hour)
 : arrive(arrive_hour, 0, 0),

leave(leave_hour, 0, 0)

{
 name = employee_name;
 salary = initial_salary;
}

Many people find this syntax confusing, and you may prefer not to use it. The price you pay
is inefficient initialization, first with the default constructor, and then with the actual initial

COMMON ERROR 5.5

ADVANCED TOPIC 5.1

248 CHAPTER 5 • Classes

value. Note, however, that this syntax is necessary to construct objects of classes that don’t
have a default constructor.

Overloading

When the same function name is used for more than one function, then the name is over-
loaded. In C++ you can overload function names provided the parameter types are different.
For example, you can define two functions, both called print, one to print an employee
record and one to print a time object:

void print(Employee e) ...
void print(Time t) ...

When the print function is called,

print(x);

the compiler looks at the type of x. If x is an Employee object, the first function is called. If x
is a Time object, the second function is called. If x is neither, the compiler generates an error.

We have not used the overloading feature in this book. Instead, we gave each function a
unique name, such as print_employee or print_time. However, we have no choice with con-
structors. C++ demands that the name of a constructor equal the name of the class. If a class
has more than one constructor, then that name must be overloaded.

In addition to name overloading, C++ also supports operator overloading. You can define
new meanings for the familiar C++ operators such as +, ==, and <<, provided at least one of
the arguments is an object of some class. For example, we could overload the > operator to
test whether one product is better than another. Then the test

if (next.is_better_than(best)) ...

SYNTAX 5.4 Constructor with Field Initializer List

ClassName::ClassName(parameters)
 : field1(expressions), ..., fieldn(expressions)
{

statements
}

Example:

Point::Point(double xval, double yval)
 : x(xval), y(yval)
{
}

Purpose:

Supply the implementation of a constructor, initializing data fields before the body of
the constructor.

ADVANCED TOPIC 5.2

5.7 • Accessing Data Fields 249

could instead be written as

if (next > best) ...

To teach the compiler this new meaning of the > operator, we provide a member function
called operator> as follows:

bool Product::operator>(Product b) const
{
 if (price == 0) return true;
 if (b.price == 0) return false;
 return score / price > b.score / b.price;
}

Operator overloading can make programs easier to read. See Chapter 14 for more
information.

Only member functions of a class are allowed to access the private
data fields of objects of that class. All other functions—that is, mem-
ber functions of other classes and functions that are not member
functions of any class—must go through the public interface of the
class.

For example, the raise_salary function of Chapter 4 cannot read and set the
salary field directly:

void raise_salary(Employee& e, double percent)
{

e.salary = e.salary * (1 + percent / 100); // Error
}

Instead, it must use the get_salary and set_salary functions:
void raise_salary(Employee& e, double percent)
{
 double new_salary = e.get_salary()
 * (1 + percent / 100);
 e.set_salary(new_salary);
}

These two member functions are extremely simple:
double Employee::get_salary() const
{
 return salary;
}

void Employee::set_salary(double new_salary)
{
 salary = new_salary;
}

5.7 Access ing Data F ie lds

Private data fields can
only be accessed by
member functions of the
same class.

250 CHAPTER 5 • Classes

In your own classes you should not automatically write accessor functions for all
data fields. The less implementation detail you reveal, the more flexibility you have
to improve the class. Consider, for example, the Product class. There was no need to
supply functions such as get_score or set_price. Also, if you have a get_ function,
don’t feel obliged to implement a matching set_ function. For example, the Time
class has a get_minutes function but not a set_minutes function.

Consider again the get_salary and set_salary functions of the Employee class.
They simply get and set the value of the salary field. However, you should not
assume that all functions with the prefixes get and set follow that pattern. For
example, our Time class has three accessors get_hours, get_minutes, and get_seconds,
but it does not use corresponding data fields hours, minutes, and seconds. Instead,
there is a single data field

int time_in_secs;

The field stores the number of seconds from midnight (00:00:00). The constructor
sets that value from the construction parameters:

Time::Time(int hour, int min, int sec)
{
 time_in_secs = 60 * 60 * hour + 60 * min + sec;
}

The accessors compute the hours, minutes, and seconds. For example,
int Time::get_minutes() const
{
 return (time_in_secs / 60) % 60;
}

This internal representation was chosen because it makes the add_seconds and
seconds_from functions trivial to implement:

int Time::seconds_from(Time t) const
{
 return time_in_secs - t.time_in_secs;
}

Of course, the data representation is an internal implementation detail of the class
that is invisible to the class user.

Consider again the raise_salary function of Chapter 4.
void raise_salary(Employee& e, double percent)
{
 double new_salary = e.get_salary()
 * (1 + percent / 100);
 e.set_salary(new_salary);
}

5.8 Compar ing Member Funct ions wi th
Nonmember Funct ions

5.8 • Comparing Member Functions with Nonmember Functions 251

This function is not a member function of the Employee class. It is not a member
function of any class, in fact. Thus, the dot notation is not used when the function is
called. There are two explicit arguments and no implicit argument.

raise_salary(harry, 7); // Raise Harry’s salary by 7 percent

Let’s turn raise_salary into a member function:
class Employee
{
public:

void raise_salary(double percent);

 ...
};

void Employee::raise_salary(double percent)

{

 salary = salary * (1 + percent / 100);

}

Now the function must be called with the dot notation:
harry.raise_salary(7); // Raise Harry’s salary by 7 percent

Which of these two solutions is better? It depends on the ownership of the class. If
you are designing a class, you should make useful operations into member func-
tions. However, if you are using a class designed by someone else, then you should
not add your own member functions. The author of the class that you are using
may improve the class and periodically give you a new version of the code. It would
be a nuisance if you had to keep adding your own modifications back into the class
definition every time that happened.

Inside main or another nonmember function, it is easy to differentiate between
member function calls and other function calls. Member functions are invoked
using the dot notation; nonmember functions don’t have an “object.” preceding
them. Inside member functions, however, it isn’t as simple. One member function
can invoke another member function on its implicit parameter. Suppose we add a
member function print to the Employee class:

class Employee
{
public:
 void print() const;
 ...
};

void Employee::print() const
{
 cout << "Name: " << get_name()
 << "Salary: " << get_salary()
 << "\n";
}

Now consider the call harry.print(), with implicit parameter harry. The call
get_name() inside the Employee::print function really means harry.get_name().

252 CHAPTER 5 • Classes

Again, you may find it helpful to visualize the function like this:
void Employee::print() const
{
 cout << "Name: " << implicit_parameter.get_name()
 << "Salary: " << implicit_parameter.get_salary()
 << "\n";
}

In this simple situation we could equally well have accessed the name and salary data
fields directly in the Employee::print function. In more complex situations it is very
common for one member function to call another.

If you see a function call without the dot notation inside a member function, you
first need to check whether that function is actually another member function of the
same class. If so, it means “call this member function with the same implicit
parameter”.

If you compare the member and nonmember versions of raise_salary, you can
see an important difference. The member function is allowed to modify the salary
data field of the Employee object, even though it was not defined as a reference
parameter.

Recall that by default, function parameters are value parameters, which the func-
tion cannot modify. You must supply an ampersand & to indicate that a parameter is
a reference parameter, which can be modified by the function. For example, the first
parameter of the nonmember version of raise_salary is a reference parameter
(Employee&), because the raise_salary function changes the employee record.

The situation is exactly opposite for the implicit parameter of member functions.
By default, the implicit parameter can be modified. Only if the member function is
tagged as const must the default parameter be left unchanged.

The following table summarizes these differences.

File Layout

By now you have learned quite a few C++ features, all of which can occur in a C++ source
file. Keep your source files neat and organize items in them in the following order:

Explicit Parameter Implicit Parameter

Value
Parameter
(no change)

No modifier

void print(Employee)

Use const modifier

void Employee::print() const

Reference
Parameter

(can be
changed)

Use & modifier

void raise_salary(Employee& e, double p)

No modifier

void Employee::raise_salary(double p)

QUAL ITY T IP 5.1

5.9 • Separate Compilation 253

• Included header files
• Constants
• Classes
• Global variables (if any)
• Functions
The member functions can come in any order. If you sort the nonmember functions so that
every function is defined before it is used, then main comes last. If you prefer a different
ordering, use function declarations (see Advanced Topic 4.1).

When you write and compile small programs, you can place all your
code into a single source file. When your programs get larger or you
work in a team, that situation changes. You will want to split your
code into separate source files. There are two reasons why this split
becomes necessary. First, it takes time to compile a file, and it seems

silly to wait for the compiler to keep translating code that doesn’t change. If your
code is distributed over several source files, then only those files that you changed
need to be recompiled. The second reason becomes apparent when you work with
other programmers in a team. It would be very difficult for multiple programmers
to edit a single source file simultaneously. Therefore, the program code is broken up
so that each programmer is solely responsible for a separate set of files.

If your program is composed of multiple files, some of these files will define data
types or functions that are needed in other files. There must be a path of communi-
cation between the files. In C++, that communication happens through the inclu-
sion of header files.

A header file contains

• definitions of classes.
• declarations of constants.
• declarations of nonmember functions.
• declarations of global variables.

The source file contains

• definitions of member functions.
• definitions of nonmember functions.
• definitions of global variables.

Let’s consider a simple case first. We will create a set of two files, product.h and
product.cpp, that contain the interface and the implementation of the Product class.

The header file contains the class definition. It also includes all headers that are
necessary for defining the class. For example, the Product class is defined in terms of

5.9 Separate Compi la t ion

The code of complex
programs is distributed
over multiple files.

Header files contain the
definitions of classes and
declarations of shared
constants, functions, and
variables.

Source files contain the
function implementations.

254 CHAPTER 5 • Classes

the string class. Therefore, you must include the <string> header as well. Any time
you include a header from the standard library, you must also include the command

using namespace std;

ch05/prodtest/product.h

Note the curious set of preprocessor directives that bracket the file.
#ifndef PRODUCT_H
#define PRODUCT_H
...
#endif

These directives are a guard against multiple inclusion. Suppose a file includes prod-
uct.h and another header file that also includes product.h. Then the compiler sees

1 #ifndef PRODUCT_H
2 #define PRODUCT_H
3
4 #include <string>
5
6 using namespace std;
7
8 class Product
9 {
10 public:
11 /**
12 Constructs a product with score 0 and price 1.
13 */
14 Product();
15
16 /**
17 Reads in this product object.
18 */
19 void read();
20
21 /**
22 Compares two product objects.
23 @param b the object to compare with this object
24 @return true if this object is better than b
25 */
26 bool is_better_than(Product b) const;
27
28 /**
29 Prints this product object.
30 */
31 void print() const;
32 private:
33 string name;
34 double price;
35 int score;
36 };
37
38 #endif

5.9 • Separate Compilation 255

the class definition twice, and it complains about two classes with the same name.
(Sadly, it doesn’t check whether the definitions are identical.)

The source file simply contains the definitions of the member functions (includ-
ing constructors). Note that the source file product.cpp includes its own header file
product.h. The compiler needs to know how the Product class is declared in order to
compile the member functions.

ch05/prodtest/product.cpp

Note that the function comments are in the header file, since they are a part of the
interface, not the implementation.

The product.cpp file does not contain a main function. There are many potential
programs that might make use of the Product class. Each of these programs will
need to supply its own main function, as well as other functions and classes.

1 #include <iostream>
2 #include "product.h"
3
4 using namespace std;
5
6 Product::Product()
7 {
8 price = 1;
9 score = 0;
10 }
11
12 void Product::read()
13 {
14 cout << "Please enter the model name: ";
15 getline(cin, name);
16 cout << "Please enter the price: ";
17 cin >> price;
18 cout << "Please enter the score: ";
19 cin >> score;
20 string remainder; // Read remainder of line
21 getline(cin, remainder);
22 }
23
24 bool Product::is_better_than(Product b) const
25 {
26 if (price == 0) return true;
27 if (b.price == 0) return false;
28 return score / price > b.score / b.price;
29 }
30
31 void Product::print() const
32 {
33 cout << name
34 << " Price: " << price
35 << " Score: " << score;
36 }

256 CHAPTER 5 • Classes

Here is a simple test program that puts the Product class to use. Its source file
includes the product.h header file.

ch05/prodtest/prodtest.cpp

To build the complete program, you need to compile both the prodtest.cpp and
product.cpp source files. The details depend on your compiler. For example, with
the Gnu compiler, you issue the commands

g++ -c product.cpp
g++ -c prodtest.cpp
g++ -o prodtest product.o prodtest.o

The first two commands translate the source files into object files that contain the
machine instructions corresponding to the C++ code. The third command links
together the object files, as well as all the required code from the standard library, to
form an executable program.

You have just seen the simplest and most common case for designing header and
source files. There are a few additional technical details that you need to know.

Place shared constants into the header file. For example,

product.h

1 #include <iostream>
2 #include "product.h"
3
4 int main()
5 {
6 Product best;
7
8 bool more = true;
9 while (more)
10 {
11 Product next;
12 next.read();
13 if (next.is_better_than(best))
14 best = next;
15
16 cout << "More data? (y/n) ";
17 string answer;
18 getline(cin, answer);
19 if (answer != "y")
20 more = false;
21 }
22
23 cout << "The best value is ";
24 best.print();
25
26 return 0;
27 }

1 const int MAX_SCORE = 100;
2 ...

5.9 • Separate Compilation 257

To share a nonmember function, place the definition of the function into a source
file and the function prototype (declaration) into the corresponding header file.

rand.h

rand.cpp

Finally, it may occasionally be necessary to share a global variable among source
files. For example, the graphics library of this book defines a global object cwin. It is
declared in a header file as

extern GraphicWindow cwin;

The corresponding source file contains the definition
GraphicWindow cwin;

The extern keyword is required to distinguish the declaration from the definition.

Programming—Art or Science?

There has been a long discussion whether the discipline of computing is a science or not. The
field is called “computer science”, but that doesn’t mean much. Except possibly for librarians
and sociologists, few people believe that library science and social science are scientific
endeavors.

A scientific discipline aims to discover certain fundamental principles dictated by the laws
of nature. It operates on the scientific method: by posing hypotheses and testing them with
experiments that are repeatable by other workers in the field. For example, a physicist may
have a theory on the makeup of nuclear particles and attempt to verify or falsify that theory
by running experiments in a particle collider. If an experiment cannot be verified, such as the
“cold fusion” research at the University of Utah, then the theory dies a quick death. (See
http://physicsworld.com/cws/article/print/1258 for a history of that failed research.)

Some programmers indeed run experiments. They try out various methods of computing
certain results, or of configuring computer systems, and measure the differences in perfor-
mance. However, their aim is not to discover laws of nature.

1 void rand_seed();
2 int rand_int(int a, int b);

1 #include "rand.h"
2
3 void rand_seed()
4 {
5 int seed = static_cast<int>(time(0));
6 srand(seed);
7 }
8
9 int rand_int(int a, int b)
10 {
11 return a + rand() % (b - a + 1);
12 }

RANDOM FACT 5.2

http://physicsworld.com/cws/article/print/1258

258 CHAPTER 5 • Classes

Some computer scientists discover fundamental principles. One class of fundamental
results, for instance, states that it is impossible to write certain kinds of computer programs,
no matter how powerful the computing equipment is. For example, it is impossible to write a
program that takes as its input any two C++ program files and as its output prints whether
or not these two programs always compute the same results. Such a program would be very
handy for grading student homework, but nobody, no matter how clever, will ever be able to
write one that works for all input files. The majority of programmers write programs, how-
ever, instead of researching the limits of computation.

Some people view programming as an art or craft. A programmer who writes elegant
code that is easy to understand and runs with optimum efficiency can indeed be considered a
good craftsman. Calling it an art is perhaps far-fetched, because an art object requires an
audience to appreciate it, whereas the program code is generally hidden from the program
user.

Others call computing an engineering discipline. Just as mechanical engineering is based
on the fundamental mathematical principles of statics, computing has certain mathematical
foundations. There is more to mechanical engineering than mathematics, though, such as
knowledge of materials and project planning. The same is true for computing.

In one somewhat worrisome aspect, computing does not have the same standing as other
engineering disciplines. There is little agreement as to what constitutes professional conduct
in the computer field. Unlike the scientist, whose main responsibility is the search for truth,
the engineer must strive for the conflicting demands of quality, safety, and economy. Engi-
neering disciplines have professional organizations that hold their members to standards of
conduct. The computer field is so new that in many cases we simply don’t know the correct
method for achieving certain tasks. That makes it difficult to set professional standards.

What do you think? From your limited experience, do you consider the discipline of
computing an art, a craft, a science, or an engineering activity?

1. A class represents a concept. Instead of groups of related variables, try designing
a class for the underlying concept.

2. Every class has a public interface: a collection of member functions through
which the objects of the class can be manipulated.

3. A constructor is used to initialize objects when they are created. A constructor
with no parameters is called a default constructor.

4. A mutator member function changes the state of the object on which it operates.

5. An accessor member function does not modify the object. Accessors must be
tagged with const.

6. Every class has a private implementation: data fields that store the state of an
object.

7. Encapsulation is the act of hiding implementation details.

8. Encapsulation protects the integrity of object data.

CHAPTER SUMMARY

Review Exercises 259

9. By keeping the implementation private, we protect it from being accidentally
corrupted.

10. Encapsulation enables changes in the implementation without affecting users of
a class.

11. Use the const keyword when defining accessor member functions.

12. The object on which a member function is applied is the implicit parameter.
Every member function has an implicit parameter.

13. Explicit parameters of a member function are listed in the function definition.

14. The purpose of a constructor is to initialize an object’s data fields.

15. A default constructor has no parameters.

16. It is particularly important to initialize all numeric fields in a constructor
because they are not automatically initialized.

17. A function name is overloaded if there are different versions of the function,
distinguished by their parameter types.

18. Private data fields can only be accessed by member functions of the same class.

19. The code of complex programs is distributed over multiple files.

20. Header files contain the definitions of classes and declarations of shared con-
stants, functions, and variables.

21. Source files contain the function implementations.

1. W.H. Sackmann, W.J. Erikson, and E.E. Grant, “Exploratory Experimental Studies Com-
paring Online and Offline Programming Performance”, Communications of the ACM,
vol. 11, no. 1 (January 1968), pp. 3–11.

2. F. Brooks, The Mythical Man-Month, Addison-Wesley, 1975.

Exercise R5.1. List all classes that we have used so far in this book. Categorize them as
• Real-world entities
• Mathematical abstractions
• System services

Exercise R5.2. What is the interface of a class? What is the implementation of a class?

FURTHER READING

REVIEW EXERCISES

260 CHAPTER 5 • Classes

Exercise R5.3. What is a member function, and how does it differ from a nonmember
function?

Exercise R5.4. What is a mutator function? What is an accessor function?

Exercise R5.5. What happens if you forget the const in an accessor function? What
happens if you accidentally supply a const in a mutator function?

Exercise R5.6. What is an implicit parameter? How does it differ from an explicit
parameter?

Exercise R5.7. How many implicit parameters can a member function have? How
many implicit parameters can a nonmember function have? How many explicit
parameters can a function have?

Exercise R5.8. What is a constructor?

Exercise R5.9. What is a default constructor? What is the consequence if a class does
not have a default constructor?

Exercise R5.10. How many constructors can a class have? Can you have a class with
no constructors? If a class has more than one constructor, which of them gets
called?

Exercise R5.11. How can you define an object variable that is not initialized with a
constructor?

Exercise R5.12. How are member functions declared? How are they defined?

Exercise R5.13. What is encapsulation? Why is it useful?

Exercise R5.14. Data fields are hidden in the private section of a class, but they aren’t
hidden very well at all. Anyone can read the private section. Explain to what extent
the private keyword hides the private members of a class.

Exercise R5.15. You can read and write the salary field of the Employee class with the
get_salary accessor function and the set_salary mutator function. Should every
data field of a class have associated accessors and mutators? Explain why or why
not.

Exercise R5.16. What changes to the Product class would be necessary if you wanted
to make is_better_than into a nonmember function? (Hint: You would need to
introduce additional accessor functions.) Write the class definition of the changed
Product class, the definitions of the new member functions, and the definition of the
changed is_better_than function.

Exercise R5.17. What changes to the Product class would be necessary if you wanted
to make the read function into a nonmember function? (Hint: You would need to
read in the name, price, and score and then construct a product with these proper-
ties.) Write the class definition of the changed Product class, the definition of the
new constructor, and the definition of the changed read function.

Programming Exercises 261

Exercise R5.18. In a nonmember function, it is easy to differentiate between calls to
member functions and calls to nonmember functions. How do you tell them apart?
Why is it not as easy for functions that are called from a member function?

Exercise R5.19. How do you indicate whether the implicit parameter is passed by
value or by reference? How do you indicate whether an explicit parameter is passed
by value or by reference?

Exercise P5.1. Implement all member functions of the following class:
class Person
{
public:
 Person();
 Person(string pname, int page);
 void get_name() const;
 void get_age() const;
private:
 string name;
 int age; // 0 if unknown
};

Exercise P5.2. Implement a class PEmployee that is just like the Employee class except
that it stores an object of type Person as developed in Exercise P5.1.

class PEmployee
{
public:
 PEmployee();
 PEmployee(string employee_name, double initial_salary);
 void set_salary(double new_salary);
 double get_salary() const;
 string get_name() const;
private:

Person person_data;

 double salary;
};

Exercise P5.3. Implement a class Address. An address has a house number, a street, an
optional apartment number, a city, a state, and a postal code. Supply two construc-
tors: one with an apartment number and one without. Supply a print function that
prints the address with the street on one line and the city, state, and postal code on
the next line. Supply a member function comes_before that tests whether one
address comes before another when the addresses are compared by postal code.

Exercise P5.4. Implement a class Account. An account has a balance, functions to add
and withdraw money, and a function to query the current balance. Charge a $5 pen-
alty if an attempt is made to withdraw more money than available in the account.

PROGRAMMING EXERCISES

262 CHAPTER 5 • Classes

Exercise P5.5. Enhance the Account class of Exercise P5.4 to compute interest on the
current balance. Then use the Account class to implement the problem from the
beginning of the book: An account has an initial balance of $10,000, and 6 percent
annual interest is compounded monthly until the investment doubles.

Exercise P5.6. Implement a class Bank. This bank has two objects, checking and sav-
ings, of the type Account that was developed in Exercise P5.5. Implement four
member functions:

void deposit(double amount, string account)
void withdraw(double amount, string account)
void transfer(double amount, string account)
void print_balances()

Here the account string is "S" or "C". For the deposit or withdrawal, it indicates
which account is affected. For a transfer it indicates the account from which the
money is taken; the money is automatically transferred to the other account.

Exercise P5.7. Implement a class SodaCan with functions get_surface_area() and
get_volume(). In the constructor, supply the height and radius of the can.

Exercise P5.8. Implement a class Car with the following properties. A car has a cer-
tain fuel efficiency (measured in miles/gallon or liters/km—pick one) and a certain
amount of fuel in the gas tank. The efficiency is specified in the constructor, and the
initial fuel level is 0. Supply a function drive that simulates driving the car for a cer-
tain distance, reducing the fuel level in the gas tank, and functions get_gas, to return
the current fuel level, and add_gas, to tank up. Sample usage:

Car my_beemer(29); // 29 miles per gallon
my_beemer.add_gas(20); // Tank 20 gallons
my_beemer.drive(100); // Drive 100 miles
cout << my_beemer.get_gas() << "\n"; // Print fuel remaining

Exercise P5.9. Implement a class Student. For the purpose of this exercise, a student
has a name and a total quiz score. Supply an appropriate constructor and functions
get_name(), add_quiz(int score), get_total_score(), and get_average_score(). To
compute the latter, you also need to store the number of quizzes that the student
took.

Exercise P5.10. Modify the Student class of Exercise P5.9 to compute grade point
averages. Member functions are needed to add a grade, and get the current GPA.
Specify grades as elements of a class Grade. Supply a constructor that constructs a
grade from a string, such as "B+". You will also need a function that translates grades
into their numeric values (for example, "B+" becomes 3.3).

Exercise P5.11. Define a class Country that stores the name of the country, its popula-
tion, and its area. Using that class, write a program that reads in a set of countries
and prints

• The country with the largest area
• The country with the largest population
• The country with the largest population density (people per square kilometer)

Programming Exercises 263

Exercise P5.12. Design a class Message that models an e-mail message. A message has
a recipient, a sender, and a message text. Support the following member functions:

• A constructor that takes the sender and recipient and sets the time stamp to
the current time

• A member function append that appends a line of text to the message body
• A member function to_string that makes the message into one long string like

this: "From: Harry Hacker\nTo: Rudolf Reindeer\n ..."

• A member function print that prints the message text. Hint: Use to_string.
Write a program that uses this class to make a message and print it.

Exercise P5.13. Design a class Mailbox that stores e-mail messages, using the Message
class of Exercise P5.12. You don’t yet know how to store a collection of message
objects. Instead, use the following brute force approach: The mailbox contains one
very long string, which is the concatenation of all messages. You can tell where a
new message starts by searching for a From: at the beginning of a line. This may
sound like a dumb strategy, but surprisingly, many e-mail systems do just that.
Implement the following member functions:

void Mailbox::add_message(Message m);
Message Mailbox::get_message(int i) const;
void remove_message(int i);

What do you do if the message body happens to have a line starting with "From: "?
Then the to_string function of the Message class should really insert a > in front of
the From: so that it reads >From: . Again, this sounds dumb, but it is a strategy used
by real e-mail systems. Extra credit if you implement this enhancement.

Exercise P5.14. Implement a class Rectangle that works just like the other graphics
classes such as Circle or Line. A rectangle is constructed from two corner points.
The sides of the rectangle are parallel to the coordinate axes:

You do not yet know how to define a << operator to plot a rectangle. Instead, define
a member function plot. Supply a function move. Pay attention to const. Then write
a sample program that constructs and plots a few rectangles.

Exercise P5.15. Enhance the Rectangle class of Exercise P5.14 by adding member
functions perimeter and area that compute the perimeter and area of the rectangle.

Exercise P5.16. Implement a class Triangle that works just like the other graphics
classes such as Circle or Line. A triangle is constructed from three corner points.
You do not yet know how to define a << operator to plot a triangle. Instead, define
a member function plot. Supply a function move. Pay attention to const. Then write
a sample program that constructs and plots a few triangles.

G

G

G

264 CHAPTER 5 • Classes

Exercise P5.17. Enhance the Triangle class of Exercise P5.16 by adding member func-
tions perimeter and area that compute the perimeter and area of the triangle.

Exercise P5.18. Design a class House that defines a house on a street. A house has a
house number and an (x, y) location, where x and y are numbers between –10 and
10. The key member function is plot, which plots the house.

Next, design a class Street that contains a number of equally spaced houses. An
object of type Street stores the first house, the last house (which can be anywhere
on the screen), and the number of houses on the street. The Street::plot function
needs to make the intermediate house objects on the fly, because you don’t yet
know how to store an arbitrary number of objects.
Use these classes in a graphics program in which the user clicks with the mouse on
the locations of the first and last house, then enters the house numbers of the first
and last house, and the number of houses on the street. Then the entire street is
plotted.

Exercise P5.19. Design a class Cannonball to model a cannonball that is fired into the
air. A ball has

• An x- and a y-position
• An x- and a y-velocity

Supply the following member functions:
• A constructor with a weight and an x-position (the y-position is initially 0)
• A member function move(double sec) that moves the ball to the next position

(First compute the distance traveled in sec seconds, using the current veloci-
ties, then update the x- and y-positions; then update the y-velocity by taking
into account the gravitational acceleration of –9.81 m/sec2; the x-velocity is
unchanged.)

• A member function plot that plots the current location of the cannonball
• A member function shoot whose parameters are the angle α and initial velocity

v (Compute the x-velocity as v cos α and the y-velocity as v sin α; then keep
calling move with a time interval of 0.1 seconds until the x-position is 0; call
plot after every move.)

Use this class in a program that prompts the user for the starting angle and the ini-
tial velocity. Then call shoot.

G

G

G

Chapter 6
 Vectors and Arrays

• To become familiar with using vectors to collect objects

• To be able to access vector elements and resize vectors

• To learn how to use one- and two-dimensional arrays

• To learn about common array algorithms

CHAPTER GOALS

In many programs, you need to collect multiple objects of the same type. In

standard C++, the vector construct allows you to conveniently manage collections

that automatically grow to any desired size. In this chapter, you will learn about

vectors and common vector algorithms.

The standard vectors are built on top of the lower-level array construct. The last

part of this chapter shows you how to work with arrays. Two-dimensional arrays

are useful for representing tabular arrangements of data.

266 CHAPTER 6 • Vectors and Arrays

CHAPTER CONTENTS

In this section, we introduce the C++ vector construct. A vector allows you to con-
veniently store a sequence of data items.

Suppose you write a program that reads a list of salary figures and prints out the
list, marking the highest value, like this:

32000
54000
67500
29000
35000
80000
115000 <= highest value
44500
100000
65000

Before you can determine which value to mark as the highest, the program must
first read all data items. After all, the last value might be the highest one.

Could you simply store each value in a separate variable? If you know that there
are ten inputs, then you can store the data in ten variables salary1, salary2, salary3,
…, salary10. However, such a sequence of variables is not very practical to use. You
would have to write quite a bit of code ten times, once for each of the variables. In
C++, a vector is a much better choice for storing the data.

6.1 Using Vectors to Col lect Dat a I tems

6.1 Using Vectors to Collect
Data Items 266

SYNTAX 6.1: Vector Variable Definition 268
SYNTAX 6.2: Vector Subscript 269

6.2 Working with Vectors 269
COMMON ERROR 6.1: Bounds Errors 272
PRODUCTIVITY HINT 6.1: Inspecting Vectors in

the Debugger 272
QUALITY TIP 6.1: Don’t Combine Vector Access

and Index Increment 273
ADVANCED TOPIC 6.1: Strings Are Vectors

of Characters 273
RANDOM FACT 6.1: An Early Internet Worm 274

6.3 Vector Parameters and
Return Values 275

ADVANCED TOPIC 6.2: Passing Vectors by

Constant Reference 277

6.4 Removing and Inserting
Vector Elements 277

QUALITY TIP 6.2: Make Parallel Vectors into

Vectors of Objects 279

6.5 Arrays 280
SYNTAX 6.3: Array Variable Definition 282
SYNTAX 6.4: Two-Dimensional Array Definition 291
QUALITY TIP 6.3: Name the Array Size and

Capacity Consistently 291
COMMON ERROR 6.2: Omitting the Column Size of a

Two-Dimensional Array Parameter 292
RANDOM FACT 6.2: International Alphabets 292

6.1 • Using Vectors to Collect Data Items 267

A vector is a collection of data items of the same type. Every element of the col-
lection can be accessed separately. Here we define a vector of ten employee salaries:

vector<double> salaries(10);

This is the definition of a variable salaries whose type is
vector<double>. That is, salaries stores a sequence of double values.
The (10) indicates that the vector holds ten values. (See Figure 1.) In
general, vector variables are defined as in Syntax 6.1 on page 268.

To get some data into salaries, you must specify which slot in the
vector you want to use. That is done with the [] operator:

salaries[4] = 35000;

Now the slot with number 4 of salaries is filled with 35000. (See
Figure 2).This “slot number” is called an index or subscript.

Because salaries is a vector of double values, a slot such as salaries[4] can be
used just like any variable of type double:

cout << salaries[4] << "\n";

Before continuing, we must take care of an important detail of C++ vectors. If you
look carefully at Figure 2, you will find that the fifth slot was filled with data when
we changed salaries[4]. In C++, the slots of vectors are numbered starting at 0.
That is, the legal slots for the salaries vector are

salaries[0], the first slot
salaries[1], the second slot
salaries[2], the third slot
salaries[3], the fourth slot
salaries[4], the fifth slot
...
salaries[9], the tenth slot

In “ancient” times there was a technical reason why this setup was a good idea.
Because so many programmers got used to it, the vector construction imitates it. It
is, however, a major source of grief for the newcomer.

Use a vector to collect
multiple values of the
same type.

Individual values in a
vector are accessed by an
integer index or subscript:
v[i].

Figure 1
Vector of salaries

Figure 2
Vector Slot Filled with double Value

salaries =

10

[0]
[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]

35000

salaries =

268 CHAPTER 6 • Vectors and Arrays

You have to be careful about index values. Trying to access a slot
that does not exist in the vector is a serious error. For example, if sal-
aries holds ten values, you are not to allowed to access salaries[20].
Attempting to access a location that is not within the valid index
range is called a bounds error. The compiler does not catch this type

of error. Even the running program generates no error message. If you make a
bounds error, you silently read or overwrite another memory location. As a conse-
quence, your program may have random errors, and it can even crash.

The most common bounds error is the following:
vector<double> salaries(10);
cout << salaries[10];

There is no salaries[10] in a vector with ten elements—the legal
index values range from 0 to 9.

Another common error is to forget to size the vector.
vector<double> salaries; // No size given
salaries[0] = 35000;

The index can be any integer expression. It is very common to have a variable vari-
able index such as salaries[i]. This allows you to access arbitrary locations in the
vector (see Syntax 6.2 on page 269). For example, the following loop finds the high-
est salary:

double highest = salaries[0];
for (i = 1; i < 10; i++)
 if (salaries[i] > highest)
 highest = salaries[i];

By the way, the name vector originates from mathematics. You can have a vector in
a plane with (x, y) coordinates; a vector in space with (x, y, z) coordinates; or a vec-
tor in a space with more than three dimensions, in which case the coordinates are no
longer given separate letters x, y, z, but a single letter with subscripts (x1, x2, x3, …,
x10). Of course, in C++ the subscripts go from 0 to 9, not from 1 to 10, and the
bracket operator x[i] is used since there is no easy way of writing a subscript xi
with a computer keyboard.

Valid values for the index
range from 0 to one less
than the size of the array.

A bounds error, which
occurs if you supply an
invalid index to a vector,
can have serious
consequences.

SYNTAX 6.1 Vector Variable Definition

vector<type_name> variable_name;
vector<type_name> variable_name(initial_size);

Example:

vector<int> scores;
vector<Employee> staff(20);

Purpose:

Define a new variable of vector type, and optionally supply an initial size.

6.2 • Working with Vectors 269

In this section, you will learn how to visit all elements of a vector, and how to add
elements to a vector.

When a vector is defined without a size parameter, it is empty and can hold no
elements.

You can find out the size of a vector by calling the size function. For example,
the loop of the preceding section,

for (i = 1; i < 10; i++)
 if (salaries[i] > highest)
 highest = salaries[i];

can be written as
for (i = 1; i < salaries.size(); i++)
 if (salaries[i] > highest)
 highest = salaries[i];

Using size is actually a better idea than using the number 10. If the
program changes, such as by allocating space for 20 employees in the
salaries vector, the first loop is no longer correct, but the second
loop automatically stays valid. This principle is another way to avoid

magic numbers, as discussed in Quality Tip 2.3.
Note that i is a legal index for the vector v if 0 ≤ i and i < v.size(). Therefore the

for loop
for (i = 0; i < v.size(); i++)

do something with v[i];

is extremely common for visiting all elements in a vector.
It is often difficult to know initially how many elements you need to store. For

example, you may want to store all salaries that are entered in the salary chart pro-
gram. You have no idea how many values the program user will enter. The function
push_back allows you to start out with an empty vector and grow the vector when-
ever another employee is added:

vector<double> salaries;
...

SYNTAX 6.2 Vector Subscript

vector_expression[integer_expression]

Example:

salaries[i + 1]

Purpose:

Access an element in a vector.

6.2 Working wi th Vectors

Use the size function to
obtain the current size of
a vector.

270 CHAPTER 6 • Vectors and Arrays

double s;
cin >> s;
...
salaries.push_back(s);

The push_back command resizes the vector salary by adding one element to its end;
then it sets that element to s. The strange name push_back indicates that s is pushed
onto the back end of the vector.

Although it is undeniably convenient to grow a vector on demand
with push_back, it is also inefficient. More memory must be found to
hold the longer vector, and all elements must be copied into the
larger space. If you already know how many elements you need in a
vector, you should specify that size when you define the vector, then
fill it.

Another member function, pop_back, removes the last element of a vector,
shrinking its size by one.

vector<double> salaries(10);
...
salaries.pop_back(); // Now salaries has size 9

Note that the pop_back function does not return the element that is being removed.
If you want to know what that element is, you need to capture it first.

double last = salaries[salaries.size() - 1];
salaries.pop_back(); // Removes last from the vector

This is not very intuitive if you are familiar with the so-called stack data structure,
whose pop operation returns the top value of the stack. Intuitive or not, the names
push_back and pop_back are part of the standard for C++.

Now you have all the pieces to implement the program outlined at the beginning
of the chapter. This program reads employee salaries and displays them, marking
the highest salary.

ch06/salvect.cpp

Use the push_back
member function to add
more elements to a vector.
Use pop_back to reduce
the size.

1 #include <iostream>
2 #include <vector>
3
4 using namespace std;
5
6 int main()
7 {
8 vector<double> salaries;
9 cout << "Please enter salaries, 0 to quit:\n";
10 bool more = true;
11 while (more)
12 {
13 double s;
14 cin >> s;
15 if (s == 0)
16 more = false;
17 else
18 salaries.push_back(s);

6.2 • Working with Vectors 271

Program Run

For simplicity, this program stores the salary values in a vector<double>. However,
it is just as easy to use vectors of objects. For example, you can create a vector of
employees with a definition such as this one:

vector<Employee> staff(10);

You add elements by copying objects into the slots of the vector:
staff[0] = Employee("Hacker, Harry", 35000.0);

19 }
20
21 double highest = salaries[0];
22 int i;
23 for (i = 1; i < salaries.size(); i++)
24 if (salaries[i] > highest)
25 highest = salaries[i];
26
27 for (i = 0; i < salaries.size(); i++)
28 {
29 cout << salaries[i];
30 if (salaries[i] == highest)
31 cout << " <== highest value";
32 cout << "\n";
33 }
34
35 return 0;
36 }

Please enter salaries, 0 to quit:
32000

54000

67500

29000

35000

80000

115000

44500

100000

65000

0

32000
54000
67500
29000
35000
80000
115000 <== highest value
44500
100000
65000

272 CHAPTER 6 • Vectors and Arrays

You can access any Employee object in the vector as staff[i]. Because the vector
entry is an object, you can apply a member function to it:

if (staff[i].get_salary() > 50000.0) ...

Bounds Errors

The most common vector error is accessing a nonexistent slot.

vector<double> data(10);
data[10] = 5.4;
 // Error—data has 10 elements with subscripts 0 to 9

If your program accesses a vector through an out-of-bounds subscript, there is no error mes-
sage. Instead, the program will quietly (or not so quietly) corrupt some memory. Except for
very short programs, in which the problem may go unnoticed, that corruption will make the
program act flaky or cause a horrible death many instructions later. These are serious errors
that can be difficult to detect.

Inspecting Vectors in the Debugger

Vectors are more difficult to inspect in the debugger than numbers or objects. Suppose you
are running a program and want to inspect the contents of

vector<double> salaries;

Figure 3 Display of Vector Elements

COMMON ERROR 6.1

PRODUCT IV ITY HINT 6.1

6.2 • Working with Vectors 273

First, you tell the debugger to inspect the vector variable salaries. It shows you the inner
details of an object. You need to find the data field that points to the vector elements (usually
called start, _M_start, or _First or a similar name). That variable is a pointer—you will
learn more about pointers in Chapter 7.

Try inspecting that variable. Depending on your debugger, you may need to click on it or
select it and hit Enter. That shows you the first element in the vector. Then you must expand
the range to show you as many elements as you would like to see. The commands to do so
differ widely among debuggers. On one popular debugger, you must click on the field with
the right mouse button and select “Range” from the menu. In another debugger, you need to
type in an expression such as start[0]@10 to see ten elements. You will then get a display of
all elements that you specified (see Figure 3).

Inspecting vectors is an important debugging skill. Read the debugger documentation, or
ask someone who knows, such as your lab assistant or instructor, for details.

Don’t Combine Vector Access and Index Increment

It is possible to increment a variable that is used as an index, for example

x = v[i++];

That is a shortcut for

x = v[i];
i++;

Many years ago, when compilers were not very powerful, the v[i++] shortcut was useful,
because it made the compiler generate faster code. Nowadays, the compiler generates the
same efficient code for both versions. You should therefore use the second version, because it
is clearer and less confusing.

Strings Are Vectors of Characters

A string variable is essentially a vector of characters. C++ has a basic data type char to
denote individual characters. For example, the string greeting defined by

string greeting = "Hello";

can be considered a vector of five characters 'H', 'e', 'l', 'l', 'o'. Note that values of
type char are enclosed in single quotes. 'H' denotes the individual character, "H" a string con-
taining one character. An individual character can be stored in one byte. A string, even if it
has length 1, needs to store both the contents and the length, which requires several bytes.

You can modify the characters in a string:

greeting[3] = 'p';
greeting[4] = '!';

QUAL ITY T IP 6.1

ADVANCED TOPIC 6.1

274 CHAPTER 6 • Vectors and Arrays

Now the string is "Help!". Of course, the same effect can be achieved using string operations
rather than direct character manipulation.

greeting = greeting.substr(0, 3) + "p!";

Manipulating the characters directly is more efficient than extracting substrings and concate-
nating strings. The [] operator is more convenient than the substr function if you want to
visit a string one character at a time. For example, the following function makes a copy of a
string and changes all characters to uppercase:

string uppercase(string s)
{
 string r = s;
 int i;
 for (i = 0; i < r.length(); i++)
 r[i] = toupper(r[i]);
 return r;
}

For example, uppercase(“Hello”) returns the string "HELLO". The toupper function is defined
in the cctype header. It converts lowercase characters to uppercase.

An Early Internet Worm

In November 1988, a college student at Cornell University launched a so-called virus pro-
gram that infected about 6,000 computers connected to the Internet across the United States.
Tens of thousands of computer users were unable to read their e-mail or otherwise use their
computers. All major universities and many high-tech companies were affected. (The Inter-
net was much smaller then than it is now.)

The particular kind of virus used in this attack is called a worm. The virus program
crawled from one computer on the Internet to the next. The entire program is quite complex;
its major parts are explained in [1]. However, one of the methods used in the attack is of
interest here. The worm would attempt to connect to finger, a program in the UNIX operat-
ing system for finding information on a user who has an account on a particular computer on
the network. Like many programs in UNIX, finger was written in the C language. C does
not have array lists, only arrays, and when you construct an array in C, you have to make up
your mind how many elements you need. To store the user name to be looked up (say,
walters@cs.sjsu.edu), the finger program allocated an array of 512 characters, under the
assumption that nobody would ever provide such a long input. Unfortunately, C does not
check that an array index is less than the length of the array. If you write into an array, using
an index that is too large, you simply overwrite memory locations that belong to some other
objects. In some versions of the finger program, the programmer had been lazy and had not
checked whether the array holding the input characters was large enough to hold the input.
So the worm program purposefully filled the 512-character array with 536 bytes. The excess
24 bytes would overwrite a return address, which the attacker knew was stored just after the
line buffer. When that function was finished, it didn’t return to its caller but to code supplied
by the worm (see Figure 4). That code ran under the same super-user privileges as finger,
allowing the worm to gain entry into the remote system.

RANDOM FACT 6.1

6.3 • Vector Parameters and Return Values 275

Had the programmer who wrote finger been more conscientious, this particular attack
would not be possible. In C++, as in C, all programmers must be very careful not to overrun
array boundaries.

One may well speculate what would possess a skilled programmer to spend many weeks
or months to plan the antisocial act of breaking into thousands of computers and disabling
them. It appears that the break-in was fully intended by the author, but the disabling of the
computers was a side effect of continuous reinfection and efforts by the worm to avoid being
killed. It is not clear whether the author was aware that these moves would cripple the
attacked machines.

In recent years, the novelty of vandalizing other people’s computers has worn off, and
there are fewer jerks with programming skills who write new viruses. Other attacks by indi-
viduals with more criminal energy, whose intent has been to steal information or money,
have surfaced. See [2] for a very readable account of the discovery and apprehension of one
such person.

This section contains several examples of functions that have vector
parameters or return values. We start out with a function that com-
putes the average of a vector of floating-point numbers:

double average(vector<double> values)
{
 if (values.size() == 0) return 0;
 double sum = 0;
 for (int i = 0; i < values.size(); i++)
 sum = sum + values[i];
 return sum / values.size();
}

To visit each element of the vector values, the function needs to determine the size
of values. It inspects all elements, with index starting at 0 and going up to, but not
including, values.size(). See ch06/average.cpp for a complete sample program.

Figure 4 A “Buffer Overrun” Attack

Return address

Line buffer
(512 bytes)

Return address

Overrun buffer
(536 bytes)

Malicious
code

6.3 Vector Parameters and Return Va lues

Vectors can occur as the
function parameters and
return values.

276 CHAPTER 6 • Vectors and Arrays

A function can modify a vector. The following function raises all values in the
vector by the given percentage. Because the vector content is modified, you must
use a reference parameter:

void raise_by_percent(vector<double>& values, double rate)
{
 for (int i = 0; i < values.size(); i++)
 values[i] = values[i] * (1 + rate / 100);
}

See ch06/raisesal.cpp for a complete sample program.
If a vector is passed by value, and a function modifies the vector, the modification

affects the local copy of that value only, not the call parameter.
A function can return a vector. This is useful if a function computes a result that

consists of a collection of values of the same type. Here is a function that collects all
values that fall within a certain range:

vector<double> between(vector<double> values, double low, double high)
{
 vector<double> result;
 for (int i = 0; i < values.size(); i++)
 if (low <= values[i] && values[i] <= high)
 result.push_back(values[i]);
 return result;
}

See ch06/between.cpp for a complete sample program.
Now suppose you want to know where these values occur in the vector. Rather

than returning the matching values, collect the positions of all matching values in a
vector of integers. For example, if salaries[1], salaries[2], and salaries[4] are
values matching your criterion, you would end up with a vector containing the inte-
gers 1, 2, and 4.

vector<int> between_locations(vector<double> values,
 double low, double high)
{
 vector<int> pos;
 for (int i = 0; i < values.size(); i++)
 {
 if (low <= values[i] && values[i] <= high)
 pos.push_back(i);
 }
 return pos;
}

Once you know where all matches occur, you can print just those:
vector<int> matches = between_locations(salaries, 45000.0, 65000.0);
for (int j = 0; j < matches.size(); j++)
 cout << salaries[matches[j]] << "\n";

Note the nested subscripts, salaries[matches[j]]. Here matches[j] is the subscript
of the jth match. In our example, matches[0] is 1, matches[1] is 2, and matches[2] is
4. Thus, salaries[1], salaries[2], and salaries[4] are printed.

See ch06/matches.cpp for a complete sample program.

6.4 • Removing and Inserting Vector Elements 277

Passing Vectors by Constant Reference

Passing a vector into a function by value is unfortunately somewhat inefficient, because the
function must make a copy of all elements. As explained in Advanced Topic 4.2, the cost of a
copy can be avoided by using a constant reference.

double average(const vector<double>& values)

instead of

double average(vector<double> values)

This is a useful optimization that greatly increases performance.

Suppose you want to remove an element from a vector. If the elements in the vector
are not in any particular order, that task is easy to accomplish. Simply overwrite the
element to be removed with the last element of the vector, then shrink the size of
the vector. (See Figure 5.)

int last_pos = values.size() - 1;
values[pos] = values[last_pos];
values.pop_back();

See ch06/erase1.cpp for a complete sample program.
The situation is more complex if the order of the elements matters. Then you

must move all elements following the element to be removed down (to a lower
index) by one slot, and then shrink the size of the vector. (See Figure 6.)

Figure 5 Removing an Element in an Unordered Vector

ADVANCED TOPIC 6.2

6.4 Removing and Inser t ing Vector E lements

[0]

[i]

[size() - 1]

278 CHAPTER 6 • Vectors and Arrays

for (int i = pos; i < values.size() - 1; i++)
 values[i] = values[i + 1];
values.pop_back();

See ch06/erase2.cpp for a complete sample program.
Conversely, suppose you want to insert an element in the middle of a vector.

Then you must add a new element at the end of the vector and move all elements
above the insertion location up (to a higher index) by one slot. Note that the order
of the movement is different: When you remove an element, you first move the next
element down to a lower index, then the one after that, until you finally get to the
end of the vector. When you insert an element, you start at the end of the vector,
move that element up to a higher index, then move the one before that, and so on
until you finally get to the insertion location (see Figure 7).

int last = values.size() - 1;
values.push_back(values[last]);
for (int i = last; i > pos; i--)
 values[i] = values[i - 1];
values[pos] = s;

See ch06/insert.cpp for a complete sample program.

Figure 6
Removing an Element in an Ordered Vector

Figure 7 Inserting an Element in an Ordered Vector

[0]

[i]

[size() - 1]

1
2
3
4
5

[0]

[i]

[size() - 1]

5
4
3
2
1

6.4 • Removing and Inserting Vector Elements 279

Make Parallel Vectors into Vectors of Objects

Sometimes, you find yourself using vectors of the same length, each of which stores a part of
what conceptually should be an object. In that situation, it is a good idea to reorganize your
program and use a single vector whose elements are objects.

For example, suppose you want to process a series of product data, and then display the
product information, marking the best value (with the best score/price ratio):

ACMA P600 Price: 995 Score: 75
Alaris Nx686 Price: 798 Score: 57
Blackship NX-600 Price: 598 Score: 60 <= best value
Kompac 690 Price: 695 Score: 60

One solution is to keep three vectors, for the names, prices, and scores:

vector<string> names;
vector<double> prices;
vector<int> scores;

See ch06/bestval1.cpp for a complete program that uses this strategy.
Each of the vectors will have the same length, and the ith slice names[i], prices[i],

scores[i], contains data that needs to be processed together. These vectors are called parallel
vectors (see Figure 8).

Parallel vectors become a headache in larger programs. The programmer must ensure that
the vectors always have the same length and that each slice is filled with values that actually
belong together. Moreover, any function that operates on a slice must get all vectors as
parameters, which is tedious to program.

The remedy is simple. Look at the slice and find the concept that it represents. Then make
the concept into a class. In the example each slice contains a name, a price, and a score,
describing a product; turn this into a class.

class Product
{
public:
 ...
private:
 string name;
 double price;
 int score;
};

Figure 8 Parallel Vectors

QUAL ITY T IP 6.2

i

names =

i

prices =

i

scores =

A slice

280 CHAPTER 6 • Vectors and Arrays

This is, of course, precisely the Product class that we discov-
ered in Chapter 5. You can now eliminate the parallel vectors
and replace them with a single vector:

vector<Product> products;

Each slot in the resulting vector corresponds to a slice in the set of parallel vectors (see
Figure 9).

See ch06/bestval2.cpp for the improved program.

In addition to vectors, C++ has a second mechanism for collecting
elements of the same type, namely arrays. There are many similarities
between arrays and vectors, but there are also some significant differ-
ences. Arrays are a lower-level abstraction than vectors, so they are
less convenient. As you will soon see, an array cannot be resized—
you usually create some extra space in each array, and then you must
remember how much of it you actually used. These limits make arrays

more cumbersome to use than vectors, so you may well wonder why you should
learn about them. The reason is that vectors were a recent addition to C++, and
many older programs use arrays instead. To understand those programs, you need a
working knowledge of arrays. Arrays are also faster and more efficient than vectors.
This can be important in some applications.

Figure 9 Eliminating Parallel Vectors

Avoid parallel vectors by
changing them into
vectors of objects.

Parallel vectors

A vector of objects

6.5 Arrays

Like vectors, arrays collect
elements of the same
type. Once the size of an
array has been set, it
cannot be changed.

6.5 • Arrays 281

Here is the definition of an array of ten floating-point numbers (see Syntax 6.3 on
page 282):

double salaries[10];

This is very similar to a vector
vector<double> salaries(10);

Both the array and the vector have ten elements, salaries[0] ... salaries[9].
Unlike a vector, an array can be filled with values when it is defined. For

example,
double salaries[] = { 31000, 24000, 55000, 82000, 49000,
 42000, 35000, 66000, 91000, 60000 };

When you supply initialization values, you don’t need to specify the array size. The
compiler determines the size by counting the values.

Unlike a vector, an array can never change size. That is, the salaries array will
always have exactly ten elements. You cannot use push_back to add more elements
to it. Furthermore, the size of the array has to be known when the program is com-
piled. That is, you can’t ask the user how many elements are needed and then allo-
cate a sufficient number, as you could with a vector.

int n;
cin >> n;
double salaries[n]; // NO!
vector<double> salaries(n); // OK

When defining an array, you must come up with a good guess on the maximum
number of elements that you need to store, and be prepared to ignore any more
than the maximum. Of course, it may well happen that one wants to store more
than ten salaries, so we use a larger size:

const int SALARIES_CAPACITY = 100;
double salaries[SALARIES_CAPACITY];

In a typical program run, less than the maximum size will be occupied by actual ele-
ments. The constant SALARIES_CAPACITY gives you only the capacity of the array; it
doesn’t tell you how much of the array is actually used. You must keep a companion
variable that counts how many elements are actually used. Here we call the com-
panion variable salaries_size. The following loop collects data and fills up the sal-
aries array.

int salaries_size = 0;
while (more && salaries_size < SALARIES_CAPACITY)
{
 cout << "Enter salary or 0 to quit: ";
 double x;
 cin >> x;
 if (cin.fail())
 more = false;
 else
 {

6.5.1 Defining and Using Arrays

282 CHAPTER 6 • Vectors and Arrays

 salaries[salaries_size] = x;
 salaries_size++;
 }
}

At the end of this loop, salaries_size contains the actual number of elements in the
array. Note that you have to stop accepting inputs if the size of the array reaches the
maximum size. The name salaries_size was chosen to remind you of the vector
member function call salaries.size() which you would have used if salaries had
been a vector. The difference between arrays and vectors is that you must create and
manually update the salaries_size companion variable, whereas a vector automati-
cally remembers how many elements it contains.

Here is a loop that computes the highest salary in the array. We can inspect only
the elements with an index less than salaries_size, because the remaining elements
have never been set and their contents are undefined.

double highest = 0;
if (salaries_size > 0)
{
 highest = salaries[0];
 int i;
 for (i = 1; i < salaries_size; i++)
 if (salaries[i] > highest)
 highest = salaries[i];
}

When writing a function with an array parameter, you place an empty [] behind the
parameter name:

double maximum(double a[], int a_size);

You also need to pass the size of the array to the function, because the function has
no other way of querying the size of the array—there is no size() member
function:

double maximum(double a[], int a_size)
{

SYNTAX 6.3 Array Variable Definition

type_name variable_name[size];

Example:

int scores[20];

Purpose:

Define a new variable of an array type.

6.5.2 Array Parameters

6.5 • Arrays 283

 if (a_size == 0) return 0;
 double highest = a[0];
 int i;
 for (i = 1; i < a_size; i++)
 if (a[i] > highest)
 highest = a[i];
 return highest;
}

Unlike all other parameters, array parameters are always passed by
reference. Functions can modify array parameters, and those modifi-
cations affect the array that was passed into the function. You never
use an & when defining an array parameter. For example, the follow-
ing function updates all elements in the array s:

void raise_by_percent(double s[], double s_size, double p)
{
 int i;
 for (i = 0; i < s_size; i++)
 s[i] = s[i] * (1 + p / 100);
}

It is considered good style to add the const keyword whenever a function does not
actually modify an array:

double maximum(const double a[], int a_size)

If a function adds elements to an array, you need to pass three parameters to the
function: the array, the maximum size, and the current size. The current size must
be passed as a reference parameter so that the function can update it. Here is an
example. The following function reads inputs into the array a (which has a capacity
of a_capacity) and updates the variable a_size so that it contains the final size of the
array when the end of input has been reached. Note that the function stops reading
either at the end of input or when the array has been filled completely.

void read_data(double a[], int a_capacity, int& a_size)
{
 a_size = 0;
 while (a_size < a_capacity)
 {
 double x;
 cin >> x;
 if (cin.fail()) return;
 a[a_size] = x;
 a_size++;
 }
}

Although arrays can be function parameters, they cannot be function
return types. If a function computes multiple values (such as the
between function in Section 6.3), the caller of the function must pro-
vide an array parameter to hold the result.

 void between(double values[], int values_size, double low, double high,
double result[], double& result_size)

Array parameters are
always passed by
reference.

The return type of a
function cannot be an
array.

284 CHAPTER 6 • Vectors and Arrays

The following program reads salary values from standard input, then prints the
maximum salary.

ch06/salarray.cpp

1 #include <iostream>
2
3 using namespace std;
4
5 /**
6 Reads data into an array, using 0 as a sentinel value.
7 @param a the array to fill
8 @param a_capacity the maximum size of a
9 @param a_size filled with the size of a after reading the input
10 */
11 void read_data(double a[], int a_capacity, int& a_size)
12 {
13 a_size = 0;
14
15 bool more = true;
16 while (more)
17 {
18 double x;
19 cin >> x;
20 if (x == 0)
21 more = false;
22 else if (a_size == a_capacity)
23 {
24 cout << "Sorry--extra data ignored\n";
25 more = false;
26 }
27 else
28 {
29 a[a_size] = x;
30 a_size++;
31 }
32 }
33 }
34
35 /**
36 Computes the maximum value in an array.
37 @param a the array
38 @param a_size the number of values in a
39 */
40 double maximum(const double a[], int a_size)
41 {
42 if (a_size == 0)
43 return 0;
44 double highest = a[0];
45 for (int i = 1; i < a_size; i++)
46 if (a[i] > highest)
47 highest = a[i];
48 return highest;
49 }
50

6.5 • Arrays 285

Program Run

Just as arrays predate vectors, there was a time when C++ had no
string class. All string processing was carried out by manipulating
arrays of the type char.

The char type denotes an individual character. Individual charac-
ter constants are delimited by single quotes; for example,

char input = 'y';

Note that 'y' is a single character, which is quite different from "y", a string con-
taining a single character. Each character is actually encoded as an integer value. For
example, in the ASCII encoding scheme, which is used on the majority of comput-
ers today, the character 'y' is encoded as the number 121. (You should never use
these actual numeric codes in your programs, of course.)

51 int main()
52 {
53 const int SALARIES_CAPACITY = 100;
54 double salaries[SALARIES_CAPACITY];
55 int salaries_size = 0;
56 cout << "Please enter salaries, 0 to quit:\n";
57
58 read_data(salaries, SALARIES_CAPACITY, salaries_size);
59
60 double maxsal = maximum(salaries, salaries_size);
61 cout << "The maximum salary is " << maxsal << "\n";
62 return 0;
63 }

Please enter salaries, 0 to quit:
32000

54000

67500

29000

0

The maximum salary is 67500

6.5.3 Character Arrays

Character arrays are
arrays of values of the
character type char.

Figure 10 A Character Array

\0

o

l

l

e

Hgreeting = [0]

[1]

[2]

[3]

[4]

[5]

286 CHAPTER 6 • Vectors and Arrays

Here is a definition of a character array that holds the string "Hello":
char greeting[6] = "Hello";

The array contains six characters, namely 'H', 'e', 'l', 'l', 'o' and a zero termi-
nator '\0'. (See Figure 10.) The terminator is a character that is encoded as the
number zero—this is different from the character '0', the character denoting the
zero digit. (Under the ASCII encoding scheme, the character denoting the zero
digit is encoded as the number 48.)

If you initialize a character array variable with a character array constant (such as
"Hello"), then you need not specify the size of the character array variable:

char greeting[] = "Hello";
 // Same as char greeting[6] = "Hello"

The compiler counts the characters of the initializer (including the zero terminator)
and uses that count as the size for the array variable.

A character array constant (such as "Hello") always has a zero terminator. When
you create your own character arrays, it is very important that you add the zero ter-
minator—the string functions in the standard library depend on it:

char mystring[5];
for (i = 0; i < 4; i++)
 mystring[i] = greeting[i];
mystring[4] = '\0'; // Add zero terminator

It is an extremely common error to forget the space for this character. You can make
this added space requirement more explicit if you always make character arrays
MAXLENGTH + 1 characters long:

const int MYSTRING_MAXLENGTH = 4;
char mystring[MYSTRING_MAXLENGTH + 1];

Here is an implementation of the standard library function strlen that computes
the length of a character array. The function keeps counting characters until it
encounters a zero terminator.

int strlen(const char s[])
{
 int i = 0;
 while (s[i] != '\0')
 i++;
 return i;
}

As you can imagine, this function will misbehave if the zero terminator is not
present. It will keep on looking past the end of the array until it happens to encoun-
ter a zero byte.

Because the end of a character array is marked by a zero terminator, a function
that reads from a character array (such as the strlen function above) does not need
the size of the array as an additional parameter. However, any function that writes
into a character array must know the maximum length. For example, here is a func-
tion that appends one character array to another. The function reads from the sec-
ond array and can determine its length by the zero terminator. However, the
capacity of the first array, to which more characters are added, must be specified as

6.5 • Arrays 287

an extra parameter. The s_maxlength value specifies the maximum length of the
string stored in the array. It is expected that the array has one more byte to hold the
zero terminator.

ch06/append.cpp

Program Run

If you run this program, you will find that it doesn’t print Hello, World! The out-
put is truncated because the greeting character array can hold at most ten characters
(plus the '\0' terminator). With the string class you never have this problem,
because the class finds enough storage space to hold all characters that are added to
a string.

Unfortunately, some of the standard library functions do not check whether they
write past the end of a character array. For example, the standard function strcat
works just like the append function given above, except that it does not check for

1 #include <iostream>
2
3 using namespace std;
4
5 /**
6 Appends as much as possible from a string to another string.
7 @param s the string to which t is appended
8 @param s_maxlength the maximum length of s (not counting '\0')
9 @param t the string to append
10 */
11 void append(char s[], int s_maxlength, const char t[])
12 {
13 int i = strlen(s);
14 int j = 0;
15 // Append t to s
16 while (t[j] != '\0' && i < s_maxlength)
17 {
18 s[i] = t[j];
19 i++;
20 j++;
21 }
22 // Add zero terminator
23 s[i] = '\0';
24 }
25
26 int main()
27 {
28 const int GREETING_MAXLENGTH = 10;
29 char greeting[GREETING_MAXLENGTH + 1] = "Hello";
30 char t[] = ", World!";
31 append(greeting, GREETING_MAXLENGTH, t);
32 cout << greeting << "\n";
33 return 0;
34 }

Hello, Wor

288 CHAPTER 6 • Vectors and Arrays

space in the array to which the characters are appended. Thus, the following call
will lead to disaster:

const int GREETING_MAXLENGTH = 10;
char greeting[GREETING_MAXLENGTH + 1] = "Hello";
char t[] = ", World!";
strcat(greeting, t); // NO!

Four more characters ('l', 'd', '!', and the zero terminator '\0') will be written
past the end of the array greeting, overwriting whatever may be stored there. This
is an exceedingly common and dangerous programming error.

The standard library has a second function, strncat, that is designed to avoid this
problem. You specify the maximum number of characters to copy.

const int GREETING_MAXLENGTH = 10;
char greeting[GREETING_MAXLENGTH + 1] = "Hello";
char t[] = ", World!";
strncat(greeting, t, GREETING_MAXLENGTH - strlen(greeting));

Generally, it is best to avoid the use of character arrays—the string class is safer and
far more convenient. For example, appending a string object to another is trivial:

string greeting = "Hello";
string t = ", World!";
greeting = greeting + t;

However, occasionally you need to convert a string into a character array because
you need to call a function that was written before the string class was invented. In
that case, use the c_str member function of the string class. For example, the
cstdlib header declares a useful function

int atoi(const char s[])

that converts a character array containing digits into its integer value:
char year[] = "1999";
int y = atoi(year); // Now y is the integer 1999

This functionality is inexplicably missing from the string class, and the c_str mem-
ber function offers an “escape hatch”:

string year = "1999";
int y = atoi(year.c_str());

(In Chapter 9, you will see another method for converting strings to numbers.)

It often happens that we want to store collections of numbers that
have a two-dimensional layout. For example, consider a program
that computes values of the pow function, as shown in the table on the

next page. Such an arrangement, consisting of rows and columns of values, is called
a two-dimensional array, or a matrix.

6.5.4 Two-Dimensional Arrays

Use a two-dimensional
array to store tabular data.

6.5 • Arrays 289

C++ uses an array with two subscripts to store a two-dimensional array:
const int POWERS_ROWS = 11;
const int POWERS_COLS = 6;
double powers[POWERS_ROWS][POWERS_COLS];

Just as you specify the size of arrays when you define them, you must specify how
many rows and columns you need. In this case, you ask for 11 rows and 6 columns.

To set a particular element in the two-dimensional array, you need
to specify two subscripts in separate brackets to select the row and
column, respectively (see Syntax 6.4 on page 291 and Figure 11):

powers[3][4] = pow(3, 4);

1 0 0 0 0 0

1 1 1 1 1 1

1 2 4 8 16 32

1 3 9 27 81 243

1 4 16 64 256 1024

1 5 25 125 625 3125

1 6 36 216 1296 7776

1 7 49 343 2401 16807

1 8 64 512 4096 32768

1 9 81 729 6561 59049

1 10 100 1000 10000 100000

Figure 11
Accessing an Element in a
Two-Dimensional Array

Individual elements in a
two-dimensional array are
accessed by double
subscripts m[i][j].

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[0][1][2][3][4][5]

powers[3][4]

Column index

R
ow

 in
de

x

290 CHAPTER 6 • Vectors and Arrays

Just as with one-dimensional arrays, you cannot change the size of a two-dimen-
sional array once it has been defined.

To fill a two-dimensional array, you use two nested loops, like this:
for (int i = 0; i < POWERS_ROWS; i++)
 for (int j = 0; j < POWERS_COLS; j++)
 powers[i][j] = value for row i, column j;

Although these arrays appear to be two-dimensional, they are still stored as a
sequence of elements in memory. Figure 12 shows how the powers array is stored,
row by row. For example, to reach

powers[3][4]

the program must first skip past rows 0, 1, and 2 and then locate offset 4 in row 3.
The offset from the start of the array is

3 * POWERS_COLS + 4

When passing a two-dimensional array to a function, you must specify the number
of columns as a constant with the parameter type. The number of rows can be vari-
able. For example,

void print_table(const double table[][POWERS_COLS], int table_rows)
{
 const int WIDTH = 10;
 cout << fixed << setprecision(0);
 for (int i = 0; i < table_rows; i++)
 {
 for (int j = 0; j < POWERS_COLS; j++)
 cout << setw(WIDTH) << table[i][j];
 cout << "\n";
 }
}

This function can print two-dimensional arrays with arbitrary numbers of rows,
but the rows must have 6 columns. You have to write a different function if you
want to print a two-dimensional array with 7 columns. The reason is that the com-
piler must be able to find the element

table[i][j]

by computing the offset
i * POWERS_COLS + j

Figure 12 A Two-Dimensional Array Is Stored as a Sequence of Rows

powers =

powers[3][4]

row 0 row 1 row 2 row 3

. . .

6.5 • Arrays 291

The compiler knows to use POWERS_COLS as the number of columns in the computa-
tion of table[i][j] because it was specified in the definition of the table parameter as

double table[][POWERS_COLS]

If you like, you can specify the number of rows as well:
void print_table(double table[POWERS_ROWS][POWERS_COLS])

However, the compiler completely ignores the first index. When you access
table[i][j], it does not check whether i is less than POWERS_ROWS. It does not check
whether j is valid either. It merely computes the offset i * POWERS_COLS + j and
locates that element.

Working with two-dimensional arrays is illustrated in ch06/matrix.cpp, a pro-
gram that fills a two-dimensional array with data and then displays the contents.

Name the Array Size and Capacity Consistently

It is a good idea to have a consistent naming scheme for array size and capacity. In this sec-
tion, you always appended _size and _CAPACITY to the array name to denote the size and
capacity for an array:

const int A_CAPACITY = 20;
int a[A_CAPACITY];
int a_size = 0;
...
int x;
cin >> x;
a[a_size] = x;
a_size++;

If you follow this naming convention or one similar to it, you always know how to inquire
about the size and capacity of an array. Remember that you need to pass the size to all func-
tions that read the array, and both the size and capacity to all functions that add values to the
array.

SYNTAX 6.4 Two-Dimensional Array Definition

type_name variable_name[size1][size2];

Example:

double monthly_sales[NREGIONS][12];

Purpose:

Define a new variable that is a two-dimensional array.

QUAL ITY T IP 6.3

292 CHAPTER 6 • Vectors and Arrays

Omitting the Column Size of a Two-Dimensional
Array Parameter

When passing a one-dimensional array to a function, you specify the size of the array as a
separate parameter:

double maximum(const double a[], int a_size)

This function can compute the maximum of arrays of any size. However, for two-dimen-
sional arrays you cannot simply pass the numbers of rows and columns as parameters:

void print(const double table[][], int table_rows,
 int table_cols) // NO!

You must know how many columns the two-dimensional array has, and specify the number
of columns in the array parameter. This number must be a constant:

const int TABLE_COLS = 6;
void print(const double table[][TABLE_COLS],
 int table_rows) // OK

International Alphabets

The English alphabet is pretty simple: upper- and lowercase a to z. Other European lan-
guages have accent marks and special characters. For example, German has three so-called
umlaut characters, ä, ö, ü, and a double-s character ß. These are not optional frills; you
couldn’t write a page of German text without using these characters a few times. German
computer keyboards have keys for these characters (see Figure 13).

This poses a problem for computer users and designers. The American standard character
encoding (called ASCII, for American Standard Code for Information Interchange) specifies
128 codes: 52 upper- and lowercase characters, 10 digits, 32 typographical symbols, and 34
control characters (such as space, newline, and 32 others for controlling printers and other

Figure 13 The German Keyboard

COMMON ERROR 6.2

RANDOM FACT 6.2

Q W E R T Z U I O P

A S D F G H J K L

Y X C V B N M ;
,

:
.

_
-

Ö Ä

Ü *
+ ~ ´

#

?
ß /

=
0 }

)
9]

(
8 [

/
7 {

&
6

 %
 5

 $
4

§
3 3

"
2 2

!
1

StrgStrg Alt Alt Gr> |
< |

•
^

`
´

6.5 • Arrays 293

devices). The umlaut and double-s are not among them. Some German data processing sys-
tems replace seldom-used ASCII characters with German letters: [\]{|}~ are replaced with
Ä Ö Ü ä ö ü ß. While most people can live without these characters, C++ programmers def-
initely cannot. Other encoding schemes take advantage of the fact that one byte can encode
256 different characters, of which only 128 are standardized by ASCII. Unfortunately, there
are multiple incompatible standards for such encodings, resulting in a certain amount of
aggravation among European computer users.

Many countries don’t use the Roman script at all. Russian, Greek, Hebrew, Arabic, and
Thai letters, to name just a few, have completely different shapes (see Figure 14). To compli-
cate matters, Hebrew and Arabic are typed from right to left. Each of these alphabets has
between 30 and 100 letters, and the countries using them have established encoding stan-
dards for them.

The situation is much more dramatic in languages that use the Chinese script: the Chinese
dialects, Japanese, and Korean. The Chinese script is not alphabetic but ideographic (see
Figure 15). A character represents an idea or thing. Most words are made up of one, two, or

Figure 14 The Thai Script

Figure 15 The Chinese Script

294 CHAPTER 6 • Vectors and Arrays

three of these ideographic characters. Over 50,000 ideographs are known, of which about
20,000 are in active use. Therefore, two bytes are needed to encode them. China, Taiwan,
Japan, and Korea have incompatible encoding standards for them. (Japanese and Korean
writing uses a mixture of native syllabic and Chinese ideographic characters.)

The inconsistencies among character encodings have been a major nuisance for interna-
tional electronic communication and for software manufacturers vying for a global market.
Starting in 1988, a consortium of hardware and software manufacturers developed a uniform
21-bit encoding scheme called unicode that is capable of encoding text in essentially all writ-
ten languages of the world [3]. About 100,000 characters have been given codes, including
more than 70,000 Chinese, Japanese, and Korean ideographs. There are even plans to add
codes for extinct languages, such as Egyptian hieroglyphs.

1. Use a vector to collect multiple values of the same type.

2. Individual values in a vector are accessed by an integer index or subscript: v[i].

3. Valid values for the index range from 0 to one less than the size of the array.

4. A bounds error, which occurs if you supply an invalid index to a vector, can
have serious consequences.

5. Use the size function to obtain the current size of a vector.

6. Use the push_back member function to add more elements to a vector. Use
pop_back to reduce the size.

7. Vectors can occur as the function parameters and return values.

8. Avoid parallel vectors by changing them into vectors of objects.

9. Like vectors, arrays collect elements of the same type. Once the size of an array
has been set, it cannot be changed.

10. Array parameters are always passed by reference.

11. The return type of a function cannot be an array.

12. Character arrays are arrays of values of the character type char.

13. Use a two-dimensional array to store tabular data.

14. Individual elements in a two-dimensional array are accessed by double sub-
scripts m[i][j].

CHAPTER SUMMARY

Review Exercises 295

1. Eugene H. Spafford, “The Internet Worm Program: An Analysis,” Purdue Tehcnical
Report CSD-TR-823, 1988, http://homes.cerias.purdue.edu/~spaf/tech-reps/
823.pdf.

2. Cliff Stoll, The Cuckoo’s Egg, Doubleday, 1989.

3. The Unicode Consortium, The Unicode Standard, Version 5.0, Addison-Wesley, 1996.

Exercise R6.1. Write code that fills a vector v with each set of values below
a. 1 2 3 4 5 6 7 8 9 10
b. 0 2 4 6 8 10 12 14 16 18 20
c. 1 4 9 16 25 36 49 64 81 100
d. 0 0 0 0 0 0 0 0 0 0
e. 1 4 9 16 9 7 4 9 11

Exercise R6.2. Write a loop that fills a vector v with ten random numbers between 1
and 100. Write code for two nested loops that fill v with ten different random num-
bers between 1 and 100.

Exercise R6.3. Write C++ code for a loop that simultaneously computes both the
maximum and minimum of a vector.

Exercise R6.4. What is wrong with the following loop?
vector<int> v(10);
int i;
for (i = 1; i <= 10; i++) v[i] = i * i;

Explain two ways of fixing the error.

Exercise R6.5. What is an index of a vector or array? What are the legal index values?
What is a bounds error?

Exercise R6.6. Write a program that contains a bounds error. Run the program. What
happens on your computer?

Exercise R6.7. Write a program that fills a vector with the first ten square numbers 1,
4, 9, ..., 100. Compile it and launch the debugger. After the vector has been filled
with three numbers, inspect it. Take a screen snapshot of the display that shows the
ten slots of the vector.

Exercise R6.8. Write a loop that reads ten numbers and a second loop that displays
them in the opposite order from which they were entered.

FURTHER READING

REVIEW EXERCISES

http://homes.cerias.purdue.edu/~spaf/tech-reps/823.pdf
http://homes.cerias.purdue.edu/~spaf/tech-reps/823.pdf

296 CHAPTER 6 • Vectors and Arrays

Exercise R6.9. Give an example of
a. A useful function that has a vector of integers as a value parameter.
b. A useful function that has a vector of integers as a reference parameter.
c. A useful function that has a vector of integers as a return value.

Describe each function; do not implement them.

Exercise R6.10. A function that has a vector as a reference parameter can change the
vector in two ways. It can change the contents of individual vector elements, or it
can rearrange the elements. Describe two useful functions with vector<Product>&
parameters that change a vector of products in each of the two ways just described.

Exercise R6.11. What are parallel vectors? Why are parallel vectors indications of
poor programming? How can they be avoided?

Exercise R6.12. Design a class Staff that stores a collection of employees. What pub-
lic member functions should you support? What advantages and disadvantages does
a Staff class have over a vector<Employee>?

Exercise R6.13. Suppose v is a sorted vector of employees. Give pseudocode that
describes how a new employee can be inserted in its proper position so that the
resulting vector stays sorted.

Exercise R6.14. In many programming languages it is not possible to grow a vector.
That is, there is no analog to push_back in those languages. Write code that reads a
sequence of numbers into a vector without using push_back. First create a vector of
a reasonable size (say 20). Also, use an integer variable length that tests how full the
vector currently is. Whenever a new element is read in, increase length. When
length reaches the size of the vector (20 at the outset), create a new vector of twice
the size and copy all existing elements into the new vector. Write C++ code that
performs this task.

Exercise R6.15. How do you perform the following tasks with vectors in C++?
a. Test that two vectors contain the same elements in the same order.
b. Copy one vector to another. (Hint: You may copy more than one element at

a time.)
c. Fill a vector with zeroes, overwriting all elements in it.
d. Remove all elements from a vector. (Hint: You need not remove them one

by one.)

Exercise R6.16. True or false?
a. All elements of a vector are of the same type.
b. Vector subscripts must be integers.
c. Vectors cannot contain strings as elements.
d. Vectors cannot use strings as subscripts.
e. Parallel vectors must have equal length.
f. Two-dimensional arrays always have the same numbers of rows and columns.

Programming Exercises 297

g. Two parallel arrays can be replaced by a two-dimensional array.
h. Elements of different columns in a two-dimensional array can have different

types.

Exercise R6.17. True or false?
a. All vector parameters are reference parameters.
b. A function cannot return a two-dimensional array.
c. A function cannot change the dimensions of a two-dimensional array that is

passed by value.
d. A function cannot change the length of a vector that is passed by reference.
e. A function can only reorder the elements of a vector, not change the elements.

Exercise P6.1. Write a function
double scalar_product(vector<double> a, vector<double> b)

that computes the scalar product of two vectors. The scalar product is

Exercise P6.2. Write a function that computes the alternating sum of all elements in
a vector. For example, if alternating_sum is called with a vector containing

then it computes

Exercise P6.3. Write a procedure reverse that reverses the sequence of elements in a
vector. For example, if reverse is called with a vector containing

then the vector is changed to

Exercise P6.4. Write a function
vector<int> append(vector<int> a, vector<int> b)

that appends one vector after another. For example, if a is

and b is

then append returns the vector

PROGRAMMING EXERCISES

a b a b a bn n0 0 1 1 1 1+ + + − −�

1 4 9 16 9 7 4 9 11

1 4 9 16 9 7 4 9 11 2− + − + − + − + = −

1 4 9 16 9 7 4 9 11

11 9 4 7 9 16 9 4 1

1 4 9 16

9 7 4 9 11

1 4 9 16 9 7 4 9 11

298 CHAPTER 6 • Vectors and Arrays

Exercise P6.5. Write a function
vector<int> merge(vector<int> a, vector<int> b)

that merges two arrays, alternating elements from both arrays. If one array is
shorter than the other, then alternate as long as you can and then append the
remaining elements from the longer array. For example, if a is

and b is

then merge returns the array

Exercise P6.6. Write a function
vector<int> merge_sorted(vector<int> a, vector<int> b)

that merges two sorted vectors, producing a new sorted vector. Keep an index into
each vector, indicating how much of it has been processed already. Each time,
append the smallest unprocessed element from either vector, then advance the
index. For example, if a is

and b is

then merge_sorted returns the vector

Exercise P6.7. Write a predicate function
bool equals(vector<int> a, vector<int> b)

that checks whether two vectors have the same elements in the same order.

Exercise P6.8. Write a predicate function
bool same_set(vector<int> a, vector<int> b)

that checks whether two vectors have the same elements in some order, ignoring
multiplicities. For example, the two vectors

and

would be considered identical. You will probably need one or more helper
functions.

1 4 9 16

9 7 4 9 11

1 9 4 7 9 4 16 9 11

1 4 9 16

4 7 9 9 11

1 4 4 7 9 9 9 11 16

1 4 9 16 9 7 4 9 11

11 11 7 9 16 4 1

Programming Exercises 299

Exercise P6.9. Write a predicate function
bool same_elements(vector<int> a, vector<int> b)

that checks whether two vectors have the same elements in some order, with the
same multiplicities. For example,

and

would be considered identical, but

and

would not. You will probably need one or more helper functions.

Exercise P6.10. Write a function that removes duplicates from a vector. For example,
if remove_duplicates is called with a vector containing

then the vector is changed to

Exercise P6.11. Write a program that asks the user to input a number n and prints all
permutations of the sequence of numbers 1, 2, 3, ..., n. For example, if n is 3, the
program should print

1 2 3
1 3 2
2 1 3
2 3 1
3 1 2
3 2 1

Hint: Write a function
permutation_helper(vector<int> prefix, vector<int> to_permute)

that computes all the permutations in the array to_permute and prints each permuta-
tion, prefixed by all numbers in the array prefix. For example, if prefix contains the
number 2 and to_permute the numbers 1 and 3, then permutation_helper prints

2 1 3
2 3 1

The permutation_helper function does the following: If to_permute has no elements,
print the elements in prefix. Otherwise, for each element e in to_permute, make an
array to_permute2 that is equal to permute except for e and an array prefix2 consist-
ing of prefix and e. Then call permutation_helper with prefix2 and to_permute2.

1 4 9 16 9 7 4 9 11

11 1 4 9 16 9 7 4 9

1 4 9 16 9 7 4 9 11

11 11 7 9 16 4 1

1 4 9 16 9 7 4 9 11

1 4 9 16 7 11

300 CHAPTER 6 • Vectors and Arrays

Exercise P6.12. Write a program that produces ten random permutations of the num-
bers 1 to 10. To generate a random permutation, you need to fill a vector with the
numbers 1 to 10 so that no two entries of the vector have the same contents. You
could do it by brute force, by calling rand_int until it produces a value that is not
yet in the vector. Instead, you should implement a smart method. Make a second
array and fill it with the numbers 1 to 10. Then pick one of those at random, remove
it, and append it to the permutation vector. Repeat ten times.

Exercise P6.13. Write a program that prints out a bank statement. The program input
is a sequence of transactions. Each transaction has the form

day amount description

For example,
15 -224 Check 2140
16 1200 ATM deposit

Your program should read in the descriptions and then print out a statement listing
all deposits, withdrawals, and the daily balance for each day. You should then com-
pute the interest earned by the account. Use both the minimum daily balance and
the average daily balance methods for computing interest, and print out both val-
ues. Use an interest rate of 0.5 percent per month, and assume the month has 30
days. You may assume that the input data are sorted by the date. You may also
assume that the first entry is of the form

1 1143.24 Initial balance

Exercise P6.14. Define a class
class Staff
{
public:
 ...
private:
 vector<Employee> members;
};

and implement the find and raise_salary procedures for the Staff data type.

Exercise P6.15. Design a class Student, or use one from a previous exercise. A student
has a name and a birthday. Make a vector

vector<Student> friends;

Read a set of names and birthdays in from a file or type them in, thus populating the
friends vector. Then print out all friends whose birthday falls in the current month.

Programming Exercises 301

Exercise P6.16. The following table can be found in the “West Suburban Boston,
Area Code 617, 1990–1991” telephone book.

Write a program that asks the user:
• The destination of the call
• The starting time
• The length of the call
• The weekday

The program should compute and display the charge. Note that the rate may vary.
If the call starts at 4:50 P.M. and ends at 5:10 P.M., then half of it falls into the day
rate and half of it into the evening rate.

Exercise P6.17. Magic squares. An n × n matrix that is filled with the numbers 1, 2, 3,
. . ., n2 is a magic square if the sum of the elements in each row, in each column, and
in the two diagonals is the same value. For example,

M T W T F S S
8 am – 5 pm
5 pm – 11 pm
11 pm – 8 am

Airline
miles

0–10

11–14

15–19

20–25
26–33

34–43
44–55
56–70
71–85

.19

.26

.32

.38

.43

.48

.51

.53

.54

.09

.12

.14

.15

.17

.19

.20

.21

.22

.12

.16

.20

.24

.27

.31

.33

.34

.35

.05

.07

.09

.09

.11

.12

.13

.13

.14

.07

.10

.12

.15

.17

.19

.20

.21

.21

.03

.04

.05

.06

.06

.07

.08

.08

.08

First
minute

Each
additional
minute

First
minute

Each
additional
minute

First
minute

Each
additional
minute

Dial direct

Sample rates
from city of
Waltham to:

Mileage
bands

Weekday
full rate

Evening
35% discount

Night & Weekend
60% discount

Sudbury

Framingham

Lowell

Worcester
Rockport
Fall River
Falmouth
Hyannis

Brockton

4 15 14 1

9 6 7 12

5 10 11 8

16 3 2 13

302 CHAPTER 6 • Vectors and Arrays

Write a program that reads in n2 values from the keyboard and tests whether they
form a magic square when put into array form. You need to test three features:

1. Did the user enter n2 numbers for some n?
2. Does each of the numbers 1, 2, ..., n2 occur exactly once in the user input?
3. When the numbers are put into a square, are the sums of the rows, columns,

and diagonals equal to each other?
Hint: First read the numbers into a vector. If the size of that vector is a square, test
whether all numbers between 1 and n are present. Then fill the numbers into a
matrix and compute the row, column, and diagonal sums.

Exercise P6.18. Implement the following algorithm to construct magic n × n squares;
it works only if n is odd. Place a 1 in the middle of the bottom row. After k has been
placed in the (i, j) square, place k + 1 into the square to the right and down, wrap-
ping around the borders. However, if you reach a square that has already been
filled, or if you reach the lower right corner, then you must move one square up
instead. Here is the 5 × 5 square that you get if you follow this method:

Write a program whose input is the number n and whose output is the magic square
of order n if n is odd.

Exercise P6.19. A polygon is a closed sequence of lines. To describe a polygon, store
the sequence of its corner points. Because the number of points is variable, use a
vector.

class Polygon
{
public:
 Polygon();
 void add_point(Point p);
 void plot() const;
private:

vector<Point> corners;

};

Implement this class and supply a test harness that plots a polygon such as the
following:

17 24 1 8

23 5 7 14

4 6 13 20

10 12 19 21

15

16

22

3

11 18 25 2 9

G

Programming Exercises 303

Exercise P6.20. Enhance the Polygon class of Exercise P6.19 by adding member
functions

double Polygon::perimeter() const
double Polygon::area() const

that compute the perimeter and the area of a polygon. To compute the perimeter,
compute the distance between adjacent points, and total up the distances.
The area of a polygon with corners is

As test cases, compute the perimeter and area of a rectangle and of a regular
hexagon.

Exercise P6.21. Enhance the Polygon class of Exercise P6.19 by adding member
functions

void Polygon::move(double dx, double dy);
void Polygon::scale(double factor);

The first procedure moves all points of a polygon by the specified amounts in the
x- and y-directions. The second procedure performs a scaling with the given scale
factor and updates the coordinates of the points of the polygon accordingly. Hint:
Use the move member function of the Point class. To scale a point, multiply both the
x- and y-coordinate with the scale factor.

Exercise P6.22. Write a procedure
void bar_chart(vector<double> data)

that displays a bar chart of the values in data. You may assume that all values in data
are positive. Hint: You must figure out the maximum of the values in data. Set the
coordinate system so that the x-range equals the number of bars and the y-range
goes from 0 to the maximum.

Exercise P6.23. Improve the bar_chart procedure of Exercise P6.22 to work cor-
rectly when data contains negative values.

Exercise P6.24. Write a procedure
void pie_chart(vector<double> data)

that displays a pie chart of the values in data. You may assume that all values in data
are positive.

Exercise P6.25. Write a program that plays tic-tac-toe. The tic-tac-toe game is played
on a 3 × 3 grid as in

G

x y x yn n0 0 1 1, , , ,() ()− −…

1
2 0 1 1 2 1 0 0 1 1 2 1 0x y x y x y y x y x y xn n+ + + − − − −− −� �

G

G

G

G

G

O

XO

304 CHAPTER 6 • Vectors and Arrays

The game is played by two players, who take turns. The first player marks moves
with a circle, the second with a cross. The player who has formed a horizontal, ver-
tical, or diagonal sequence of three marks wins. Your program should draw the
game board, accept mouse clicks into empty squares, change the players after every
successful move, and pronounce the winner.

Chapter 7
Pointers

• To learn how to declare, initialize, and use pointers

• To become familiar with dynamic memory allocation
and deallocation

• To use pointers in common programming situations that
involve optional and shared objects

• To avoid the common errors of dangling pointers and
memory leaks

• To understand the relationship between arrays and pointers

• To be able to convert between string objects and
character pointers

• To learn about function pointers and how they are used

CHAPTER GOALS

An object variable contains an object, but a pointer specifies where an object is

located. In C++, pointers are important for several reasons. Pointers can refer to

objects that are allocated on demand. Pointers can be used for shared access to

objects. Furthermore, as you will see in Chapter 8, pointers are necessary for

implementing polymorphism, an important concept in object-oriented programming.

In C++, there is a deep relationship between pointers and arrays. You will see in

this chapter how this relationship explains a number of special properties and

limitations of arrays. Finally, you will see how to convert between string objects

and char* pointers, which is necessary when interfacing with legacy code.

306 CHAPTER 7 • Pointers

CHAPTER CONTENTS

In many programming situations, you do not know beforehand how
many objects you need. To solve this problem, you can use dynamic
allocation and ask the C++ run-time system to create a new object
whenever you need it. When you ask for a

new Employee

then a memory allocator finds a storage location for a new employee
object. (See Syntax 7.1 on page 309.) The memory allocator keeps a
large storage area, called the heap, for that purpose. The heap is a
very flexible pool for memory. It can hold values of any type. You can

equally ask for
new Time
new Product

 The expression
new Employee

differs in an important way from a variable declaration
Employee harry;

7.1 Pointers and Memory Al locat ion

Use dynamic memory
allocation if you do not
know in advance how
many objects you need.

The new operator allocates
an object from the heap.

7.1 Pointers and Memory Allocation 306
SYNTAX 7.1: new Expression 309
SYNTAX 7.2: Pointer Variable Definition 309
SYNTAX 7.3: Pointer Dereferencing 309
COMMON ERROR 7.1: Confusing Pointers with the

Data to Which They Point 310
COMMON ERROR 7.2: Declaring Two Pointers on the

Same Line 310
ADVANCED TOPIC 7.1: The this Pointer 310

7.2 Deallocating Dynamic Memory 311
SYNTAX 7.4: delete Expression 312
COMMON ERROR 7.3: Dangling Pointers 312
COMMON ERROR 7.4: Memory Leaks 313
ADVANCED TOPIC 7.2: The Address Operator 313

7.3 Common Uses for Pointers 314
ADVANCED TOPIC 7.3: References 319
RANDOM FACT 7.1: Electronic Voting Machines 320

7.4 Arrays and Pointers 322

ADVANCED TOPIC 7.4: Using a Pointer to Step

Through an Array 323
QUALITY TIP 7.1: Program Clearly, Not Cleverly 324
COMMON ERROR 7.5: Confusing Array and

Pointer Declarations 325
COMMON ERROR 7.6: Returning a Pointer to a

Local Array 325
ADVANCED TOPIC 7.5: Dynamically

Allocated Arrays 326

7.5 Pointers to Character Strings 327
COMMON ERROR 7.7: Failing to

Allocate Memory 328
COMMON ERROR 7.8: Confusing Character Pointers

and Arrays 329
COMMON ERROR 7.9: Copying

Character Pointers 329

7.6 Pointers to Functions 330
SYNTAX 7.5: typedef Statement 332
RANDOM FACT 7.2: Embedded Systems 332

7.1 • Pointers and Memory Allocation 307

The variable harry lives on the stack, a storage area that is associated with the func-
tion in which it is defined. When that function exits, the object is automatically
reclaimed.

void f()
{
 Employee harry; // Memory for employee allocated on the stack
 ...
} // Memory for employee automatically reclaimed

In contrast, the employee object that is allocated with
new Employee

stays alive until the programmer reclaims it. You will see in Section
7.2 how to explicitly deallocate the object.

This difference gives rise to another reason for using dynamic allocation: to pro-
duce objects that live longer than the function that created them.

When you allocate a new heap object, the memory allocator tells
you where the object is located, by giving you the object’s memory
address. To manipulate memory addresses, you need to learn about a
new C++ data type: the pointer. A pointer to an employee record,

Employee* boss;

contains the location or memory address for an employee object. A pointer to a
time object,

Time* deadline;

stores the memory address for a time object. See Syntax 7.2 on page 309.
The types Employee* and Time* denote pointers to employee and

time objects. The boss and deadline variables of type Employee* and
Time* store the locations or memory addresses of employee and time
objects. They cannot store actual employee objects or time objects,
however (see Figure 1). As you look at that figure, also note that the

pointer variables boss and deadline are allocated on the stack, whereas the objects to
which they point are allocated on the heap.

Dynamically allocated
objects live until they are
explicitly reclaimed.

A pointer denotes the
location of a value in
memory.

The * operator locates
the value to which a
pointer points.

Figure 1
Pointers and the Objects to
Which They Point

boss = Employee

deadline =

Time

308 CHAPTER 7 • Pointers

When you create a new object on the heap, you usually want to initialize it. You
can supply construction parameters, using the familiar syntax.

Employee* boss = new Employee("Lin, Lisa", 68000);

When you have a pointer to a value, you often want to access the value
to which it points. That action—to go from the pointer to the value—
is called dereferencing. In C++ the * operator is used to indicate the
value associated with a pointer. For example, if boss is an Employee*,
then *boss is an Employee value:

Employee* boss = ...;
raise_salary(*boss, 10);

Suppose you want to find out the name of the employee to which boss points:
Employee* boss = ...;
string name = *boss.get_name(); // Error

Unfortunately, that is a syntax error. The dot operator has a higher precedence than
the * operator. That is, the compiler thinks that you mean

string name = *(boss.get_name()); // Error

However, boss is a pointer, not an object. You can’t apply the dot (.) operator to a
pointer, and the compiler reports an error. Instead, you must make it clear that you
first want to apply the * operator, then the dot:

string name = (*boss).get_name(); // OK

Because this is such a common situation, the designers of C++ sup-
ply an operator to abbreviate the “dereference and access member”
operation. That operator is written -> and usually pronounced as
“arrow”.

string name = boss->get_name(); // OK

Dereferencing of pointers and accessing members through pointers are summarized
in Syntax 7.3 on page 309.

There is one special value, NULL, that can be used to indicate a
pointer that doesn’t point anywhere. Instead of leaving pointer vari-
ables uninitialized, you should always set pointer variables to NULL
when you define them.

Employee* boss = NULL; // will set later
...
if (boss != NULL) name = boss->get_name(); // OK

You cannot dereference the NULL pointer. That is, calling *boss or
boss->get_name() is an error as long as boss is NULL.

Employee* boss = NULL;
string name = boss->get_name(); // NO!! Program will crash

The purpose of a NULL pointer is to test that it doesn’t point to any valid object.
When a pointer variable is first defined, it contains a random address. Using that

random address is an error. In practice, your program will likely crash or mysteri-
ously misbehave if you use an uninitialized pointer:

Finding the value to which
a pointer points is called
dereferencing.

Use the -> operator to
access a data member or a
member function through
an object pointer.

The NULL pointer does not
point to any object.

It is an error to dereference
an uninitialized pointer or
the NULL pointer.

7.1 • Pointers and Memory Allocation 309

Employee* boss;
string name = boss->get_name(); // NO!! boss contains a random address

You must always initialize a pointer so that it points to an actual value before you
can use it:

Employee* boss = new Employee("Lin, Lisa", 68000);
string name = boss->get_name(); // OK

SYNTAX 7.1 new Expression

new type_name
new type_name(expression1, expression2, ..., expressionn)

Example:

new Time
new Employee("Lin, Lisa", 68000)

Purpose:

Allocate and construct a value on the heap and return a pointer to the value.

SYNTAX 7.2 Pointer Variable Definition

type_name* variable_name;
type_name* variable_name = expression;

Example:

Employee* boss;
Product* p = new Product;

Purpose:

Define a new pointer variable, and optionally supply an initial value.

SYNTAX 7.3 Pointer Dereferencing

*pointer_expression
pointer_expression->class_member

Example:

*boss
boss->set_salary(70000)

Purpose:

Access the object to which a pointer points.

310 CHAPTER 7 • Pointers

Confusing Pointers with the Data to Which They Point

A pointer is a memory address—a number that tells where a value is located in memory. You
can only carry out a small number of operations on a pointer:
• assign it to a pointer variable
• compare it with another pointer or the special value NULL
• dereference it to access the value to which it points
However, it is a common error to confuse the pointer with the value to which it points:

Employee* boss = ...;
raise_salary(boss, 10); // ERROR

Remember that the pointer boss only describes where the employee object is. To actually
refer to the employee object, use *boss:

raise_salary(*boss, 10); // OK

Declaring Two Pointers on the Same Line

It is legal in C++ to define multiple variables together, like this:

int i = 0, j = 1;

This style does not work with pointers:

Employee* p, q;

For historical reasons, the * associates only with the first variable. That is, p is a Employee*
pointer, and q is an Employee object. The remedy is to define each pointer variable separately:

Employee* p;
Employee* q;

You will see some programmers group the * with the variable:

Employee *p, *q;

While it is a legal declaration, don’t use that style. It makes it harder to tell that p and q are
variables of type Employee*.

The this Pointer

Each member function has a special parameter variable, called this, which is a pointer to the
implicit parameter. For example, consider the Product::is_better_than function of Chapter
5. If you call

next.is_better_than(best)

then the this pointer has type Product* and points to the next object.

COMMON ERROR 7.1

COMMON ERROR 7.2

ADVANCED TOPIC 7.1

7.2 • Deallocating Dynamic Memory 311

You can use the this pointer inside the definition of a member function. For example,

bool Product::is_better_than(Product b)
{
 if (this->price == 0) return true;
 if (b.price == 0) return false;
 return this->score / this->price > b.score / b.price;
}

Here, the expression this->price refers to the price member
of the object to which this points, that is, the price member
of the implicit parameter, or next.price. The this pointer is
not necessary, however, since by convention the expression
price also refers to the field of the implicit parameter. Never-

theless, some programmers like to use the this pointer to make it explicit that price is a
member and not a variable.

Note that this is a pointer whereas b is an object. Therefore, we access the price member
of the implicit parameter as this->price, but for the explicit parameter we use b.price.

Very occasionally, a member function needs to pass the implicit parameter in its entirety
to another function. Since this is a pointer to the implicit parameter, *this is the actual
implicit parameter. For example, suppose someone defined a function

void debug_print(string message, Product p)

Then the code for the is_better_than function might start out with these statements:

debug_print("Implicit parameter:", *this);
debug_print("Explicit parameter:", b);

When your program no longer needs a value that you previously allocated with the
new operator, you must reclaim it using the delete operator:

void g()
{
 Employee* boss;
 boss = new Employee(...); // Memory for employee allocated on the heap
 ...
 delete boss; // Memory for employee manually reclaimed
}

Actually, the foregoing example is a little more complex than that.
There are two allocations: one on the stack and one on the heap. The
variable boss is allocated on the stack. It is of type Employee*; that is,
boss can hold the address of an employee object. Defining the
pointer variable does not yet create an Employee object. The next line

of code allocates an Employee object on the heap and stores its address in the pointer
variable.

At the end of the block, the storage space for the pointer variable boss on the
stack is automatically reclaimed. Reclaiming the pointer variable does not automati-
cally reclaim the object to which it points. The memory address is merely forgotten.

In a member function, the
this pointer points to the
implicit parameter.

7.2 Deal locat ing Dynamic Memory

You must reclaim
dynamically allocated
objects with the
delete operator.

312 CHAPTER 7 • Pointers

(That can be a problem—see Common Error 7.4 on page 313). Therefore, you must
manually delete the memory block holding the object.

Note that the pointer variable on the stack has a name, namely boss. But the
employee object, allocated on the heap with new Employee, has no name! It can be
reached only through the boss pointer. Values on the stack always have names; heap
values do not.

After you delete the value attached to a pointer, you can no longer use that
address! The storage space may already be reassigned to another value.

delete boss;
string name = boss->get_name(); // NO!! boss points to a deleted element

Dangling Pointers

The most common pointer error is to use a pointer that has not been initialized, or that has
already been deleted. Such a pointer is called a dangling pointer, because it does point some-
where, just not to a valid object. You can create real damage by writing to the location to
which it points. Even reading from the location can crash your program.

An uninitialized pointer has a good chance of pointing to
an address that your program doesn’t own. On most operat-
ing systems, attempting to access such a location causes a
processor error, and the operating system shuts down the
program. You may have seen that happen to other pro-
grams—a dialog box with a bomb icon or a message such as
“general protection fault” or “segmentation fault” comes up,

and the program is terminated.
If a dangling pointer points to a valid address inside your program, then writing to it will

damage some part of your program. You will change the value of one of your variables, or
perhaps damage the control structures of the heap so that after several calls to new something
crazy happens.

When your program crashes and you restart it, the problem may not reappear, or it may
manifest itself in different ways because the random pointer is now initialized with a differ-
ent random address. Programming with pointers requires iron discipline, because you can
create true damage with dangling pointers.

SYNTAX 7.4 delete Expression

delete pointer_expression;

Example:

delete boss;

Purpose:

Deallocate a value that is stored on the heap and allow the memory to be reallocated.

COMMON ERROR 7.3

Using a dangling pointer
(a pointer that has not
been initialized or has
been deleted) is a serious
programming error.

7.2 • Deallocating Dynamic Memory 313

Always initialize pointer variables. If you can’t initialize them with the return value of
new, then set them to NULL.

Never use a pointer that has been deleted. Some people immediately set every pointer to
NULL after deleting it. That is certainly helpful:

delete first;
first = NULL;

However, it is not a complete solution.

second = first;
...
delete first;
first = NULL;

You must still remember that second is now dangling. As you can see, you must carefully
keep track of all pointers and the corresponding heap objects to avoid dangling pointers.

Memory Leaks

The second most common pointer error is to allocate memory on the heap and never deallo-
cate it. A memory block that is never deallocated is called a memory leak.

If you allocate a few small blocks of memory and forget to deallocate them, this is not a
huge problem. When the program exits, all allocated memory is returned to the operating
system.

But if your program runs for a long time, or if it allocates lots of memory (perhaps in a
loop), then it can run out of memory. Memory exhaustion will cause your program to crash.
In extreme cases, the computer may freeze up if your program exhausted all available mem-
ory. Avoiding memory leaks is particularly important in programs that need to run for
months or years, without restarting.

Even if you write short-lived programs, you should make
it a habit to avoid memory leaks. Make sure that every call
to the new operator has a corresponding call to the delete
operator.

The Address Operator

The new operator returns the memory address of a new value that is allocated on the heap.
You can also obtain the address of an existing variable by applying the address (&) operator.
For example,

Employee harry;
Employee* p = &harry;

See Figure 2.

COMMON ERROR 7.4

Every call to new should
have a matching call to
delete.

ADVANCED TOPIC 7.2

314 CHAPTER 7 • Pointers

However, you should never delete an address that you obtained in this way.

delete &harry; // ERROR!

Doing so would add a block of stack memory to memory that is managed by the heap. Later,
that block of memory could be simultaneously allocated to a stack and a heap object. Mutat-
ing one of them would corrupt the other. This is a serious error that is very difficult to
debug.

In the preceding sections, you have seen how to define and use pointer variables. In
this section, you will learn how pointers can be useful for solving common pro-
gramming problems.

In our first example, we will model a Department class that describes a department
in a company or university, such as the Shipping Department or the Computer Sci-
ence Department. In our model, a department has

• a name of type string (such as "Shipping")
• an optional receptionist of type Employee

We will use a pointer to model the fact that the receptionist is optional:
class Department
{
 ...
private:
 string name;
 Employee* receptionist;
};

If a particular department has a receptionist, then the pointer will be set to the
address of an employee object. Otherwise, the pointer will be the special value NULL.
In the constructor, we set the value to NULL:

Department::Department(String n)
{
 name = n;
 receptionist = NULL;
}

Figure 2
The Address Operator

p =

harry =
Employee

7.3 Common Uses for Pointers

7.3 • Common Uses for Pointers 315

The set_receptionist function sets the pointer to the address of an employee
object:

void Department::set_receptionist(Employee* r)
{
 receptionist = r;
}

The print function prints either the name of the receptionist or the string "None".
void Department::print() const
{
 cout << "Name: " << name
 << "\nReceptionist: ";
 if (receptionist == NULL)
 cout << "None";
 else
 cout << receptionist->get_name();
 cout << "\n";
}

Note the use of the -> operator when calling the get_name function. Since recep-
tionist is a pointer, and not an object, it would be an error to use the dot operator.

Here we take advantage of pointers to model a relationship in
which one object may refer to 0 or 1 occurrences of another object.
Without pointers, it would have been more difficult and less efficient
to express the optional nature of the employee object. You might use
a Boolean variable and an object, like this:

class Department // Modeled without pointers
{
 ...
private:
 string name;
 boolean has_receptionist;
 Employee receptionist;
};

Now those department objects that don’t have a receptionist still use up storage
space for an unused employee object. Clearly, pointers offer a better solution.

Another common use of pointers is sharing. Some departments
may have a receptionist and a secretary; in others, one person does
double duty. Rather than duplicating objects, we can use pointers to
share the object (see Figure 3).

class Department
{
 ...
private:
 string name;
 Employee* receptionist;
 Employee* secretary;
};

Pointers can be used to
model optional values (by
using a NULL pointer when
the value is not present).

Pointers can be used to
provide shared access to a
common value.

316 CHAPTER 7 • Pointers

Sharing is particularly important when changes to the object need to be observed by
all users of the object. Consider, for example, the following code sequence:

Employee* tina = new Employee("Tester, Tina", 50000);
Department qc("Quality Control");
qc.set_receptionist(tina);
qc.set_secretary(tina);
tina->set_salary(55000);

Now there are three pointers to the employee object: tina and the receptionist and
secretary pointers in the qc object. When raising the salary, the new salary is set in
the shared object, and the changed salary is visible from all three pointers.

In contrast, we might have modeled the department with two employee objects,
like this:

class Department // Modeled without pointers
{
 ...
private:
 string name;
 Employee receptionist;
 Employee secretary;
};

Now consider the equivalent code:
Employee tina("Tester, Tina", 50000);
Department qc("Quality Control");
qc.set_receptionist(tina);
qc.set_secretary(tina);
tina.set_salary(55000);

The department object contains two copies of the tina object. When raising the sal-
ary, the copies are not affected (see Figure 4).

This example shows that pointers are very useful to model a “n : 1” relationship,
in which a number of different variables share the same object.

In Chapter 8, you will see another use of pointers, in which a pointer can refer to
objects of varying types. That phenomenon, called polymorphism, is an important
part of object-oriented programming.

Figure 3 Three Pointers Share an Employee Object

tina =

qc =
Department

receptionist =

secretary =

name = Quality Control

Employee

name =

salary =

7.3 • Common Uses for Pointers 317

The following program gives a complete implementation of the Department class.
Note how the pointers are used to express optional and shared objects.

ch07/department.cpp

Figure 4
Separate Employee Objects

qc =
Department

receptionist = Employee

name = Tester, Tina
salary = 50000

secretary = Employee

name = Tester, Tina
salary = 50000

tina =
Employee

name = Tester, Tina
salary = 55000

Value changed

Values unchanged

1 #include <string>
2 #include <iostream>
3
4 using namespace std;
5
6 #include "ccc_empl.h"
7
8 /**
9 A department in an organization.
10 */
11 class Department
12 {
13 public:
14 Department(string n);
15 void set_receptionist(Employee* e);
16 void set_secretary(Employee* e);
17 void print() const;
18 private:
19 string name;
20 Employee* receptionist;
21 Employee* secretary;
22 };
23
24 /**
25 Constructs a department with a given name.
26 @param n the department name
27 */
28 Department::Department(string n)

318 CHAPTER 7 • Pointers

29 {
30 name = n;
31 receptionist = NULL;
32 secretary = NULL;
33 }
34
35 /**
36 Sets the receptionist for this department.
37 @param e the receptionist
38 */
39 void Department::set_receptionist(Employee* e)
40 {
41 receptionist = e;
42 }
43
44 /**
45 Sets the secretary for this department.
46 @param e the secretary
47 */
48 void Department::set_secretary(Employee* e)
49 {
50 secretary = e;
51 }
52
53 /**
54 Prints a description of this department.
55 */
56 void Department::print() const
57 {
58 cout << "Name: " << name << "\n"
59 << "Receptionist: ";
60 if (receptionist == NULL)
61 cout << "None";
62 else
63 cout << receptionist->get_name() << " "
64 << receptionist->get_salary();
65 cout << "\nSecretary: ";
66 if (secretary == NULL)
67 cout << "None";
68 else if (secretary == receptionist)
69 cout << "Same";
70 else
71 cout << secretary->get_name() << " "
72 << secretary->get_salary();
73 cout << "\n";
74 }
75
76 int main()
77 {
78 Department shipping("Shipping");
79 Department qc("Quality Control");
80 Employee* harry = new Employee("Hacker, Harry", 45000);
81 shipping.set_secretary(harry);
82 Employee* tina = new Employee("Tester, Tina", 50000);

7.3 • Common Uses for Pointers 319

Program Run

References

In Section 4.8, you saw how to use reference parameters in functions that modify variables.
For example, consider the function

void raise_salary(Employee& e, double by)
{
 double new_salary = e.get_salary() * (1 + by / 100);
 e.set_salary(new_salary);
}

This function modifies the first parameter but not the second. That is, if you call the function as

raise_salary(harry, percent);

then the value of harry may change, but the value of percent is unaffected.
A reference is a pointer in disguise. The function receives two parameters: the address of

an Employee object and a copy of a double value. The function is logically equivalent to

void raise_salary(Employee* pe, double by)
{
 double new_salary = pe->get_salary() * (1 + by / 100);
 pe->set_salary(new_salary);
}

The function call is equivalent to the call

raise_salary(&harry, percent);

This is an example of sharing: the pointer variable in the function modifies the original
object, and not a copy.

When you use references, the compiler automatically passes parameter addresses and
dereferences the pointer parameters in the function body. For that reason, references are
more convenient for the programmer than explicit pointers.

83 qc.set_receptionist(tina);
84 qc.set_secretary(tina);
85 tina->set_salary(55000);
86 shipping.print();
87 qc.print();
88 delete tina;
89 delete harry;
90 return 0;
91 }

Name: Shipping
Receptionist: None
Secretary: Hacker, Harry 45000
Name: Quality Control
Receptionist: Tester, Tina 55000
Secretary: Same

ADVANCED TOPIC 7.3

320 CHAPTER 7 • Pointers

Electronic Voting Machines

In the 2000 presidential elections in the United States, votes were tallied by a variety of
machines. Some machines processed cardboard ballots into which voters punched holes to
indicate their choices (see Figure 5). When voters were not careful, remains of paper—the
now infamous “chads”—were partially stuck in the punch cards, causing votes to be mis-
counted. A manual recount was necessary, but it was not carried out everywhere due to time
constraints and procedural wrangling. The election was very close, and there remain doubts
in the minds of many people whether the election outcome would have been different if the
voting machines had accurately counted the intent of the voters.

Subsequently, voting machine manufacturers have argued that electronic voting machines
would avoid the problems caused by punch cards or optically scanned forms. In an elec-
tronic voting machine, voters indicate their preferences by pressing buttons or touching
icons on a computer screen. Typically, each voter is presented with a summary screen for
review before casting the ballot. The process is very similar to using an automatic bank teller
machine (see Figure 6).

It seems plausible that these machines make it more likely that a vote is counted in the
same way that the voter intends. However, there has been significant controversy
surrounding some types of electronic voting machines. If a machine simply records the votes
and prints out the totals after the election has been completed, then how do you know that
the machine worked correctly? Inside the machine is a computer that executes a program,
and, as you may know from your own experience, programs can have bugs.

In fact, some electronic voting machines do have bugs. There have been isolated cases
where machines reported tallies that were impossible. When a machine reports far more or
far fewer votes than voters, then it is clear that it malfunctioned. Unfortunately, it is then
impossible to find out the actual votes. Over time, one would expect these bugs to be fixed in
the software. More insidiously, if the results are plausible, nobody may ever investigate.

Figure 5 Punch Card Ballot

RANDOM FACT 7.1

7.3 • Common Uses for Pointers 321

Many computer scientists have spoken out on this issue and confirmed that it is impossi-
ble, with today’s technology, to tell that software is error free and has not been tampered
with. Many of them recommend that electronic voting machines should employ a voter ver-
ifiable audit trail. (A good source of information is http://verifiedvoting.org.) Typically, a
voter-verifiable machine prints out a ballot. Each voter has a chance to review the printout,
and then deposits it in an old-fashioned ballot box. If there is a problem with the electronic
equipment, the printouts can be scanned or counted by hand.

As this book is written, this concept is strongly resisted both by manufacturers of elec-
tronic voting machines and by their customers, the cities and counties that run elections.
Manufacturers are reluctant to increase the cost of the machines because they may not be
able to pass the cost increase on to their customers, who tend to have tight budgets. Election
officials fear problems with malfunctioning printers, and some of them have publicly stated
that they actually prefer equipment that eliminates bothersome recounts.

What do you think? You probably use an automatic bank teller machine to get cash from
your bank account. Do you review the paper record that the machine issues? Do you check
your bank statement? Even if you don’t, do you put your faith in other people who double-
check their balances, so that the bank won’t get away with widespread cheating?

At any rate, is the integrity of banking equipment more important or less important than
that of voting machines? Won’t every voting process have some room for error and fraud
anyway? Is the added cost for equipment, paper, and staff time reasonable to combat a
potentially slight risk of malfunction and fraud? Computer scientists cannot answer these
questions—an informed society must make these tradeoffs. But, like all professionals, they
have an obligation to speak out and give accurate testimony about the capabilities and limita-
tions of computing equipment.

Figure 6 Touch Screen Voting Machine

http://verifiedvoting.org

322 CHAPTER 7 • Pointers

There is an intimate connection between arrays and pointers in C++.
Consider this declaration of an array:

int a[10];

The value of a is a pointer to the starting element (see Figure 7).
int* p = a; // Now p points to a[0]

You can dereference a by using the * operator: The statement
*a = 12;

has the same effect as the statement
a[0] = 12;

Moreover, pointers into arrays support pointer arithmetic. You can
add an integer offset to the pointer to point at another array location.
For example,

a + 3

is a pointer to the array element with index 3. Dereferencing that
pointer yields the element a[3]. In fact, for any integer n, it is true that

a[n] == *(a + n)

This relationship is called the array/pointer duality law.
This law explains why all C++ arrays start with an index of zero.

The pointer a (or a + 0) points to the starting element of the array.
That element must therefore be a[0].

The connection between arrays and pointers becomes even more
important when considering array parameters of functions. Consider
the maximum function from Section 6.5.2.

7.4 Arrays and Pointers

The value of an array
variable is a pointer to
the starting element of
the array.

Figure 7 Pointers into an Array

Pointer arithmetic means
adding an integer offset to
an array pointer, yielding a
pointer that skips past the
given number of elements.

The array/pointer duality
law states that a[n] is
identical to *(a + n),
where a is a pointer into
an array and n is an
integer offset.

12a =

a + 3 =

p =

7.4 • Arrays and Pointers 323

double maximum(const double a[], int a_size)
{
 if (a_size == 0) return 0;
 double highest = a[0];
 for (int i = 0; i < a_size; i++)
 if (a[i] > highest)
 highest = a[i];
 return highest;
}

Call this function with a particular array:
double data[10];
... // Initialize data
double m = maximum(data, 10);

Note the value data that is passed to the maximum function. It is actu-
ally a pointer to the starting element of the array. In other words, the
maximum function could have equally well been declared as

double maximum(const double* a, int a_size)
{
 ...
}

The const modifier indicates that the pointer a can only be used for reading, not for
writing.

The parameter declaration of the first example
const double a[]

is merely another way of declaring a pointer parameter. The declaration gives the
illusion that an entire array is passed to the function, but in fact the function
receives only the starting address for the array.

It is essential that the function also knows where the array ends. The second
parameter a_size indicates the size of the array that starts at a.

Using a Pointer to Step Through an Array

Now that you know that the first parameter of the maximum function is a pointer, you can
implement the function in a slightly different way. Rather than incrementing an integer
index, you can increment a pointer variable to visit all array elements in turn:

double maximum(const double* a, int a_size)
{
 if (a_size == 0) return 0;
 double highest = *a;
 const double* p = a + 1;
 int count = a_size - 1;
 while (count > 0)
 {

When passing an array to
a function, only the
starting address is passed.

ADVANCED TOPIC 7.4

324 CHAPTER 7 • Pointers

 if (*p > highest)
 highest = *p;
 p++;
 count--;
 }
 return highest;
}

Initially, the pointer p points to the element a[1]. The increment

p++;

moves it to point to the next element (see Figure 8).
It is a tiny bit more efficient to dereference and increment a pointer than to access an array

element as a[i]. For this reason, some programmers routinely use pointers instead of
indexes to access array elements. However, the efficiency gain is quite insignificant, and the
resulting code is harder to understand, so it is not recommended. (See also Quality Tip 7.1
on page 324.)

Program Clearly, Not Cleverly

Some programmers take great pride in minimizing the number of instructions, even if the
resulting code is hard to understand. For example, here is a legal implementation of the
maximum function:

double maximum(const double* a, int a_size)
{
 if (a_size == 0) return 0;
 double highest = *a;
 while (--a_size > 0)
 if (*++a > highest)
 highest = *a;
 return highest;
}

Figure 8 A Pointer Variable Traversing the Elements of an Array

a = p =

QUAL ITY T IP 7.1

7.4 • Arrays and Pointers 325

This implementation uses two tricks. First, the function parameters a and a_size are vari-
ables, and it is legal to modify them. Moreover, the expressions

--a_size

and
++a

mean “decrement or increment the variable and return the new value”. Therefore, *++a is the
location to which a points after it has been incremented.

Please do not use this programming style. Your job as a programmer is not to dazzle
other programmers with your cleverness, but to write code that is easy to understand and
maintain.

Confusing Array and Pointer Declarations

It can be confusing to tell whether a particular variable declaration yields a pointer variable
or an array variable. There are four cases:

int* p; // p is a pointer
int a[10]; // a is an array
int a[] = { 2, 3, 5, 7, 11, 13 }; // a is an array
void f(int a[]); // a is a pointer

In the first case, you must initialize p to point somewhere before you use it.

Returning a Pointer to a Local Array

Consider this function that tries to return a pointer to an array containing two elements, the
minimum and the maximum value of an array.

double* minmax(const double a[], int a_size)
{
 assert(a_size > 0);
 double result[2];
 result[0] = a[0]; // result[0] is the minimum
 result[1] = a[0]; // result[1] is the maximum

 for (int i = 0; i < a_size; i++)
 {
 if (a[i] < result[0]) result[0] = a[i];
 if (a[i] > result[1]) result[1] = a[i];
 }
 return result; // ERROR!
}

COMMON ERROR 7.5

COMMON ERROR 7.6

326 CHAPTER 7 • Pointers

The function returns a pointer to the starting element of the result array. However, that
array is a local variable of the minmax function. The local variable is no longer valid when the
function exits, and the values will soon be overwritten by other functions calls.

Unfortunately, it depends on various factors when the values are overwritten. Consider
this test of the flawed minmax function:

double a[] = { 3, 5, 10, 2 };
double* mm = minmax(a, 4);
cout << mm[0] << " " << mm[1] << "\n";

One compiler yields the expected result:

2 10

However, another compiler yields:

1.78747e-307 10

It just happens that the other compiler chose a different implementation of the iostream
library that involved more function calls, thereby clobbering the result[0] value sooner.

It is possible to work around this limitation, by returning a pointer to an array that is allo-
cated on the heap. But the best solution is to avoid arrays and pointers altogether and to use
vectors instead. As you have seen in Chapter 6, a function can easily and safely receive and
return vector<double> objects:

vector<double> minmax(const vector<double>& a)
{
 assert (a.size() > 0);
 vector<double> result(2);
 result[0] = a[0]; // result[0] is the minimum
 result[1] = a[0]; // result[1] is the maximum

 for (int i = 0; i < a.size(); i++)
 {
 if (a[i] < result[0]) result[0] = a[i];
 if (a[i] > result[1]) result[1] = a[i];
 }
 return result; // OK!
}

Dynamically Allocated Arrays

You can allocate arrays of values from the heap. For example,

int staff_capacity = ...;
Employee* staff = new Employee[staff_capacity];

The new operator allocates an array of staff_capacity objects of type Employee, each of
which is constructed with the default constructor. It returns a pointer to the starting element
of the array. Because of array/pointer duality, you can access elements of the array with the
[] operator: staff[i] is the Employee element with offset i.

ADVANCED TOPIC 7.5

7.5 • Pointers to Character Strings 327

To deallocate the array, you use the delete[] operator.

delete[] staff;

It is an error to deallocate an array with the delete operator (without the []). However, the
compiler can’t detect this error—it doesn’t remember whether a pointer variable points to a
single object or to an array of objects. Therefore, you must be careful and remember which
pointer variables point to individual objects and which pointer variables point to arrays.

Heap arrays have one big advantage over array variables. If you declare an array variable,
you must specify a fixed array size when you compile the program. But when you allocate an
array on the heap, you can choose a different size for each program run.

If you later need more elements, you can allocate a bigger heap array, copy the elements
from the smaller array into the bigger array, and delete the smaller array:

int bigger_capacity = 2 * staff_capacity;
Employee* bigger = new Employee[bigger_capacity];
for (int i = 0; i < staff_capacity; i++)
 bigger[i] = staff[i];
delete[] staff;
staff = bigger;
staff_capacity = bigger_capacity;

As you can see, heap arrays are more flexible than array variables. However, you should not
actually use them in your programs. Use vector objects instead. A vector contains a pointer
to a dynamic array, and it automatically manages it for you.

C++ has two mechanisms for manipulating strings. The string class stores an arbi-
trary sequence of characters and supports many convenient operations such as con-
catenation and string comparison. However, C++ also inherits a more primitive
level of string handling from the C language, in which strings are represented as
arrays of char values.

While we don’t recommend that you use character pointers or arrays in your
programs, you occasionally need to interface with functions that receive or return
char* values. Then you need to know how to convert between char* pointers and
string objects.

In particular, literal strings such as "Harry" are actually stored
inside char arrays, not string objects. When you use the literal
string "Harry" in an expression, the compiler allocates an array of 6
characters (including a '\0' terminator—see Section 6.5.3). The
value of the string expression is a char* pointer to the starting letter.

For example, the code
string name = "Harry";

is equivalent to
char* p = "Harry"; // p points to the letter 'H'
string name = p;

7.5 Pointers to Character Str ings

Low-level string
manipulation functions use
pointers of type char*.

328 CHAPTER 7 • Pointers

The string class has a constructor string(char*) that you can use to
convert any character pointer or array to a safe and convenient
string object. That constructor is called whenever you initialize a
string variable with a char* object, as in the preceding example.

Here is another typical scenario. The tmpnam function of the standard library
yields a unique string that you can use as the name of a temporary file. It returns a
char* pointer:

char* p = tmpnam(NULL);

Simply turn the char* return value into a string object:
string name = p;

or
string name(p);

Conversely, some functions require a parameter of type char*. Then
use the c_str member function of the string class to obtain a char*
pointer that points to the first character in the string object.

For example, the tempnam function in the standard library, which
also yields a name for a temporary file, lets the caller specify a direc-
tory. (Note that the tmpnam and tempnam function names are confus-

ingly similar.) The tempnam function expects a char* parameter for the directory
name. You can therefore call it as follows:

string dir = ...;
char* p = tempnam(dir.c_str(), NULL);

As you can see, you don’t have to use character arrays to interface with functions
that use char* pointers. Simply use string objects and convert between string and
char* types when necessary.

Failing to Allocate Memory

The most dangerous character pointer error is to copy a string into random memory.

char* p;
strcpy(p, "Harry");

This is not a syntax error. The strcpy function expects two character pointers. However,
where is the string copied to? The target address p is an uninitialized pointer, pointing to a
random location. The characters in the string "Harry" are now copied into that random loca-
tion. There is a good chance that the operating system notices that the random memory loca-
tion doesn’t belong to the program. In that case, the operating system terminates the
program with extreme prejudice. However, it is also possible that the random memory loca-
tion happens to be accessible by the program. In that case some other, presumably useful,
data will be overwritten.

There is an easy way to avoid this bug. Ask yourself, “Where does the storage for the tar-
get string come from?” Character arrays don’t magically appear; you have to allocate them.

You can construct
string variables from
char* pointers.

You can use the c_str
member function to obtain
a char* pointer from a
string object.

COMMON ERROR 7.7

7.5 • Pointers to Character Strings 329

The target of the string copy must be a character array of sufficient size to accommodate the
characters.

char buffer[100];
strcpy(buffer, "Harry"); // OK

Confusing Character Pointers and Arrays

Consider the pointer declaration

char* p = "Harry";

Note that this declaration is entirely different from the array declaration

char s[] = "Harry";

The second declaration is just a shorthand for

char s[6] = { 'H', 'a', 'r', 'r', 'y', '\0' };

The variable p is a pointer that points to the starting character of the string. The characters of
the string are stored elsewhere, not in p. In contrast, the variable s is an array of six charac-
ters. Perhaps confusingly, when used inside an expression, s denotes a pointer to the starting
character in the array. But there is an important difference: p is a pointer variable that you
can set to another character location. But the value s is constant—it always points to the
same location. See Figure 9.

Copying Character Pointers

There is an important difference between copying string objects and pointers of type char*.
Consider this example:

string s = "Harry";
string t = s;
t[0] = 'L'; // now s is "Harry" and t is "Larry"

Figure 9
Character Pointers and Arrays

COMMON ERROR 7.8

p =

'H'
'a'
'r'
'r'
'y'
'\0'

'H'
'a'
'r'
'r'
'y'
'\0'

s =

COMMON ERROR 7.9

330 CHAPTER 7 • Pointers

After copying s into t, the string object t contains a copy of the characters of s. Modifying
t has no effect on s. However, copying character pointers has a completely different effect:

char* p = "Harry";
char* q = p;
q[0] = 'L'; // now both p and q point to "Larry"

After copying p into q, the pointer variable q contains the same memory address as p. The
assignment to q[0] overwrites the starting letter in the string to which both p and q point (see
Figure 10).

Note that you cannot assign one character array to another. The following assignment is
illegal:

char a[] = "Harry";
char b[6];
b = a; // ERROR

The standard library provides the strcpy function to copy a character array to a new
location:

strcpy(b, a);

The target pointer b must point to an array with sufficient space in it. It is a common begin-
ner’s error to try to copy a string into a character array with insufficient space. There is a
safer function, strncpy, with a third parameter that specifies the maximum number of char-
acters to copy:

strncpy(b, a, 5);

Sometimes, a function depends on another function. Here is a typical example: We
want to print a table of values, like this:

 1 | 1
 2 | 4
 3 | 9
 4 | 16
...
 10 | 100

Figure 10 Two Character Pointers into the Same Character Array

'L'
'a'
'r'
'r'
'y'
'\0'

p =

q =

7.6 Pointers to Funct ions

7.6 • Pointers to Functions 331

This particular table shows the values of the function f(x) = x2. But you can use the
exact same logic to print a table of the function f(x) = x – 2, or of any other function.
We need a way of supplying the function f as a parameter to a function print_table.

In C++, this can be achieved by giving print_table a function
pointer, that is, the location of the function code. Just as you get a
pointer to an array by writing an array name without [], you get a
function pointer by writing a function name without ().

For example,
sqrt

is a pointer to the sqrt function. To plot a table of square roots, simply pass the
function pointer as a parameter:

print_table(sqrt);

To print a table of squares, you first need to make a square function, so that you
have a function whose address you can pass to print_table:

double square(double x) { return x * x; }
...
print_table(square);

Now turn to the implementation of the print_table function. It has a parameter of
type “function pointer”, which we will explain later.

void print_table(DoubleFunPointer f)
{
 cout << setprecision(2);
 for (double x = 1; x <= 10; x++)
 {
 double y = f(x);
 cout << setw(10) << x << "|" << setw(10) << y << endl;
 }
}

You can use the variable f as if it were a regular function. The call f(x) tells the pro-
gram to locate the code to which f points, and to call it with the parameter x. Some
people prefer to write the call as

(*f)(x)

to make it clear that f is a pointer, not a function. Either notation is acceptable.
What remains is to define the function pointer type. Unfortunately, this is rather

unsightly in C++. We want to declare f as a pointer, so that *f is a function. But we
need to be precise about what function it is. It consumes a double value and returns
a double value. The declaration looks like this:

double (*f)(double)

The parentheses are necessary. The definition
double *f(double)

denotes a function f (and not a function pointer) that consumes a double and
returns a double* pointer.

The name of a function
without () denotes a
function pointer.

332 CHAPTER 7 • Pointers

You can define the print_table function as follows:
void print_table(double (*f)(double))

Most people dislike this style because the variable f is buried inside a
mess of type names and parentheses. The remedy is to use a type
definition:

typedef double (*DoubleFunPointer)(double);

This declaration defines a type DoubleFunPointer, a thing whose * consumes a double
and yields a double. In other words, a DoubleFunPointer is a pointer to a function
that consumes and yields floating-point numbers. When you need a parameter that
is a function pointer, simply use the type name:

 void print_table(DoubleFunPointer f)

Function pointers are very useful whenever the behavior of a function depends on
another function. They are also easy to use, provided you use the typedef mecha-
nism to hide the messy pointer syntax.

Embedded Systems

An embedded system is a computer system that controls a device. The device contains a pro-
cessor and other hardware and is controlled by a computer program. Unlike a personal com-
puter, which has been designed to be flexible and run many different computer programs, the
hardware and software of an embedded system are tailored to a specific device. Computer
controlled devices are becoming increasingly common, ranging from washing machines to
medical equipment, cell phones, automobile engines, and spacecraft.

Several challenges are specific to programming embedded systems. Most importantly, a
much higher standard of quality control applies. Vendors are often unconcerned about bugs
in personal computer software, because they can always make you install a patch or upgrade
to the next version. But in an embedded system, that is not an option. Few consumers would
feel comfortable upgrading the software in their washing machines or automobile engines. If

Use typedef to make
function pointer types
easier to read.

SYNTAX 7.5 typedef Statement

typedef declaration;

Example:

typedef int (*IntFunPtr)(int);

Purpose:

Create an alias for a complicated type name.

RANDOM FACT 7.2

7.6 • Pointers to Functions 333

you ever handed in a programming assignment that you believed to be correct, only to have
the instructor or grader find bugs in it, then you know how hard it is to write software that
can reliably do its task for many years without a chance of changing it. Quality standards are
especially important in devices whose failure would destroy property or human life. Many
personal computer purchasers buy computers that are fast and have a lot of storage, because
the investment is paid back over time when many programs are run on the same equipment.
But the hardware for an embedded device is not shared.it is dedicated to one device. A sepa-
rate processor, memory, and so on, are built for every copy of the device (see Figure 11). If it
is possible to shave a few pennies off the manufacturing cost of every unit, the savings can
add up quickly for devices that are produced in large volumes. Thus, the embedded-system
programmer has a much larger economic incentive to conserve resources than the program-
mer of desktop software. Unfortunately, trying to conserve resources usually makes it
harder to write programs that work correctly.

C and C++ are commonly used languages for developing embedded systems.

Figure 11 The Controller of an Embedded System

334 CHAPTER 7 • Pointers

1. Use dynamic memory allocation if you do not know in advance how many
objects you need.

2. The new operator allocates an object from the heap.

3. Dynamically allocated objects live until they are explicitly reclaimed.

4. A pointer denotes the location of a value in memory.

5. The * operator locates the value to which a pointer points.

6. Finding the value to which a pointer points is called dereferencing.

7. Use the -> operator to access a data member or a member function through an
object pointer.

8. The NULL pointer does not point to any object.

9. It is an error to dereference an uninitialized pointer or the NULL pointer.

10. In a member function, the this pointer points to the implicit parameter.

11. You must reclaim dynamically allocated objects with the delete operator.

12. Using a dangling pointer (a pointer that has not been initialized or has been
deleted) is a serious programming error.

13. Every call to new should have a matching call to delete.

14. Pointers can be used to model optional values (by using a NULL pointer when the
value is not present).

15. Pointers can be used to provide shared access to a common value.

16. The value of an array variable is a pointer to the starting element of the array.

17. Pointer arithmetic means adding an integer offset to an array pointer, yielding a
pointer that skips past the given number of elements.

18. The array/pointer duality law states that a[n] is identical to *(a + n), where a is
a pointer into an array and n is an integer offset.

19. When passing an array to a function, only the starting address is passed.

20. Low-level string manipulation functions use pointers of type char*.

21. You can construct string variables from char* pointers.

22. You can use the c_str member function to obtain a char* pointer from a string
object.

23. The name of a function without () denotes a function pointer.

24. Use typedef to make function pointer types easier to read.

CHAPTER SUMMARY

Review Exercises 335

Exercise R7.1. Find the mistakes in the following code. Not all lines contain mistakes.
Each line depends on the lines preceding it. Watch out for uninitialized pointers,
NULL pointers, pointers to deleted objects, and confusing pointers with objects.

1 int* p = new int;
2 p = 5;
3 *p = *p + 5;
4 Employee e1 = new Employee("Hacker, Harry", 34000);
5 Employee e2;
6 e2->set_salary(38000);
7 delete e2;
8 Time* pnow = new Time();
9 Time* t1 = new Time(2, 0, 0);
10 cout << t1->seconds_from(pnow);
11 delete *t1;
12 cout << t1->get_seconds();
13 Employee* e3 = new Employee("Lin, Lisa", 68000);
14 cout << e3.get_salary();
15 Time* t2 = new Time(1, 25, 0);
16 cout << *t2.get_minutes();
17 delete t2;

Exercise R7.2. A pointer variable can contain a pointer to a valid object, a pointer to a
deleted object, NULL, or a random value. Write code that creates and sets four pointer
variables a, b, c, and d to show each of these possibilities.

Exercise R7.3. What happens when you dereference each of the four pointers that
you created in Exercise R7.2? Write a test program if you are not sure.

Exercise R7.4. What happens if you forget to delete an object that you obtained from
the heap? What happens if you delete it twice?

Exercise R7.5. What does the following code print?
Employee harry = Employee("Hacker, Harry", 35000);
Employee boss = harry;
Employee* pharry = new Employee("Hacker, Harry", 35000);
Employee* pboss = pharry;
boss.set_salary(45000);
(*pboss).set_salary(45000);
cout << harry.get_salary() << "\n";
cout << boss.get_salary() << "\n";
cout << pharry->get_salary() << "\n";
cout << pboss->get_salary() << "\n";

Exercise R7.6. Pointers are addresses and have a numerical value. You can print out
the value of a pointer as cout << (unsigned long)(p). Write a program to compare p,
p + 1, q, and q + 1, where p is an int* and q is a double*. Explain the results.

REVIEW EXERCISES

336 CHAPTER 7 • Pointers

Exercise R7.7. In Chapter 2, you saw that you can use a cast (static_cast<int>) to
convert a double value to an integer. Explain why casting a double* pointer to an
int* pointer doesn’t make sense. For example,

double values[] = { 2, 3, 5, 7, 11, 13 };
int* p = static_cast<int*>(values); // Why won’t this work?

Exercise R7.8. Which of the following assignments are legal in C++?
void f(int p[])
{
 int* q;
 const int* r;
 int s[10];
 p = q;
 p = r;
 p = s;
 q = p;
 q = r;
 q = s;
 r = p;
 r = q;
 r = s;
 s = p;
 s = q;
 s = r;
}

Exercise R7.9. Given the definitions
double values[] = { 2, 3, 5, 7, 11, 13 };
double* p = values + 3;

explain the meanings of the following expressions:
a. values[1]

b. values + 1

c. *(values + 1)

d. p[1]

e. p + 1

f. p - values

Exercise R7.10. Explain the meanings of the following expressions:
a. "Harry" + 1

b. *("Harry" + 2)

c. "Harry"[3]

d. [4]"Harry"

Exercise R7.11. How can you implement a function minmax that computes both the
minimum and the maximum of the values in an array of integers and stores the
result in an int[2] array?

1

2

3

4

5

6

7

8

9

10

11

12

Programming Exercises 337

Exercise R7.12. What is the difference between the following two variable
definitions?

a. char a[] = "Hello";

b. char* b = "Hello";

Exercise R7.13. What is the difference between the following three variable
definitions?

a. char* p = NULL;

b. char* q = "";

c. char r[] = { '\0' };

Exercise R7.14. Consider this program segment:
char a[] = "Mary had a little lamb";
char* p = a;
int count = 0;
while (*p != '\0')
{
 count++;
 while (*p != ' ' && *p != '\0') p++;
 while (*p == ' ') p++;
}

What is the value of count at the end of the outer while loop?

Exercise R7.15. What are the limitations of the strcat and strncat functions when
compared to the + operator for concatenating string objects?

Exercise R7.16. Using typedef, define a function pointer type for functions with a
parameter double and no return value. Define a function apply that applies such a
function to all elements of a vector<double>. For example, the call

void apply(data, print)

should print all data if the print function is defined as
void print(double x) { cout << x << endl; }

Exercise P7.1. Implement a class Person with the following fields:
• the name
• a pointer to the person’s best friend (a Person*)
• a popularity counter that indicates how many other people have this person as

their best friend
Write a program that reads in a list of names, allocates a new Person for each of
them, and stores them in a vector<Person*>. Then ask the name of the best friend
for each of the Person objects. Locate the object matching the friend’s name and call

PROGRAMMING EXERCISES

338 CHAPTER 7 • Pointers

a set_best_friend member function to update the pointer and counter. Finally,
print out all Person objects, listing the name, best friend, and popularity counter for
each.

Exercise P7.2. Implement a class Person with two fields name and age, and a class Car
with three fields:

• the model
• a pointer to the owner (a Person*)
• a pointer to the driver (also a Person*)

Write a program that prompts the user to specify people and cars. Store them in a
vector<Person*> and a vector<Car*>. Traverse the vector of Person objects and incre-
ment their ages by one year. Finally, traverse the vector of cars and print out the car
model, owner’s name and age, and driver’s name and age.

Exercise P7.3. Enhance the Employee class of Chapter 2 to include a pointer to a
BankAccount. Read in employees and their salaries. Store them in a vector<Employee>.
For each employee, allocate a new bank account on the heap, except that two con-
secutive employees with the same last name should share the same account. Then
traverse the vector of employees and, for each employee, deposit 1/12th of their
annual salary into their bank account. Afterwards, print all employee names and
account balances.

Exercise P7.4. Enhance Exercise P7.3 to delete all bank account objects. Make sure
that no object gets deleted twice.

Exercise P7.5. Write a function that computes the average value of an array of float-
ing-point data:

double average(double* a, int a_size)

In the function, use a pointer variable, and not an integer index, to traverse the array
elements.

Exercise P7.6. Write a function that returns a pointer to the maximum value of an
array of floating-point data:

double* maximum(double a[], int a_size)

If a_size is 0, return NULL.

Exercise P7.7. Write a function that reverses the values of an array of floating-point
data:

void reverse(double a[], int a_size)

In the function, use two pointer variables, and not integer indexes, to traverse the
array elements.

Exercise P7.8. Implement the strncpy function of the standard library.

Exercise P7.9. Implement the standard library function
int strspn(const char s[], const char t[])

Programming Exercises 339

that returns the length of the initial portion of s consisting of characters in t (in any
order).

Exercise P7.10. Write a function
void reverse(char s[])

that reverses a character string. For example, "Harry" becomes "yrraH".

Exercise P7.11. Using the strncpy and strncat functions, implement a function
void concat(const char a[], const char b[], char result[],
 int result_maxlength)

that concatenates the strings a and b to the buffer result. Be sure not to overrun the
result. It can hold result_maxlength characters, not counting the '\0' terminator.
(That is, the buffer has result_maxlength + 1 bytes available.) Be sure to provide a
'\0' terminator.

Exercise P7.12. Add a member function
void Employee::format(char buffer[], int buffer_maxlength)

to the Employee class. The member function should fill the buffer with the name and
salary of the employee. Be sure not to overrun the buffer. It can hold
buffer_maxlength characters, not counting the '\0' terminator. (That is, the buffer
has buffer_maxlength + 1 bytes available.) Be sure to provide a '\0' terminator.

Exercise P7.13. Write a program that reads lines of text and appends them to a char
buffer[1000]. Stop after reading 1,000 characters. As you read in the text, replace all
newline characters '\n' with '\0' terminators. Establish an array char* lines[100],
so that the pointers in that array point to the beginnings of the lines in the text.
Only consider 100 input lines if the input has more lines. Then display the lines in
reverse order, starting with the last input line.

Exercise P7.14. The program in Exercise P7.13 is limited by the fact that it can only
handle inputs of 1,000 characters or 100 lines. Remove this limitation as follows.
Concatenate the input in one long string object. Use the c_str member function to
obtain a char* into the string’s character buffer. Establish the offsets of the begin-
nings of the lines as a vector<int>.

Exercise P7.15. Exercise P7.14 demonstrated how to use the string and
vector classes to implement resizable arrays. In this exercise, you should implement
that capability manually. Allocate a buffer of 1,000 characters from the heap (new
char[1000]). Whenever the buffer fills up, allocate a buffer of twice the size, copy
the buffer contents, and delete the old buffer. Do the same for the array of char*
pointers—start with a new char*[100] and keep doubling the size.

Exercise P7.16. Modify the print_table function of Section 7.6 so that it prints the
values of two functions. For example, the call print_table(square, sqrt) should
yield a table like this:

1 | 1.00 | 1.00
2 | 4.00 | 1.41

340 CHAPTER 7 • Pointers

Exercise P7.17. Implement a function
void fill_with_values(int[] a, int size, IntFunPointer f)

that sets the ith element of the array to f(i). Here IntFunPointer is a typedef for a
pointer to a function that consumes an int and yields an int. Provide a main func-
tion in which you call the fill_with_values function so that an array of ten integers
is filled with 1, 4, 9, 16, 25, …, 100.

Chapter 8
Inheritance

• To understand the concepts of inheritance and polymorphism

• To learn how inheritance is a tool for code reuse

• To learn how to call base-class constructors and
member functions

• To understand the difference between static and
dynamic binding

• To be able to implement dynamic binding with virtual functions

CHAPTER GOALS

In this chapter you will learn two of the most important concepts in object-oriented

programming: inheritance and polymorphism. Through inheritance, you will be

able to define new classes that are extensions of existing classes.

Polymorphism allows you to take advantage of the commonality between

related classes, while still giving each class the flexibility to implement specific

behavior. Using polymorphism, it is possible to build very flexible and extensible

systems.

342 CHAPTER 8 • Inheritance

CHAPTER CONTENTS

Inheritance is a mechanism for enhancing existing, working classes.
If a new class needs to be implemented and a class representing a more
general concept is already available, then the new class can inherit
from the existing class. For example, suppose we need to define a class

Manager. We already have a class Employee, and a manager is a special case of an
employee. In this case, it makes sense to use the language construct of inheritance.
Here is the syntax for the class definition:

class Manager : public Employee
{
public:

new member functions
private:

new data members
};

The : symbol denotes inheritance. The keyword public is required for a technical
reason (see Common Error 8.1 on page 348).

The existing, more general class is called the base class. The more
specialized class that inherits from the base class is called the derived
class. In our example, Employee is the base class and Manager is the
derived class.

8.1 Der ived Classes

Inheritance is a mechanism
for extending classes.

A derived class inherits
from a base class and is a
more specialized class.

8.1 Derived Classes 342
SYNTAX 8.1: Derived Class Definition 348
COMMON ERROR 8.1: Private Inheritance 348

8.2 Calling the Base-Class
Constructor 349

SYNTAX 8.2: Constructor with Base-

Class Initializer 350

8.3 Overriding Member Functions 350
COMMON ERROR 8.2: Attempting to Access Private

Base-Class Fields 355
COMMON ERROR 8.3: Forgetting the Base-

Class Name 355

ADVANCED TOPIC 8.1: Protected Access 356

8.4 Polymorphism 356
SYNTAX 8.3: Virtual Function Definition 363
COMMON ERROR 8.4: Slicing an Object 363
ADVANCED TOPIC 8.2: Virtual Self-Calls 364
RANDOM FACT 8.1: Operating Systems 364

8.1 • Derived Classes 343

 In the Manager class definition you specify only new member func-
tions and data members. All member functions and data members of
the Employee class are automatically inherited by the Manager class.
For example, the set_salary function automatically applies to
managers:

Manager m;
m.set_salary(68000);

The general form of the definition of a derived class is shown in Syntax 8.1.
Figure 1 is a class diagram showing the relationship between these classes. In the

preceding chapters, our diagrams focused on individual objects, which were drawn
as rectangular forms that contained boxes for the class name and the data members.
Since inheritance is a relationship between classes, not objects, we show two simple
boxes joined by an arrow with a hollow head, which indicates inheritance.

To better understand the mechanics of programming with inheritance, consider a
more interesting programming problem: modeling a set of clocks that display the
times in different cities.

Start with a base class Clock that can tell the current local time. In the constructor,
you can set the format to either “military format” (such as 21:05) or “am/pm” for-
mat (such as 9:05 pm). You then call the functions

int get_hours() const
int get_minutes() const

to get the hours and minutes. In military format, the hours range from 0 to 23. In
“am/pm” format, the hours range from 1 to 12. You can use the function

bool is_military() const

to test whether the clock uses military time format. Finally, the function
string get_location() const

returns the fixed string "Local". We will later redefine it to return a string that indi-
cates the location of the clock.

The derived class inherits
all data fields and functions
that it does not redefine.

Figure 1 An Inheritance Diagram

Employee

Manager

344 CHAPTER 8 • Inheritance

The following program demonstrates the Clock class. The program constructs
two Clock objects that display the time in both formats. If you run the program and
wait a minute before answering y to the prompt, you can see that the clock advances.

ch08/clocks1/clock.h

1 #ifndef CLOCK_H
2 #define CLOCK_H
3
4 #include <string>
5
6 using namespace std;
7
8 class Clock
9 {
10 public:
11 /**
12 Constructs a clock that can tell the local time.
13 @param use_military true if the clock uses military format
14 */
15 Clock(bool use_military);
16
17 /**
18 Gets the location of this clock.
19 @return the location
20 */
21 string get_location() const;
22
23 /**
24 Gets the hours of this clock.
25 @return the hours, in military or am/pm format
26 */
27 int get_hours() const;
28
29 /**
30 Gets the minutes of this clock.
31 @return the minutes
32 */
33 int get_minutes() const;
34
35 /**
36 Checks whether this clock uses military format.
37 @return true if military format
38 */
39 bool is_military() const;
40 private:
41 bool military;
42 };
43
44 #endif

8.1 • Derived Classes 345

ch08/clocks1/clock.cpp

ch08/clocks1/clocks1.cpp

1 #include "ccc_time.h"
2 #include "clock.h"
3
4 Clock::Clock(bool use_military)
5 {
6 military = use_military;
7 }
8
9 string Clock::get_location() const
10 {
11 return "Local";
12 }
13
14 int Clock::get_hours() const
15 {
16 Time now;
17 int hours = now.get_hours();
18 if (military) return hours;
19 if (hours == 0)
20 return 12;
21 else if (hours > 12)
22 return hours - 12;
23 else
24 return hours;
25 }
26
27 int Clock::get_minutes() const
28 {
29 Time now;
30 return now.get_minutes();
31 }
32
33 bool Clock::is_military() const
34 {
35 return military;
36 }

1 #include <iostream>
2 #include <iomanip>
3 #include <string>
4
5 using namespace std;
6
7 #include "clock.h"
8
9 int main()
10 {
11 Clock clock1(true);
12 Clock clock2(false);
13

346 CHAPTER 8 • Inheritance

Program Run

Now form a derived class TravelClock that can show the time in another location.
Consider how travel clocks are different from basic Clock objects. Travel clocks
store city names, and they show the time in those cities. The time is computed by
taking the local time and adding the time difference between the local time and the
time at the other location. For example, suppose the local time is Pacific Standard
Time. Then you can make a clock for traveling to New York as follows:

TravelClock clock(true, "New York", 3);
cout << "The time in " << clock.get_location() << " is "
 << clock.get_hours() << ":" << clock.get_minutes();

The value 3 in the constructor denotes the fact that the time in New York is 3 hours
ahead of Pacific Standard Time.

A TravelClock object differs from a Clock object in three ways:

• Its objects store the location name and time difference.
• The get_hours function of the TravelClock adds the time difference to the current

time.
• The get_location function returns the actual location, not the string "Local".

14 bool more = true;
15 while (more)
16 {
17 cout << "Military time is "
18 << clock1.get_hours() << ":"
19 << setw(2) << setfill('0')
20 << clock1.get_minutes()
21 << setfill(' ') << "\n";
22 cout << "am/pm time is "
23 << clock2.get_hours() << ":"
24 << setw(2) << setfill('0')
25 << clock2.get_minutes()
26 << setfill(' ') << "\n";
27
28 cout << "Try again? (y/n) ";
29 string input;
30 getline(cin, input);
31 if (input != "y") more = false;
32 }
33 return 0;
34 }

Military time is 21:05
am/pm time is 9:05
Try again? (y/n) y
Military time is 21:06
am/pm time is 9:06
Try again? (y/n) n

8.1 • Derived Classes 347

When the TravelClock class inherits from the Clock class, it needs only to spell out
these three differences:

class TravelClock : public Clock
{
public:
 TravelClock(bool mil, string loc, int diff);
 int get_hours() const;
 string get_location() const;
private:
 string location;
 int time_difference;
};

Figure 2 shows the inheritance diagram.
Figure 3 shows the layout of a TravelClock object. It inherits the military data

field from the Clock base object, and it gains two additional data fields: location and
time_difference.

It is important to note that the data members of the base class (such as the mili-
tary field in our example) are present in each derived-class object, but they are not
accessible by the member functions of the derived class. Since these fields are private
data of the base class, only the base class has access to them. The derived class has
no more access rights than any other class. In particular, none of the TravelClock
member functions can access the military field.

Figure 2
Inheritance Diagram for Clocks

Figure 3 Data Layout of Derived Object

Clock

TravelClock

military =

TravelClock

location =

time_difference =

Clock portion

348 CHAPTER 8 • Inheritance

Private Inheritance

It is a common error to forget the keyword public that must follow the colon after the
derived-class name.

class Manager : Employee // Error
{
 ...
};

The class definition will compile. The Manager still inherits from Employee, but it inherits pri-
vately. That is, only the member functions of Manager get to call member functions of
Employee. Whenever you invoke an Employee member function on a Manager object else-
where, the compiler will flag this as an error:

int main()
{
 Manager m;
 ...
 m.set_salary(65000); // Error
}

This private inheritance is rarely useful. In fact, it violates the spirit of using inheritance in
the first place—namely, to create objects that are usable just like the base-class objects. You
should always use public inheritance and remember to supply the public keyword in the
definition of the derived class.

SYNTAX 8.1 Derived Class Definition

class DerivedClassName : public BaseClassName
{

features
};

Example:

class Manager : public Employee
{
public:
 Manager(string name, double salary, string dept);
 string get_department() const;
private:
 string department;
};

Purpose:

Define a class that inherits features from a base class.

COMMON ERROR 8.1

8.2 • Calling the Base-Class Constructor 349

The constructor of a derived class has two tasks:

• Initialize the base object
• Initialize all data members

The second task is fairly straightforward. In order to avoid negative values in the
remainder computation of the get_hours function, add 24 to negative time differ-
ences until they become positive.

TravelClock::TravelClock(bool mil, string loc, int diff)
// Not complete
{
 location = loc;
 time_difference = diff;
 while (time_difference < 0)
 time_difference = time_difference + 24;
}

The first task is not as simple. You must construct the base object and tell it whether
to use military time. However, the base class has no member function to set the
clock format. The only way to set this value is through the Clock constructor. That
is, you must somehow set the base object to

Clock(mil)

This is a common situation. Frequently, a derived-class constructor must invoke the
base-class constructor before initializing the derived-class data. There is a special
syntactical construct to denote the base construction:

TravelClock::TravelClock(bool mil, string loc, int diff)
 : Clock(mil)

{
 ...
}

The line
: Clock(mil)

means: Call the Clock constructor with parameter mil before executing the code
inside the { }. The colon is supposed to remind you of inheritance.

In general, the syntax for a derived-class constructor is shown in
Syntax 8.2. (Actually, as explained in Advanced Topic 5.1, the same
syntax can be used to invoke data field constructors as well, but then
you place the name of the data field, not the name of the base class,
after the colon. In this book, we choose not to use that syntax to ini-
tialize data fields.)

8.2 Cal l ing the Base-Class Constructor

The constructor of a
derived class can pass
parameters to the base
class constructors.

350 CHAPTER 8 • Inheritance

If you omit the base-class constructor, then the base object is con-
structed with the default constructor of the base class. However, if
the base class has no default constructor (such as the Clock class),
then you have to explicitly call the base-class constructor in the
derived-class constructor.

It is common for a derived class to redefine or override a member
function of a base class. You want to override a base class member
function whenever you are not satisfied with simply inheriting it.

Consider the get_hours function of the TravelClock class. It needs
to override the base class get_hours function in order to take the time difference into
account. Specifically, the derived class function needs to

• Get the hour value of the local time
• Adjust it by the time difference

Here is the pseudocode for the function.
int TravelClock::get_hours() const
{
 int h = local hour value;
 if (clock uses military time)
 return (h + time_difference) % 24;

If no parameters are
passed explicitly, the
default constructor of the
base class is invoked.

SYNTAX 8.2 Constructor with Base-Class Initializer

DerivedClassName::DerivedClassName(expressions)
 : BaseClassName(expressions)
{

statements
}

Example:

Manager::Manager(string name, double salary, string dept)
 : Employee(name, salary)
{
 department = dept;
}

Purpose:

Supply the implementation of a constructor, initializing the base class before the body of
the derived-class constructor.

8.3 Overr id ing Member Funct ions

The derived class can
override functions from
the base class.

8.3 • Overriding Member Functions 351

 else
 {
 h = (h + time_difference) % 12;
 if (h == 0) return 12;
 else return h;
 }
}

First, we need to determine how to find out whether the clock uses military time.
You can’t just access the military field in the base class. While it is true that each
object of type TravelClock inherits the military data field from the Clock base class,
accessing this data field is not allowed. It is private to Clock and only accessible
through the Clock member functions.

Fortunately, the Clock class has a member function, is_military, that reports the
value of the military flag. You can call that member function. On which object?
The clock that you are currently querying—that is, the implicit parameter of the
TravelClock::get_hours function. As you saw in Chapter 5, if you invoke a member
function on the implicit parameter, you don’t specify the parameter but just write
the member function name:

if (is_military()) ...

The compiler interprets
is_military()

as
implicit parameter.is_military();

Note that the is_military function is inherited from the base class, so you can call it
through the implicit parameter object of the derived class.

But how do you get the local hour value? You can ask the get_hours function of
the base class. Thus, you have to invoke get_hours:

int TravelClock::get_hours() const
{
 int h = get_hours(); // Not complete
 ...
}

But this won’t quite work. Because the implicit parameter of Travel-

Clock::get_hours is of type TravelClock, and there is a function named get_hours in
the TravelClock class, that function will be called—but that is just the function you
are currently writing! The function would call itself over and over, and the program
would die in an infinite recursion.

Instead, you must be more specific which function named get_hours you want to
call. You want Clock::get_hours:

int TravelClock::get_hours() const
{
 int h = Clock::get_hours();
 ...
}

352 CHAPTER 8 • Inheritance

This version of the get_hours member function is correct. To get the
hours of a travel clock, first get the hours of its underlying Clock,
then add the time difference.

In general, suppose B::f is a function in a base class. Then the
derived class D can take three kinds of actions:

• The derived class can extend B::f by supplying a new implementation D::f that
calls B::f . For example, the TravelClock::get_hours function is an extension of
Clock::get_hours.

• The derived class can replace B::f by supplying a new implementation D::f that
is unrelated to B::f . For example, the TravelClock::get_location function
(which returns the location field) is a replacement for Clock::get_location
(which only returns the string "Local").

• The derived class can inherit B::f , simply by not supplying an implementation
for f. For example, the TravelClock class inherits Clock::get_minutes and
Clock::is_military.

Here is the complete program that displays a plain Clock object and two Travel-
Clock objects. As you can see, the TravelClock code is quite short. The files defining
the Clock class, clock.h and clock.cpp, are the same as in Section 8.1, but clock.h is
shown again here for comparison to the TravelClock code. This example shows how
you can use inheritance to adapt existing code to a new purpose.

ch08/clocks2/clock.h

Use BaseClass::function
notation to explicitly call a
base-class function.

1 #ifndef CLOCK_H
2 #define CLOCK_H
3
4 #include <string>
5
6 using namespace std;
7
8 class Clock
9 {
10 public:
11 /**
12 Constructs a clock that can tell the local time.
13 @param use_military true if the clock uses military format
14 */
15 Clock(bool use_military);
16
17 /**
18 Gets the location of this clock.
19 @return the location
20 */
21 string get_location() const;
22
23 /**
24 Gets the hours of this clock.
25 @return the hours, in military or am/pm format
26 */
27 int get_hours() const;

8.3 • Overriding Member Functions 353

ch08/clocks2/travelclock.h

ch08/clocks2/travelclock.cpp

28
29 /**
30 Gets the minutes of this clock.
31 @return the minutes
32 */
33 int get_minutes() const;
34
35 /**
36 Checks whether this clock uses military format.
37 @return true if military format
38 */
39 bool is_military() const;
40 private:
41 bool military;
42 };
43
44 #endif

1 #include <string>
2
3 using namespace std;
4
5 #include "clock.h"
6
7 class TravelClock : public Clock
8 {
9 public:
10 /**
11 Constructs a travel clock that can tell the time
12 at a specified location.
13 @param mil true if the clock uses military format
14 @param loc the location
15 @param diff the time difference from the local time
16 */
17 TravelClock(bool mil, string loc, int diff);
18 string get_location() const;
19 int get_hours() const;
20 private:
21 string location;
22 int time_difference;
23 };

1 #include "travelclock.h"
2
3 TravelClock::TravelClock(bool mil, string loc, int diff)
4 : Clock(mil)
5 {
6 location = loc;
7 time_difference = diff;

354 CHAPTER 8 • Inheritance

ch08/clocks2/clocks2.cpp

8 while (time_difference < 0)
9 time_difference = time_difference + 24;
10 }
11
12 string TravelClock::get_location() const
13 {
14 return location;
15 }
16
17 int TravelClock::get_hours() const
18 {
19 int h = Clock::get_hours();
20 if (is_military())
21 return (h + time_difference) % 24;
22 else
23 {
24 h = (h + time_difference) % 12;
25 if (h == 0) return 12;
26 else return h; }
27 }
28 }

1 #include <iostream>
2 #include <iomanip>
3
4 using namespace std;
5
6 #include "travelclock.h"
7
8 int main()
9 {
10 Clock clock1(true);
11 TravelClock clock2(true, "Rome", 9);
12 TravelClock clock3(false, "Tokyo", -7);
13
14 cout << clock1.get_location() << " time is "
15 << clock1.get_hours() << ":"
16 << setw(2) << setfill('0')
17 << clock1.get_minutes()
18 << setfill(' ') << "\n";
19 cout << clock2.get_location() << " time is "
20 << clock2.get_hours() << ":"
21 << setw(2) << setfill('0')
22 << clock2.get_minutes()
23 << setfill(' ') << "\n";
24 cout << clock3.get_location() << " time is "
25 << clock3.get_hours() << ":"
26 << setw(2) << setfill('0')
27 << clock3.get_minutes()
28 << setfill(' ') << "\n";
29 return 0;
30 }

8.3 • Overriding Member Functions 355

Program Run

Attempting to Access Private Base-Class Fields

A derived class inherits all fields from the base class. However, if the fields are private, the
derived-class functions have no rights to access them. For example, suppose the salary of a
manager is computed by adding a bonus to the annual salary:

double Manager::get_salary() const
{
 return salary + bonus;
 // Error—salary is private to Employee
}

The Manager::get_salary function has no more rights to access the private Employee fields
than any other function. The remedy is to use the public interface of the base class:

double Manager::get_salary() const
{
 return Employee::get_salary() + bonus;
}

Forgetting the Base-Class Name

A common error in extending the functionality of a base-class function is to forget the base-
class name. For example, to compute the salary of a manager, get the salary of the underlying
Employee object and add a bonus:

double Manager::get_salary() const
{
 double base_salary = get_salary();
 // Error—should be Employee::get_salary()
 return base_salary + bonus;
}

Here get_salary() refers to the get_salary function applied to the implicit parameter of the
member function. The implicit parameter is of type Manager, and there is a
Manager::get_salary function, so that function is called. Of course, that is a recursive call to
the function that we are writing. Instead, you must be precise which get_salary function
you want to call. In this case, you need to call Employee::get_salary explicitly.

Whenever you call a base-class function from a derived-class function with the same
name, be sure to give the full name of the function, including the base-class name.

Local time is 9:05
Rome time is 18:05
Tokyo time is 2:05

COMMON ERROR 8.2

COMMON ERROR 8.3

356 CHAPTER 8 • Inheritance

Protected Access

You ran into some degree of grief when trying to implement the get_hours member function
of the TravelClock class. That member function needed access to the military data field of
the base class. Your remedy was to have the base class provide the appropriate accessor
function.

C++ offers another solution. The base class can declare the data field as protected:

class Clock
{
public:
 ...
protected:
 bool military

};

Protected data and member functions can be accessed by the
member functions of a class and all its derived classes. For
example, TravelClock inherits from Clock, so its member
functions can access the protected data fields of the Clock
class.

Some programmers like the protected access feature
because it seems to strike a balance between absolute protection (making all data members
private) and no protection at all (making all data members public). However, experience has
shown that protected data members are subject to the same kind of problems as public data
members. The designer of the base class has no control over the authors of derived classes.
Any of the derived-class member functions can corrupt the base-class data. Furthermore,
classes with protected data members are hard to modify. Even if the author of the base class
would like to change the data implementation, the protected data members cannot be
changed, because someone might have written a derived class whose code depends on them.

It is best to leave all data private. If you want to grant access to the data only to derived-
class member functions, consider making the accessor function protected.

In the preceding sections you saw one important use of inheritance:
the reuse of existing code in a new problem. In this section you will
see an even more powerful application of inheritance: to model varia-
tion in object behavior.

If you look into the main function of clocks2.cpp, you will find that
there was quite a bit of repetitive code. It would be nicer if all three

clocks were collected in a vector and one could use a loop to print the clock values:

ADVANCED TOPIC 8.1

Protected features can
be accessed by the
member functions of all
derived classes.

8.4 Polymorphism

Polymorphism (literally,
“having multiple shapes”)
describes a set of objects
of different classes with
similar behavior.

8.4 • Polymorphism 357

vector<Clock> clocks;
clocks[0] = Clock(true);
clocks[1] = TravelClock(true, "Rome", 9);
clocks[2] = TravelClock(false, "Tokyo", -7);

for (int i = 0; i < clocks.size(); i++)
{
 cout << clocks[i].get_location() << " time is "
 << clocks[i].get_hours() << ":"
 << setw(2) << setfill('0')
 << clocks[i].get_minutes()
 << setfill(' ') << "\n";
}

Unfortunately, that does not work. The vector clocks holds objects of type Clock.
The compiler realizes that a TravelClock is a special case of a Clock. Thus it permits
the assignment from a travel clock to a clock:

clocks[1] = TravelClock(true, "Rome", 9);

However, a TravelClock object has three data fields, whereas a Clock object has just
one field, the military flag. There is no room to store the derived-class data. That
data simply gets sliced away when you assign a derived-class object to a base-class
variable (see Figure 4).

If you run the resulting program, the output is:
Local time is 21:15
Local time is 21:15
Local time is 9:15

This problem is very typical of code that needs to manipulate objects
from a mixture of data types. Derived-class objects are usually bigger
than base-class objects, and objects of different derived classes have
different sizes. A vector of objects cannot deal with this variation in
sizes.

Instead, you need to store the actual objects elsewhere and collect their locations
in a vector by storing pointers. (If you have skipped Chapter 7, you will now need
to turn to Section 7.1 to learn about pointers. You can read that section indepen-
dently of the remainder of Chapter 7.)

When converting a derived
class object to a base
class, the derived class
data is sliced away.

Figure 4 Slicing Away Derived-Class Data

military =

TravelClock

location =

time_difference =

military =

Clock

true true

“Rome”

9

358 CHAPTER 8 • Inheritance

Figure 5 shows the vector of pointers. The reason for using pointers is simple:
Pointers to the various clock objects all have the same size—namely, the size of a
memory address—even though the objects themselves may have different sizes.

Here is the code to set up the vector of pointers:
vector<Clock*> clocks;
// Populate clocks
clocks[0] = new Clock(true);
clocks[1] = new TravelClock(true, "Rome", 9);
clocks[2] = new TravelClock(false, "Tokyo", -7);

As the highlighted code shows, you simply declare the vector to hold pointers, and
allocate all objects by calling new.

Note that the last two assignments assign a derived-class pointer
of type TravelClock* to a base-class pointer of type Clock*. This is
perfectly legal. A pointer is the starting address of an object. Because
every TravelClock is a special case of a Clock, the starting address of a

TravelClock object is, in particular, the starting address of a Clock object. The reverse
assignment—from a base-class pointer to a derived-class pointer—is an error.

Of course, clocks[i] is a pointer to the ith object, not the ith object itself. Thus,
the code to print all clocks is

cout << clocks[i]->get_location() << " time is "
 << clocks[i]->get_hours() << ":"
 << setw(2) << setfill('0')
 << clocks[i]->get_minutes()
 << setfill(' ') << "\n";

Figure 5 A Polymorphic Vector

clocks =

military =

TravelClock

location =

time_difference =

military =

Clock

true

true

“Rome”
9

military =

TravelClock

location =

time_difference =

false

“Tokyo”
–7

A derived-class pointer
can be converted to a
base-class pointer.

8.4 • Polymorphism 359

Note the use of the -> operators because clocks[i] is a pointer.
Unfortunately, there remains a problem. The output is still
Local time is 21:15
Local time is 21:15
Local time is 9:15

As you can see, none of the travel clock code was executed. The compiler generated
code only to call the Clock functions, not the functions that are appropriate for each
object.

In the compiler’s defense, it actually took the correct action. A member function
call is compiled into a call to one particular function. It is the compiler’s job to find
the appropriate function that should be called. In this case, the pointer clocks[i]
points to the implicit parameter; it is a pointer of type Clock*. Therefore, the com-
piler calls Clock member functions.

However, in this case you really do not want a simple function call. You want
first to determine the actual type of the object to which clocks[i] points, which can
be either a Clock or a TravelClock object, and then call the appropriate functions.
This too can be arranged in C++. You must alert the compiler that the function call
needs to be preceded by the appropriate function selection, which can be a different
one for every iteration in the loop. You use the virtual keyword for this purpose:

class Clock
{
public:
 Clock(bool use_military);

virtual string get_location() const;
virtual int get_hours() const;

 int get_minutes() const;
 bool is_military() const;
private:
 ...
};

The virtual keyword must be used in the base class. All functions with the same
name and parameter types in derived classes are then automatically virtual. How-
ever, it is considered good taste to supply the virtual keyword for the derived-class
functions as well.

class TravelClock : public Clock
{
public:
 TravelClock(bool mil, string loc, int diff);

virtual string get_location() const;
virtual int get_hours() const;

private:
 ...
};

You do not supply the keyword virtual in the function definition:
string Clock::get_location() const // No virtual keyword
{
 return "Local";
}

360 CHAPTER 8 • Inheritance

Whenever a virtual function is called, the compiler determines the
type of the implicit parameter in the particular call at run time. The
appropriate function for that object is then called. For example,
when the get_location function is declared virtual, the call

clocks[i]->get_location();

always calls the function belonging to the actual type of the object to
which clocks[i] points—either Clock::get_location or Travel-

Clock::get_location.
When a virtual function is called, the exact function that is being

executed is only determined at run time. Such a selection/call combi-
nation is called dynamic binding. In contrast, the traditional call,
which always invokes the same function, is called static binding.

Only member functions can be virtual. A member function that is
not tagged as virtual is statically bound. That is, the type of the
implicit parameter, as it is known at compile time, is used to select

one function, and that function is always called. Because static binding is less com-
plex, it is the default in C++. You should use virtual functions only when you need
the flexibility of dynamic binding at run time.

The clocks vector collects a mixture of both kinds of clock. Such a collection is
called polymorphic (literally, “of multiple shapes”). Objects in a polymorphic col-
lection have some commonality but are not necessarily of the same type. Inherit-
ance is used to express this commonality, and virtual functions enable variations in
behavior.

Virtual functions give programs a great deal of flexibility. The printing loop
describes only the general mechanism: “Print the location, hours, and minutes of
each clock”. Each object knows on its own how to carry out the specific tasks: “Get
your location” and “Get your hours”.

Using virtual functions makes programs easily extensible. Suppose we want to
have a new kind of clock for space travel. All we need to do is to define a new class
SpaceTravelClock, with its own get_location and get_hours functions. Then we can
populate the clocks vector with a mixture of plain clocks, travel clocks, and space
travel clocks. The code that prints all clocks need not be changed at all! The calls to
the virtual get_location and get_hours functions automatically select the correct
member functions of the newly defined classes.

Here is the clock program again, using virtual functions. Not shown are
clock.cpp (which is unchanged from the version shown on page 345) and travel-
clock.cpp (unchanged from the version shown on page 353). When you run the
program, you will find that the three Clock* pointers call the appropriate versions of
the virtual functions.

ch08/clocks3/clock.h

When a virtual function is
called, the version
belonging to the actual
type of the implicit
parameter is invoked.

A dynamically bound
function is selected at run
time. A statically bound
function is selected at
compile time.

1 #ifndef CLOCK_H
2 #define CLOCK_H
3

8.4 • Polymorphism 361

ch08/clocks3/travelclock.h

4 #include <string>
5
6 using namespace std;
7
8 class Clock
9 {
10 public:
11 /**
12 Constructs a clock that can tell the local time.
13 @param use_military true if the clock uses military format
14 */
15 Clock(bool use_military);
16
17 /**
18 Gets the location of this clock.
19 @return the location
20 */
21 virtual string get_location() const;
22
23 /**
24 Gets the hours of this clock.
25 @return the hours, in military or am/pm format
26 */
27 virtual int get_hours() const;
28
29 /**
30 Gets the minutes of this clock.
31 @return the minutes
32 */
33 int get_minutes() const;
34
35 /**
36 Checks whether this clock uses military format.
37 @return true if military format
38 */
39 bool is_military() const;
40 private:
41 bool military;
42 };
43
44 #endif

1 #include <string>
2
3 using namespace std;
4
5 #include "clock.h"
6
7 class TravelClock : public Clock
8 {

362 CHAPTER 8 • Inheritance

ch08/clocks3/clocks3.cpp

Program Run

9 public:
10 /**
11 Constructs a travel clock that can tell the time
12 at a specified location.
13 @param mil true if the clock uses military format
14 @param loc the location
15 @param diff the time difference from the local time
16 */
17 TravelClock(bool mil, string loc, int diff);
18 virtual string get_location() const;
19 virtual int get_hours() const;
20 private:
21 string location;
22 int time_difference;
23 };

1 #include <iostream>
2 #include <iomanip>
3 #include <vector>
4
5 using namespace std;
6
7 #include "travelclock.h"
8
9 int main()
10 {
11 vector<Clock*> clocks(3);
12 clocks[0] = new Clock(true);
13 clocks[1] = new TravelClock(true, "Rome", 9);
14 clocks[2] = new TravelClock(false, "Tokyo", -7);
15
16 for (int i = 0; i < clocks.size(); i++)
17 {
18 cout << clocks[i]->get_location() << " time is "
19 << clocks[i]->get_hours() << ":"
20 << setw(2) << setfill('0')
21 << clocks[i]->get_minutes()
22 << setfill(' ') << "\n";
23 }
24 return 0;
25 }

Local time is 9:05
Rome time is 18:05
Tokyo time is 2:05

8.4 • Polymorphism 363

Slicing an Object

In C++ it is legal to copy a derived-class object into a base-class variable. However, any
derived-class information is lost in the process. For example, when a Manager object is assigned
to a variable of type Employee, the result is only the employee portion of the manager data:

Manager m;
...
Employee e = m; // Holds only the Employee base data of m

Any information that is particular to managers is sliced off, because it would not fit into a
variable of type Employee. This slicing may indeed be what you want. The code using the
variable e may not care about the Manager part of the object and just needs to consider it as an
employee. To avoid slicing, use pointers.

Note that the reverse assignment is not legal. That is, you cannot copy a base-class object
into a derived-class variable.

Employee e;
...
Manager m = e; // Error

SYNTAX 8.3 Virtual Function Definition

class ClassName
{
 virtual return_type function_name(parameter1, parameter2, ..., parametern);
 ...
};

Example:

class Employee
{
public:
 virtual double get_salary();
 ...
};

Purpose:

Define a dynamically-bound function that can be redefined in derived classes. When the
function is called, the actual type of the implicit parameter determines which version of
the function executes.

COMMON ERROR 8.4

364 CHAPTER 8 • Inheritance

Virtual Self-Calls

Add the following print function to the Clock class:

void Clock::print() const
{
 cout << get_location() << " time is "
 << get_hours() << ":"
 << setw(2) << setfill('0')
 << get_minutes()
 << setfill(' ') << "\n";
}

Do not redefine the print function in the TravelClock class. Now consider the call

TravelClock rome_clock(true, "Rome", 9);
rome_clock.print();

Which get_location and get_hours function will the print function call? If you look inside
the code of the Clock::print function, you can see that these functions are executed on the
implicit object.

void Clock::print() const
{
 cout << implicit parameter.get_location() << " time is "
 << implicit parameter.get_hours() << ":"
 << setw(2) << setfill('0')
 << implicit parameter.get_minutes()
 << setfill(' ') << "\n";
}

The implicit parameter in our call is rome_clock, an object of type TravelClock. Because the
get_location and get_hours functions are virtual, the TravelClock versions of the function
are called automatically. This happens even though the print function is defined in the Clock
class, which has no knowledge of the TravelClock class.

As you can see, virtual functions are a very powerful mechanism. The Clock class supplies
a print function that specifies the common nature of printing, namely to print the location
and time. How the location and time are determined is left to the derived classes.

Operating Systems

Without an operating system, a computer would not be useful. Minimally, you need an oper-
ating system to locate files and to start programs. The programs that you run need services
from the operating system to access devices and to interact with other programs. Operating
systems on large computers need to provide more services than those on personal computers.

 Here are some typical services:
• Program loading. Every operating system provides some way of launching application

programs. The user indicates what program should be run, usually by typing in the name

ADVANCED TOPIC 8.2

RANDOM FACT 8.1

8.4 • Polymorphism 365

of the program or by clicking on an icon. The operating system locates the program code,
loads it in memory, and starts it.

• Managing files. A storage device such as a hard disk is, electronically, simply a device
capable of storing a huge sequence of zeroes and ones. It is up to the operating system to
bring some structure to the storage layout and organize it into files, folders, and so on.
The operating system also needs to impose some amount of security and redundancy into
the file system so that a power outage does not jeopardize the contents of an entire hard
disk. Some operating systems do a better job in this regard than others.

• Virtual memory. Memory is expensive, and few computers have enough RAM to hold all
programs and their data that a user would like to run simultaneously. Most operating sys-
tems extend the available memory by storing some data on the hard disk. The application
programs do not realize what is happening. When a program accesses a data item that is
currently not in memory, the processor senses this and notifies the operating system. The
operating system swaps the needed data from the hard disk into RAM, simultaneously
swapping out a memory block of equal size that has not been accessed for some time.

• Handling multiple users. The operating systems of large and powerful computers allow
simultaneous access by multiple users. Each user is connected to the computer through a
separate terminal. The operating system authenticates users by checking that they have a
valid account and password. It gives each user a small slice of processor time, then serves
the next user.

• Multitasking. Even if you are the sole user of a computer, you may want to run multiple
applications—for example, to read your e-mail in one window and run the C++ compiler
in another. The operating system is responsible for dividing processor time between the
applications you are running, so that each can make progress.

Figure 6 A Graphical Software Environment for the Linux Operating System

366 CHAPTER 8 • Inheritance

• Printing. The operating system queues up the print requests that are sent by multiple
applications. This is necessary to make sure that the printed pages do not contain a mix-
ture of words sent simultaneously from separate programs.

• Windows. Many operating systems present their users with a desktop made up of multiple
windows. The operating system manages the location and appearance of the window
frames; the applications are responsible for the interior.

• Fonts. To render text on the screen and the printer, the shapes of characters must be
defined. This is especially important for programs that can display multiple type styles
and sizes. Modern operating systems contain a central font repository.

• Communicating between programs. The operating system can facilitate the transfer of
information between programs. That transfer can happen through cut and paste or inter-
process communication. Cut and paste is a user-initiated data transfer in which the user
copies data from one application into a transfer buffer (often called a “clipboard”) man-
aged by the operating system and inserts the buffer’s contents into another application.
Interprocess communication is initiated by applications that transfer data without direct
user involvement.

• Networking. The operating system provides protocols and services for enabling applica-
tions to reach information on other computers attached to the network.

Today, the most popular operating systems are Microsoft Windows, UNIX and its variants
(such as Linux), and the Macintosh OS.

1. Inheritance is a mechanism for extending classes.

2. A derived class inherits from a base class and is a more specialized class.

3. The derived class inherits all data fields and functions that it does not
redefine.

4. The constructor of a derived class can pass parameters to the base class
constructors.

5. If no parameters are passed explicitly, the default constructor of the base class is
invoked.

6. The derived class can override functions from the base class.

7. Use BaseClass::function notation to explicitly call a base-class function.

8. Protected features can be accessed by the member functions of all derived
classes.

9. Polymorphism (literally, “having multiple shapes”) describes a set of objects of
different classes with similar behavior.

10. When converting a derived class object to a base class, the derived class data is
sliced away.

CHAPTER SUMMARY

Review Exercises 367

11. A derived-class pointer can be converted to a base-class pointer.

12. When a virtual function is called, the version belonging to the actual type of the
implicit parameter is invoked.

13. A dynamically bound function is selected at run time. A statically bound func-
tion is selected at compile time.

Exercise R8.1. An object-oriented traffic simulation system has the following classes:
 Vehicle PickupTruck
 Car SportUtilityVehicle
 Truck Minivan
 Sedan Bicycle
 Coupe Motorcycle

Draw an inheritance diagram that shows the relationships between these classes.

Exercise R8.2. What inheritance relationships would you establish among the
following classes?

 Student
 Professor
 TeachingAssistant
 Employee
 Secretary
 DepartmentChair
 Janitor
 SeminarSpeaker
 Person
 Course
 Seminar
 Lecture
 ComputerLab

Exercise R8.3. Consider the following classes B and D:
class B
{
public:
 B();
 B(int n);
};

B::B()
{
 cout << "B::B()\n";
}

B::B(int n)
{

REVIEW EXERCISES

368 CHAPTER 8 • Inheritance

 cout << "B::B(" << n << ")\n";
}

class D : public B
{
public:
 D();
 D(int n);
private:
 B b;
};

D::D()
{
 cout << "D::D()\n";
}

D::D(int n) : B(n)
{
 b = B(-n);
 cout << "D::D("<< n <<")\n";
}

What does the following program print?
int main()
{
 D d(3);
 return 0;
}

Determine the answer by hand, not by compiling and running the program.

Exercise R8.4. What does the following program print?
class B
{
public:
 void print(int n) const;
};

void B::print(int n) const
{
 cout << n << "\n";
}

class D : public B
{
public:
 void print(int n) const;
};

void D::print(int n) const
{
 if (n <= 1) B::print(n);
 else if (n % 2 == 0) print(n / 2);
 else print(3 * n + 1);

Review Exercises 369

}

int main()
{
 D d;
 d.print(3);
 return 0;
}

Determine the answer by hand, not by compiling and running the program.

Exercise R8.5. What is wrong with the following code?
class B
{
public:
 B();
 B(int n);
 void print() const;
private:
 int b;
};

B::B()
{
 b = 0;
}

B::B(int n)
{
 b = n;
}

void B::print() const
{
 cout << "B: " << b << "\n";
}

class D : public B
{
public:
 D();
 D(int n);
 void print() const;
};

D::D()
{
}

D::D(int n)
{
 b = n;
}

370 CHAPTER 8 • Inheritance

void D::print() const
{
 cout << "D: " << b << "\n";
}

How can you fix the errors?

Exercise R8.6. Suppose the class D inherits from B. Which of the following assign-
ments are legal?

B b;
D d;
B* pb;
D* pd;

a. b = d;

b. d = b;

c. pd = pb;

d. pb = pd;

e. d = pd;

f. b = *pd;

g. *pd = *pb;

Exercise R8.7. Which of the following calls are statically bound, and which are
dynamically bound? What does the program print?

class B
{
public:
 B();
 virtual void p() const;
 void q() const;
};

B::B() {}

void B::p() const
{
 cout << "B::p\n";
}

void B::q() const
{
 cout << "B::q\n";
}

class D : public B
{
public:
 D();
 virtual void p() const;
 void q() const;
};

Review Exercises 371

D::D()
{
}

void D::p() const
{
 cout << "D::p\n";
}

void D::q() const
{
 cout << "D::q\n";
}

int main()
{
 B b;
 D d;
 B* pb = new B;
 B* pd = new D;
 D* pd2 = new D;

 b.p(); b.q();
 d.p(); d.q();
 pb->p(); pb->q();
 pd->p(); pd->q();
 pd2->p(); pd2->q();
 return 0;
}

Determine the answer by hand, not by compiling and running the program.

Exercise R8.8. True or false?
a. When a member function is invoked through a pointer, it is always

statically bound.
b. When a member function is invoked through an object, it is always

statically bound.
c. Only member functions can be dynamically bound.
d. Only nonmember functions can be statically bound.
e. When a function is virtual in the base class, it cannot be made nonvirtual in a

derived class.
f. Calling a virtual function is slower than calling a nonvirtual function.
g. Constructors can be virtual.
h. It is good programming practice to make all member functions virtual.

372 CHAPTER 8 • Inheritance

Exercise P8.1. Derive a class Programmer from Employee. Supply a constructor
Programmer(string name, double salary) that calls the base-class constructor.
Supply a function get_name that returns the name in the format "Hacker, Harry
(Programmer)".

Exercise P8.2. Implement a base class Person. Derive classes Student and Instructor
from Person. A person has a name and a birthday. A student has a major, and an
instructor has a salary. Write the class definitions, the constructors, and the member
functions print() for all classes.

Exercise P8.3. Derive a class Manager from Employee. Add a data field, named
department, of type string. Supply a function print that prints the manager’s name,
department, and salary. Derive a class Executive from Manager. Supply a function
print that prints the string Executive, followed by the information stored in the
Manager base object.

Exercise P8.4. Implement a base class Account and derived classes Savings and
Checking. In the base class, supply member functions deposit and withdraw. Provide
a function daily_interest that computes and adds the daily interest. For calcula-
tions, assume that every month has 30 days. Checking accounts yield interest of 3
percent monthly on balances over $1,000. Savings accounts yield interest of 6 per-
cent on the entire balance. Write a driver program that makes a month’s worth of
deposits and withdrawals and calculates the interest every day.

Exercise P8.5. Measure the speed difference between a statically bound call and a
dynamically bound call. Use the Time class to measure the time spent in one loop of
virtual function calls and another loop of regular function calls.

Exercise P8.6. Write a base class Worker and derived classes HourlyWorker and
SalariedWorker. Every worker has a name and a salary rate. Write a virtual function
compute_pay(int hours) that computes the weekly pay for every worker. An hourly
worker gets paid the hourly wage for the actual number of hours worked, if hours is
at most 40. If the hourly worker worked more than 40 hours, the excess is paid at
time and a half. The salaried worker gets paid the hourly wage for 40 hours, no mat-
ter what the actual number of hours is.

Exercise P8.7. Implement a base class Appointment and derived classes Onetime, Daily,
Weekly, and Monthly. An appointment has a description (for example, “see the den-
tist”) and a date and time. Write a virtual function occurs_on(int year, int month,
int day) that checks whether the appointment occurs on that date. For example, for
a monthly appointment, you must check whether the day of the month matches.
Then fill a vector of Appointment* with a mixture of appointments. Have the user
enter a date and print out all appointments that happen on that date.

Exercise P8.8. Improve the appointment book program of Exercise P8.7. Give the
user the option to add new appointments. The user must specify the type of the
appointment, the description, and the date and time.

PROGRAMMING EXERCISES

Programming Exercises 373

Exercise P8.9. Improve the appointment book program of Exercises P8.7 and P8.8
by letting the user save the appointment data to a file and reload the data from a file.
The saving part is straightforward: Make a virtual function save. Save out the type,
description, date, and time. The loading part is not so easy. You must first determine
the type of the appointment to be loaded, create an object of that type with its
default constructor, and then call a virtual load function to load the remainder.

Exercise P8.10. Implement a base class Vehicle and derived classes Car and Truck. A
vehicle has a position on the screen. Write virtual functions draw that draw cars and
trucks as follows:

Then populate a vector of Vehicle* pointers with a mixture of cars and trucks, and
draw all of them.

Exercise P8.11. Implement a base class Shape and derived classes Rectangle, Triangle,
and Square. Derive Square from Rectangle. Supply virtual functions double area()
and void plot(). Fill a vector of Shape* pointers with a mixture of the shapes, plot
them all, and compute the total area.

Exercise P8.12. Use Exercise P8.11 as the basis for a drawing program. Users can
place various shapes onto the screen by first clicking on a shape icon and then click-
ing on the desired screen location:

Hint: Supply virtual functions make_shape(Point p) that return a new shape of
default size anchored at the point p.

Exercise P8.13. Extend the program of Exercise P8.12 by adding another shape type:
CircleShape. (You cannot call it Circle, because there already is a Circle class in the
graphics library.) Explain what changes you needed to make in the program to

G

Car Truck

G

G

Quit

Drawing area
Icons

G

374 CHAPTER 8 • Inheritance

implement this extension. How do virtual functions help in making the program
easily extensible?

Exercise P8.14. Write a base class Chart that stores a vector of floating-point values.
Implement derived classes, PieChart and BarChart, with a virtual plot function that
can plot the data as a pie chart and as a bar chart.

G

Chapter 9
Streams

• To be able to read and write files

• To convert between strings and numbers using string streams

• To use stream manipulators to format output

• To learn how to process the command line

• To understand the concepts of sequential and random access

• To be able to build simple random-access database files

• To learn about encryption

CHAPTER GOALS

All of the programs that you have written until now have read their input from the

keyboard and displayed their output on the screen. However, many practical

programs need to be able to use disk files for reading input and writing output. In

this chapter, you will learn how to access files from C++ programs.

The C++ input/output library is organized in an object-oriented fashion, based

on the concept of streams. An input stream is a source of data, and an output stream
is a destination for data. Inheritance is used to provide classes for accessing files,

strings, and other sources and destinations.

376 CHAPTER 9 • Streams

CHAPTER CONTENTS

To access a disk file, you need to open a file variable. File variables
are variables of type ifstream (for input), ofstream (for output), or
fstream (for both input and output). For example,

ifstream input_data;

You must include the header file fstream to use file variables.
To read anything from a file, you need to open it. When you open a file, you give

the name of the disk file. Suppose you want to read data from a file named
input.dat, located in the same directory as the program. Then you use the following
command to open the file:

input_data.open("input.dat");

This procedure call associates the file variable input_data with the
disk file named input.dat. Reading from the file is now completely
straightforward: You simply use the same functions that you have
always used.

int n;
double x;
input_data >> n >> x;

You read strings in the same way:
string s;
input_data >> s; // Read a word
getline(input_data, s); // Read a line

You read a single character with the get function:
char ch;
input_data.get(ch);

If you read a character and you regretted it, you can unget it, so that the next input
operation can read it again. However, you can unget only one character at a time.

9.1 Reading and Wri t ing Text F i les

To read or write disk files,
you use objects of type
fstream, ifstream, or
ofstream.

When opening a file
object, you supply the
name of the disk file.

9.1 Reading and Writing Text Files 376

9.2 The Inheritance Hierarchy of
Stream Classes 379

9.3 Stream Manipulators 382

9.4 String Streams 384

9.5 Command Line Arguments 388
RANDOM FACT 9.1: Encryption Algorithms 392

9.6 Random Access 394
ADVANCED TOPIC 9.1: Binary Files 398
RANDOM FACT 9.2: Databases and Privacy 399

9.1 • Reading and Writing Text Files 377

This is called one-character lookahead: At the next character in the input stream
you can make a decision what you want to read in next, but not more than one
character.

char ch;
input_data.get(ch);
if ('0' <= ch && ch <= '9') // It was a digit
{
 input_data.unget(); // Oops—didn’t want to read it
 int n;
 input_data >> n; // Read integer starting with ch
}

Older implementations of the stream library do not have the unget member func-
tion. In that case you need to remember the last input character and call
input_data.put_back(ch).

The fail function tells you whether input has failed. Just as for standard input,
the file can be in a failed state because you reached the end of file or because of a
formatting error. There can be yet another reason for a failed state: If you open a file
and the name is invalid, or if there is no file of that name, then the file is also in a
failed state. It is a good idea to test for failure whenever you open a file.

When you are done reading from a file, you should close it:
input_data.close();

Writing to a file is just as simple. You open the file for writing:
ofstream output_data;
output_data.open("output.dat");

Now you send information to the output file in the usual way.
output_data << n << " " << x << "\n";

To write a single character, use
output_data.put(ch);

When you are finished with the output, remember to close the file.
output_data.close();

To open the same file for both reading and writing, you use an fstream variable:
fstream datafile;
datafile.open("employee.dat");

The file name that you give to the open command may be a string constant:
ifstream input_data;
input_data.open("input.dat");

If you want to pass a name that is stored in a string variable, use the c_str function
to convert the string object to a character pointer.

string input_name;
cin >> input_name;
ifstream input_data;
input_data.open(input_name.c_str());

When you are done using
a file, you should close the
file object.

378 CHAPTER 9 • Streams

File names can contain directory path information, as in
~/homework/input.dat // UNIX
c:\homework\input.dat // Windows

When you specify the file name as a constant string, and the name contains back-
slash characters (as in a Windows filename), you must supply each backslash twice:

input_data.open("c:\\homework\\input.dat");

Recall that a single backslash inside quoted strings is an escape character that is
combined with another character to form a special meaning, such as \n for a newline
character. The \\ combination denotes a single backslash. When the file name is
entered into a string variable by the user, the user should not type the backslash
twice.

Have a look at the maxtemp.cpp program in Section 4.6, which reads in tempera-
ture data and then displays the highest value. That program prompts the user to
enter all data values. Of course, if the user makes a single mistake in a data value,
then there is no going back. The user must then restart the program and reenter all
data values. It makes more sense for the user to place the data values into a file using
a text editor and then to specify the name of that file when the data values are to be
used.

Here is the modified program that incorporates this improvement. The program
queries the user for an input file name, opens a file variable, and passes that variable
to the read_data function. Inside the function, we use the familiar >> operator to
read the data values from the input file.

Note that the ifstream parameter of the read_data function is passed by refer-
ence. Reading from a file modifies the file variable. The file variable monitors how
many characters have been read or written so far. Any read or write operation
changes that data. For that reason, you must always pass file variables by reference.

ch09/maxval1.cpp

1 #include <string>
2 #include <iostream>
3 #include <fstream>
4
5 using namespace std;
6
7 /**
8 Reads numbers from a file and finds the maximum value.
9 @param in the input stream to read from
10 @return the maximum value or 0 if the file has no numbers
11 */
12 double read_data(ifstream& in)
13 {
14 double highest;
15 double next;
16 if (in >> next)
17 highest = next;
18 else
19 return 0;
20

9.2 • The Inheritance Hierarchy of Stream Classes 379

Program Run

The C++ input/output library consists of several classes that are
related by inheritance. The most fundamental classes are the istream
and ostream classes. An istream is a source of bytes. The get, getline,
and >> operations are defined for istream objects. The ifstream class
derives from the istream class. Therefore, it automatically inherits all
istream operations. In Section 9.4, you will encounter another class,

istringstream, that also derives from the istream class. It too inherits the istream
operations. However, the open function is a member function of the ifstream class,
not the istream class. You can only open file streams, not general input streams or
string streams.

21 while (in >> next)
22 {
23 if (next > highest)
24 highest = next;
25 }
26
27 return highest;
28 }
29
30 int main()
31 {
32 string filename;
33 cout << "Please enter the data file name: ";
34 cin >> filename;
35
36 ifstream infile;
37 infile.open(filename.c_str());
38
39 if (infile.fail())
40 {
41 cout << "Error opening " << filename << "\n";
42 return 1;
43 }
44
45 double max = read_data(infile);
46 cout << "The maximum value is " << max << "\n";
47
48 infile.close();
49 return 0;
50 }

Please enter the data file name: data.txt
The maximum value is 34399

9.2 The Inher i t ance Hierarchy of Stream Classes

Stream classes inherit the
operations <<, >>,
getline, and fail from
the istream and ostream
classes.

380 CHAPTER 9 • Streams

Similarly, an ostream is a destination for bytes. Several forms of the << operator
are defined for ostream objects, to print out numbers, strings, and other types. The
ofstream class derives from the ostream class and inherits the << operators.

An iostream combines the capabilities of an istream and ostream, by deriving
from both classes (see Figure 1). The fstream class derives from iostream. (Note
that, for technical reasons, fstream does not derive from ifstream or ofstream, even
if it would make sense for it to do so.)

You should take advantage of the inheritance relationships between the stream
classes whenever you write functions with stream parameters. Consider the
read_data function in the preceding example program. It is declared as

double read_data(ifstream& in)

However, if you look inside the code of the function, you will see that the function
never requires that the in parameter be a file stream. The function can equally well
read data from any istream object. For that reason, you should declare such a func-
tion with a parameter of type istream, not ifstream:

double read_data(istream& in)

Now you can pass parameters of types other than ifstream, such as the cin object
(which belongs to a derived class of istream but not to ifstream).

The following example program illustrates this concept. Note that the read_data
function takes an istream parameter. In the main function, the program user can
choose to supply the data in a file, or to type them in manually. The main function
then calls the read_data function in one of two ways, either as

max = read_data(infile);

Figure 1 The Inheritance Hierarchy of Stream Classes

istringstream ifstream iostream

fstream

istream ostream

ofstream ostringstream

9.2 • The Inheritance Hierarchy of Stream Classes 381

or
max = read_data(cin);

The infile and cin objects belong to different classes, but both classes inherit from
istream.

As you already saw in the preceding section, the stream parameter must be
passed by reference since the stream data structure is modified when you read from
a stream. Now there is a second reason why you must use call by reference. If you
used call by value,

double read_data(istream in) // Error! Missing &

then the parameter object would be sliced when copied into the parameter object in
(see Common Error 8.4). Therefore, you must always use call by reference with
stream parameters.

ch09/maxval2.cpp

1 #include <string>
2 #include <iostream>
3 #include <fstream>
4
5 using namespace std;
6
7 /**
8 Reads numbers from a file and finds the maximum value.
9 @param in the input stream to read from
10 @return the maximum value or 0 if the file has no numbers
11 */
12 double read_data(istream& in)
13 {
14 double highest;
15 double next;
16 if (in >> next)
17 highest = next;
18 else
19 return 0;
20
21 while (in >> next)
22 {
23 if (next > highest)
24 highest = next;
25 }
26
27 return highest;
28 }
29
30 int main()
31 {
32 double max;
33
34 string input;
35 cout << "Do you want to read from a file? (y/n) ";
36 cin >> input;

382 CHAPTER 9 • Streams

Program Run

To control how the output is formatted, you use stream manipula-
tors. A manipulator is an object that is sent to a stream using the <<
operator, and that affects the behavior of the stream. The setpreci-
sion manipulator, which we already used, is a typical example. The
statement

out << setprecision(2);

does not cause any immediate output, but it affects how the next floating-point
number is written. In this section, you will learn about other manipulators in the
standard C++ library. Table 1 summarizes the most commonly used stream
manipulators.

37
38 if (input == "y")
39 {
40 string filename;
41 cout << "Please enter the data file name: ";
42 cin >> filename;
43
44 ifstream infile;
45 infile.open(filename.c_str());
46
47 if (infile.fail())
48 {
49 cout << "Error opening " << filename << "\n";
50 return 1;
51 }
52
53 max = read_data(infile);
54 infile.close();
55 }
56 else
57 max = read_data(cin);
58
59 cout << "The maximum value is " << max << "\n";
60
61 return 0;
62 }

Do you want to read from a file? (y/n) y
Please enter the data file name: data.txt
The maximum value is 34399

9.3 Stream Manipula tors

You control stream
formatting with stream
manipulators.

9.3 • Stream Manipulators 383

Occasionally, you need to pad numbers with leading zeroes, for example to print
hours and minutes as 09:01. This is achieved with the setfill manipulator:

out << setfill('0') << setw(2) << hours
 << ":" << setw(2) << minutes << setfill(' ');

Now, a zero is used to pad the field. Afterwards, the space is restored as the fill
character.

By default, the fill characters appear before the item:
out << setw(10) << 123 << endl << setw(10) << 4567;

produces
 123
 4567

The numbers line up to the right. That alignment works well for numbers, but not
for strings. Usually, you want strings to line up on the left. You use the left and
right manipulators to set the alignment. The following example uses left alignment
for a string and then switches back to right alignment for a number:

out << left << setw(10) << str << right << setw(10) << num;

Table 1 Stream Manipulators

Manipulator Purpose Example Output

setw Sets the field width of the
next item only.

out << setw(6) << 123; 123

setfill Sets the fill character
for padding a field.
(The default character is
a space.)

out << setfill('0') << setw(6)
 << 123;

000123

left Selects left alignment. out << left << setw(6) << 123; 123

right Selects right alignment
(default).

out << right << setw(6) << 123; 123

hex Selects base 16 for integers. out << hex << 123; 7b

dec Selects base 10 for integers. out << dec << 123; 123

fixed Selects fixed format for
floating-point numbers.

double x = 123.4567;
out << x << endl << fixed << x;

123.457
123.456700

setprecision Sets the number of
significant digits for
general format, the number
of digits after the decimal
point for fixed format.

double x = 123.4567;
out << setprecision(2) << x
 << endl << fixed << x;

1.2e+02
123.46

384 CHAPTER 9 • Streams

The hex and dec manipulators control the number base for integers, switching to
hexadecimal (base 16) and decimal (base 10) numbers. (See Appendix F for a
description of hexadecimal numbers.) For example,

out << hex << 10 << " " << dec << 10;

yields
a 10

The default format for floating-point numbers is called general format. That format
displays as many digits as are specified by the precision (6 by default), switching to
scientific notation for large and small numbers. For example,

out << 12.3456789 << " " << 123456789.0;

yields
12.3457 1.23457e+08

The fixed format prints all values with the same number of digits after the decimal
point. In the fixed format, the numbers above are displayed as

12.345679 123456789.000000

Use the fixed manipulator to select that format, and the setprecision manipulator
to change the precision.

For example,
out << fixed << setprecision(2) << 1.2 << " " << 1.235

yields
1.20 1.24

Note that the manipulators set the state of the stream object for all subsequent
operations, with the exception of setw. After each output operation, the field width
is reset to 0.

In the preceding section, you saw how the ifstream and ofstream
classes can be used to read characters from a file and write characters
to a file. In other words, you use a file stream if the source or the des-
tination of the characters is a file. You can use other stream classes to
read characters from a different source or to send them to a different
destination.

The istringstream class reads characters from a string, and the ostringstream
class writes characters to a string. That doesn’t sound so exciting—we already know
how to access and change the characters of a string. However, the string stream
classes have the same interface as the other stream classes. In other words, using an
istringstream you can read numbers that are stored in a string, simply by using the
familiar >> operator. The string stream classes are defined in the sstream header.

9.4 Str ing Streams

Use string streams to read
numbers that are
contained in strings, or to
convert between numbers
and strings.

9.4 • String Streams 385

Here is an example. The string input contains a date, and we want to separate it
into month, day, and year. First, construct an istringstream object. The construc-
tion parameter is the string containing the characters that we want to read:

string input = "January 23, 1955";
istringstream instr(input);

Next, simply use the >> operator to read off the month name, the day, the comma
separator, and the year:

string month;
int day;
string comma;
int year;
instr >> month >> day >> comma >> year;

Now month is "January", day is 23, and year is 1955. Note that this input statement
yields day and year as integers. Had we taken the string apart with substr, we would
have obtained only strings, not numbers.

In fact, converting strings that contain digits to their integer values is such a com-
mon operation that it is useful to write a helper function for this purpose:

int string_to_int(string s)
{
 istringstream instr(s);
 int n;
 instr >> n;
 return n;
}

For example, string_to_int("1999") is the integer 1999.
By writing to a string stream, you can convert numbers to strings. First construct

an ostringstream object:
ostringstream outstr;

Next, use the << operator to add a number to the stream. The number is converted
into a sequence of characters:

outstr << setprecision(5) << sqrt(2);

Now the stream contains the string "1.41421". To obtain that string from the
stream, call the str member function:

string output = outstr.str();

You can build up more complex strings in the same way. Here we build a data string
of the month, day, and year:

string month = "January";
int day = 23;
int year = 1955;
ostringstream outstr;
outstr << month << " " << day << "," << year;
string output = outstr.str();

386 CHAPTER 9 • Streams

Now output is the string "January 23, 1955". Note that we converted the integers
day and year into a string. Again, converting an integer into a string is such a com-
mon operation that is useful to have a helper function for it:

string int_to_string(int n)
{
 ostringstream outstr;
 outstr << n;
 return outstr.str();
}

For example, int_to_string(1955) is the string "1955".
A very common use of string streams is to accept input one line at a time and

then to analyze it further. This avoids the complications that arise from mixing >>
and getline that were discussed in Common Error 5.1. Simply call getline to read
the input one line at a time, and then read items from the input lines by using string
streams.

Here is an example. You prompt the user for a time, and want to accept inputs
such as

21:30
9:30 pm
9 am

That is, the input line consists of a number, maybe followed by a colon and another
number, maybe followed by am or pm. In the read_time procedure of the following
program, you first read in the entire input line, then analyze what the user typed.
The result is a pair of integers, hours and minutes, adjusted to military (24-hour)
time if the user entered "pm".

In the time_to_string function, the integer values for hours and minutes are con-
verted back to a string. Using the aforementioned int_to_string function, the inte-
ger values are converted to strings. A : separator is added between them. If the
military parameter is false, an "am" or "pm" string is appended.

ch09/readtime.cpp

1 #include <string>
2 #include <iostream>
3 #include <sstream>
4
5 using namespace std;
6
7 /**
8 Converts an integer value to a string, e.g., 3 -> "3".
9 @param s an integer value
10 @return the equivalent string
11 */
12 string int_to_string(int n)
13 {
14 ostringstream outstr;
15 outstr << n;
16 return outstr.str();
17 }

9.4 • String Streams 387

18
19 /**
20 Reads a time from standard input in the format hh:mm or
21 hh:mm am or hh:mm pm.
22 @param hours filled with the hours
23 @param minutes filled with the minutes
24 */
25 void read_time(int& hours, int& minutes)
26 {
27 string line;
28 getline(cin, line);
29 istringstream instr(line);
30
31 instr >> hours;
32
33 minutes = 0;
34
35 char ch;
36 instr.get(ch);
37
38 if (ch == ':')
39 instr >> minutes;
40 else
41 instr.unget();
42
43 string suffix;
44 instr >> suffix;
45
46 if (suffix == "pm")
47 hours = hours + 12;
48 }
49
50 /**
51 Computes a string representing a time.
52 @param hours the hours (0 ... 23)
53 @param minutes the minutes (0 ... 59)
54 @param military true for military format,
55 false for am/pm format
56 */
57 string time_to_string(int hours, int minutes, bool military)
58 {
59 string suffix;
60 if (!military)
61 {
62 if (hours < 12)
63 suffix = "am";
64 else
65 {
66 suffix = "pm";
67 hours = hours - 12;
68 }
69 if (hours == 0) hours = 12;
70 }
71 string result = int_to_string(hours) + ":";

388 CHAPTER 9 • Streams

Program Run

Depending on the operating system and C++ development system used, there are
different methods of starting a program—for example, by selecting “Run” in the
compilation environment, by clicking on an icon, or by typing the name of the pro-
gram at a prompt in a terminal or shell window. The latter method is called “invok-
ing the program from the command line”. When you use this method, you must of
course type the name of the program, but you can also type in additional informa-
tion that the program can use. These additional strings are called command line
arguments. For example, if you start a program with the command line

prog -v input.dat

then the program receives two command line arguments: the strings "-v" and
"input.dat". It is entirely up to the program what to do with these strings. It is cus-
tomary to interpret strings starting with a - as options and other strings as file
names.

Only text mode programs receive command line arguments; the graphics library
that comes with this book does not collect them.

72 if (minutes < 10) result = result + "0";
73 result = result + int_to_string(minutes);
74 if (!military)
75 result = result + " " + suffix;
76 return result;
77 }
78
79 int main()
80 {
81 cout << "Please enter the time: ";
82
83 int hours;
84 int minutes;
85
86 read_time(hours, minutes);
87
88 cout << "Military time: "
89 << time_to_string(hours, minutes, true) << "\n";
90 cout << "Using am/pm: "
91 << time_to_string(hours, minutes, false) << "\n";
92
93 return 0;
94 }

Please enter the time: 1:05 pm
Military time: 13:05
Using am/pm: 1:05 pm

9.5 Command L ine Arguments

9.5 • Command Line Arguments 389

To receive command line arguments, you need to define the main
function in a different way. You define two parameters: one integer
and one with a type called char*[], which denotes an array of point-
ers to C character arrays.

int main(int argc, char* argv[])
{
 ...
}

Here argc is the count of arguments, and argv contains the values of the arguments.
Because they are character arrays, you should convert them to C++ strings.
string(argv[i]) is the ith command line argument, ready to use in C++.

In our example, argc is 3, and argv contains the three strings
string(argv[0]): "prog"
string(argv[1]): "-v"
string(argv[2]): "input.dat"

Note that string(argv[0]) is always the name of the program and that argc is
always at least 1.

Let us write a program that encrypts a file—that is, scrambles it so that it is
unreadable except to those who know the decryption method and the secret key-
word. Ignoring 2000 years of progress in the field of encryption, we will use a
method familiar to Julius Caesar. The person performing any encryption chooses an
encryption key; here the key is a number between 1 and 25 that indicates the shift to
be used in encrypting each letter. For example, if the key is 3, replace A with a D, B
with an E, and so on (see Figure 2).

The program takes the following command line arguments:

• An optional -d flag to indicate decryption instead of encryption
• An optional encryption key, specified with a -k flag
• The input file name
• The output file name

If no key is specified, then 3 is used. For example,
caesar input.txt encrypt.txt

encrypts the file input.txt with a key of 3 and places the result into encrypt.txt.
caesar -d -k11 encrypt.txt output.txt

decrypts the file encrypt.txt with a key of 11 and places the result into output.txt.

Programs that start from
the command line can
retrieve the name of the
program and the
command line arguments
in the main function.

Figure 2 Caesar Cipher

M e e t m e a t t h e

P h h w # p h # d w # w k h #

Plain text

Encrypted text

390 CHAPTER 9 • Streams

Here is the program. When we find that the user has provided bad command line
parameters (or none at all), the usage function prints a brief reminder of the correct
usage. This behavior is common for command-line programs. Also note the use of
the exit function for error handling. This function terminates the program and
returns an error code to the operating system, just as if the main function had exited.
When an error is detected, you can call exit to terminate the program immediately
without having to first return to main.

ch09/caesar.cpp

1 #include <iostream>
2 #include <fstream>
3 #include <string>
4 #include <sstream>
5
6 using namespace std;
7
8 /**
9 Prints usage instructions.
10 @param program_name the name of this program
11 */
12 void usage(string program_name)
13 {
14 cout << "Usage: " << program_name
15 << " [-d] [-kn] infile outfile\n";
16 exit(1);
17 }
18
19 /**
20 Prints file opening error message.
21 @param filename the name of the file that could not be opened
22 */
23 void open_file_error(string filename)
24 {
25 cout << "Error opening file " << filename << "\n";
26 exit(1);
27 }
28
29 /**
30 Computes correct remainder for negative dividend.
31 @param a an integer
32 @param n an integer > 0
33 @return the mathematically correct remainder r such that
34 a - r is divisible by n and 0 <= r and r < n
35 */
36 int remainder(int a, int n)
37 {
38 if (a >= 0)
39 return a % n;
40 else
41 return n - 1 - (-a - 1) % n;
42 }
43

9.5 • Command Line Arguments 391

44 /**
45 Encrypts a character using the Caesar cipher.
46 @param ch the character to encrypt
47 @param k the encryption key
48 @return the encrypted character
49 */
50 char encrypt(char ch, int k)
51 {
52 const int NLETTER = 'Z' - 'A' + 1;
53 if ('A' <= ch && ch <= 'Z')
54 return static_cast<char>(
55 'A' + remainder(ch - 'A' + k, NLETTER));
56 if ('a' <= ch && ch <= 'z')
57 return static_cast<char>(
58 'a' + remainder(ch - 'a' + k, NLETTER));
59 return ch;
60 }
61
62 /**
63 Encrypts a stream using the Caesar cipher.
64 @param in the stream to read from
65 @param out the stream to write to
66 @param k the encryption key
67 */
68 void encrypt_file(istream& in, ostream& out, int k)
69 {
70 char ch;
71 while (in.get(ch))
72 out.put(encrypt(ch, k));
73 }
74
75 /**
76 Converts a string to an integer, e.g., "3" -> 3.
77 @param s a string representing an integer
78 @return the equivalent integer
79 */
80 int string_to_int(string s)
81 {
82 istringstream instr(s);
83 int n;
84 instr >> n;
85 return n;
86 }
87
88 int main(int argc, char* argv[])
89 {
90 bool decrypt = false;
91 int key = 3;
92 int nfile = 0; // The number of files specified
93 ifstream infile;
94 ofstream outfile;
95
96 if (argc < 3 || argc > 5) usage(string(argv[0]));
97

392 CHAPTER 9 • Streams

Encryption Algorithms

The exercises at the end of this chapter give a few algorithms to encrypt text. Don’t actually
use any of those methods to send secret messages to your lover. Any skilled cryptographer
can break these schemes in a very short time—that is, reconstruct the original text without
knowing the secret keyword.

In 1978 Ron Rivest, Adi Shamir, and Leonard Adleman introduced an encryption method
that is much more powerful. The method is called RSA encryption, after the last names of its
inventors. The exact scheme is too complicated to present here, but it is not actually difficult
to follow. You can find the details in [1].

98 int i;
99 for (i = 1; i < argc; i++)
100 {
101 string arg = string(argv[i]);
102 if (arg.length() >= 2 && arg[0] == '-')
103 // It is a command line option
104 {
105 char option = arg[1];
106 if (option == 'd')
107 decrypt = true;
108 else if (option == 'k')
109 key = string_to_int(arg.substr(2));
110 }
111 else
112 {
113 nfile++;
114 if (nfile == 1)
115 {
116 infile.open(arg.c_str());
117 if (infile.fail()) open_file_error(arg);
118 }
119 else if (nfile == 2)
120 {
121 outfile.open(arg.c_str());
122 if (outfile.fail()) open_file_error(arg);
123 }
124 }
125 }
126
127 if (nfile != 2) usage(string(argv[0]));
128
129 if (decrypt) key = -key;
130
131 encrypt_file(infile, outfile, key);
132 infile.close();
133 outfile.close();
134 return 0;
135 }

RANDOM FACT 9.1

9.5 • Command Line Arguments 393

RSA is a remarkable encryption method. There are two keys: a public key and a private
key. (See Figure 3.) You can print the public key on your business card (or in your e-mail sig-
nature block) and give it to anyone. Then anyone can send you messages that only you can
decrypt. Even though everyone else knows the public key, and even if they intercept all the
messages coming to you, they cannot break the scheme and actually read the messages. In
1994, hundreds of researchers, collaborating over the Internet, cracked an RSA message
encrypted with a 129-digit key. Messages encrypted with a key of 230 digits or more are
expected to be secure.

The inventors of the algorithm obtained a patent for it. That means that anyone using it
must seek a license from the inventors. They have given permission for most noncommercial
usage, but if you implement RSA in a product that you sell, you must get their permission
and probably pay them some amount of money.

A patent is a deal that society makes with an inventor. For a period of 17 years after the
patent is awarded (or 20 years after the filing date), the inventor has an exclusive right for its
commercialization, may collect royalties from others wishing to manufacture the invention,
and may even stop competitors from marketing it altogether. In return, the inventor must
publish the invention, so that others may learn from it, and must relinquish all claim to it
after the protection period ends. The presumption is that in the absence of patent law, inven-
tors would be reluctant to go through the trouble of inventing, or they would try to cloak
their techniques to prevent others from copying their devices. The RSA patent expired on
September 20, 2000.

What do you think? Are patents a fair deal? Unquestionably, some companies have
chosen not to implement RSA, and instead chose a less capable method, because they could
not or would not pay the royalties. Thus, it seems that the patent may have hindered, rather
than advanced, commerce. Had there not been patent protection, would the inventors have
published the method anyway, thereby giving the benefit to society without the cost of the
17-year monopoly? In this case, the answer is probably yes; the inventors were academic
researchers, who live on salaries rather than sales receipts and are usually rewarded for their
discoveries by a boost in their reputation and careers. Would their followers have been as
active in discovering (and patenting) improvements? There is no way of knowing, of course.
Is an algorithm even patentable, or is it a mathematical fact that belongs to nobody? The
patent office did take the latter attitude for a long time. The RSA inventors and many others
described their inventions in terms of imaginary electronic devices, rather than algorithms,
to circumvent that restriction. Nowadays, the patent office will award software patents.

Figure 3 Public-Key Encryption

Meet
me at
the
toga
party

Meet
me at
the
toga
party

Xwya
Txu%
*(Wt
&93ya
=9

Plain
text

Bob’s public key

Encrypted
text

Alice Bob

Decrypted
text

Bob’s private
key

394 CHAPTER 9 • Streams

There is another fascinating aspect to the RSA story. A programmer, Phil Zimmermann,
developed a program called PGP (for Pretty Good Privacy) [2]. PGP implements RSA. That
is, you can have it generate a pair of public and private keys, publish the public key, receive
encrypted messages from others who use their copy of PGP and your public key, and
decrypt them with your private key. Even though the encryption can be performed on any
personal computer, decryption is not feasible even with the most powerful computers. You
can get a copy of a free PGP implementation from the GNU project [3].

The existence of PGP bothers the government to no end. They worry that criminals use
the package to correspond by e-mail and that the police cannot tap those “conversations”.
Foreign governments can send communications that the National Security Agency (the pre-
mier electronic spy organization of the United States) cannot decipher. In the 1990s, the U.S.
government unsuccessfully attempted to standardize on a different encryption scheme,
called Skipjack, to which government organizations hold a decryption key that—of course—
they promise not to use without a court order. There have been serious proposals to make it
illegal to use any other encryption method in the United States. At one time, the government
considered charging Zimmermann with breaching another law that forbids the unauthorized
export of munitions as a crime and defines cryptographic technology as “munitions”. They
made the argument that, even though Zimmermann never exported the program, he should
have known that it would immediately spread through the Internet when he released it in the
United States.

What do you think? Will criminals and terrorists be harder to detect and convict once
encryption of e-mail and phone conversations is widely available? Should the government
therefore have a backdoor key to any legal encryption method? Or is this a gross violation of
our civil liberties? Is it even possible to put the genie back into the bottle at this time?

Consider a file that contains a set of employee data. You want to give
some of the employees a raise. Of course, you can read all data into
an array, update the information that has changed, and save the data
out again. If the data set in the file is very large, you may end up
doing a lot of reading and writing just to update a handful of records.
It would be better if you could locate the changed information in the
file and just replace it.

This is quite different from the file access that you programmed up to now. So
far, you’ve read from a file an item at a time and written to a file an item at a time.
That access pattern is called sequential access. Now we would like to access specific
locations in a file and change only those locations. This access pattern is called ran-
dom access (see Figure 4). There is nothing “random” about random access—the
term simply means that you can read and modify any character stored at any loca-
tion in the file.

Only disk files support random access; the cin and cout streams, which are
attached to the keyboard and the terminal, do not. Each disk file has two special
positions: the get position and the put position (see Figure 5). Normally, the put
position is at the end of the file, and any output is appended to the end. However, if

9.6 Random Access

You can access any
position in a random
access file by moving the
file pointer prior to a read
or write operation.

9.6 • Random Access 395

you move the put position to the middle of the file and write to the file, the output
overwrites what is already there. Normally, the get position starts at the beginning
of the file and is moved toward the end as you read from the file. However, if you
move the get position to another location, the next read command starts reading
input at that location. Of course, you cannot move the get or put position beyond
the last character currently in the file.

The following procedure calls move the get and put positions to character n
counted from the beginning of the file fs.

fs.seekg(n, ios::beg);
fs.seekp(n, ios::beg);

To move to the position n characters away from the end of the file or the current
position, use ios::end or ios::cur, respectively, instead of ios::beg. To determine
the current position of the get and put positions (counted from the beginning of the
file), use

n = fs.tellg();
n = fs.tellp();

Because files can be very large, the file positions are long integers. To find out the
number of characters in a file, move the get position to the end and then find out the
distance from the beginning of the file:

fs.seekg(0, ios::end);
long file_length = fs.tellg();

If you want to manipulate a data set in a file, you have to pay special attention to the
formatting of the data. Suppose you just store the data as text:

If Harry’s salary is increased by 5.5 percent, the new salary is $36,397.50. If one
places the put position to the first character of the old value and simply writes out
the new value, the result is

This does not work too well. The update overwrites some characters in the next
record.

Figure 4 Sequential and Random Access Figure 5 Get and Put Positions

Sequential access

Random access
5 4 9 0 3 . 2

Get
position

Put
position

5

yrraH,rekcaH 3 4 5 0 0 \n C r a c k e r

yrraH,rekcaH 3 6 3 9 7 . 5 r a c k e r

396 CHAPTER 9 • Streams

In order to be able to update a file, you must give each field a fixed
size that is sufficiently large. As a result, every record in the file has
the same size. This has another advantage: It is then easy to skip
quickly to, say, the 50th record, without having to read in the first 49

records. Because records can be accessed at random when they all have the same
size, a file with that structure is called a random-access file. (See Figure 6.)

To structure the data file in our example for random access, set the field lengths
to the following dimensions:

Name: 30 characters
Salary: 10 characters

The file then looks as follows:

How large is each record? It would appear to be 30 + 10 = 40 bytes long. However,
you must also count the newline character at the end of each line. Unfortunately,
the Windows operating system stores a newline as two separate characters (called
carriage return and line feed). Our programs never see that, because the input and
output functions automatically convert between the '\n' character in strings and
the carriage return/line feed combination in files. When counting file positions,
though, you must take both characters into account, yielding a record length of 42
bytes. (See Advanced Topic 9.1 on page 398 for more information about this sordid
topic.)

Now that you have determined the file layout, you can implement your random-
access file functions. The following program asks the user to enter the position of
the record that should be updated, and the price increase.

ch09/database.cpp

Figure 6 Variable-Size and Fixed-Size Records

Variable-size records

Fixed-size records

Random access is most
useful when all records in
a file have the same size.

lraC,rekcarC V . 6 1 8 2 0 . 7 5 \n

yrraH,rekcaH 3 4 5 0 0 . 0 0 \n

1 #include <iostream>
2 #include <iomanip>
3 #include <fstream>
4 #include <sstream>
5

9.6 • Random Access 397

6 using namespace std;
7
8 #include "ccc_empl.h"
9
10 const int NEWLINE_LENGTH = 2;
11 const int RECORD_SIZE = 30 + 10 + NEWLINE_LENGTH;
12
13 /**
14 Converts a string to a floating-point value, e.g.,
15 "3.14" -> 3.14.
16 @param s a string representing a floating-point value
17 @return the equivalent floating-point value
18 */
19 double string_to_double(string s)
20 {
21 istringstream instr(s);
22 double x;
23 instr >> x;
24 return x;
25 }
26
27 /**
28 Raises an employee salary.
29 @param e employee receiving raise
30 @param percent the percentage of the raise
31 */
32 void raise_salary(Employee& e, double percent)
33 {
34 double new_salary = e.get_salary() * (1 + percent / 100);
35 e.set_salary(new_salary);
36 }
37
38 /**
39 Reads an employee record from a file.
40 @param e filled with the employee
41 @param in the stream to read from
42 */
43 void read_employee(Employee& e, istream& in)
44 {
45 string line;
46 getline(in, line);
47 if (in.fail()) return;
48 string name = line.substr(0, 30);
49 double salary = string_to_double(line.substr(30, 10));
50 e = Employee(name, salary);
51 }
52
53 /**
54 Writes an employee record to a stream.
55 @param e the employee record to write
56 @param out the stream to write to
57 */
58 void write_employee(Employee e, ostream& out)
59 {

398 CHAPTER 9 • Streams

Program Run

Binary Files

When a program saves numeric data to disk with the << operation, the data is saved in text
format. For example, the floating-point number 314.7 is saved as 314.7 or perhaps 3.147E2.
Actually, it is more efficient to save the number in the same format in which it is represented
in the computer: as a sequence of bytes. That has the added advantage that the number auto-
matically occupies a fixed size in the file, making random access easier.

When saving large data sets, it makes a lot of sense to use a binary format. For that reason,
images and word processor documents are usually stored in binary files. We have not done

60 out << e.get_name()
61 << setw(10 + (30 - e.get_name().length()))
62 << fixed << setprecision(2)
63 << e.get_salary();
64 }
65
66 int main()
67 {
68 cout << "Please enter the data file name: ";
69 string filename;
70 cin >> filename;
71 fstream fs;
72 fs.open(filename.c_str());
73 fs.seekg(0, ios::end); // Go to end of file
74 int nrecord = fs.tellg() / RECORD_SIZE;
75
76 cout << "Please enter the record to update: (0 - "
77 << nrecord - 1 << ") ";
78 int pos;
79 cin >> pos;
80
81 const double SALARY_CHANGE = 5.0;
82
83 Employee e;
84 fs.seekg(pos * RECORD_SIZE, ios::beg);
85 read_employee(e, fs);
86 raise_salary(e, SALARY_CHANGE);
87 cout << "New salary: " + e.getSalary();
88 fs.seekp(pos * RECORD_SIZE, ios::beg);
89 write_employee(e, fs);
90
91 fs.close();
92 return 0;
93 }

Please enter the data file name: employee.dat
Please enter the record to update: (0 - 9) 6
New salary: 130720

ADVANCED TOPIC 9.1

9.6 • Random Access 399

that in this book. Writing binary output in a way that is portable across platforms requires a
detailed understanding how binary numbers are stored on disk and in the processor memory.

A disadvantage of binary format is that it makes debugging much harder. When you look
into a text file with a text editor, you can see exactly what is inside. To look inside a binary
file, or to make a minor modification, you need special tools. We recommend using text files
for saving data until an application is fully debugged. If the added efficiency of binary files is
crucial, then rewrite just the input/output procedures to switch to binary format.

There is one common situation in which you will encounter the need for binary output.
Suppose you write a C++ program that produces text output, and you want both the pro-
gram and the output to be portable. That means, someone may compile the program under
Unix or Windows, and someone may want to read the output in Windows even when the
program was executed in Unix.

You will then want to generate the line endings in the Windows format as the “lowest
common denominator”. (Some Windows text editors deal poorly with “missing” carriage
returns, but Unix text editors tend to be graceful about preserving additional carriage
returns.)

In Windows, you produce such a line ending as out << "\n", but in Unix you have to use
out << "\r\n". If you don’t know on which platform your program will run, open the file
stream in binary mode:

out.open(filename.c_str(), ios::out | ios::binary);

The ios::binary mode turns off the translation from '\n' to platform-dependent line end-
ings. Then use

out << "\r\n";

to portably produce a Windows line ending.

Databases and Privacy

Most companies use computers to keep huge data files of customer records and other busi-
ness information. Special C++ database programs are used to search and update that infor-
mation rapidly. This sounds like a straightforward extension of the techniques we learned in
this chapter, but it does take special skills to handle truly massive amounts of data. You will
likely take a course in database programming as part of your computer science education.

Databases not only lower the cost of doing business; they improve the quality of service
that companies can offer. Nowadays it is almost unimaginable how time-consuming it used
to be to withdraw money from a bank branch or to make travel reservations.

Today most databases are organized according to the relational model. Suppose a com-
pany stores your orders and payments. They will probably not repeat your name and
address on every order; that would take unnecessary space. Instead, they will keep one file of
all their customer names and identify each customer by a unique customer number. Only
that customer number, not the entire customer information, is kept with an order record.
(See Figure 7.)

To print an invoice, the database program must issue a query against both the customer
and order files and pull the necessary information (name, address, articles ordered) from
both.

RANDOM FACT 9.2

400 CHAPTER 9 • Streams

Frequently, queries involve more than two files. For example, the company may have a
file of addresses of car owners and a file of people with good payment history and may want
to find all of its customers who placed an order in the last month, drive an expensive car, and
pay their bills, to send them another catalog. This kind of query is, of course, much faster if
all customer files use the same key, which is why so many organizations in the United States
try to collect the Social Security numbers of their customers.

The Social Security Act of 1935 provided that each contributor be assigned a Social Secu-
rity number to track contributions into the Social Security Fund. These numbers have a dis-
tinctive format, such as 078-05-1120. (This particular number was printed on sample cards
that were inserted in wallets. It actually was the Social Security number of the secretary of a
vice president at the wallet manufacturer. When thousands of people used it as their own, the
number was voided, and the secretary received a new number.) Figure 8 shows a Social Secu-
rity card.

Figure 7 Relational Database Files

Figure 8 Social Security Card

Customers Orders

Cust. #:

11439 59673 11439 DOS for Historians

59897 11439 C++ for Everyone

61013 11439 Big Java

Doe, John

Cust. #:Order #:Name Item

Chapter Summary 401

Although they had not originally been intended for use as a universal identification num-
ber, Social Security numbers have become just that. The tax authorities and many other gov-
ernment agencies are required to collect the numbers, as are banks (for the reporting of
interest income) and, of course, employers. Many other organizations find it convenient to
use the number as well.

From a technical standpoint, Social Security numbers are a lousy method for indexing a
database. There is a risk of having two records with the same number, because many illegal
immigrants use fake numbers. Not everyone has a number—in particular, foreign customers.
Because there is no checksum, a clerical error (such as transposing two digits) cannot be
detected. (Credit card numbers have a checksum.) For the same reason, it is easy for anyone
to make up a number.

Some people are very concerned about the fact that just about every organization wants
to store their Social Security number. Unless there is a legal requirement, such as for banks,
one can usually fight it or take one’s business elsewhere. Even when an organization is
required to collect the number, such as an employer, one can insist that the number be used
only on tax and Social Security paperwork, not on the face of an ID card. Unfortunately, it
usually takes near-superhuman effort to climb the organizational ladder to find someone
with the authority to process paperwork with no Social Security number or to assign
another identification number.

The discomfort that many people have about the computerization of their personal infor-
mation is understandable. There is the possibility that companies and the government can
merge multiple databases and derive information about us that we may wish they did not
have or that simply may be untrue. An insurance company may deny coverage, or charge a
higher premium, if it finds that you have too many relatives with a certain disease. You may
be denied a job because of an inaccurate credit or medical report, and you may not even
know the reason. These are very disturbing developments that have had a very negative
impact for a small but growing number of people. See [4] for more information.

1. To read or write disk files, you use objects of type fstream, ifstream, or ofstream.

2. When opening a file object, you supply the name of the disk file.

3. When you are done using a file, you should close the file object.

4. Stream classes inherit the operations <<, >>, getline, and fail from the istream
and ostream classes.

5. You control stream formatting with stream manipulators.

6. Use string streams to read numbers that are contained in strings, or to convert
between numbers and strings.

7. Programs that start from the command line can retrieve the name of the program
and the command line arguments in the main function.

CHAPTER SUMMARY

402 CHAPTER 9 • Streams

8. You can access any position in a random access file by moving the file pointer
prior to a read or write operation.

9. Random access is most useful when all records in a file have the same size.

1. Bruce Schneier, Applied Cryptography, John Wiley & Sons, 1994.

2. Philip R. Zimmermann, The Official PGP User’s Guide, MIT Press, 1995.

3. www.gnupg.org The GNU Project implementation of Pretty Good Privacy.

4. David F. Linowes, Privacy in America, University of Illinois Press, 1989.

5. Abraham Sinkov, Elementary Cryptanalysis, Mathematical Association of America, 1966.

6. Don Libes, Obfuscated C and Other Mysteries, John Wiley & Sons, 1993.

Exercise R9.1. Write C++ code to open a file with the name Hello.txt, store the mes-
sage “Hello, World!” in the file, and close the file. Then open the same file again and
read the message into a string variable. Close the file again.

Exercise R9.2. When do you open a file as an ifstream, as an ofstream, or as an
fstream? Could you simply open all files as an fstream?

Exercise R9.3. What happens if you write to a file that you only opened for reading?
Try it out if you don’t know.

Exercise R9.4. What happens if you try to open a file for reading that doesn’t exist?
What happens if you try to open a file for writing that doesn’t exist?

Exercise R9.5. What happens if you try to open a file for writing, but the file or
device is write-protected (sometimes called read-only)? Try it out with a short test
program.

Exercise R9.6. How do you open a file whose name contains a backslash, like
temp\output.dat or c:\temp\output.dat?

Exercise R9.7. Why is the ifstream parameter of the read_data procedure in Section
9.2 a reference parameter and not a value parameter?

Exercise R9.8. How can you convert the string "3.14" into the floating-point number
3.14? How can you convert the floating-point number 3.14 into the string "3.14"?

Exercise R9.9. What is a command line? How can a program read its command line?

FURTHER READING

REVIEW EXERCISES

www.gnupg.org

Programming Exercises 403

Exercise R9.10. If a program woozle is started with the command
woozle -DNAME=Piglet -I\eeyore -v heff.cpp a.cpp lump.cpp

what is the value of argc, and what are the values of string(argv[0]),
string(argv[1]), and so on?

Exercise R9.11. How can you break the Caesar cipher? That is, how can you read a
letter that was encrypted with the Caesar cipher, even though you don’t know the
key?

Exercise R9.12. What is the difference between sequential access and random access?

Exercise R9.13. What is the difference between a text file and a binary file?

Exercise R9.14. Some operating systems, in particular Windows, convert a '\n' char-
acter into a two-character sequence (carriage return/line feed) whenever writing a
text file and convert the two-character sequence back into a newline when reading
the text file back in. This is normally transparent to the C++ programmer. Why do
we need to consider this issue in the database program of Section 9.6?

Exercise R9.15. What are the get and put positions in a file? How do you move
them? How do you tell their current positions? Why are they long integers?

Exercise R9.16. How do you move the get position to the first byte of a file? To the
last byte? To the exact middle of the file?

Exercise R9.17. What happens if you try to move the get or put position past the end
of a file? What happens if you try to move the get or put position of cin or cout?
Try it out and report your results.

Exercise P9.1. Write a program that asks the user for a file name and displays the
number of characters, words, and lines in that file. Then have the program ask for
the name of the next file. When the user enters a file that doesn’t exist (such as the
empty string), the program should exit.

Exercise P9.2. Random monoalphabet cipher. The Caesar cipher, which shifts all let-
ters by a fixed amount, is far too easy to crack. Here is a better idea. As the key,
don’t use numbers but words. Suppose the key word is FEATHER. Then first remove
duplicate letters, yielding FEATHR, and append the other letters of the alphabet in
reverse order:

PROGRAMMING EXERCISES

F E A T H R Z Y X W V U S Q P O N M L K J I G D C B

404 CHAPTER 9 • Streams

Now encrypt the letters as follows:

Write a program that encrypts or decrypts a file using this cipher. For example,
crypt -d -kFEATHER encrypt.txt output.txt

decrypts a file using the keyword FEATHER. It is an error not to supply a keyword.

Exercise P9.3. Letter frequencies. If you encrypt a file using the cipher of Exercise
P9.2, it will have all of its letters jumbled up, and will look as if there is no hope of
decrypting it without knowing the keyword. Guessing the keyword seems hopeless
too. There are just too many possible keywords. However, someone who is trained
in decryption will be able to break this cipher in no time at all. The average letter
frequencies of English letters are well known. The most common letter is E, which
occurs about 13 percent of the time. Here are the average frequencies of the letters
(see [5]).

Write a program that reads an input file and displays the letter frequencies in that
file. Such a tool will help a code breaker. If the most frequent letters in an encrypted
file are H and K, then there is an excellent chance that they are the encryptions of E
and T.

Exercise P9.4. Vigenère cipher. The trouble with a monoalphabetic cipher is that it
can be easily broken by frequency analysis. The so-called Vigenère cipher over-
comes this problem by encoding a letter into one of several cipher letters, depend-
ing on its position in the input document. Choose a keyword, for example TIGER.
Then encode the first letter of the input text like this:

A B C D E F G H I J K L M N O

F E A T H R Z Y X W V U S Q P

P

O

Q

N

R

M

S

L

T

K

U

J

V

I

W

G

X

D

Y

C

Z

B

A 8% H 4% O 7% U 3%

B <1% I 7% P 3% V <1%

C 3% J <1% Q <1% W 2%

D 4% K <1% R 8% X <1%

E 13% L 4% S 6% Y 2%

F 3% M 3% T 9% Z <1%

G 2% N 8%

A B C D E F G H I J K L M N O

T U V W X Y Z A B C D E F G H

P

I

Q

J

R

K

S

L

T

M

U

N

V

O

W

P

X

Q

Y

R

Z

S

Programming Exercises 405

The encoded alphabet is just the regular alphabet shifted to start at T, the first letter
of the keyword TIGER. The second letter is encrypted according to the following
map.

The third, fourth, and fifth letters in the input text are encrypted using the alphabet
sequences beginning with characters G, E, and R, and so on. Because the key is only
five letters long, the sixth letter of the input text is encrypted in the same way as the
first.
Write a program that encrypts or decrypts an input text according to this cipher.

Exercise P9.5. Playfair cipher. Another way of thwarting a simple letter frequency
analysis of an encrypted text is to encrypt pairs of letters together. A simple scheme
to do this is the Playfair cipher. You pick a keyword and remove duplicate letters
from it. Then you fill the keyword, and the remaining letters of the alphabet, into a
5 × 5 square. (Since there are only 25 squares, I and J are considered the same letter.)
Here is such an arrangement with the keyword PLAYFAIR.

To encrypt a letter pair, say AM, look at the rectangle with corners A and M:

The encoding of this pair is formed by looking at the other two corners of the rect-
angle, in this case, FH. If both letters happen to be in the same row or column, such
as GO, simply swap the two letters. Decryption is done in the same way.
Write a program that encrypts or decrypts an input text according to this cipher.

Exercise P9.6. Junk mail. Write a program that reads in two files: a template and a
database. The template file contains text and tags. The tags have the form |1| |2|
|3|… and need to be replaced with the first, second, third, … field in the current
database record.
A typical database looks like this:

Mr.|Harry|Hacker|1105 Torre Ave.|Cupertino|CA|95014
Dr.|John|Lee|702 Ninth Street Apt. 4|San Jose|CA|95109
Miss|Evelyn|Garcia|1101 S. University Place|Ann Arbor|MI|48105

A B C D E F G H I J K L M N O

I J K L M N O P Q R S T U V W

P

X

Q

Y

R

Z

S

A

T

B

U

C

V

D

W

E

X

F

Y

G

Z

H

P L A Y F
I R B C D
E G H K M
N O Q S T
U V W X Z

P L A Y F
I R B C D
E G H K M
N O Q S T
U V W X Z

406 CHAPTER 9 • Streams

And here is a typical form letter:
To:
|1| |2| |3|
|4|
|5|, |6| |7|

Dear |1| |3|:

You and the |3| family may be the lucky winners of $10,000,000 in the C++
compiler clearinghouse sweepstakes! ...

Exercise P9.7. The program in Section 9.6 only locates one record and updates the
salary. Write a program that raises or lowers the salaries of all employees by a given
percentage.

Exercise P9.8. The program in Section 9.6 asks the user to specify the record number.
More likely than not, a user has no way of knowing the record number. Write a
program that asks the user for the name of an employee, finds the record with that
name, and displays the record. Then the program should give the following options
to the user:

• Change the salary of this record
• View the next record
• Find another employee
• Quit

Exercise P9.9. To find a particular employee in a database file, the program needs to
search one record at a time. If the records are sorted, there is a faster way. Count the
number of records in the file, by dividing the length of the file by the length of each
record. Set a variable first to 1, last to nrecords. Compute mid = (first + last)/
2. Read the record at mid. Maybe you are lucky, and you actually found the record
you wanted. If so, print it and exit. Is its name before or after the name that you are
searching? Adjust either last to mid - 1 or first to mid + 1 and repeat the search.
This searching method is called a binary search, and it is much faster than a sequen-
tial search through all records. Implement this searching method.

Exercise P9.10. It is unpleasant to have to use the constant NEWLINE_LENGTH. One
must remember to change the constant when porting the database program from
UNIX to DOS. Implement the following strategy that avoids the problem. Write a
function

int newline_length(fstream& fs)

Remember the current get position. Reset it to the beginning of the file. Keep call-
ing tellg and reading characters. When the character is a "\n", check whether the
get position jumps by 1 or 2. Return that value. If you don’t find a newline in the
entire file, then report 0. Before exiting, restore the get position to its original value.
Write this function and put it inside the database program.

Exercise P9.11. Write a program that keeps an employee database in a random-access
file. Implement functions for adding and removing employees. You need not keep

Programming Exercises 407

employees in sorted order. To remove an employee, just fill the entire record with
spaces. When adding an employee, try to add it into one of those empty spots first
before appending it to the end of the file.

Exercise P9.12. Write a program that manipulates three database files. The first file
contains the names and telephone numbers of a group of people. The second file
contains the names and Social Security numbers of a group of people. The third file
contains the Social Security numbers and annual salaries of a group of people. The
groups of people should overlap but need not be completely identical. Your pro-
gram should ask the user for a telephone number and then print the name, Social
Security number, and annual income, if it can determine that information.

Exercise P9.13. Write a program that prints out a student grade report. There is a file,
classes.txt, that contains the names of all classes taught at a college, such as

classes.txt
1 CSC1
2 CSC2
3 CSC46
4 CSC151
5 MTH121
6 ...

For each class, there is a file with student numbers and grades:

csc2.txt
1 11234 A-
2 12547 B
3 16753 B+
4 21886 C
5 ...

Write a program that asks for a student ID and prints out a grade report for that
student, by searching all class files. Here is a sample report

Student ID 16753
CSC2 B+
MTH121 C+
CHN1 A
PHY50 A-

Exercise P9.14. A bank keeps all bank accounts in a random access file in which each
line has the format

account_number balance

Write a program that simulates an automatic teller machine. A user can deposit
money to an account by specifying the account number and amount, withdraw
money, query the account balance, or transfer money from one account to another.

Exercise P9.15. Write a program copyfile that copies one file to another. The file
names are specified on the command line. For example,

copyfile report.txt report.sav

408 CHAPTER 9 • Streams

Exercise P9.16. Write a program that concatenates the contents of several files into
one file. For example,

catfiles chapter1.txt chapter2.txt chapter3.txt book.txt

makes a long file book.txt that contains the contents of the files chapter1.txt,
chapter2.txt, and chapter3.txt. The target file is always the last file specified on the
command line.

Exercise P9.17. Write a program find that searches all files specified on the command
line and prints out all lines containing a keyword. For example, if you call

find Tim report.txt address.txt homework.cpp

then the program might print
report.txt: discussed the results of my meeting with Tim T
address.txt: Torrey, Tim|11801 Trenton Court|Dallas|TX
address.txt: Walters, Winnie|59 Timothy Circle|Detroit|MI
homework.cpp: Time now;

The keyword is always the first command line argument.

Exercise P9.18. Write a program that checks the spelling of all words in a file. It
should read each word of a file and check whether it is contained in a word list. A
word list is available on most UNIX systems in the file /usr/dict/words. (If you
don’t have access to a UNIX system, your instructor should be able to get you a
copy.) The program should print out all words that it cannot find in the word list.

Exercise P9.19. Write a program that opens a file for reading and writing, and
replaces each line with its reverse. For example, if you run

reverse hello.cpp

then the contents of hello.cpp is changed to
>maertsoi< edulcni#
;dts ecapseman gnisu
()niam tni
{
;"n\!dlrow, olleH" << tuoc
;0 nruter
}

Of course, if you run reverse twice on the same file, then the original file is dis-
played.

Exercise P9.20. Exercise P9.19 shows a limitation of the hello.cpp program. If you
reverse every line, it no longer is a legal C++ program. You may not think that this
is much to worry about, but there are people who try hard to write programs that
can be scrambled in various ways. For example, a winner of the 1989 Obfuscated C
Contest wrote a program that can be reversed and still does something useful. The
grand prize winner of the 1990 contest wrote a C program that can be sorted! The
unsorted version solves a differential equation, whereas the version in which the

Programming Exercises 409

lines are sorted in alphabetical order prints Fibonacci numbers. Look at [6] for a
highly entertaining account of these contests.
Your task is to write a C++ program that turns into another legal C++ program
when you reverse each line.

This page intentionally left blank

Chapter 10
Recursion

• To learn about the method of recursion

• To understand the relationship between recursion and iteration

• To analyze problems that are much easier to solve by recursion
than by iteration

• To learn to “think recursively”

• To be able to use recursive helper functions

• To understand when the use of recursion affects the efficiency
of an algorithm

CHAPTER GOALS

The method of recursion is a powerful technique to break up complex

computational problems into simpler ones. The term “recursion” refers to the fact

that the same computation recurs, or occurs repeatedly, as the problem is solved.

Recursion is often the most natural way of thinking about a problem, and there are

some computations that are very difficult to perform without recursion. This

chapter shows you both simple and complex examples of recursion and teaches you

how to “think recursively”.

412 CHAPTER 10 • Recursion

CHAPTER CONTENTS

We begin this chapter with a very simple example that demonstrates the power of
thinking recursively. In this example, we will look at triangle shapes such as this:

[]
[][]
[][][]

We will compute the area of a triangle of width n, assuming that each [] square has
area 1. This value is sometimes called the nth triangle number. For example, as you
can tell from looking at the above triangle, the third triangle number is 6.

You may know that there is a very simple formula to compute these numbers,
but you should pretend for now that you don’t know about it. The ultimate pur-
pose of this section is not to compute triangle numbers, but to learn about the con-
cept of recursion in a simple situation.

Here is the outline of the class that we will develop:
class Triangle
{
public:
 Triangle(int w);
 int get_area() const;
private:
 int width;
};

Triangle::Triangle(int w)
{
 width = w;
}

If the width of the triangle is 1, then the triangle consists of a single square, and its
area is 1. Take care of this case first.

int Triangle::get_area()
{
 if (width == 1) return 1;
 ...
}

10.1 Tr iangle Numbers

10.1 Triangle Numbers 412
COMMON ERROR 10.1: Infinite Recursion 415

10.2 Permutations 416
COMMON ERROR 10.2: Tracing Through

Recursive Functions 419

10.3 Thinking Recursively 421

10.4 Recursive Helper Functions 424

10.5 Mutual Recursion 425

10.6 The Efficiency of Recursion 430
RANDOM FACT 10.1: The Limits

of Computation 434

10.1 • Triangle Numbers 413

To deal with the general case, consider this picture.
[]
[][]
[][][]
[][][][]

Suppose you knew the area of the smaller, colored triangle. Then you could easily
compute the area of the larger triangle as

smaller_area + width

How can you get the smaller area? Make a smaller triangle and ask it!
Triangle smaller_triangle(width - 1);
int smaller_area = smaller_triangle.get_area();

Now we can complete the get_area function:
int Triangle::get_area() const
{
 if (width == 1) return 1;
 Triangle smaller_triangle(width - 1);
 int smaller_area = smaller_triangle.get_area();
 return smaller_area + width;
}

Here is an illustration of what happens when we compute the area of a triangle of
width 4.

• The get_area function makes a smaller triangle of width 3.
• It calls get_area on that triangle.

• That function makes a smaller triangle of width 2.

• It calls get_area on that triangle.

• That function makes a smaller triangle of width 1.

• It calls get_area on that triangle.

• That function returns 1.

• The function returns smaller_area + width = 1 + 2 = 3.

• The function returns smaller_area + width = 3 + 3 = 6.

• The function returns smaller_area + width = 6 + 4 = 10.

This solution has one remarkable aspect. To solve the area problem
for a triangle of a given width, we use the fact that we can solve the
same problem for a lesser width. This is called a recursive solution.

The call pattern of a recursive function looks complicated, and the
key to the successful design of a recursive function is not to think
about it. Instead, look at the get_area function one more time and

notice how utterly reasonable it is. If the width is 1, then of course the area is 1. The
next part is just as reasonable. Compute the area of the smaller triangle and don’t
think about why that works. Then the area of the larger triangle is clearly the sum of
the smaller area and the width.

A recursive computation
solves a problem by
using the solution to
the same problem with
simpler inputs.

414 CHAPTER 10 • Recursion

There are two key requirements to make sure that the recursion is successful:

• Every recursive call must simplify the computation in some way.
• There must be special cases to handle the simplest computations directly.

The get_area function calls itself again with smaller and smaller
width values. Eventually the width must reach 1, and there is a spe-
cial case for computing the area of a triangle with width 1. Thus, the
get_area function always succeeds.

Actually, you have to be careful. What happens when you call the
area of a triangle with width –1? It computes the area of a triangle with width –2,
which computes the area of a triangle with width –3, and so on. To avoid this, the
get_area function should return 0 if the width is ≤ 0.

Recursion is not really necessary to compute the triangle numbers. The area of a
triangle equals the sum

1 + 2 + 3 + ... + width

Of course, we can program a simple loop:
double area = 0;
for (int i = 1; i <= width; i++)
 area = area + i;

Many simple recursions can be computed as loops. However, loop equivalents for
more complex recursions—such as the one in our next example—can be complex.

Actually, in this case, you don’t even need a loop to compute the answer. The
sum of the first n integers can be computed as

Thus, the area equals
width * (width + 1) / 2

Therefore, neither recursion nor a loop are required to solve this problem. The
recursive solution is intended as a “warm-up” for the next section.

ch10/triangle.cpp

For a recursion to
terminate, there must be
special cases for the
simplest inputs.

1 2 1 2+ + + = × +()� n n n

1 #include <iostream>
2
3 using namespace std;
4
5 /**
6 A class that describes triangle shapes like this:
7 []
8 [][]
9 [][][]
10 . . .
11 */
12 class Triangle
13 {

10.1 • Triangle Numbers 415

Infinite Recursion

A common programming error is an infinite recursion: a function calling itself over and over
with no end in sight. The computer needs some amount of memory for bookkeeping for
each call. After some number of calls, all memory that is available for this purpose is
exhausted. Your program shuts down and reports a “stack fault”.

Infinite recursion happens either because the parameter values don’t get simpler or
because a terminating case is missing. For example, suppose the get_area function computes
the area of a triangle with width 0. If it weren’t for the special test, the function would have
constructed triangles with width –1, –2, –3, and so on.

14 public:
15 Triangle(int w);
16 int get_area() const;
17 private:
18 int width;
19 };
20
21 /**
22 Constructs a triangle with a given width.
23 @param w the width of the triangle base
24 */
25 Triangle::Triangle(int w)
26 {
27 width = w;
28 }
29
30 /**
31 Computes the area of the triangle shape.
32 @return the area
33 */
34 int Triangle::get_area() const
35 {
36 if (width <= 0) return 0;
37 if (width == 1) return 1;
38 Triangle smaller_triangle(width - 1);
39 int smaller_area = smaller_triangle.get_area();
40 return smaller_area + width;
41 }
42
43 int main()
44 {
45 Triangle t(4);
46 cout << "Area: " << t.get_area() << "\n";
47 return 0;
48 }

COMMON ERROR 10.1

416 CHAPTER 10 • Recursion

In this section, we consider a more complex example of recursion that would be dif-
ficult to program with a simple loop. Our task is to generate all permutations of a
string. A permutation is simply a rearrangement of the letters. For example, the
string "eat" has six permutations (including the original string itself):

"eat"
"eta"
"aet"
"ate"
"tea"
"tae"

We will develop a function
vector<string> generate_permutations(string word)

that generates all permutations of a word.
Here is how you would use the function. The following code displays all permu-

tations of the string "eat":
vector<string> v = generate_permutations("eat");
for (int i = 0; i < v.size(); i++)
 cout << v[i] << "\n";

Now you need a way to generate the permutations recursively. Consider the string
"eat" and simplify the problem. First, generate all permutations that start with the
letter 'e', then those that start with 'a', and finally those that start with 't'. How
do you generate the permutations that start with 'e'? You need to know the permu-
tations of the substring "at". But that’s the same problem—to generate all permuta-
tions—with a simpler input, namely the shorter string "at". Using recursion
generates the permutations of the substring "at". You will get the strings

"at"
"ta"

For each result of the simpler problem, add the letter 'e' in front. Now you have all
permutations of "eat" that start with 'e', namely

"eat"
"eta"

Next, turn your attention to the permutations of "eat" that start with 'a'. You must
create the permutations of the remaining letters, "et", namely:

"et"
"te"

Add the letter 'a' to the front of the strings and obtain
"aet"
"ate"

Generate the permutations that start with 't' in the same way.

10.2 Permutat ions

10.2 • Permutations 417

That’s the idea. To carry it out, you must implement a loop that iterates through
the character positions of the word. Each loop iteration creates a shorter word that
omits the current position:

vector<string> generate_permutations(string word)
{
 vector<string> result;
 ...
 for (int i = 0; i < word.length(); i++)
 {
 string shorter_word = word.substr(0, i)
 + word.substr(i + 1);
 ...
 }
 return result;
}

The next step is to compute the permutations of the shorter word.

vector<string> shorter_permutations
 = generate_permutations(shorter_word);

For each of the shorter permutations, add the omitted letter:

for (int j = 0; j < shorter_permutations.size(); j++)
{
 string longer_word = word[i] + shorter_permutations[j];
 result.push_back(longer_word);
}

The permutation generation algorithm is recursive—it uses the fact that we can gen-
erate the permutations of shorter words. When does the recursion stop? You must
build in a stopping point, a special case to handle words of length 1. A word of
length 1 has a single permutation, namely itself. Here is the added code to handle a
word of length 1.

vector<string> generate_permutations(string word)
{
 vector<string> result;
 if (word.length() <= 1)
 {
 result.push_back(word);
 return result;
 }
 ...
}

The complete program is at the end of this section.
Could you generate the permutations without recursion? There is

no obvious way of writing a loop that iterates through all permuta-
tions. Exercise P10.12 shows that there is an iterative solution, but it
is far more difficult to understand than the recursive algorithm.

For generating
permutations, it is much
easier to use recursion
than iteration.

418 CHAPTER 10 • Recursion

ch10/permute.cpp

Program Run

1 #include <iostream>
2 #include <string>
3 #include <vector>
4
5 using namespace std;
6
7 /**
8 Generates all permutations of the characters in a string.
9 @param word a string
10 @return a vector that is filled with all permutations
11 of the word
12 */
13 vector<string> generate_permutations(string word)
14 {
15 vector<string> result;
16 if (word.length() <= 1)
17 {
18 result.push_back(word);
19 return result;
20 }
21
22 for (int i = 0; i < word.length(); i++)
23 {
24 string shorter_word = word.substr(0, i)
25 + word.substr(i + 1);
26 vector<string> shorter_permutations
27 = generate_permutations(shorter_word);
28 for (int j = 0; j < shorter_permutations.size(); j++)
29 {
30 string longer_word = word[i] + shorter_permutations[j];
31 result.push_back(longer_word);
32 }
33 }
34 return result;
35 }
36
37 int main()
38 {
39 cout << "Enter a string: ";
40 string input;
41 getline(cin, input);
42 vector<string> v = generate_permutations(input);
43 for (int i = 0; i < v.size(); i++)
44 cout << v[i] << "\n";
45 return 0;
46 }

Enter a string: arm

arm
amr
ram

10.2 • Permutations 419

Tracing Through Recursive Functions

Debugging a recursive function can be somewhat challenging. When you set a breakpoint in
a recursive function, the program stops as soon as that program line is encountered in any
call to the recursive function. Suppose you want to debug the recursive get_area function of
the Triangle class. Run until the beginning of the get_area function (Figure 1). Inspect the
width instance variable. It is 4.

Figure 1 Debugging a Recursive Function

rma
mar
mra

COMMON ERROR 10.2

420 CHAPTER 10 • Recursion

Remove the breakpoint and now run until the statement
return smaller_area + width;

When you inspect width again, its value is 2! That makes no sense. There was no instruction
that changed the value of width! Is that a bug with the debugger?

No. The program stopped in the first recursive call to get_area that reached the return
statement. If you are confused, look at the call stack (Figure 2). You will see that three calls to
get_area are pending.

You can debug recursive functions with the debugger. You just need to be particularly
careful, and watch the call stack to understand which nested call you currently are in.

Figure 2 Three Calls to get_area Are Pending

10.3 • Thinking Recursively 421

To solve a problem recursively requires a different mindset than to solve it by pro-
gramming loops. In fact, it helps if you are, or pretend to be, a bit lazy and let others
do most of the work for you. If you need to solve a complex problem, pretend that
“someone else” will do most of the heavy lifting and solve the problem for all sim-
pler inputs. Then you only need to figure out how you can turn the solutions with
simpler inputs into a solution for the whole problem.

This section gives you a step-by-step guide to the method of recursion. To illus-
trate the steps, use the following problem to test whether a sentence is a palin-
drome—a string that is equal to itself when you reverse all characters. Typical
examples of palindromes are

• rotor
• A man, a plan, a canal—Panama!
• Go hang a salami, I’m a lasagna hog

and, of course, the oldest palindrome of all:

• Madam, I’m Adam

Our goal is to implement the predicate function
bool is_palindrome(string s)

For simplicity, assume for now that the string has only lowercase letters and no
punctuation marks or spaces. Exercise P10.13 asks you to generalize the function to
arbitrary strings.

Step 1 Consider various ways for simplifying inputs.

In your mind, fix a particular input or set of inputs for the problem that you want
to solve. Think how you can simplify the inputs in such a way that the same prob-
lem can be applied to the simpler input.

When you consider simpler inputs, you may want to remove just a
little bit from the original input—maybe remove one or two charac-
ters from a string, or remove a small portion of a geometric shape.
But sometimes it is more useful to cut the input in half and then see
what it means to solve the problem for both halves.

In the palindrome test problem, the input is the string that we need
to test. How can you simplify the input? Here are several possibilities:

• Remove the first character.
• Remove the last character.
• Remove both the first and the last character.
• Remove a character from the middle.
• Cut the string into two halves.

These simpler inputs are all potential inputs for the palindrome test.

10.3 Think ing Recurs ive ly

The key step in finding a
recursive solution is
reducing the input to a
simpler input for the same
problem.

422 CHAPTER 10 • Recursion

Step 2 Combine solutions with simpler inputs to a solution of the original
problem.

In your mind, consider the solutions of your problem for the simpler inputs that
you have discovered in Step 1. Don’t worry how those solutions are obtained. Sim-
ply have faith that the solutions are readily available. Just say to yourself: These are
simpler inputs, so someone else will solve the problem for me.

Now think how you can turn the solution for the simpler inputs into a solution
for the input that you are currently thinking about. Maybe you need to add a small
quantity, related to the quantity that you lopped off to arrive at the simpler input.
Maybe you cut the original input in two halves and have solutions for both halves.
Then you may need to add both solutions to arrive at a solution for the whole.

Consider the methods for simplifying the inputs for the palindrome test. Cutting
the string in half doesn’t seem a good idea. If you cut

"rotor"

in half, you get two strings:
"rot"

and
"or"

Neither of them is a palindrome. Cutting the input in half and testing whether the
halves are palindromes seems a dead end.

The most promising simplification is to remove the first and last characters.
Removing the r at the front and back of "rotor" yields
"oto"

Suppose you can verify that the shorter string is a palindrome. Then of course the
original string is a palindrome—we put the same letter in the front and the back.
That’s extremely promising. A word is a palindrome if

• The first and last letters match, and
• The word obtained by removing the first and last letters is a palindrome.

Again, don’t worry how the test works for the shorter string. It just works.

Step 3 Find solutions to the simplest inputs.

A recursive computation keeps simplifying its inputs. Eventually it arrives at very
simple inputs. To make sure that the recursion comes to a stop, you must deal with
the simplest inputs separately. Come up with special solutions for them. That is
usually very easy.

However, sometimes you get into philosophical questions dealing with degener-
ate inputs: empty strings, shapes with no area, and so on. Then you may want to
investigate a slightly larger input that gets reduced to such a trivial input and see
what value you should attach to the degenerate inputs so that the simpler value,
when used according to the rules you discovered in Step 2, yields the correct
answer.

10.3 • Thinking Recursively 423

Look at the simplest strings for the palindrome test:

• Strings with two characters
• Strings with a single character
• The empty string

You don’t have to come up with a special solution for strings with two characters.
Step 2 still applies to those strings—either or both of the characters are removed.
But you do need to worry about strings of length 0 and 1. In those cases, Step 2
can’t apply. There aren’t two characters to remove.

A string with a single character, such as "I", is a palindrome.
The empty string is a palindrome—it’s the same string when you read it back-

wards. If you find that too artificial, consider a string "oo". According to the rule
discovered in Step 2, this string is a palindrome if the first and last character of that
string match and the remainder—that is, the empty string—is also a palindrome.
Therefore, it makes sense to consider the empty string a palindrome.

Thus, all strings of length 0 or 1 are palindromes.

Step 4 Implement the solution by combining the simple cases and the reduction
step.

Now you are ready to implement the solution. Make separate cases for the simple
inputs that you considered in Step 3. If the input isn’t one of the simplest cases, then
implement the logic you discovered in Step 2.

The following program shows the complete is_palindrome function.

ch10/palindrome.cpp

1 #include <iostream>
2 #include <string>
3 #include <vector>
4
5 using namespace std;
6
7 /**
8 Tests whether a string is a palindrome. A palindrome
9 is equal to its reverse, for example “rotor” or “racecar”.
10 @param s a string
11 @return true if s is a palindrome
12 */
13 bool is_palindrome(string s)
14 {
15 // Separate case for shortest strings.
16 if (s.length() <= 1) return true;
17
18 // Get first and last character, converted to lowercase.
19 char first = s[0];
20 char last = s[s.length() - 1];
21
22 if (first == last)
23 {

424 CHAPTER 10 • Recursion

Program Run

You have now seen several recursive algorithms, all of which work
on the same principle. When given a complex input, they first solve
the problem with a simpler input. Then they turn the simpler result
into the result for the more complex input. This process is quite intu-
itive as long as you think about the solution on that level only. How-
ever, behind the scenes, the function that computes the simpler input
calls yet another function that works on even simpler input, which

calls yet another, and so on, until one function’s input is so simple that it can com-
pute the results without further help. It is interesting to think about that process,
but it can also be confusing. What’s important is that you can focus on the one level
that matters—putting a solution together from the slightly simpler problem, ignor-
ing the fact that it also uses recursion to get its results.

Sometimes it is easier to find a recursive solution if you change the
original problem slightly. Then the original problem can be solved by
calling a recursive helper function.

Here is a typical example. Consider the palindrome test of the pre-
ceding section. It is a bit inefficient to construct new string objects
in every step. Now consider the following change in the problem.

Rather than testing whether the entire sentence is a palindrome, check whether a
substring is a palindrome:

24 string shorter = s.substr(1, s.length() - 2);
25 return is_palindrome(shorter);
26 }
27 else
28 return false;
29 }
30
31 int main()
32 {
33 cout << "Enter a string: ";
34 string input;
35 getline(cin, input);
36 cout << input << " is ";
37 if (!is_palindrome(input)) cout << "not ";
38 cout << "a palindrome\n";
39 return 0;
40 }

Enter a string: aibohphobia
aibohphobia is a palindrome.

When designing a
recursive solution, do not
worry about multiple
nested calls. Simply focus
on reducing a problem to
a slightly simpler one.

10.4 Recurs ive Helper Funct ions

Sometimes it is easier to
find a recursive solution if
you make a slight change
to the original problem.

10.5 • Mutual Recursion 425

/*
Tests whether a substring of a string is a palindrome.

 @param s the string to test
 @param start the index of the first character of the substring
 @param end the index of the last character of the substring
 @return true if the substring is a palindrome
*/
bool substring_is_palindrome(string s, int start, int end)

This function turns out to be even easier to implement than the original test. In the
recursive calls, simply adjust the start and end parameters to skip over matching
letter pairs. There is no need to construct new string objects to represent the
shorter strings.

bool substring_is_palindrome(string s, int start, int end)
{
 // Separate case for substrings of length 0 and 1
 if (start >= end) return true;

 if (s[start] == s[end])
 // Test substring that doesn’t contain the first and last letters
 return substring_is_palindrome(s, start + 1, end - 1);
 else
 return false;
}

You should supply a function to solve the whole problem—the user of your func-
tion shouldn’t have to know about the trick with the substring positions. Simply
call the helper function with positions that test the entire string:

bool is_palindrome(string s)
{
 return substring_is_palindrome(s, 0, s.length() - 1);
}

Note that the is_palindrome function is not recursive. It just calls a recursive helper
function.

Use the technique of recursive helper functions whenever it is easier to solve a
recursive problem that is slightly different from the original problem.

In the preceding examples, a function called itself to solve a simpler
problem. Sometimes, a set of cooperating functions calls each other
in a recursive fashion. In this section, we will explore a typical situa-
tion of such a mutual recursion.

We will develop a program that can compute the values of arith-
metic expressions such as

3 + 4 * 5
(3 + 4) * 5
1 - (2 - (3 - (4 - 5)))

10.5 Mutua l Recurs ion

In a mutual recursion, a
set of cooperating
functions calls each other
repeatedly.

426 CHAPTER 10 • Recursion

Computing such an expression is complicated by the fact that * and / bind more
strongly than + and -, and that parentheses can be used to group subexpressions.

Figure 3 shows a set of syntax diagrams that describes the syntax of these expres-
sions. An expression is either a term, or a sum or difference of terms. A term is
either a factor, or a product or quotient of factors. Finally, a factor is either a num-
ber or an expression enclosed in parentheses.

Figure 4 shows how the expressions 3 + 4 * 5 and (3 + 4) * 5 are derived from
the syntax diagram.

Figure 3
Syntax Diagrams for
Evaluating an Expression

termexpression

+

–

factorterm

*

/

expression

number

factor

()

Figure 4 Syntax Trees for Two Expressions

Expression

Term Term

Factor

Number

3 + * *

Factor

Number

4

Factor

Number

5 5

Expression

Factor

Term

Factor

Number

3(+

Expression

Term

Term

Factor

Number

4)

Factor

Number

10.5 • Mutual Recursion 427

Why do the syntax diagrams help us compute the value of the tree? If you look at
the syntax trees, you will see that they accurately represent which operations
should be carried out first. In the first tree, 4 and 5 should be multiplied, and then
the result should be added to 3. In the second tree, 3 and 4 should be added, and the
result should be multiplied by 5.

To compute the value of an expression, we implement three functions:
expression_value, term_value, and factor_value. The expression_value function
first calls term_value to get the value of the first term of the expression. Then it
checks whether the next input character is one of + or -. If so, it calls term_value
again and adds or subtracts it.

int expression_value()
{
 int result = term_value();
 bool more = true;
 while (more)
 {
 char op = cin.peek();
 if (op == '+' || op == '-')
 {
 cin.get();
 int value = term_value();
 if (op == '+') result = result + value;
 else result = result - value;
 }
 else more = false;
 }
 return result;
}

The term_value function calls factor_value in the same way, multiplying or dividing
the factor values.

Finally, the factor_value function checks whether the next input character is a
'(' or a digit. In the latter case, the value is simply the value of the number. How-
ever, if the function sees a parenthesis, the factor_value function makes a recursive
call to expression_value. Thus, the three functions are mutually recursive.

int factor_value()
{
 int result = 0;
 char c = cin.peek();
 if (c == '(')
 {
 cin.get();
 result = expression_value();
 cin.get(); // read ")"
 }
 else // Assemble number value from digits
 {
 while (isdigit(c))
 {
 result = 10 * result + c - '0';
 cin.get();
 c = cin.peek();

428 CHAPTER 10 • Recursion

 }
 }
 return result;
}

As always with a recursive solution, you need to ensure that the recursion termi-
nates. In this situation, that is easy to see. If expression_value calls itself, the second
call works on a shorter subexpression than the original expression. At each recur-
sive call, at least some of the characters of the input are consumed, so eventually the
recursion must come to an end.

ch10/eval.cpp

1 #include <iostream>
2 #include <cctype>
3
4 using namespace std;
5
6 int term_value();
7 int factor_value();
8
9 /**
10 Evaluates the next expression found in cin.
11 @return the value of the expression
12 */
13 int expression_value()
14 {
15 int result = term_value();
16 bool more = true;
17 while (more)
18 {
19 char op = cin.peek();
20 if (op == '+' || op == '-')
21 {
22 cin.get();
23 int value = term_value();
24 if (op == '+') result = result + value;
25 else result = result - value;
26 }
27 else more = false;
28 }
29 return result;
30 }
31
32 /**
33 Evaluates the next term found in cin.
34 @return the value of the term
35 */
36 int term_value()
37 {
38 int result = factor_value();
39 bool more = true;

10.5 • Mutual Recursion 429

Program Run

40 while (more)
41 {
42 char op = cin.peek();
43 if (op == '*' || op == '/')
44 {
45 cin.get();
46 int value = factor_value();
47 if (op == '*') result = result * value;
48 else result = result / value;
49 }
50 else more = false;
51 }
52 return result;
53 }
54
55 /**
56 Evaluates the next factor found in cin.
57 @return the value of the factor
58 */
59 int factor_value()
60 {
61 int result = 0;
62 char c = cin.peek();
63 if (c == '(')
64 {
65 cin.get();
66 result = expression_value();
67 cin.get(); // Read ")"
68 }
69 else // Assemble number value from digits
70 {
71 while (isdigit(c))
72 {
73 result = 10 * result + c - '0';
74 cin.get();
75 c = cin.peek();
76 }
77 }
78 return result;
79 }
80
81 int main()
82 {
83 cout << "Enter an expression: ";
84 cout << expression_value() << "\n";
85 return 0;
86 }

Enter an expression: 1+12*12*12
1729

430 CHAPTER 10 • Recursion

As you have seen in this chapter, recursion can be a powerful tool to
implement complex algorithms. On the other hand, recursion can lead
to algorithms that perform poorly. In this section, we will analyze the
question of when recursion is beneficial and when it is inefficient.

The Fibonacci sequence is a sequence of numbers defined by the
equation

That is, each value of the sequence is the sum of the two preceding values. The first
ten terms of the sequence are

1, 1, 2, 3, 5, 8, 13, 21, 34, 55

It is easy to extend this sequence indefinitely. Just keep appending the sum of the
last two values of the sequence. For example, the next entry is 34 + 55 = 89.

We would like to write a function that computes fn for any value of n. Suppose
we translate the definition directly into a recursive function:

ch10/fibtest.cpp

10.6 The Ef f ic iency of Recurs ion

Occasionally, a recursive
solution runs much slower
than its iterative
counterpart. However, in
most cases, the recursive
solution runs at about the
same speed.

f

f

f f fn n n

1

2

1 2

1

1

=

=

= +− −

1 #include <iostream>
2
3 using namespace std;
4
5 /**
6 Computes a Fibonacci number.
7 @param n an integer
8 @return the nth Fibonacci number
9 */
10 int fib(int n)
11 {
12 if (n <= 2) return 1;
13 else return fib(n - 1) + fib(n - 2);
14 }
15
16 int main()
17 {
18 cout << "Enter n: ";
19 int n;
20 cin >> n;
21 int f = fib(n);
22 cout << "fib(" << n << ") = " << f << "\n";
23 return 0;
24 }

10.6 • The Efficiency of Recursion 431

Program Run

That is certainly simple, and the function will work correctly. But watch the output
closely as you run the test program. For small input values, the program is quite fast.
Even for moderately large values, though, the program pauses an amazingly long
time between outputs. Try out some numbers between 30 and 50 to see this effect.

That makes no sense. Armed with pencil, paper, and a pocket calculator you
could calculate these numbers pretty quickly, so it shouldn’t take the computer long.

To determine the problem, insert trace messages into the function:

ch10/fibtrace.cpp

Program Run

Enter n: 6
fib(6) = 8

1 #include <iostream>
2
3 using namespace std;
4
5 /**
6 Computes a Fibonacci number.
7 @param n an integer
8 @return the nth Fibonacci number
9 */
10 int fib(int n)
11 {
12 cout << "Entering fib: n = " << n << "\n";
13 int f;
14 if (n <= 2) f = 1;
15 else f = fib(n - 1) + fib(n - 2);
16 cout << "Exiting fib: n = " << n
17 << " return value = " << f << "\n";
18 return f;
19 }
20
21 int main()
22 {
23 cout << "Enter n: ";
24 int n;
25 cin >> n;
26 int f = fib(n);
27 cout << "fib(" << n << ") = " << f << "\n";
28 return 0;
29 }

Enter n: 6

Entering fib: n = 6
Entering fib: n = 5
Entering fib: n = 4
Entering fib: n = 3
Entering fib: n = 2

432 CHAPTER 10 • Recursion

Figure 5 shows the call tree.
Now it is becoming apparent why the function takes so long. It is computing the

same values over and over. For example, the computation of fib(6) calls fib(4)
twice and fib(3) three times. That is very different from the computation you
would do with pencil and paper. There you would just write down the values as

Figure 5 Call Pattern of the Recursive fib Function

Exiting fib: n = 2 return value = 1
Entering fib: n = 1
Exiting fib: n = 1 return value = 1
Exiting fib: n = 3 return value = 2
Entering fib: n = 2
Exiting fib: n = 2 return value = 1
Exiting fib: n = 4 return value = 3
Entering fib: n = 3
Entering fib: n = 2
Exiting fib: n = 2 return value = 1
Entering fib: n = 1
Exiting fib: n = 1 return value = 1
Exiting fib: n = 3 return value = 2
Exiting fib: n = 5 return value = 5
Entering fib: n = 4
Entering fib: n = 3
Entering fib: n = 2
Exiting fib: n = 2 return value = 1
Entering fib: n = 1
Exiting fib: n = 1 return value = 1
Exiting fib: n = 3 return value = 2
Entering fib: n = 2
Exiting fib: n = 2 return value = 1
Exiting fib: n = 4 return value = 3
Exiting fib: n = 6 return value = 8

fib(6) = 8

fib(6)

fib(5) fib(4)

fib(4) fib(3) fib(3) fib(2)

fib(3) fib(2) fib(2) fib(1) fib(2) fib(1)

fib(2) fib(1)

10.6 • The Efficiency of Recursion 433

they were computed and add up the last two to get the next one until you reached
the desired entry; no sequence value would ever be computed twice.

If you imitate the pencil-and-paper process, then you get the following program.

ch10/fibloop.cpp

This function runs much faster than the recursive version.
In this example of the fib function, the recursive solution was easy to program

because it exactly followed the mathematical definition, but it ran far more slowly
than the iterative solution, because it computed many intermediate results multiple
times.

Can you always speed up a recursive solution by changing it into a loop? Fre-
quently, the iterative and recursive solution have essentially the same performance.
For example, here is an iterative solution for the palindrome test.

public bool is_palindrome(string s)
{
 int start = 0;
 int end = text.length() - 1;

1 #include <iostream>
2
3 using namespace std;
4
5 /**
6 Computes a Fibonacci number.
7 @param n an integer
8 @return the nth Fibonacci number
9 */
10 int fib(int n)
11 {
12 if (n <= 2) return 1;
13 int fold = 1;
14 int fold2 = 1;
15 int fnew;
16 for (int i = 3; i <= n; i++)
17 {
18 fnew = fold + fold2;
19 fold2 = fold;
20 fold = fnew;
21 }
22 return fnew;
23 }
24
25 int main()
26 {
27 cout << "Enter n: ";
28 int n;
29 cin >> n;
30 int f = fib(n);
31 cout << "fib(" << n << ") = " << f << "\n";
32 return 0;
33 }

434 CHAPTER 10 • Recursion

 while (start < end)
 {
 if (s[start] != s[end]) return false;
 start++;
 end--;
 }
 return true;
}

This solution keeps two index variables: start and end. The first index starts at the
beginning of the string and is advanced whenever a letter has been matched or a
non-letter has been ignored. The second index starts at the end of the string and
moves toward the beginning. When the two index variables meet, then the iteration
stops.

Both the iteration and the recursion run at about the same speed. If a palindrome
has n characters, the iteration executes the loop times. Similarly, the recursive
solution calls itself times, because two characters are removed in each step.

In such a situation, the iterative solution tends to be a bit faster, because each
recursive function call takes a certain amount of processor time. In principle, it is
possible for a smart compiler to avoid recursive function calls if they follow simple
patterns, but most compilers don’t do that. From that point of view, an iterative
solution is preferable.

Often, recursive solutions are easier to understand and implement
correctly than their iterative counterparts. There is a certain elegance
and economy of thought to recursive solutions that makes them
more appealing. As the computer scientist (and creator of the Ghost-
Script interpreter for the PostScript graphics description language)
L. Peter Deutsch put it: “To iterate is human, to recurse divine.”

The Limits of Computation

Have you ever wondered how your instructor or grader makes sure your programming
homework is correct? In all likelihood, they look at your solution and perhaps run it with
some test inputs. But usually they have a correct solution available. That suggests that there
might be an easier way. Perhaps they could feed your program and their correct program
into a program comparator, a computer program that analyzes both programs and deter-
mines whether they both compute the same results. Of course, your solution and the pro-
gram that is known to be correct need not be identical—what matters is that they produce
the same output when given the same input.

How could such a program comparator work? Well, the C++ compiler knows how to
read a program and make sense of the classes, functions, and statements. So it seems plausible
that someone could, with some effort, write a program that reads two C++ programs, ana-
lyzes what they do, and determines whether they solve the same task. Of course, such a pro-
gram would be very attractive to instructors, because it could automate the grading process.
Thus, even though no such program exists today, it might be tempting to try to develop one
and sell it to universities around the world.

n 2
n 2

In many cases, a recursive
solution is easier to
understand and
implement correctly than
an iterative solution.

RANDOM FACT 10.1

10.6 • The Efficiency of Recursion 435

However, before you start raising venture capital for such an effort, you should know
that theoretical computer scientists have proven that it is impossible to develop such a pro-
gram, no matter how hard you try.

There are quite a few of these unsolvable problems. The first one, called the halting prob-
lem, was discovered by the British researcher Alan Turing in 1936 (see Figure 6). Because his
research occurred before the first actual computer was constructed, Turing had to devise a
theoretical device, the Turing machine, to explain how computers could work. The Turing
machine consists of a long magnetic tape, a read/write head, and a program that has num-
bered instructions of the form: “If the current symbol under the head is x, then replace it
with y, move the head one unit left or right, and continue with instruction n” (see Figure 7).

Figure 6 Alan Turing

Figure 7
A Turing Machine

Instruction
number

If tape
symbol is

Replace
with

Then move
head

Then go to
instruction

1
1
2
2
2
3
3
3
4
4

0
1
0
1
2
0
1
2
1
2

2
1
0
1
0
0
1
2
1
0

right
left

right
right
left
left
left

right
right
left

2
4
2
2
3
3
3
1
5
4

Program

Control unit

Read/write head

Tape

436 CHAPTER 10 • Recursion

Interestingly enough, with just these instructions, you can program just as much as with
C++, even though it is incredibly tedious to do so. Theoretical computer scientists like
Turing machines because they can be described using nothing more than the laws of
mathematics.

Expressed in terms of C++, the halting problem states: “It is impossible to write a pro-
gram with two inputs, namely the source code of an arbitrary C++ program P and a string I,
that decides whether the program P, when executed with the input I, will halt without get-
ting into an infinite loop”. Of course, for some kinds of programs and inputs, it is possible to
decide whether the programs halt with the given input. The halting problem asserts that it is
impossible to come up with a single decision-making algorithm that works with all programs
and inputs. Note that you can’t simply run the program P on the input I to settle this ques-
tion. If the program runs for 1,000 days, you don’t know that the program is in an infinite
loop. Maybe you just have to wait another day for it to stop.

Such a “halt checker”, if it could be written, might also be useful for grading homework.
An instructor could use it to screen student submissions to see if they get into an infinite
loop with a particular input, and then not check them any further. However, as Turing dem-
onstrated, such a program cannot be written. His argument is ingenious and quite simple.

Suppose a “halt checker” program existed. Let’s call it H. From H, we will develop
another program, the “killer” program K. K does the following computation. Its input is a
string containing the source code for a program R. It then applies the halting checker on the
input program R and the input string R. That is, it checks whether the program R halts if its
input is its own source code. It sounds bizarre to feed a program to itself, but it isn’t impos-
sible. For example, the C++ compiler is written in C++, and you can use it to compile itself.
Or, as a simpler example, you can use a word count program to count the words in its own
source code.

When K gets the answer from H that R halts when applied to itself, it is programmed to
enter an infinite loop. Otherwise K exits. In C++, the program might look like this:

int main
{
 string r = read program input;
 HaltChecker checker;
 if (checker.check(r, r))
 while (true) { } // infinite loop
 else
 return 0;
}

Now ask yourself: What does the halt checker answer when asked if K halts when given K as
the input? Maybe it finds out that K gets into an infinite loop with such an input. But wait,
that can’t be right. That would mean that checker.check(r, r) returns false when r is the
program code of K. As you can plainly see, in that case, the main function returns, so K
didn’t get into an infinite loop. That shows that K must halt when analyzing itself, so
checker.check(r, r) should return true. But then the main function doesn’t terminate—it
goes into an infinite loop. That shows that it is logically impossible to implement a program
that can check whether every program halts on a particular input.

It is sobering to know that there are limits to computing. There are problems that no
computer program, no matter how ingenious, can answer.

Theoretical computer scientists are working on other research involving the nature of
computation. One important question that remains unsettled to this day deals with problems
that in practice are very time-consuming to solve. It may be that these problems are
intrinsically hard, in which case it would be pointless to try to look for better algorithms.

Review Exercises 437

Such theoretical research can have important practical applications. For example, right now,
nobody knows whether the most common encryption schemes used today could be broken
by discovering a new algorithm (see Random Fact 9.1 for more information on encryption
algorithms). Knowing that no fast algorithms exist for breaking a particular code could make
us feel more comfortable about the security of encryption.

1. A recursive computation solves a problem by using the solution to the same
problem with simpler inputs.

2. For a recursion to terminate, there must be special cases for the simplest inputs.

3. For generating permutations, it is much easier to use recursion than iteration.

4. The key step in finding a recursive solution is reducing the input to a simpler
input for the same problem.

5. When designing a recursive solution, do not worry about multiple nested calls.
Simply focus on reducing a problem to a slightly simpler one.

6. Sometimes it is easier to find a recursive solution if you make a slight change to
the original problem.

7. In a mutual recursion, a set of cooperating functions calls each other repeatedly.

8. Occasionally, a recursive solution runs much slower than its iterative counter-
part. However, in most cases, the recursive solution runs at about the same speed.

9. In many cases, a recursive solution is easier to understand and implement cor-
rectly than an iterative solution.

Exercise R10.1. Define the terms
a. recursion
b. iteration
c. infinite recursion
d. mutual recursion

CHAPTER SUMMARY

REVIEW EXERCISES

438 CHAPTER 10 • Recursion

Exercise R10.2. The factorial function counts the number of permutations of n
objects. It is recursively defined by the equations

and

Following this definition, determine the values for 1! and 2!. Explain why these are
the correct counts for permutations of 1 and 2 objects.

Exercise R10.3. Outline, but do not implement, a recursive solution for finding the
smallest value in an array.

Exercise R10.4. Outline, but do not implement, a recursive solution for sorting an
array of numbers. Hint: First find the smallest value in the array.

Exercise R10.5. Outline, but do not implement, a recursive solution for generating all
subsets of the set {1, 2, ... , n}.

Exercise R10.6. Exercise P10.12 shows an iterative way of generating all permuta-
tions of the sequence (0, 1, ... , n – 1). Explain why the algorithm produces the right
result.

Exercise R10.7. Write a recursive definition of xn, where x ≥ 0, similar to the recursive
definition of the Fibonacci numbers. Hint: How do you compute xn from xn–1?
How does the recursion terminate?

Exercise R10.8. Write a recursive definition of , similar to the
recursive definition of the Fibonacci numbers.

Exercise R10.9. Find out how often the recursive version of fib calls itself. Keep a
global variable fib_count and increment it once in every call of fib. What is the rela-
tionship between fib(n) and fib_count?

Exercise R10.10. How many moves are required to move n disks in the “Towers of
Hanoi” problem of Exercise P10.14? Hint: As described in the exercise,

moves(1) = 1
moves(n) = 2 · moves(n – 1) + 1

Exercise P10.1. If a string has n letters, then the number of permutations is given by
the factorial function:

n n n! != −() ×1

0 1! =

n n! = × × ×1 2 …

PROGRAMMING EXERCISES

n n! = × × × … ×1 2 3

Programming Exercises 439

For example, and there are six permutations of the three-character
string "eat". Implement a recursive factorial function, using the definitions

and

Exercise P10.2. Write a recursive function void reverse() that reverses a sentence.
For example:

Sentence greeting = new Sentence("Hello!");
greeting.reverse();
cout << greeting.get_text() << "\n";

prints the string "!olleH". Implement a recursive solution by removing the first
character, reversing a sentence consisting of the remaining text, and combining the
two.

Exercise P10.3. Redo Exercise P10.2 with a recursive helper function that reverses a
substring of the message text.

Exercise P10.4. Implement the reverse function of Exercise P10.2 as an iteration.

Exercise P10.5. Use recursion to implement a function bool find(string s, string t)
that tests whether a string t is contained in a string s:

bool b = s.find("Mississippi!", "sip"); // Returns true

Hint: If the text starts with the string you want to match, then you are done. If not,
consider the sentence that you obtain by removing the first character.

Exercise P10.6. Use recursion to implement a function int index_of(string s,
string t) that returns the starting position of the first substring of the string s that
matches t. Return –1 if t is not a substring of s. For example,

int n = s.index_of("Mississippi!", "sip"); // Returns 6

Hint: This is a bit trickier than Exercise P10.5, because you need to keep track of
how far the match is from the beginning of the sentence. Make that value a parame-
ter of a helper function.

Exercise P10.7. Using recursion, find the largest element in a vector of integer values.
int maximum(vector<int> values)

Hint: Find the largest element in the subset containing all but the last element. Then
compare that maximum to the value of the last element.

Exercise P10.8. Using recursion, compute the sum of all values in an array.

3 1 2 3 6! = × × =

n n n! != −() ×1

0 1! =

440 CHAPTER 10 • Recursion

Exercise P10.9. Using recursion, compute the area of a polygon. Cut off a triangle
and use the fact that a triangle with corners , , has area

.

Exercise P10.10. Implement a function
vector<string> generate_substrings(string s)

that generates all substrings of a string. For example, the substrings of the string
"rum" are the seven strings

"r", "ru", "rum", "u", "um", "m", ""

Hint: First enumerate all substrings that start with the first character. There are n of
them if the string has length n. Then enumerate the substrings of the string that you
obtain by removing the first character.

Exercise P10.11. Implement a function
vector<string> generate_subsets(string s)

that generates all subsets of characters of a string. For example, the subsets of char-
acters of the string "rum" are the eight strings

"rum", "ru", "rm", "r", "um", "u", "m", ""

Note that the subsets don’t have to be substrings—for example, "rm" isn’t a sub-
string of "rum".

Exercise P10.12. The following program generates all permutations of the numbers
0, 1, 2, ... , n – 1, without using recursion.

using namespace std;

void swap(int& x, int& y)
{
 int temp = x;
 x = y;
 y = temp;
}

void reverse(vector<int>& a, int i, int j)
{
 while (i < j)
 {
 swap(a[i], a[j]); i++; j--;

x y1 1,() x y2 2,() x y3 3,()
x y x y x y y x y x y x1 2 2 3 3 1 1 2 2 3 3 1 2+ + − − −()

Programming Exercises 441

 }
}

bool next_permutation(vector<int>& a)
{
 for (int i = a.size() - 1; i > 0; i--)
 {
 if (a[i - 1] < a[i])
 {
 int j = a.size() - 1;
 while (a[i - 1] > a[j]) j--;
 swap(a[i - 1], a[j]);
 reverse(a, i, a.size() - 1);
 return true;
 }
 }
 return false;
}

void print(const vector<int>& a)
{
 for (int i = 0; i < a.size(); i++)
 cout << a[i] << " ";
 cout << "\n";
}

int main()
{
 const int n = 4;
 vector<int> a(n);
 for (int i = 0; i < a.size(); i++) a[i] = i;
 print(a);
 while (next_permutation(a))
 print(a);
 return 0;
}

The algorithm uses the fact that the set to be permuted consists of distinct numbers.
Thus, you cannot use the same algorithm to compute the permutations of the char-
acters in a string. You can, however, use this technique to get all permutations of the
character positions and then compute a string whose ith character is s[a[i]]. Use
this approach to reimplement the generate_permutations function without recursion.

Exercise P10.13. Refine the is_palindrome function to work with arbitrary strings,
by ignoring non-letter characters and the distinction between upper- and lowercase
letters. For example, if the input string is

"Madam, I’m Adam!"

then you’d first strip off the last character because it isn’t a letter, and recursively
check whether the shorter string

"Madam, I’m Adam"

is a palindrome.

442 CHAPTER 10 • Recursion

Exercise P10.14. Towers of Hanoi. This is a well-known puzzle. A stack of disks of
decreasing size is to be transported from the left-most peg to the right-most peg.
The middle peg can be used as a temporary storage. (See Figure 8.) One disk can be
moved at one time, from any peg to any other peg. You can place smaller disks only
on top of larger ones, not the other way around.

Write a program that prints the moves necessary to solve the puzzle for n disks.
(Ask the user for n at the beginning of the program.) Print moves in the form

Move disk from peg 1 to peg 3

Hint: Write a helper function
void hanoi(int from, int to, int n)

that moves the top n disks from the peg from to the peg to. Then figure out how you
can achieve that by first moving the pile of the top n - 1 disks to the third peg, mov-
ing the nth disk to the destination, and then moving the pile from the third peg to
the destination peg, this time using the original peg as the temporary storage. Extra
credit if you write the program to actually draw the moves using the graphics
library or “ASCII art”!

Figure 8 Towers of Hanoi

Chapter 11
Sorting and Searching

• To compare the selection sort and merge sort algorithms

• To study the linear search and binary search algorithms

• To appreciate that algorithms for the same task can differ
widely in performance

• To understand the big-Oh notation

• To learn how to estimate and compare the performance
of algorithms

• To learn how to measure the running time of a program

CHAPTER GOALS

One of the most common tasks in data processing is sorting. For example, a

sequence of employees needs to be printed out in alphabetical order or sorted by

salary. You will learn several sorting methods in this chapter and compare their

performance.

Once a sequence of records is sorted, one can rapidly locate individual records.

You will study the binary search algorithm that carries out this fast lookup.

444 CHAPTER 11 • Sorting and Searching

CHAPTER CONTENTS

A sorting algorithm rearranges the elements of a sequence so that
they are stored in sorted order. In this section, we show you the first
of several sorting algorithms, called selection sort. Consider the fol-
lowing vector a:

An obvious first step is to find the smallest element. In this case the
smallest element is 5, stored in a[3]. You should move the 5 to the

beginning of the vector. Of course, there is already an element stored in a[0],
namely 11. Therefore you cannot simply move a[3] into a[0] without moving the
11 somewhere else. You don’t yet know where the 11 should end up, but you know
for certain that it should not be in a[0]. Simply get it out of the way by swapping it
with a[3].

Now the first element is in the correct place. In the foregoing figure, color indicates
the portion of the vector that is already sorted from the unsorted remainder.

Next take the minimum of the remaining entries a[1]...a[4]. That minimum
value, 9, is already in the correct place. You don’t need to do anything in this case,
simply extend the sorted area by one to the right:

11.1 Select ion Sort

The selection sort
algorithm sorts a
sequence by repeatedly
finding the smallest
element of the unsorted
tail region and moving it
to the front.

11 9 17 5 12

5 9 17 11 12

5 9 17 11 12

11.1 Selection Sort 444

11.2 Profiling the Selection
Sort Algorithm 448

11.3 Analyzing the Performance of the
Selection Sort Algorithm 449

11.4 Merge Sort 451

11.5 Analyzing the Merge
Sort Algorithm 454

ADVANCED TOPIC 11.1: The Quicksort

Algorithm 457

RANDOM FACT 11.1: The First Programmer 459

11.6 Searching 460

11.7 Library Functions for Sorting and
Binary Search 463

ADVANCED TOPIC 11.2: Defining an Ordering for

Sorting Objects 464
RANDOM FACT 11.2: Cataloging Your Necktie

Collection 464

11.1 • Selection Sort 445

Repeat the process. The minimum value of the unsorted region is 11, which needs
to be swapped with the first value of the unsorted region, 17.

Now the unsorted region is only two elements long; keep to the same successful
strategy. The minimum element is 12. Swap it with the first value, 17.

That leaves you with an unprocessed region of length 1, but of course a region of
length 1 is always sorted. You are done.

If speed was not an issue for us, we could stop the discussion of sorting right
here. However, the selection sort algorithm shows disappointing performance when
run on large data sets, and it is worthwhile to study better sorting algorithms.

Here is the implementation of the selection sort algorithm.

ch11/selsort/selsort.cpp

5 9 11 17 12

5 9 11 12 17

1 #include <iostream>
2
3 #include "util.h"
4
5 /**
6 Gets the position of the smallest element in a vector range.
7 @param a the vector
8 @param from the beginning of the range
9 @param to the end of the range
10 @return the position of the smallest element in
11 the range a[from]...a[to]
12 */
13 int min_position(vector<int>& a, int from, int to)
14 {
15 int min_pos = from;
16 int i;
17 for (i = from + 1; i <= to; i++)
18 if (a[i] < a[min_pos]) min_pos = i;
19 return min_pos;
20 }
21
22 /**
23 Sorts a vector using the selection sort algorithm.
24 @param a the vector to sort
25 */
26 void selection_sort(vector<int>& a)
27 {
28 int next; // The next position to be set to the minimum
29
30 for (next = 0; next < a.size() - 1; next++)
31 {

446 CHAPTER 11 • Sorting and Searching

ch11/selsort/util.h

32 // Find the position of the minimum
33 int min_pos = min_position(a, next, a.size() - 1);
34 if (min_pos != next)
35 swap(a[min_pos], a[next]);
36 }
37 }
38
39 int main()
40 {
41 rand_seed();
42 vector<int> v(20);
43 for (int i = 0; i < v.size(); i++)
44 v[i] = rand_int(1, 100);
45 print(v);
46 selection_sort(v);
47 print(v);
48 return 0;
49 }

1 #ifndef UTIL_H
2 #define UTIL_H
3
4 #include <vector>
5
6 using namespace std;
7
8 /**
9 Swaps two integers.
10 @param x the first integer to swap
11 @param y the second integer to swap
12 */
13 void swap(int& x, int& y);
14
15 /**
16 Prints all elements in a vector.
17 @param a the vector to print
18 */
19 void print(vector<int> a);
20
21 /**
22 Sets the seed of the random number generator.
23 */
24 void rand_seed();
25
26 /**
27 Computes a random integer in a range.
28 @param a the bottom of the range
29 @param b the top of the range
30 @return a random integer x, a <= x and x <= b
31 */
32 int rand_int(int a, int b);
33
34 #endif

11.1 • Selection Sort 447

ch11/selsort/util.cpp

Program Run

1 #include <iostream>
2 #include <cstdlib>
3 #include <ctime>
4
5 #include "util.h"
6
7 /**
8 Swaps two integers.
9 @param x the first integer to swap
10 @param y the second integer to swap
11 */
12 void swap(int& x, int& y)
13 {
14 int temp = x;
15 x = y;
16 y = temp;
17 }
18
19 /**
20 Prints all elements in a vector.
21 @param a the vector to print
22 */
23 void print(vector<int> a)
24 {
25 for (int i = 0; i < a.size(); i++)
26 cout << a[i] << " ";
27 cout << "\n";
28 }
29
30 /**
31 Sets the seed of the random number generator.
32 */
33 void rand_seed()
34 {
35 int seed = static_cast<int>(time(0));
36 srand(seed);
37 }
38
39 /**
40 Computes a random integer in a range.
41 @param a the bottom of the range
42 @param b the top of the range
43 @return a random integer x, a <= x and x <= b
44 */
45 int rand_int(int a, int b)
46 {
47 return a + rand() % (b - a + 1);
48 }

60 47 70 39 6 12 96 93 83 53 36 29 50 97 94 95 38 17 8 26
6 8 12 17 26 29 36 38 39 47 50 53 60 70 83 93 94 95 96 97

448 CHAPTER 11 • Sorting and Searching

To measure the performance of a program, one could simply run it and measure
how long it takes by using a stopwatch. However, most of our programs run very
quickly, and it is not easy to time them accurately in this way. Furthermore, when a
program does take a noticeable time to run, a certain amount of that time may sim-
ply be used for loading the program from disk into memory (for which it should
not be penalized) or for screen output (whose speed depends on the computer
model, even for computers with identical CPUs). Instead we use the Time class.
Recall that

Time now;

sets now to the current time.
Here is how to use the timer to measure the performance of the sorting algorithm.

(See ch11/seltime.cpp.)
int main()
{
 rand_seed();
 cout << "Enter vector size: ";
 int n;
 cin >> n;
 vector<int> v(n);
 for (int i = 0; i < v.size(); i++)
 v[i] = rand_int(1, 100);
 Time before;

 selection_sort(v);
 Time after;

 cout << "Elapsed time = " << after.seconds_from(before)
 << " seconds\n";
 return 0;
}

11.2 Prof i l ing the Se lect ion Sort A lgor i thm

Table 1 Selection Sort

n Seconds

10,000 1

20,000 3

30,000 6

40,000 11

50,000 17

60,000 25

11.3 • Analyzing the Performance of the Selection Sort Algorithm 449

By measuring the time just before the sorting and stopping it just afterwards, you
don’t count the time it takes to initialize the vector or the time during which the pro-
gram waits for the user to type in n. Table 1 shows the results of some sample runs.

These measurements were obtained on a Pentium processor with a clock speed of
1.67 GHz running Linux. On another computer, the actual numbers will differ, but
the relationship between the numbers will be the same. Figure 1 shows a plot of the
measurements.

As you can see, doubling the size of the data set more than doubles the time
needed to sort it.

Let’s count the number of operations that the program must carry out to sort a
sequence using the selection sort algorithm. Actually, we don’t know how many
machine operations are generated for each C++ instruction or which of those
instructions are more time-consuming than others, but we can make a simplifica-
tion. Simply count how often an element is visited. Each visit requires about the
same amount of work by other operations, such as incrementing subscripts and
comparing values.

Let n be the size of the vector. First, you must find the smallest of n numbers. To
achieve this, you must visit n elements. Then swap the elements, which takes two
visits. (You may argue that there is a certain probability that you don’t need to swap
the values. That is true, and one can refine the computation to reflect that observa-
tion. As we will soon see, doing so would not affect the overall conclusion.) In the
next step, you need to visit only n – 1 elements to find the minimum and then visit
two of them to swap them. In the following step, n – 2 elements are visited to find

Figure 1 Time Taken by Selection Sort

5

10

15

20

25

T
im

e
(s

ec
on

ds
)

10 20 30 40 50 60

n (thousands)

11.3 Analyz ing the Per formance of the Se lect ion
Sort A lgor i thm

450 CHAPTER 11 • Sorting and Searching

the minimum. The last run visits two elements to find the minimum and requires
two visits to swap the elements. Therefore, the total number of visits is

because

After multiplying out and collecting terms of n, you find that the number of visits is

This is a quadratic equation in n. That explains why the graph of Figure 1 looks
approximately like a parabola.

Now simplify the analysis further. When you plug in a large value for n (for
example, 1,000 or 2,000), then is 500,000 or 2,000,000. The lower term, ,
doesn’t contribute much at all; it is just 2,497 or 4,997, a drop in the bucket com-
pared to the hundreds of thousands or even millions of comparisons specified by
the term. Just ignore these lower-level terms. Next, ignore the constant factor .
You need not be interested in the actual count of visits for a single n. You need to
compare the ratios of counts for different values of n2. For example, you can say
that sorting a sequence of 2,000 numbers requires four times as many visits as sort-
ing a sequence of 1,000 numbers:

The factor cancels out in comparisons of this kind. We will simply say, “The
number of visits is of order n2”. That way, we can easily see that the number of
comparisons increases fourfold when the size of the vector doubles: (2n)2 = 4n2.

To indicate that the number of visits is of order n2, computer scientists often use
big-Oh notation: The number of visits is O(n2). This is a convenient shorthand.

To turn an exact expression like

into big-Oh notation, simply locate the fastest-growing term, n2, and ignore the
constant coefficient .

In general, the expression f(n) = O(g(n)) means that f grows no
faster than g, or, more formally, that for all n larger than some thresh-
old, the ratio is less than a constant value C. The function
g is usually chosen to be very simple, such as n2 in our example.

n n n n n+ + − + + + + = + − + + + − ⋅
= +

2 1 2 2 2 1 2 1 2

2

() () ()� �
� ++ − + + − ⋅

= + − + − ⋅

() ()

()
()

n n n
n n

n

1 1 2

1
2

1 1 2

1 2 1
1

2
+ + + − + = +

� ()
()

n n
n n

1
2

2 5
2

3n n+ −

1
2

2n 5
2

3n −

1
2

2n 1
2

1
2

2

1
2

2

2000

1000
4

⋅()
⋅() =

1
2

1
2

2 5
2

3n n+ −

1
2

Computer scientists use
big-Oh notation to
describe how fast a
function grows.

f n g n() ()

11.4 • Merge Sort 451

You observed before that the actual number of machine operations, and the
actual number of microseconds that the computer spends on them, is approximately
proportional to the number of element visits. Maybe there are about 10 machine
operations (increments, comparisons, memory loads, and stores) for every element
visit. The number of machine operations is then approximately . Again, we
aren’t interested in the coefficient and can say that the number of machine opera-
tions, and hence the time spent on the sorting, is of the order of n2 or O(n2).

The sad fact remains that doubling the size of the vector causes a
fourfold increase in the time required for sorting it. When the size of
the sequence increases by a factor of 100, the sorting time increases
by a factor of 10,000. To sort a sequence of a million entries, (for
example, to create a telephone directory) takes 10,000 times as long
as sorting 10,000 entries. If 10,000 entries can be sorted in about a

second (as in our example), then sorting one million entries requires almost three
hours. You will see in the next section how one can dramatically improve the per-
formance of the sorting process by choosing a more sophisticated algorithm.

In this section, you will learn about the merge sort algorithm, a much more efficient
algorithm than selection sort. The basic idea behind merge sort is very simple. Sup-
pose you have a vector of 10 integers. Engage in a bit of wishful thinking and hope
that the first half of the vector is already perfectly sorted, and the second half is too,
like this:

Now it is an easy matter to merge the two sorted sequences into a sorted sequence,
simply by taking a new element from either the first or the second subvector and
choosing the smaller of the elements each time:

10 1
2

2× n

Selection sort is an O(n2)
algorithm. Doubling the
data set means a fourfold
increase in processing
time.

11.4 Merge Sort

5 9 10 12 17 1 8 11 20 32

5 9 10 12 17 1 8 11 20 32 1

5 9 10 12 17 1 8 11 20 32 1 5

5 9 10 12 17 1 8 11 20 32 1 5 8

5 9 10 12 17 1 8 11 20 32 1 5 8 9

5 9 10 12 17 1 8 11 20 32 1 5 8 9 10

5 9 10 12 17 1 8 11 20 32 1 5 8 9 10 11

5 9 10 12 17 1 8 11 20 32 1 5 8 9 10 11 12

5 9 10 12 17 1 8 11 20 32 1 5 8 9 10 11 12 17

5 9 10 12 17 1 8 11 20 32 1 5 8 9 10 11 12 17 20

5 9 10 12 17 1 8 11 20 32 1 5 8 9 10 11 12 17 20 32

452 CHAPTER 11 • Sorting and Searching

In fact, you probably performed this merging before when you and a friend had to
sort a pile of papers. You and the friend split up the pile in the middle, each of you
sorted your half, and then you merged the results together.

This is all well and good, but it doesn’t seem to solve the problem for the com-
puter. It still has to sort the first and the second half of the sequence, because it can’t
very well ask a few buddies to pitch in. As it turns out, though, if the computer
keeps dividing the vector into smaller and smaller subvectors, sorting each half and
merging them back together, it carries out dramatically fewer steps than the selec-
tion sort requires.

Let us write a program that implements this idea. Because we will call the sort
procedure multiple times to sort portions of the sequence, we will supply the range
of elements that we would like to have sorted.

void merge_sort(vector<int>& a, int from, int to)
{
 if (from == to) return;
 int mid = (from + to) / 2;

 // Sort the first and the second half
 merge_sort(a, from, mid);
 merge_sort(a, mid + 1, to);
 merge(a, from, mid, to);
}

The merge procedure is somewhat long but quite straightforward—see the follow-
ing code listing for details.

ch11/mergesort/mergesort.cpp

1 #include <iostream>
2
3 #include "util.h"
4
5 /**
6 Merges two adjacent ranges in a vector.
7 @param a the vector with the elements to merge
8 @param from the start of the first range
9 @param mid the end of the first range
10 @param to the end of the second range
11 */
12 void merge(vector<int>& a, int from, int mid, int to)
13 {
14 int n = to - from + 1; // Size of the range to be merged
15 // Merge both halves into a temporary vector b
16 vector<int> b(n);
17
18 int i1 = from;
19 // Next element to consider in the first half
20 int i2 = mid + 1;
21 // Next element to consider in the second half
22 int j = 0; // Next open position in b
23

11.4 • Merge Sort 453

24 // As long as neither i1 nor i2 is past the end, move the smaller
25 // element into b
26 while (i1 <= mid && i2 <= to)
27 {
28 if (a[i1] < a[i2])
29 {
30 b[j] = a[i1];
31 i1++;
32 }
33 else
34 {
35 b[j] = a[i2];
36 i2++;
37 }
38 j++;
39 }
40
41 // Note that only one of the two while loops below is executed
42
43 // Copy any remaining entries of the first half
44 while (i1 <= mid)
45 {
46 b[j] = a[i1];
47 i1++;
48 j++;
49 }
50 // Copy any remaining entries of the second half
51 while (i2 <= to)
52 {
53 b[j] = a[i2];
54 i2++;
55 j++;
56 }
57
58 // Copy back from the temporary vector
59 for (j = 0; j < n; j++)
60 a[from + j] = b[j];
61 }
62
63 /**
64 Sorts the elements in a range of a vector.
65 @param a the vector with the elements to sort
66 @param from start of the range to sort
67 @param to end of the range to sort
68 */
69 void merge_sort(vector<int>& a, int from, int to)
70 {
71 if (from == to) return;
72 int mid = (from + to) / 2;
73 // Sort the first and the second half
74 merge_sort(a, from, mid);
75 merge_sort(a, mid + 1, to);
76 merge(a, from, mid, to);

454 CHAPTER 11 • Sorting and Searching

The merge sort algorithm looks much more complicated than the selection sort
algorithm, and it appears that it may well take much longer to carry out these
repeated subdivisions. However, the timing results for merge sort look much better
than those for selection sort (see ch11/mergetime.cpp and the table below). Sorting a
sequence with 60,000 elements takes less than one second on our test machine,
whereas the selection sort takes 25 seconds.

In order to get precise timing results, it is best to run the algorithm multiple
times, and then divide the total time by the number of runs. Here are typical results:

Figure 2 shows a graph plotting the relationship. Note that the graph does not have
a parabolic shape. Instead, it appears as if the running time grows approximately
linearly with the size of the sequence.

77 }
78
79 int main()
80 {
81 rand_seed();
82 vector<int> v(20);
83 for (int i = 0; i < v.size(); i++)
84 v[i] = rand_int(1, 100);
85 print(v);
86 merge_sort(v, 0, v.size() - 1);
87 print(v);
88 return 0;
89 }

11.5 Analyz ing the Merge Sort A lgor i thm

n Merge Sort
(seconds)

Selection Sort
(seconds)

10,000 0.012 1

20,000 0.025 3

30,000 0.038 6

40,000 0.052 11

50,000 0.066 17

60,000 0.081 25

11.5 • Analyzing the Merge Sort Algorithm 455

To understand why the merge sort algorithm is such a tremendous improvement,
let us estimate the number of sequence element visits. First, we tackle the merge
process that happens after the first and second half have been sorted.

Each step in the merge process adds one more element to b. There are n elements
in b. That element may come from the first or second half of a, and in most cases the
elements from the two halves must be compared to see which one to take. Count
that as 3 visits (one for b and one each for the two halves of a) per element, or 3n vis-
its total. Then you must copy back from b to a, yielding another 2n visits, for a total
of 5n.

If you let T(n) denote the number of visits required to sort a range of n elements
through the merge sort process, then you obtain

because sorting each half takes visits. (Actually, if n is not even, then you
have one subsequence of size and one of size . While it turns out
that this detail does not affect the outcome of the computation, you can assume for
now that n is a power of 2, say n = 2m. This way, all subsequences can be evenly
divided into two parts.)

Unfortunately, the formula

does not clearly tell you the relationship between n and T(n). To understand the
relationship, evaluate , using the same formula:

Figure 2 Merge Sort Timing (gray) versus Selection Sort (color)

.020

.040

.060

.080

.100

T
im

e
(s

ec
on

ds
)

10 20 30 40 50 60

n (thousands)

5

10

15

20

25

T
im

e
(s

ec
on

ds
)

10 20 30 40 50 60

n (thousands)

T n T
n

T
n

n() = ⎛
⎝⎜

⎞
⎠⎟

+ ⎛
⎝⎜

⎞
⎠⎟

+
2 2

5

T n()2
()n − 1 2 ()n + 1 2

T n T
n

n() = ⎛
⎝⎜

⎞
⎠⎟

+2
2

5

T n()2

T
n

T
n n

2
2

4
5

2
⎛
⎝⎜

⎞
⎠⎟

= ⎛
⎝⎜

⎞
⎠⎟

+

456 CHAPTER 11 • Sorting and Searching

Therefore

Do this again:

hence

This generalizes from 2, 4, 8, to arbitrary powers of 2:

Recall that you assume that n = 2m; hence, for k = m,

Because n = 2m, you have m = log2(n).)
To establish the growth order, you drop the lower order term n and are left with

5n log2(n). Drop the constant factor 5. It is also customary to drop the base of the
logarithm because all logarithms are related by a constant factor. For example,

Hence we say that merge sort is an O(n log(n)) algorithm.
Is the O(n log(n)) merge sort algorithm better than an O(n2) selec-

tion sort algorithm? You bet it is. Recall that it took 1002 = 10,000
times as long to sort a million records as it took to sort 10,000
records with the O(n2) algorithm. With the O(n log(n)) algorithm,
the ratio is

Suppose for the moment that merge sort takes the same time as selection sort to sort
a sequence of 10,000 integers, that is, 1 second on the test machine. (Actually, as you
have seen, it is much faster than that.) Then it would take about 150 seconds, or less
than three minutes, to sort 1,000,000 integers. Contrast that with selection sort,

T n T
n

n n() = × ⎛
⎝⎜

⎞
⎠⎟

+ +2 2
4

5 5

T
n

T
n n

4
2

8
5

4
⎛
⎝⎜

⎞
⎠⎟

= ⎛
⎝⎜

⎞
⎠⎟

+

T n T
n

n n n() = × × ⎛
⎝⎜

⎞
⎠⎟

+ + +2 2 2
8

5 5 5

T n T
n

nkk
k

() = ⎛
⎝⎜

⎞
⎠⎟

+2
2

5

T n T
n

nm

nT nm
n n n

m
m

()

()

log ()

= ⎛
⎝⎜

⎞
⎠⎟

+

= +
= +

2
2

5

1 5

5 2

log () log () log () log () .2 10 10 102 3 32193x x x= ≈ ×

Merge sort is an O(n log(n))
algorithm. The n log(n)
function grows much more
slowly than n2.

1 000 000 1 000 000
10 000 10 000

10
, , log , ,

, log ,
()
() = 00

6
4

150
⎛
⎝⎜

⎞
⎠⎟

=

11.5 • Analyzing the Merge Sort Algorithm 457

which would take almost 3 hours for the same task. As you can see, even if it takes
you several hours to learn about a better algorithm, that can be time well spent.

In this chapter you have barely begun to scratch the surface of this interesting
topic. There are many sort algorithms, some with even better performance than the
merge sort algorithm, and the analysis of these algorithms can be quite challenging.
If you are a computer science major, you may revisit these important issues in a
later computer science class.

The Quicksort Algorithm

Quicksort is a commonly used algorithm that has the advantage over merge sort that no tem-
porary arrays are required to sort and merge the partial results.

The quicksort algorithm, like merge sort, is based on the strategy of divide and conquer.
To sort a range a[from] . . . a[to] of the array a, first rearrange the elements in the range
so that no element in the range a[from] . . . a[p] is larger than any element in the range
a[p + 1] . . . a[to]. This step is called partitioning the range.

For example, suppose we start with a range

Here is a partitioning of the range. Note that the partitions aren’t yet sorted.

You’ll see later how to obtain such a partition. In the next step, sort each partition, by recur-
sively applying the same algorithm on the two partitions. That sorts the entire range, because
the largest element in the first partition is at most as large as the smallest element in the sec-
ond partition.

Quicksort is implemented recursively as follows:

void sort(vector<int>& a, int from, int to)
{
 if (from >= to) return;
 int p = partition(a, from, to);
 sort(a, from, p);
 sort(a, p + 1, to);
}

Let us return to the problem of partitioning a range. Pick an element from the range and call
it the pivot. There are several variations of the quicksort algorithm. In the simplest one, we’ll
pick the first element of the range, a[from], as the pivot.

Now form two regions a[from] . . . a[i], consisting of values at most as large as the
pivot and a[j] . . . a[to], consisting of values at least as large as the pivot. The region
a[i + 1] . . . a[j - 1] consists of values that haven’t been analyzed yet. (See Figure 3.)

ADVANCED TOPIC 11.1

5 3 2 6 4 1 3 7

3 3 2 1 4 6 5 7

1 2 3 3 4 5 6 7

458 CHAPTER 11 • Sorting and Searching

At the beginning, both the left and right areas are empty; that is, i = from - 1 and
j = to + 1.

Then keep incrementing i while a[i] < pivot and keep decrementing j while a[j] >
pivot. Figure 4 shows i and j when that process stops.

Now swap the values in positions i and j, increasing both areas once more. Keep going
while i < j. Here is the code for the partition method:

int partition(vector<int>& a, int from, int to)
{
 int pivot = a[from];
 int i = from - 1;
 int j = to + 1;
 while (i < j)
 {
 i++; while (a[i] < pivot) i++;
 j--; while (a[j] > pivot) j--;
 if (i < j) swap(a[i], a[j]);
 }
 return j;
}

On average, the quicksort algorithm is an O(n log(n)) algorithm. Because it is simpler, it runs
faster than merge sort in most cases. There is just one unfortunate aspect to the quicksort
algorithm. Its worst-case runtime behavior is O(n2). Moreover, if the pivot element is chosen
as the first element of the region, that worst-case behavior occurs when the input set is
already sorted—a common situation in practice. By selecting the pivot element more cleverly,
we can make it extremely unlikely for the worst-case behavior to occur. Such “tuned” quick-
sort algorithms are commonly used, because their performance is generally excellent. For
example, the C library contains a function qsort that implements the quicksort algorithm.

Figure 3 Partitioning a Range

Figure 4 Extending the Partitions

 ≤ pivot ≥ pivotNot yet analyzed

[from] [i] [j] [to]

 ≤ pivot ≥ pivot

[from] [i] [j] [to]

> pivot< pivot

 ≤ pivot≥ pivot

11.5 • Analyzing the Merge Sort Algorithm 459

The First Programmer

Before pocket calculators and personal computers existed, navigators and engineers used
mechanical adding machines, slide rules, and tables of logarithms and trigonometric func-
tions to speed up computations. Unfortunately, the tables—for which values had to be
computed by hand—were notoriously inaccurate. The mathematician Charles Babbage
(1791–1871) had the insight that if a machine could be constructed that produced printed
tables automatically, both calculation and typesetting errors could be avoided. Babbage set
out to develop a machine for this purpose, which he called a Difference Engine because it
used successive differences to compute polynomials. For example, consider the function
f (x) = x3. Write down the values for f (1), f (2), f (3), and so on. Then take the differences
between successive values:

1
 7
8
 19
27
 37
64
 61
125
 91
216

Repeat the process, taking the difference of successive values in the second column, and then
repeat once again:

1
 7
8 12
 19 6
27 18
 37 6
64 24
 61 6
125 30
 91
216

Now the differences are all the same. You can retrieve the function values by a pattern of addi-
tions—you need to know the values at the fringe of the pattern and the constant difference.
This method was very attractive, because mechanical addition machines had been known for
some time. They consisted of cog wheels, with 10 cogs per wheel, to represent digits, and
mechanisms to handle the carry from one digit to the next. Mechanical multiplication
machines, on the other hand, were fragile and unreliable. Babbage built a successful prototype
of the Difference Engine (see Figure 5) and, with his own money and government grants, pro-
ceeded to build the table-printing machine. However, because of funding problems and the
difficulty of building the machine to the required precision, it was never completed.

While working on the Difference Engine, Babbage conceived of a much grander vision
that he called the Analytical Engine. The Difference Engine was designed to carry out a
limited set of computations—it was no smarter than a pocket calculator is today. But Bab-
bage realized that such a machine could be made programmable by storing programs as well
as data. The internal storage of the Analytical Engine was to consist of 1,000 registers of 50

RANDOM FACT 11.1

460 CHAPTER 11 • Sorting and Searching

decimal digits each. Programs and constants were to be stored on punched cards—a tech-
nique that was, at that time, commonly used on looms for weaving patterned fabrics.

Ada Augusta, Countess of Lovelace (1815–1852), the only child of Lord Byron, was a
friend and sponsor of Charles Babbage. Ada Lovelace was one of the first people to realize
the potential of such a machine, not just for computing mathematical tables but for process-
ing data that were not numbers. She is considered by many the world’s first programmer.
The Ada programming language, a language developed for use in U.S. Department of
Defense projects, was named in her honor.

Searching for an element in a sequence is an extremely common task. As with sort-
ing, the right choice of algorithms can make a big difference.

Suppose you need to find the telephone number of your friend. If you have a
telephone book, you can look up your friend’s name quickly, because the telephone
book is sorted alphabetically. However, now suppose you have a telephone number
and you must know to whom it belongs (without actually calling the number). You
could look through the telephone book, one number at a time, until you find the
number. This would obviously be a tremendous amount of work.

This thought experiment shows the difference between a search through an
unsorted data set and a search through a sorted data set.

Figure 5 Babbage’s Difference Engine

11.6 Searching

11.6 • Searching 461

If you want to find a number in a sequence of values that occur in
arbitrary order, you must look through all elements until you have
found a match or until you reach the end. This is called a linear or
sequential search.

Here is a function that performs a linear search through a vector v
of integers for a value, value (see ch11/lsearch.cpp). The function

then returns the index of the match, or –1 if value does not occur in v.
int linear_search(vector<int> v, int value)
{
 for (int i = 0; i < v.size(); i++)
 {
 if (v[i] == value)
 return i;
 }
 return -1;
}

How long does a linear search take? If you assume that the element
value is present in the vector v, then the average search visits ele-
ments. If it is not present, then all n elements must be inspected to
verify the absence. Either way, a linear search is an O(n) algorithm.

Now consider searching an item in a sequence that has been previously sorted.
Of course, you could still do a linear search, but it turns out you can do much better
than that.

Here is a typical example. The data set is:

and you want to see whether the value 123 is in the data set. The last point in the first
half of the data set, v[3], is 100. It is smaller than the value you are looking for; hence,
you should look in the second half of the data set for a match, that is, in the sequence

Now the last value of the first half of this sequence is 290; hence, the value must be
located in the sequence

The last value of the first half of this very short sequence is 115, which is smaller
than the value that you are searching, so you must look in the second half:

It is trivial to see that you don’t have a match, because 123 ≠ 290. If you wanted to
insert 123 into the sequence, you would need to insert it just before v[5].

A linear search examines
all values in a sequence
until it finds a match or
reaches the end.

A linear search locates a
value in a sequence in
O(n) steps.

n 2

14

[0]

43

[1]

76

[2]

100

[3]

115

[4]

290

[5]

400

[6]

511

[7]

14

[0]

43

[1]

76

[2]

100

[3]

115

[4]

290

[5]

400

[6]

511

[7]

14

[0]

43

[1]

76

[2]

100

[3]

115

[4]

290

[5]

400

[6]

511

[7]

14

[0]

43

[1]

76

[2]

100

[3]

115

[4]

290

[5]

400

[6]

511

[7]

462 CHAPTER 11 • Sorting and Searching

This search process is called a binary search, because the size of the
search is cut in half in each step. That cutting in half works only
because you know that the sequence of values is sorted.

The following function implements a binary search in a sorted
sequence of integers (see ch11/bsearch.cpp). It returns the position of
the match if the search succeeds, or –1 if the value is not found in v:

int binary_search(vector<int> v, int from, int to, int value)
{
 if (from > to)
 return -1;
 int mid = (from + to) / 2;
 if (v[mid] == value)
 return mid;
 else if (v[mid] < value)
 return binary_search(v, mid + 1, to, value);
 else
 return binary_search(v, from, mid - 1, value);
}

Now determine the number of element visits required to carry out a search. Use the
same technique as in the analysis of merge sort. Because you look at the middle ele-
ment, which counts as one comparison, and then search either the left or the right
subsequence, you have

Using the same equation,

By plugging this result into the original equation, you get

This generalizes to

As in the analysis of merge sort, you make the simplifying assumption that n is a
power of 2, n = 2m, where m = log2(n). Then you obtain

Therefore, binary search is an O(log(n)) algorithm.

A binary search locates a
value in a sorted sequence
by determining whether
the value occurs in the
first or second half, then
repeating the search in
one of the halves.

T n T
n

() = ⎛
⎝⎜

⎞
⎠⎟

+
2

1

T
n

T
n

2 4
1

⎛
⎝⎜

⎞
⎠⎟

= ⎛
⎝⎜

⎞
⎠⎟

+

T n T
n

() = ⎛
⎝⎜

⎞
⎠⎟

+
4

2

T n T
n

k
k

() = ⎛
⎝⎜

⎞
⎠⎟

+
2

T n n() log ()= +1 2

11.7 • Library Functions for Sorting and Binary Search 463

This result makes intuitive sense. Suppose that n is 100. Then after each search,
the size of the search range is cut in half, to 50, 25, 12, 6, 3, and 1. After seven com-
parisons we are done. This agrees with our formula since , and
indeed the next larger power of 2 is 27 = 128.

Because a binary search is so much faster than a linear search, is it
worthwhile to sort a sequence first and then use a binary search? It
depends. If you only search the sequence once, then it is more effi-
cient to pay for an O(n) linear search than for an O(n log(n)) sort and

O(log(n)) binary search. But if one makes a number of searches in the same
sequence, then sorting it is definitely worthwhile.

If you need to sort or search values in your own programs, there is no need to
implement your own algorithms. You can simply use functions in the C++ library.
This section gives you a brief overview of the library functions for sorting and
binary search. For more information on using library algorithms, please turn to
Chapter 20.

You sort a vector v by calling
sort(v.begin(), v.end());

The expressions v.begin() and v.end() are iterators that denote the
beginning and ending positions of the vector. (As you will see in the

next chapter, an iterator denotes a position in a container.)
If the values are stored in an array a, then the call to the sort method looks

slightly different. You supply a pointer to the beginning and the end of the array:
sort(a, a + size);

Here size is the size of the array. For example,
int a[5] = { 60, 47, 70, 39, 6 };
sort(a, a + 5); // Now a contains 6, 39, 47, 60, 70

If you have a sorted vector or array, you can use the binary_search function to test
whether it contains a given value. For example, the call

 binary_search(v.begin(), v.end(), value)

returns true if the vector v contains value. (Unlike our binary search function from
the preceding section, the library function does not return the position where the
value was found.)

To search an array, you call
binary_search(a, a + size, value)

To use the sort or binary_search functions, you must include the <algorithm>
header.

log () .2 100 6 64386≈

A binary search locates a
value in a sequence in
O(log(n)) steps.

11.7 Library Funct ions for Sort ing and
Binary Search

The C++ library contains
functions sort and
binary_search.

464 CHAPTER 11 • Sorting and Searching

Defining an Ordering for Sorting Objects

When you use the sort function, you must ensure that it is able to compare elements. Sup-
pose that you want to sort a vector<Employee>. The compiler will complain that it does not
know how to compare two employees.

There are several ways to overcome this problem. The simplest is to define the < operator
for Employee objects:

bool operator<(const Employee& a, const Employee& b)
{
 return a.get_salary() < b.get_salary();
}

The curious name operator< indicates that this function defines a comparison operator. (See
ch11/stlsort.cpp for an example program.) You will learn more about defining your own
operators in Chapter 14.

This < operator compares employees by salary. If you call sort to sort a sequence of
employees, they will be sorted by increasing salary.

Chapter 20 shows additional ways of specifying the comparison.

Cataloging Your Necktie Collection

People and companies use computers to organize just about every aspect of their lives. On
the whole, computers are tremendously good for collecting and analyzing data. In fact, the
power offered by computers and their software makes them seductive solutions for just
about any organizational problem. It is easy to lose sight of the fact that using a computer is
not always the best solution to a problem.

In 1983, the author John Bear wrote about a person who had come up with a novel use for
the personal computers that had recently become available. That person cataloged his necktie
collection, putting descriptions of the ties into a database and generating reports that listed
them by color, price, or style. We can hope he had another use to justify the purchase of a
piece of equipment worth several thousand dollars, but that particular application was so
dear to his heart that he wanted the world to know about it. Perhaps not surprisingly, few
other computer users shared that excitement, and you don’t find the shelves of your local
software store lined with necktie-cataloging software.

The phenomenon of using technology for its own sake is quite widespread. In the “Inter-
net bubble” of 2000, hundreds of companies were founded on the premise that the Internet
made it technologically possible to order items such as groceries and pet food from a home
computer, and therefore the traditional stores would be replaced by web stores. However,
technological feasibility did not ensure economic success. Trucking groceries and pet food to
households was expensive, and few customers were willing to pay a premium for the added
convenience.

At the same time, many elementary schools spent tremendous resources to bring comput-
ers and the Internet into the classroom. Indeed, it is easy to understand why teachers, school
administrators, parents, politicians and equipment vendors are in favor of computers in

ADVANCED TOPIC 11.2

RANDOM FACT 11.2

Further Reading 465

classrooms. Isn’t computer literacy absolutely essential for youngsters in the new millen-
nium? Isn’t it particularly important to give low-income kids, whose parents may not be able
to afford a home computer, the opportunity to master computer skills? However, schools
have found that the total cost of running computers far exceeds the initial cost of the equip-
ment. As schools purchased more equipment than could be maintained by occasional
volunteers, they had to make hard choices—should they lay off librarians and art instructors
to hire more computer technicians, or should they let the equipment become useless? Unfor-
tunately, many schools were so caught up in the technology hype that they never asked
themselves whether the educational benefits justified the expense. See [1] for more
information.

As computer programmers, we like to computerize everything. As computer profession-
als, though, we owe it to our employers and clients to understand which problems they want
to solve and to deploy computers and software only where they add more value than cost.

1. The selection sort algorithm sorts a sequence by repeatedly finding the smallest
element of the unsorted tail region and moving it to the front.

2. Computer scientists use big-Oh notation to describe how fast a function grows.

3. Selection sort is an O(n2) algorithm. Doubling the data set means a fourfold
increase in processing time.

4. Merge sort is an O(n log(n)) algorithm. The n log(n) function grows much more
slowly than n2.

5. A linear search examines all values in a sequence until it finds a match or reaches
the end.

6. A linear search locates a value in a sequence in O(n) steps.

7. A binary search locates a value in a sorted sequence by determining whether
the value occurs in the first or second half, then repeating the search in one of
the halves.

8. A binary search locates a value in a sequence in O(log(n)) steps.

9. The C++ library contains functions sort and binary_search.

1. Oppenheimer, Todd. “The Computer Delusion,” The Atlantic Monthly 280, no. 1 (July
1997): 45–62, available online at http://www.catholiceducation.org/articles/
education/ed0026.html.

CHAPTER SUMMARY

FURTHER READING

http://www.catholiceducation.org/articles/education/ed0026.html
http://www.catholiceducation.org/articles/education/ed0026.html

466 CHAPTER 11 • Sorting and Searching

Exercise R11.1. Checking against off-by-one errors. When writing the selection sort
algorithm of Section 11.1, a programmer must make the usual choices of < against
<=, a.size() against a.size() - 1, and next against next + 1. This is fertile ground
for off-by-one errors. Make code walkthroughs of the algorithm with vectors of
length 0, 1, 2, and 3 and check carefully that all index values are correct.

Exercise R11.2. What is the difference between searching and sorting?

Exercise R11.3. For the following expressions, what is the order of the growth of
each?

a. n2 + 2n + 1
b. n10 + 9n9 + 20n8 + 145n7

c. (n + 1)4

d. (n2 + n)2

e. n + 0.001n3

f. n3 − 1000n2 + 109

g. n + log(n)
h. n2 + n log(n)
i. 2n + n2

j.

Exercise R11.4. You determined that the actual number of visits in the selection sort
algorithm is

You then characterized this function as having O(n2) growth. Compute the actual
ratios

and compare them with

where f (n) = n2.

REVIEW EXERCISES

()

(.)

n n

n

3

2
2

0 75

+
+

T n n n() = + −1
2

2 5
2

3

T T

T T

T T

2 000 1 000

5 000 1 000

10 000 1

, ,

, ,

,

() ()
() ()

() ,,000()

f f

f f

f f

2 000 1 000

5 000 1 000

10 000 1

, ,

, ,

,

() ()
() ()

() ,,000()

Review Exercises 467

Exercise R11.5. Suppose algorithm A takes five seconds to handle a data set of 1,000
records. If the algorithm A is an O(n) algorithm, how long will it take to handle a
data set of 2,000 records? Of 10,000 records?

Exercise R11.6. Suppose an algorithm takes five seconds to handle a data set of 1,000
records. Fill in the following table, which shows the approximate growth of the
execution times depending on the complexity of the algorithm.

For example, since , the O(n2) algorithm would take nine times as
long, or 45 seconds, to handle a data set of 3,000 records.

Exercise R11.7. Sort the following growth rates from slowest growth to fastest
growth.

Exercise R11.8. What is the order of complexity of the standard algorithm to find the
minimum value of a sequence? Of finding both the minimum and the maximum?

Exercise R11.9. What is the order of complexity of the following function?
int count(vector<int> a, int c)
{
 int count = 0;

 for (int i = 0; i < a.size(); i++)
 {
 if (a[i] == c) count++;
 }
 return count;
}

O (n) O (n2) O (n3) O (n log(n)) O (2n)

1,000 5 5 5 5 5

2,000

3,000 45

10,000

3000 1000 92 2 =

O n O n n

O n O

O n O n

O n O

n

n

() (log())

() ()

() ()

(log())

3 2

(()

(log()) ()log()

n n

O n n O n n2

468 CHAPTER 11 • Sorting and Searching

Exercise R11.10. Your task is to remove all duplicates from a vector. For example, if
the vector has the values

4 7 11 4 9 5 11 7 3 5

then the vector should be changed to

4 7 11 9 5 3

Here is a simple algorithm. Look at a[i]. Count how many times it occurs in a. If the
count is larger than 1, remove it. What is the order of complexity of this algorithm?

Exercise R11.11. Consider the following algorithm to remove all duplicates from a
vector. Sort the vector. For each element, look at its two neighbors to decide
whether it is present more than once. If so, remove it. Is this a faster algorithm than
the one in Exercise R11.10?

Exercise R11.12. Develop a fast algorithm for removing duplicates from a vector if
the resulting vector must have the same ordering as the original one.

Exercise R11.13. Consider the following sorting algorithm. To sort a vector a, make a
second vector b of the same size. Then insert elements from a into b, keeping b in
sorted order. For each element, call the binary search function of Exercise P11.6 to
determine where it needs to be inserted. To insert an element into the middle of a
vector, you need to move all elements above the insert location up.
Is this an efficient algorithm? Estimate the number of element visits in the sorting
process. Assume that on average half of the elements of b need to be moved to insert
a new element.

Exercise R11.14. Make a walkthrough of selection sort with the following data sets.
a. 4 7 11 4 9 5 11 7 3 5
b. –7 6 8 7 5 9 0 11 10 5 8

Exercise R11.15. Make a walkthrough of merge sort with the following data sets.
a. 5 11 7 3 5 4 7 11 4 9
b. 9 0 11 10 5 8 –7 6 8 7 5

Exercise R11.16. Make a walkthrough of the following:
a. Linear search for 7 in –7 1 3 3 4 7 11 13
b. Binary search for 8 in –7 2 2 3 4 7 8 11 13
c. Binary search for 8 in –7 1 2 3 5 7 10 13

Exercise P11.1. Modify the selection sort algorithm to sort a vector of integers in
descending order.

PROGRAMMING EXERCISES

Programming Exercises 469

Exercise P11.2. Modify the selection sort algorithm to sort a vector of employees by
salary.

Exercise P11.3. Write a program that generates the table of sample runs of the selec-
tion sort times automatically. The program should ask for the smallest and largest
value of n and the number of measurements and then make all sample runs.

Exercise P11.4. Modify the merge sort algorithm to sort a vector of employees by
salary.

Exercise P11.5. Write a telephone lookup program. Read a data set of 1,000 names
and telephone numbers from a file that contains the numbers in random order.
Handle lookups by name and also reverse lookups by phone number. Use a binary
search for both lookups.

Exercise P11.6. Consider the binary search function in Section 11.7. If no match is
found, the function returns –1. Modify the function so that it returns a bool value
indicating whether a match was found. Add a reference parameter m, which is set to
the location of the match if the search was successful. If a was not found, set m to the
index of the next larger value instead, or to a.size() if a is larger than all the ele-
ments of the vector.

Exercise P11.7. Use the modification of the binary search function from Exercise
P11.6 to sort a vector. Make a second vector of the same size as the vector to be
sorted. For each element in the first vector, call binary search on the second vector to
find out where the new element should be inserted. Then move all elements above
the insertion point up by one slot and insert the new element. Thus, the second vec-
tor is always kept sorted. Implement this algorithm and measure its performance.

Exercise P11.8. Implement the merge_sort procedure without recursion, where the
size of the vector is a power of 2. First merge adjacent regions of size 1, then adja-
cent regions of size 2, then adjacent regions of size 4, and so on.

Exercise P11.9. Implement the merge_sort procedure without recursion, where the
size of the vector is an arbitrary number. Hint: Keep merging adjacent areas whose
size is a power of 2, and pay special attention to the last area in the sequence.

Exercise P11.10. Write a program that sorts a vector of Employee objects by increasing
salary and prints the results. Use the sort function from the C++ library.

Exercise P11.11. Write a program that sorts an array of Time objects and prints the
results. Use the sort function from the C++ library.

Exercise P11.12. Write a program that keeps an appointment book. Make a class
Appointment that stores a description of the appointment, the appointment day, the
starting time, and the ending time. Your program should keep the appointments in a
sorted vector. Users can add appointments and print out all appointments for a
given day. When a new appointment is added, use binary search to find where it
should be inserted in the vector. Do not add it if it conflicts with another
appointment.

470 CHAPTER 11 • Sorting and Searching

Exercise P11.13. Modify the binary search algorithm so that you can search the
records stored in a database file without actually reading them into a vector. Use the
employee database of Section 9.6, sort it by name, and make lookups for employees.

Exercise P11.14. Give a graphical animation of selection sort as follows: Fill a vector
with a set of random numbers between 1 and 100. Set the window coordinate sys-
tem to a.size() by 100. Draw each element as a stick, as in Figure 6. Whenever you
change the vector, clear the screen and redraw.

Exercise P11.15. Write a graphical animation of merge sort.

Exercise P11.16. Write a graphical animation of binary search. Highlight the cur-
rently inspected element.

Figure 6 Graphical Animation

G

G

G

Chapter 12
Lists, Queues,

and Stacks

• To become familiar with the list, queue, and stack data types

• To understand the implementation of linked lists

• To understand the efficiency of vector and list operations

CHAPTER GOALS

In this chapter, we introduce a new data structure, the linked list. You will learn how

to use lists and the related stack and queue types. You will study the implementation

of linked lists and analyze when linked lists are more efficient than vectors.

472 CHAPTER 12 • Lists, Queues, and Stacks

CHAPTER CONTENTS

A linked list is a data structure for collecting a sequence of objects, such that addi-
tion and removal of elements in the middle of the sequence is efficient.

To understand the need for such a data structure, imagine a program that main-
tains a vector of employee records, sorted by the last name of the employees. When
a new employee is hired, an object needs to be inserted into the vector. Unless the
company happens to hire employees in dictionary order, it is likely that a new
employee object needs to be inserted into the middle of the vector. In that case,
many other objects must be moved toward the end. Conversely, if an employee
leaves the company, the hole in the sequence needs to be closed by moving all
objects that came after it. Moving a large number of objects can involve a substantial
amount of computer time. We would like to structure the data in a way that mini-
mizes this cost.

Rather than storing the data in a single block of memory, a linked
list uses a different strategy. Each value is stored in its own memory
block, together with the locations of the neighboring blocks in the
sequence (see Figure 1).

It is now an easy matter to add another value into the sequence, or
to remove a value from the sequence, without moving the others (see
Figures 2 and 3).
 What’s the catch? Linked lists allow speedy insertion and removal,
but element access can be slow. For example, suppose you want to
locate the fifth element. You must first traverse the first four. This is a
problem if you need to access the elements in arbitrary order. The
term random access is used in computer science to describe an access

12.1 Linked L is ts

Figure 1 A Linked List

A linked list consists of a
number of nodes, each of
which has a pointer to the
neighboring nodes.

Adding and removing
elements in the middle of
a linked list is efficient.

Tom

Node

Dick

Node

Harry

Node

12.1 Linked Lists 472

12.2 Implementing Linked Lists 476

12.3 The Efficiency of List and
Vector Operations 490

12.4 Queues and Stacks 493
RANDOM FACT 12.1: Polish Notation 496

12.1 • Linked Lists 473

pattern in which elements are accessed in arbitrary (not necessarily random)
order. In contrast, sequential access visits the elements in sequence. For example, a
binary search requires random access, whereas a linear search only requires sequen-
tial access.

Of course, if you mostly visit all elements in sequence (for exam-
ple, to display or print the elements), the inefficiency of random
access is not a problem. You use linked lists when you are concerned
about the efficiency of inserting or removing elements and you rarely
need element access in random order.

The standard C++ library has an implementation of the linked list container
structure. In this section, you will learn how to use the standard linked list struc-
ture. Later you will look “under the hood” and find out how to implement linked
lists. (The linked list of the standard C++ library has links going in both directions.
Such a list is often called a doubly-linked list. A singly-linked list lacks the links to
the predecessor elements.)

Just like vector, the standard list is a template: You can declare lists for different
types. For example, to make a list of strings, define an object of type list<string>.

Figure 2 Adding a Node to a Linked List

Tom

Node

Dick

Node

Harry

Node

Romeo

Node

Visiting the elements of a
linked list in sequential
order is efficient, but
random access is not.

Figure 3 Removing a Node from a Linked List

Tom

Node

Dick

Node

Harry

Node

474 CHAPTER 12 • Lists, Queues, and Stacks

Then you can use the push_back function to add strings to the end of the list. The
following code segment defines a list of strings, names, and adds three strings to it:

list<string> names;

names.push_back("Tom");
names.push_back("Dick");
names.push_back("Harry");

This code looks exactly like the code that you would use to build a vector of strings.
There is, however, one major difference. Suppose you want to access the last ele-
ment in the list. You cannot directly refer to names[2]. Since the values are not
stored in one contiguous block in memory, there is no immediate way to access the
third element. Instead, you must visit each element in turn, starting at the beginning
of the list and then proceeding to the next element.

To visit an element, you use a list iterator. An iterator marks a posi-
tion in the list. To get an iterator that marks the beginning position in
the list, you define an iterator variable, then call the begin function of
the list class to get the beginning position:

list<string>::iterator pos;
pos = names.begin();

To move the iterator to the next position, use the ++ operator:
pos++;

You can also move the iterator backwards with the -- operator:
pos--;

You find the value that is stored in the position marked with the * operator:
string value = *pos;

You have to be careful to distinguish between the iterator pos, which represents a
position in the list, and the value *pos, which represents the value that is stored in
the list. For example, if you change *pos, then you update the contents in the list:

*pos = "Romeo";
 // The list value at the position is changed

If you change pos, then you merely change the current position.
pos = names.begin();
 // The position is again at the beginning of the list

To insert another string before the iterator position, use the insert function:
names.insert(pos, "Romeo");

The insert function inserts the new element before the iterator position, rather than
after it. This convention makes it easy to insert a new element before the first value
of the list:

pos = names.begin();
names.insert(pos, "Romeo");

You can inspect and edit a
linked list with an iterator.
An iterator points to a
node in a linked list.

12.1 • Linked Lists 475

That raises the question of how you insert a value after the end of the list. Each list
has an end position that does not correspond to any value in the list but that points
past the list’s end. The end function returns that position:

pos = names.end(); // Points past the end of the list
names.insert(pos, "Juliet");
 // Insert past the end of the list

It is an error to compute
string value = *names.end(); // ERROR

The end position does not point to any value, so you cannot look up the value at
that position. This error is equivalent to the error of accessing v[10] in a vector with
10 elements.

The end position has another useful purpose: it is the stopping point for travers-
ing the list. The following code iterates over all elements of the list and prints them
out:

pos = names.begin();
while (pos != names.end())
{
 cout << *pos << "\n";
 pos++;
}

The traversal can be described more concisely with a for loop:
for (pos = names.begin(); pos != names.end(); pos++)
 cout << *pos << "\n";

Of course, this looks very similar to the typical for loop for traversing a vector:
for (i = 0; i < v.size(); i++)
 cout << v[i] << "\n";

Finally, to remove an element from a list, you move an iterator to the position that
you want to remove, then call the erase function. The erase function returns an
iterator that points to the element after the one that has been erased.
The following code erases the second element of the list:

pos = names.begin();
pos++;
pos = names.erase(pos);

Now pos points to the element that was previously the third element and is now the
second element.

Here is a short example program that adds elements to a list, inserts and erases
list elements, and finally traverses the resulting list.

ch12/list1.cpp

1 #include <string>
2 #include <list>
3 #include <iostream>
4
5 using namespace std;

476 CHAPTER 12 • Lists, Queues, and Stacks

The previous section showed you how to put linked lists to use. However, because
the implementation of the list class is hidden from you, you had to take it on faith
that the list values are really stored in separate memory blocks. We will now walk
through an implementation of the list, node, and iterator classes.

For simplicity, we will implement linked lists of strings. To implement the linked
list class in C++ that can hold values of arbitrary types, you need to know how to
program with templates (Chapter 16). To implement iterators that behave exactly
like the ones in the C++ library, you also need to know about operator overloading
and nested classes (Chapters 17 and 18).

6
7 int main()
8 {
9 list<string> names;
10
11 names.push_back("Tom");
12 names.push_back("Dick");
13 names.push_back("Harry");
14 names.push_back("Juliet");
15
16 // Add a value in fourth place
17
18 list<string>::iterator pos;
19 pos = names.begin();
20 pos++;
21 pos++;
22 pos++;
23
24 names.insert(pos, "Romeo");
25
26 // Remove the value in second place
27
28 pos = names.begin();
29 pos++;
30
31 names.erase(pos);
32
33 // Print all values
34
35 for (pos = names.begin(); pos != names.end(); pos++)
36 cout << *pos << "\n";
37
38 return 0;
39 }

12.2 Implement ing L inked L is ts

12.2 • Implementing Linked Lists 477

The list class of the standard library defines many useful member functions. For
simplicity, we will only study the implementation of the most useful ones:
push_back, insert, erase, and the iterator operations. We call our class List, with an
uppercase L, to differentiate it from the standard list class template.

A linked list stores each value in a separate object, called a node. A
node object holds a value, together with pointers to the previous and
next nodes:

class Node
{
public:
 Node(string s);
private:
 string data;
 Node* previous;
 Node* next;
friend class List;
friend class Iterator;
};

A list node contains pointers to the next and previous nodes.
Note the friend declarations. They indicate that the List and Iterator member

functions are allowed to inspect and modify the data members of the Node class,
which we will write presently.

A class should not grant friendship to another class lightly, because it breaks the
privacy protection. In this case, it makes sense, though, since the list and iterator
functions do all the necessary work and the node class is just an artifact of the
implementation that is invisible to the users of the list class. Note that no code other
than the member functions of the list and iterator classes can access the node fields,
so the data integrity is still guaranteed.

A list object holds the locations of the first and last nodes in the
list:

class List
{
public:
 List();
 void push_back(string data);
 void insert(Iterator pos, string s);
 Iterator erase(Iterator pos);
 Iterator begin();
 Iterator end();
private:
 Node* first;
 Node* last;
};

If the list is empty, then the first and last pointers are NULL. Note that a list object
stores no data; it just knows where to find the node objects that store the list contents.

12.2.1 The Classes for Lists, Nodes, and Iterators

When implementing a
linked list, we need to
define list, node, and
iterator classes.

A list object contains
pointers to the first and
last node.

478 CHAPTER 12 • Lists, Queues, and Stacks

Finally, an iterator denotes a position in the list. It holds a pointer to
the node that denotes its current position, and a pointer to the list
that created it. We use member functions get, next, and equals
instead of operators *, ++, and ==. For example, we will call
pos.next() instead of pos++.

class Iterator
{
public:
 Iterator();
 string get() const;
 void next();
 void previous();
 bool equals(Iterator b) const;
private:
 Node* position;
 List* container;
friend class List;
};

If the iterator points past the end of the list, then the position pointer is NULL. In
that case, the previous member function uses the container pointer to move the
iterator back from the past-the-end position to the last element of the list. (This is
only one possible choice for implementing the past-the-end position. Another
choice would be to store an actual dummy node at the end of the list. Some imple-
mentations of the standard list class do just that.)

Iterators are created by the begin and end member functions of the List class. The
begin function creates an iterator whose position pointer points to the first node in
the list. The end function creates an iterator whose position pointer is NULL.

Iterator List::begin()
{
 Iterator iter;
 iter.position = first;
 iter.container = this;
 return iter;
}

Iterator List::end()
{
 Iterator iter;
 iter.position = NULL;
 iter.container = this;
 return iter;
}

The next function (which is the equivalent of the ++ operator) advances the iterator
to the next position. This is a very typical operation in a linked list; let us study it in
detail. The position pointer points to the current node in the list. That node has a

An iterator contains a
pointer to the current
node, and to the list that
contains it.

12.2.2 Implementing Iterators

12.2 • Implementing Linked Lists 479

field next. Because position is a node pointer, the next field in the node to which
position points is referred to as

position->next

That next field is itself a pointer, pointing to the next node in the linked list (see
Figure 4). To make position point to that next node, write

position = position->next;

However, you can evaluate position->next only if position is not NULL, because it is
an error to dereference a NULL pointer. That is, it is illegal to advance the iterator
once it is in the past-the-end position.

Here is the complete code for the next function:
void Iterator::next()
{
 assert(position != NULL);
 position = position->next;
}

The previous function (which is the equivalent of the -- operator) is a bit more
complex. In the ordinary case, you move the position backwards with the
instruction

position = position->previous;

Figure 4 Advancing an Iterator

Node Node Node

data =

next =

previous = NULL

data =

next =

previous =

data =

next = NULL

previous =

Iterator

position =

container =

List

first =

last =

480 CHAPTER 12 • Lists, Queues, and Stacks

However, if the iterator is currently past the end, then you must make it point to
the last element in the list. Also, when the iterator points to the first element in the
list, it is illegal to move it further backward.

void Iterator::previous()
{
 assert(position != container->first);
 if (position == NULL)
 position = container->last;
 else
 position = position->previous;
}

The get function (which is the equivalent of the * operator) simply returns the data
value of the node to which position points—that is, position->data. It is illegal to
call get if the iterator points past the end of the list:

string Iterator::get() const
{
 assert(position != NULL);
 return position->data;
}

Finally, the equals function (which is the equivalent of the == operator) compares
two position pointers:

bool Iterator::equals(Iterator b) const
{
 return position == b.position;
}

In the last section you saw how to implement the iterators that traverse an existing
list. Now you will see how to build up lists by adding and removing elements, one
step at a time.

First, we will implement the push_back function. It appends an element to the end
of the list (see Figure 5). Make a new node:

Node* new_node = new Node(s);

This new node must be integrated into the list after the node to
which the last pointer points. That is, the next field of the last node
(which is currently NULL) must be updated to new_node. Also, the pre-
vious field of the new node must point to what used to be the last
node:

new_node->previous = last;
last->next = new_node;

Finally, you must update the last pointer to reflect that the new node is now the
last node in the list:

last = new_node;

12.2.3 Implementing Insertion and Removal

List nodes are allocated on
the heap, using the new
operator.

1
2

3

12.2 • Implementing Linked Lists 481

However, there is a special case when last is NULL, which can happen only when the
list is empty. After the call to push_back, the list has a single node—namely,
new_node. In that case, both first and last must be set to new_node:

void List::push_back(string data)
{
 Node* new_node = new Node(data);
 if (last == NULL) // List is empty
 {
 first = new_node;
 last = new_node;
 }
 else
 {
 new_node->previous = last;
 last->next = new_node;
 last = new_node;
 }
}

Inserting an element in the middle of a linked list is a little more difficult, because
the node pointers in the two nodes surrounding the new node need to be updated.
The function declaration is

void List::insert(Iterator iter, string s)

That is, a new node containing s is inserted before iter.position (see Figure 6).
Give names to the surrounding nodes. Let before be the node before the inser-

tion location, and let after be the node after that. That is,
Node* after = iter.position;
Node* before = after->previous;

Figure 5 Appending a Node to the End of a Linked List

Node

data =

next =

previous =

List

first =

last =

... ...

...

Node

data =

next =

previous =

new_node =

1

2

3

482 CHAPTER 12 • Lists, Queues, and Stacks

What happens if after is NULL? After all, it is illegal to apply -> to a NULL pointer. In
this situation, you are inserting past the end of the list. Simply call push_back to han-
dle that case separately. Otherwise, you need to insert new_node between before and
after:

new_node->previous = before;
new_node->next = after;

You must also update the nodes from before and after to point to the new node:
after->previous = new_node;
before->next = new_node; // If before != NULL

However, you must be careful. You know that after is not NULL, but it is possible
that before is NULL. In that case, you are inserting at the beginning of the list and
need to adjust first:

if (before = NULL) // Insert at beginning
 first = new_node;
else
 before->next = new_node;

Figure 6 Inserting a Node into a Linked List

Node Node

data =

next =

previous =

data =

next =

previous =

Iterator

position =

container =

Node

data =

next =

previous =

new_node =

1

...

...

after =

iter =

before =

4

2

3

1
2

3
4

12.2 • Implementing Linked Lists 483

Here is the complete code for the insert function:
void List::insert(Iterator iter, string s)
{
 if (iter.position == NULL)
 {
 push_back(s);
 return;
 }

 Node* after = iter.position;
 Node* before = after->previous;
 Node* new_node = new Node(s);
 new_node->previous = before;
 new_node->next = after;
 after->previous = new_node;
 if (before == NULL) // Insert at beginning
 first = new_node;
 else
 before->next = new_node;
}

Finally, look at the implementation of the erase function:
Iterator List::erase(Iterator iter)

You want to remove the node to which iter.position points. It is illegal to erase the
past-the-end position, so assert that iter.position points to an actual list element:

assert(iter.position != NULL);

As before, give names to the node to be removed, the node before it, and the node
after it:

Node* remove = iter.position;
Node* before = remove->previous;
Node* after = remove->next;

You need to update the next and previous pointers of the before and after nodes to
bypass the node that is to be removed (see Figure 7).

before->next = after; // If before != NULL
after->previous = before; // If after != NULL

However, as before, you need to cope with the possibility that before, after, or
both are NULL. If before is NULL, you are erasing the first element in the list. It has no
predecessor to update, but you must change the first pointer of the list. Con-
versely, if after is NULL, you are erasing the last element of the list and must update
the last pointer of the list:

if (remove == first)
 first = after;
else
 before->next = after;
if (remove == last)
 last = before;
else
 after->previous = before;

1
2

484 CHAPTER 12 • Lists, Queues, and Stacks

You must adjust the iterator position so it no longer points to the removed element.
iter.position = after;

Finally, you must remember to recycle the removed node:
delete remove;

Here is the complete erase function. Note that the function returns
an iterator to the element following the erased one:

Iterator List::erase(Iterator iter)
{
 assert(iter.position != NULL);
 Node* remove = iter.position;
 Node* before = remove->previous;
 Node* after = remove->next;
 if (remove == first)
 first = after;
 else
 before->next = after;
 if (remove == last)
 last = before;
 else
 after->previous = before;
 delete remove;

Iterator r;

 r.position = after;

 r.container = this;

 return r;

}

Figure 7 Removing a Node from a Linked List

Node Node Node

data =

next =

previous =

data =

next =

previous =

data =

next =

previous =

Iterator

position =

container =

before = remove = after =

...

...

...

...

1

2

3

3

When a list node is erased,
it is recycled to the heap
with the delete operator.

12.2 • Implementing Linked Lists 485

Implementing these linked list operations is somewhat complex. It is
also error-prone. If you make a mistake and misroute some of the
pointers, you can get subtle errors. For example, if you make a mis-
take with a previous pointer, you may never notice it until you
traverse the list backwards. If a node has been deleted, then that same
storage area may later be reallocated for a different purpose, and if
you have kept a pointer to it, following that invalid node pointer will

lead to disaster. You must exercise special care when implementing any operations
that manipulate the node pointers directly.

Here is a program that puts our linked list to use and demonstrates the insert
and erase operations.

ch12/list2.cpp

Implementing operations
that modify a linked list is
challenging—you need to
make sure that you update
all node pointers correctly.

1 #include <string>
2 #include <iostream>
3 #include <cassert>
4
5 using namespace std;
6
7 class List;
8 class Iterator;
9
10 class Node
11 {
12 public:
13 /*
14 Constructs a node with a given data value.
15 @param s the data to store in this node
16 */
17 Node(string s);
18 private:
19 string data;
20 Node* previous;
21 Node* next;
22 friend class List;
23 friend class Iterator;
24 };
25
26 class List
27 {
28 public:
29 /**
30 Constructs an empty list.
31 */
32 List();
33 /**
34 Appends an element to the list.
35 @param data the value to append
36 */
37 void push_back(string data);

486 CHAPTER 12 • Lists, Queues, and Stacks

38 /**
39 Inserts an element into the list.
40 @param iter the position before which to insert
41 @param s the value to append
42 */
43 void insert(Iterator iter, string s);
44 /**
45 Removes an element from the list.
46 @param iter the position to remove
47 @return an iterator pointing to the element after the
48 erased element
49 */
50 Iterator erase(Iterator iter);
51 /**
52 Gets the beginning position of the list.
53 @return an iterator pointing to the beginning of the list
54 */
55 Iterator begin();
56 /**
57 Gets the past-the-end position of the list.
58 @return an iterator pointing past the end of the list
59 */
60 Iterator end();
61 private:
62 Node* first;
63 Node* last;
64 friend class Iterator
65 };
66
67 class Iterator
68 {
69 public:
70 /**
71 Constructs an iterator that does not point into any list.
72 */
73 Iterator();
74 /**
75 Looks up the value at a position.
76 @return the value of the node to which the iterator points
77 */
78 string get() const;
79 /**
80 Advances the iterator to the next node.
81 */
82 void next();
83 /**
84 Moves the iterator to the previous node.
85 */
86 void previous();
87 /**
88 Compares two iterators.
89 @param b the iterator to compare with this iterator
90 @return true if this iterator and b are equal
91 */
92 bool equals(Iterator b) const;

12.2 • Implementing Linked Lists 487

93 private:
94 Node* position;
95 List* container;
96 friend class List;
97 };
98
99 Node::Node(string s)
100 {
101 data = s;
102 previous = NULL;
103 next = NULL;
104 }
105
106 List::List()
107 {
108 first = NULL;
109 last = NULL;
110 }
111
112 void List::push_back(string data)
113 {
114 Node* new_node = new Node(data);
115 if (last == NULL) // List is empty
116 {
117 first = new_node;
118 last = new_node;
119 }
120 else
121 {
122 new_node->previous = last;
123 last->next = new_node;
124 last = new_node;
125 }
126 }
127
128 void List::insert(Iterator iter, string s)
129 {
130 if (iter.position == NULL)
131 {
132 push_back(s);
133 return;
134 }
135
136 Node* after = iter.position;
137 Node* before = after->previous;
138 Node* new_node = new Node(s);
139 new_node->previous = before;
140 new_node->next = after;
141 after->previous = new_node;
142 if (before == NULL) // Insert at beginning
143 first = new_node;
144 else
145 before->next = new_node;
146 }

488 CHAPTER 12 • Lists, Queues, and Stacks

147
148 Iterator List::erase(Iterator iter)
149 {
150 assert(iter.position != NULL);
151 Node* remove = iter.position;
152 Node* before = remove->previous;
153 Node* after = remove->next;
154 if (remove == first)
155 first = after;
156 else
157 before->next = after;
158 if (remove == last)
159 last = before;
160 else
161 after->previous = before;
162 delete remove;
163 Iterator r;
164 r.position = after;
165 r.container = this;
166 return r;
167 }
168
169 Iterator List::begin()
170 {
171 Iterator iter;
172 iter.position = first;
173 iter.container = this;
174 return iter;
175 }
176
177 Iterator List::end()
178 {
179 Iterator iter;
180 iter.position = NULL;
181 iter.container = this;
182 return iter;
183 }
184
185 Iterator::Iterator()
186 {
187 position = NULL;
188 container = NULL;
189 }
190
191 string Iterator::get() const
192 {
193 assert(position != NULL);
194 return position->data;
195 }
196
197 void Iterator::next()
198 {
199 assert(position != NULL);
200 position = position->next;

12.2 • Implementing Linked Lists 489

201 }
202
203 void Iterator::previous()
204 {
205 assert(position != container->first);
206 if (position == NULL)
207 position = container->last;
208 else
209 position = position->previous;
210 }
211
212 bool Iterator::equals(Iterator b) const
213 {
214 return position == b.position;
215 }
216
217 int main()
218 {
219 List staff;
220
221 staff.push_back("Tom");
222 staff.push_back("Dick");
223 staff.push_back("Harry");
224 staff.push_back("Juliet");
225
226 // Add a value in fourth place
227
228 Iterator pos;
229 pos = staff.begin();
230 pos.next();
231 pos.next();
232 pos.next();
233
234 staff.insert(pos, "Romeo");
235
236 // Remove the value in second place
237
238 pos = staff.begin();
239 pos.next();
240
241 staff.erase(pos);
242
243 // Print all values
244
245 for (pos = staff.begin(); !pos.equals(staff.end()); pos.next())
246 cout << pos.get() << "\n";
247
248 return 0;
249 }

490 CHAPTER 12 • Lists, Queues, and Stacks

In this section, we will formally analyze how efficient the fundamental operations
on linked lists and vectors are. We will consider these operations:

• Getting the kth element
• Adding and removing an element at a given position (an iterator or index)
• Adding and removing an element at the end

To get the kth element of a linked list, you start at the beginning of the list and
advance the iterator k times. Suppose it takes an amount of time T to advance the
iterator once. This quantity is independent of the iterator position—advancing an
iterator does some checking and then it follows the next pointer. Therefore, advanc-
ing the iterator to the kth element consumes kT time. Therefore, locating the kth
element is an O(k) operation.

To analyze the situation for vectors, we need to peek under the hood and see how
the vector class is implemented.

A vector maintains a pointer to an array of elements termed the buffer. An inte-
ger field, called the capacity, is the maximum number of elements that can be stored
in the current buffer. The buffer is usually larger than is necessary to hold the cur-
rent elements in the collection. The size is the number of elements actually being
held by the container. Because vectors use zero-based indexing, the size can also be
interpreted as the first free location in the array. Figure 8 shows the internals of a
vector.

To access the kth element, we simply use the expression buffer[k]. This is done
in a constant amount of time that is independent of k. We say that accessing a vector
element takes O(1) time.

 Next, consider the task of adding an element in the middle of a linked list. We
assume that we already have an iterator to the insertion location. It might have
taken some time to get there, but we are now concerned with the cost of insertion
after the position has been established.

As shown in Figure 6, you add an element by modifying the previous and next
pointers of the new node and the surrounding nodes. This operation takes a con-
stant number of steps, independent of the position. The same holds for removing an
element. We conclude that list insertion and removal are O(1) operations.

Figure 8 Internal Data Fields Maintained by Vector

12.3 The Ef f ic iency of L is t and Vector Operat ions

4 3 7

current_size =

Vector

current_capacity =

buffer =

3

5

12.3 • The Efficiency of List and Vector Operations 491

For vectors, the situation is less rosy. To insert an element at position k, the ele-
ments with higher index values need to move (see Figure 9). How many elements
are affected? For simplicity, we will assume that insertions happen at random loca-
tions. On average, each insertion moves n / 2 elements, where n is the size of the
vector.

The same argument holds for removing an element. On average, n / 2 elements
need to be move. Therefore, we say that vector insertion and removal are O(n)
operations.

There is one situation where adding an element to a vector isn’t so costly: when
the insertion happens at the end. The push_back member function carries out that
operation.

If the size of the vector is less than the capacity, the new element is simply moved
into place and the size is incremented, as shown in Figure 10. This is an O(1)
operation.

If, however, the size is equal to the capacity, it means that no more space is avail-
able. In order to make new space, a new and larger buffer is allocated. This new
buffer is typically twice the size of the current buffer. (See Figure 11.) The existing
elements are then copied into the new buffer, the old buffer is deleted, and insertion
takes place as before. Reallocation is an O(n) operation since all elements need to be
copied to the new buffer.

Figure 9 Inserting and Removing Vector Elements

Figure 10 Vector After push_back

[0]

[k]

[size() - 1]

1
2
3
4
5

[0]

[k]

[size() - 1]

5
4
3
2
1

4 3 7 2

current_size =

Vector

current_capacity =

buffer =

4

5

492 CHAPTER 12 • Lists, Queues, and Stacks

If we carefully analyze the total cost of a sequence of push_back operations, it
turns out that these reallocations are not as expensive as they first appear. The key
observation is that reallocation does not happen very often. Suppose we start with a
vector of capacity 10 and double the size with each reallocation. We must reallocate
when the buffer reaches sizes 10, 20, 40, 80, 160, 320, 640, 1280, and so on.

Let us assume that one insertion without reallocation takes time T1 and that real-
location of k elements takes time k T2. What is the cost of 1280 push_back opera-
tions? Of course, we pay for the insertions. The reallocation cost is

 Therefore, the total cost is a bit less than

In general, the total cost of n push_back operations is less than . Since
the second factor is a constant, we conclude that n push_back operations take O(n)
time.

We know that it isn’t quite true that an individual push_back operation takes O(1)
time. After all, occasionally a push_back is unlucky and must reallocate the buffer.
But if the cost of that reallocation is distributed over the preceding push_back oper-
ations, then the surcharge for each of them is still a constant amount. We say that

Figure 11 Vector After a Buffer Reallocation

4 3 7 2 5 9

current_size =

Vector

current_capacity =

buffer =

6

10

1280 1⋅ T

10 20 40 1280 1 2 4 128 102 2 2 2 2T T T T T+ + + + = + + + + ⋅ ⋅� �()

== ⋅ ⋅

< ⋅ ⋅

= ⋅ ⋅

255 10

256 10

1280 2

2

2

2

T

T

T

1280 21 2⋅ +()T T

n T T⋅ +()1 22

Table 1 Execution Times for Container Operations

Operation Vector Linked List

Add/remove element at end O(1)+ O(1)

Add/remove element in the middle O(n) O(1)

Get kth element O(1) O(k)

12.4 • Queues and Stacks 493

push_back takes amortized O(1) time, which is written as O(1)+. (Accountants say
that a cost is amortized when it is distributed over multiple periods.)

Finally, we note that the push_back operation for a linked list takes O(1) time,
provided that the linked list implementation maintains a pointer to the last element
of the list. Table 1 summarizes the execution times that we discussed in this section.

In this section, you will consider two common data types that allow insertion and
removal of items at the ends only, not in the middle.

A queue lets you add items to one end of the queue (the back) and
remove them from the other end of the queue (the front). To visual-
ize a queue, simply think of people lining up (see Figure 12). People
join the back of the queue and wait until they have reached the front
of the queue. Queues store items in a first in, first out or FIFO fashion.

Items are removed in the same order in which they have been added.
There are many uses of queues in computer science. For example, consider a

printer that receives requests to print documents from multiple sources, either sev-
eral computers or just several applications that print at the same time on one com-
puter. If each of the applications sends printing data to the printer at the same time,
then the printouts will be garbled. Instead, each application places all data that need
to be sent to the printer into a file and inserts that file into the print queue. When

12.4 Queues and St acks

A queue is a container of
items with “first in, first
out” retrieval.

Figure 12 A Queue

494 CHAPTER 12 • Lists, Queues, and Stacks

the printer is done printing one file, it retrieves the next one from the queue. There-
fore, print jobs are printed using the first in, first out rule, which is a fair arrange-
ment for users of the shared printer.

The standard queue template implements a queue in C++. Following tradition,
the addition and removal operations are called push and pop. The front member
function yields the first element of the queue (that is, the next one to be removed).
The back member function yields the element that was most recently added. You
cannot access any other elements of the queue. Here is an example of using a queue:

queue<string> q;
q.push("Tom");
q.push("Dick");
q.push("Harry");
while (q.size() > 0)
{
 cout << q.front() << "\n";
 q.pop();
}

A stack lets you insert and remove elements at one end only, tradi-
tionally called the top of the stack. To visualize a stack, think of a
stack of books (see Figure 13).

New items can be added to the top of the stack. Items are removed from the top
of the stack as well. Therefore, they are removed in the order that is opposite from
the order in which they have been added, also called last in, first out or LIFO order.
For example, if you insert strings "Tom", "Dick", and "Harry" into a stack, and then
remove them, then you will first see "Harry", then "Dick", and finally "Tom".

To obtain a stack in the standard C++ library, you use the stack template:
stack<string> s;
s.push("Tom");
s.push("Dick");
s.push("Harry");
while (s.size() > 0)
{
 cout << s.top() << "\n";
 s.pop();
}

A stack is a container with
“last in, first out” retrieval.

Figure 13 A Stack of Books

12.4 • Queues and Stacks 495

The pop member removes the top of the stack without returning a value. If you
want to obtain the value before popping it, first call top, then pop.

Figure 14 contrasts the behaviors of the stack and queue data types. (ch12/
fifolifo.cpp uses them in a sample program.)

A good example of the use of stack operations is a program that simulates the
execution of a Reverse Polish Notation (RPN, or postfix) calculator. In RPN nota-
tion arguments are written before operators, so that an expression such as 3 + 4 * 7
would be written as 3 4 7 * +. This makes calculating the results easy. As each
number is read it is pushed on a stack. As each operator is read two values are
popped from the stack, the appropriate operation is performed, and the result is
pushed back on the stack. The following program illustrates this technique. In addi-
tion to numbers and the four binary operators, it adds two one-character com-
mands; the command p will print the current top of the stack, and the command q
will halt the program.

ch12/calc.cpp

Figure 14 Stack and Queue Behavior

Push Top/Pop

Stack Queue

PushFront/Pop

.

.

.

. . .

1 #include <stack>
2 #include <iostream>
3 #include <cstdlib>
4
5 using namespace std;
6
7 int main()
8 {
9 stack<int> values;
10 string input;
11
12 while (cin >> input)
13 {
14 if (input == "+" || input == "-" || input == "*" || input == "/")
15 {
16 int second = values.top();
17 values.pop();
18 int first = values.top();
19 values.pop();

496 CHAPTER 12 • Lists, Queues, and Stacks

Program Run

Polish Notation

When you write arithmetic expressions you are used to operators with different levels of
precedence that appear between the operands, except when parentheses are used to specify a
different ordering. That is, an expression such as 3 + (4 – 2) × 7 is evaluated by first subtract-
ing the 2 from the 4, then multiplying the result by 7, and finally adding the 3. Notice how
the sequence of operations jumps around instead of being analyzed in a strict left to right or
right to left order.

In the 1920s a Polish mathematician, Jan , noticed that if you wrote the oper-
ators first, before the operands, the need for both parentheses and precedence was eliminated
and expressions could be read easily from left to right [1]. In notation the
expression would be written as + 3 × – 4 2 . Table 2 shows some other examples.

Evaluating an expression in form is a simple recursive algorithm. Examine
the next term; if it is a constant, then that is your result; if it is a binary operator, then recur-
sively examine the following two expressions, and produce their result. The scheme was
termed Polish Notation in honor (although one can argue it should be called

 Notation). Of course, an entrenched notation is not easily displaced, even
when it has distinct disadvantages, and discovery did not cause much of a stir
for about 50 years.

In the 1950s, Australian computer scientist Charles Hamblin noted that an even better
scheme would be to have the operators follow the operands [2]. This was termed Reverse

20 if (input == "+")
21 values.push(first + second);
22 else if (input == "-")
23 values.push(first - second);
24 else if (input == "*")
25 values.push(first * second);
26 else
27 values.push(first / second);
28 }
29 else if (input == "p")
30 cout << values.top() << "\n";
31 else if (input == "q")
32 return 0;
33 else // Convert input to integer
34 values.push(atoi(input.c_str()));
35 }
36 }

1 2 4 * + p

9
3 - p

6
q

RANDOM FACT 12.1

Lukasiewicz

Lukasiewicz’s

Lukasiewicz’s

Lukasiewicz’s
Lukasiewicz

Lukasiewicz’s

12.4 • Queues and Stacks 497

Polish Notation, or RPN. The expression given would be written as 3 4 2 – 7 × + in RPN. As
you have seen, the evaluation of RPN is relatively simple if you have a stack. Each operand is
pushed on the stack. Each operator pops the appropriate number of values from the stack,
performs the operation, and pushes the result back onto the stack.

In 1972, Hewlett-Packard introduced the HP 35 calculator that used RPN. For example,
to compute 3 + 4 * 5, you enter 3 4 5 * +. RPN calculators have no keys labeled with
parentheses or an equals symbol. There is only a key labeled ENTER to push a number onto
a stack. For that reason, Hewlett-Packard’s marketing department used to refer to their
product as “the calculators that have no equal”. Indeed, the Hewlett-Packard calculators
were a great advance over competing models that were unable to handle algebraic notation
and left users with no other choice but to write intermediate results on paper.

Over time, developers of high quality calculators have adapted to the standard algebraic
notation rather than forcing users to learn a new notation. However, those users who have
made the effort of learning RPN tend to be fanatic proponents, and some Hewlett-Packard
calculator models still support it.

Table 2

Standard Notation Notation RPN

3 + 4 + 3 4 3 4 +

3 + 4 × 5 + 3 * 4 5 3 4 5 * +

3 × (4 + 5) * 3 + 4 5 3 4 5 + *

(3 + 4) × 5 * + 3 4 5 3 4 + 5 *

3 + 4 + 5 + + 3 4 5 3 4 + 5 +

Lukasiewicz

498 CHAPTER 12 • Lists, Queues, and Stacks

1. A linked list consists of a number of nodes, each of which has a pointer to the
neighboring nodes.

2. Adding and removing elements in the middle of a linked list is efficient.

3. Visiting the elements of a linked list in sequential order is efficient, but random
access is not.

4. You can inspect and edit a linked list with an iterator. An iterator points to a
node in a linked list.

5. When implementing a linked list, we need to define list, node, and iterator
classes.

6. A list object contains pointers to the first and last node.

7. An iterator contains a pointer to the current node, and to the list that
contains it.

8. List nodes are allocated on the heap, using the new operator.

9. When a list node is erased, it is recycled to the heap with the delete operator.

10. Implementing operations that modify a linked list is challenging—you need to
make sure that you update all node pointers correctly.

11. A queue is a container of items with “first in, first out” retrieval.

12. A stack is a container with “last in, first out” retrieval.

1. Jan , Elementy Logiki Matematyczny, Warsaw 1929; English translation:
Elements of Mathematical Logic, Pergamon Press, London, 1963.

2. Charles L. Hamblin, “Translation to and from Polish notation”, Computing Journal,
5:210–213, 1962.

Exercise R12.1. If a list has n elements, how many legal positions are there for insert-
ing a new element? For erasing an element?

Exercise R12.2. What happens if you keep advancing an iterator past the end of the
list? Before the beginning of the list? What happens if you look up the value at an
iterator that is past the end? Erase the past-the-end position? All these are illegal

CHAPTER SUMMARY

FURTHER READING

Lukasiewicz

REVIEW EXERCISES

Review Exercises 499

operations, of course. What does the list implementation of your compiler do in
these cases?

Exercise R12.3. Write a function that prints all values in a linked list, starting from
the end of the list.

Exercise R12.4. The following code edits a linked list consisting of three nodes.

Draw a diagram showing how they are linked together after the following code is
executed.

Node* p1 = first->next;
Node* p2 = first;
while (p2->next != NULL) p2 = p2->next;
first->next = p2;
p2->next = p1;
p1->next = NULL;
p2->previous = first;
p1->previous = p2;
last = p1;

Exercise R12.5. Explain what the following code prints.
list<string> names;
list<string>::iterator p = names.begin();
names.insert(p, "Tom");
p = names.begin();
names.insert(p, "Dick");
p++;
names.insert(p, "Harry");
for (p = names.begin(); p != names.end(); p++)
 cout << *p << "\n";

Exercise R12.6. The insert procedure of Section 12.2 inserts a new element before
the iterator position. To understand the updating of the nodes, draw before/after
node diagrams for the following four scenarios.

a. The list is completely empty.
b. The list is not empty, and the iterator is at the beginning of the list.
c. The list is not empty, and the iterator is at the end of the list.
d. The list is not empty, and the iterator is in the middle of the list.

Exercise R12.7. What advantages do lists have over vectors? What disadvantages do
they have?

Exercise R12.8. Suppose you needed to organize a collection of telephone numbers
for a company division. There are currently about 6,000 employees, and you know
that the phone switch can handle at most 10,000 phone numbers. You expect several

Tom

Node

Dick

Node

Harry

Node

first

500 CHAPTER 12 • Lists, Queues, and Stacks

hundred lookups against the collection every day. Would you use a vector or a
linked list to store the information?

Exercise R12.9. Suppose you needed to keep a collection of appointments. Would
you use a linked list or a vector of Appointment objects?

Exercise R12.10. Suppose you write a program that models a card deck. Cards are
taken from the top of the deck and given out to players. As cards are returned to the
deck, they are placed on the bottom of the deck. Would you store the cards in a
stack or a queue?

Exercise R12.11. Consider the efficiency of locating the kth element in a linked list of
length n. If k > n / 2, it is more efficient to start at the end of the list and moving the
iterator to the previous element. Why doesn’t this increase in efficiency improve the
big-Oh estimate of random access in a linked list?

Exercise R12.12. Explain why inserting an element into the middle of a list is faster
than inserting an element into the middle of a vector.

Exercise R12.13. Explain why the push_back operation with a vector is usually con-
stant time, but occasionally much slower.

Exercise R12.14. Suppose a vector implementation were to add 10 elements at each
relocation instead of doubling the capacity. Show that the push_back operation no
longer has amortized constant time.

Exercise R12.15. Write each of the following expressions in both Polish Notation
and Reverse Polish Notation.

a. 3 + 4
b. 1 × 2 + 3
c. 1 × (2 + 3)
d. (2 – 4) × (3 + 4)
e. 1 + 2 + 3 + 4

Exercise R12.16. Suppose the strings "A" through "Z" are pushed onto a stack. Then
they are popped off the stack and pushed onto a second stack. Finally, they are
popped off the second stack and printed. In which order are the strings printed?

Exercise R12.17. What are the efficiencies of the push and pop operations of a stack
when it is implemented using a linked list? Explain your answer.

Exercise R12.18. What are the efficiencies of the push and pop operations of a stack
when it is implemented using a vector? Explain your answer.

Exercise R12.19. What are the efficiencies of the push and pop operations of a queue
when it is implemented using a linked list? Explain your answer.

Exercise R12.20. What are the efficiencies of the push and pop operations of a queue
when it is implemented using a vector? Explain your answer.

Programming Exercises 501

Exercise R12.21. Consider the following algorithm for traversing a maze such as this
one:

Make the cell at the entrance the current cell. Take the following actions, then
repeat:

• If the current cell is adjacent to the exit, stop.
• Mark the current cell as visited.
• Add all unvisited neighbors to the north, east, south, and west to a queue.
• Remove the next element from the queue and make it the current cell.

In which order will the cells of the sample maze be visited?

Exercise R12.22. Repeat Exercise R12.21, using a stack instead of a queue.

Exercise P12.1. Write a function
void downsize(list<string>& names)

that removes every second value from a linked list.

Exercise P12.2. Write a function maximum that computes the largest element in a
list<int>.

Exercise P12.3. Write a function sort that sorts the elements of a linked list (without
copying them into a vector).

Exercise P12.4. Write a function merge that merges two lists into one, alternating ele-
ments from each list until the end of one of the lists has been reached, then append-
ing the remaining elements of the other list. For example, merging the lists
containing A B C and D E F G H should yield the list A D B E C F G H.

Exercise P12.5. Provide a linked list of integers by modifying the Node, List, and
Iterator classes of Section 12.2 to hold integers instead of strings.

Exercise P12.6. Write a member function List::reverse() that reverses the nodes in
a list.

18 19 20 21 22

16 17

11 12 13 14 15

9 10

4 5 6 7 8

1 2 3

Entrance Exit

PROGRAMMING EXERCISES

502 CHAPTER 12 • Lists, Queues, and Stacks

Exercise P12.7. Write a member function List::push_front() that adds a value to the
beginning of a list.

Exercise P12.8. Write a member function List::swap(List& other) that swaps the
elements of this list and other. Your method should work in O(1) time.

Exercise P12.9. Write a member function List::get_size() that computes the num-
ber of elements in the list, by counting the elements until the end of the list is
reached.

Exercise P12.10. Add a size field to the List class. Modify the insert and erase func-
tions to update the size field so that it always contains the correct size. Change the
get_size() function of Exercise P12.9 to take advantage of this data field.

Exercise P12.11. Turn the linked list implementation into a circular list: Have the pre-
vious pointer of the first node point to the last node, and the next pointer of the last
node point to the first node. Then remove the last pointer in the List class since the
value can now be obtained as first->previous. Reimplement the member functions
so that they have the same effect as before.

Exercise P12.12. Turn the linked list implementation into a singly-linked list: Drop
the previous pointer of the nodes and the previous member function of the iterator.
Reimplement the other member functions so that they have the same effect as
before. Hint: In order to remove an element in constant time, iterators should store
the predecessor of the current node.

Exercise P12.13. Modify the linked list implementation to use a dummy node for the
past-the-end position whose data field is unused. A past-the-end iterator should
point to the dummy node. Remove the container pointer in the iterator class. Reim-
plement the member functions so that they have the same effect as before.

Exercise P12.14. Write a class Polynomial that stores a polynomial such as

as a linked list of terms. A term contains the coefficient and the power of x. For
example, you would store p(x) as

Supply member functions to add, multiply, and print polynomials. Supply a con-
structor that makes a polynomial from a single term. For example, the polynomial p
can be constructed as

Polynomial p(Term(-10, 0));
p.add(Polynomial(Term(-1, 1)));
p.add(Polynomial(Term(9, 7)));
p.add(Polynomial(Term(5, 10)));

Then compute .
Polynomial q = p.multiply(p);
q.print();

p x x x x() = + − −5 9 1010 7

5 10 9 7 1 1 10 0, , , , , , ,() () −() −()

p x p x() ()×

Programming Exercises 503

Exercise P12.15. Implement a Stack class, using a linked list of strings. Supply opera-
tions size, push, pop, and top, just like in the standard stack template.

Exercise P12.16. Implement a Queue class, using a linked list of strings. Supply opera-
tions size, push, pop, front, and back, just like in the standard stack template.

Exercise P12.17. Using a queue of vectors, implement a non-recursive variant of the
merge sort algorithm as follows. Start by inserting the entire vector to be sorted. We
assume its size is a power of 2. Keep removing vectors from the queue, splitting
them into two vectors of equal size, and adding the smaller vectors back into the
queue. Once you encounter vectors of size 1, change to the following behavior:
Remove pairs of vectors from the queue, merge them into a single vector and add
the result back into the queue. Stop when the queue has size 1.

Exercise P12.18. Use a stack to enumerate all permutations of a string without using
recursion. Suppose you want to find all permutations of the string meat. Push the
string +meat on the stack. Now repeat the following operations until the stack is
empty.

• Pop off the top of the stack.
• If that string ends in a + (such as tame+), remove the + and print the string
• Otherwise, remove each letter in turn from the right of the +, insert it just

before the +, and push the resulting string on the stack. For example, after
popping e+mta, you push em+ta, et+ma, and ea+mt.

This page intentionally left blank

Chapter 13
Sets, Maps, and
Priority Queues

• To become familiar with the set, map, and priority queue
data types

• To understand the implementation of binary search trees
and heaps

• To learn about the efficiency of operations on tree structures

CHAPTER GOALS

In this chapter, we continue our presentation of common data structures. You will

learn how to use the set, map, and priority queue types that are provided in the C++

library. You will see how these data structures are implemented as tree-like

structures, and how they trade off sequential ordering for fast element lookup.

506 CHAPTER 13 • Sets, Maps, and Priority Queues

CHAPTER CONTENTS

Vectors and linked lists have one characteristic in common: These data structures
keep the elements in the same order in which you inserted them. However, in many
applications, you don’t really care about the order of the elements in a collection.
You can then make a very useful tradeoff: Instead of keeping elements in order, you
can find them quickly.

In mathematics and computer science, an unordered collection of
distinct items is called a set. As a typical example, consider a print
server: a computer that has access to multiple printers. The server
may keep a collection of objects representing available printers (see
Figure 1). The order of the objects doesn’t really matter.

The fundamental operations on a set are:

• Adding an element
• Removing an element
• Finding an element
• Traversing all elements

13.1 Sets

A set is an unordered
collection of distinct
elements.

Figure 1
A Set of Printers

13.1 Sets 506
ADVANCED TOPIC 13.1: Defining an Ordering for

Container Elements 508

13.2 Binary Search Trees 509

13.3 Tree Traversal 516

13.4 Maps 521

ADVANCED TOPIC 13.2: Constant Iterators 525

13.5 Priority Queues 526
ADVANCED TOPIC 13.3: Discrete Event

Simulations 528

13.6 Heaps 529

13.1 • Sets 507

A set rejects duplicates. If an object is already in the set, an attempt to
add it again is ignored. That’s useful in many programming situa-
tions. For example, if we keep a set of available printers, each printer
should occur at most once in the set. Thus, we will interpret the add
and remove operations of sets just as we do in mathematics: Adding

elements that are already in the set, as well as removing elements that are not in the
set, are valid operations, but they do not change the set.

In C++, you use the set class to construct a set. As with vectors and lists, set
requires a type parameter. For example, a set of strings is declared as follows:

set<string> names;

You use the insert and erase member functions to add and remove elements:
names.insert("Romeo");
names.insert("Juliet");
names.insert("Romeo"); // Has no effect: "Romeo" is already in the set
names.erase("Juliet");
names.erase("Juliet"); // Has no effect: "Juliet" is no longer in the set

To determine whether a value is in the set, use the count member function. It returns
1 if the value is in the set, 0 otherwise.

int c = names.count("Romeo"); // count returns 1

Finally, you can visit the elements of a set with an iterator. The itera-
tor visits the elements in sorted order, not in the order in which you
inserted them. For example, consider what happens when we con-
tinue our set example as follows.

names.insert("Tom");
names.insert("Dick");
names.insert("Harry");
set<string>::iterator pos;
for (pos = names.begin(); pos != names.end(); pos++)
 cout << *pos << " ";

The code prints the set elements in dictionary order:
Dick Harry Romeo Tom

A set cannot contain duplicates. A multiset (also called a bag) is an unordered con-
tainer that can contain multiple copies of an element. An example is a grocery bag
that contains some grocery items more than once (see Figure 2).

Sets don’t have duplicates.
Adding a duplicate of an
element that is already
present is ignored.

The standard C++ set
class stores values in
sorted order.

Figure 2
A Bag of Groceries

12

2

4

1
1

2

508 CHAPTER 13 • Sets, Maps, and Priority Queues

In the C++ library, the multiset class implements this data type.
You use a multiset in the same way as a set. When you insert an ele-
ment multiple times, the element count reflects the number of inser-
tions. Each call to erase decrements the element count until it
reaches 0.

multiset<string> names;
names.insert("Romeo");
names.insert("Juliet");
names.insert("Romeo"); // Now names.count("Romeo") is 2
names.erase("Juliet"); // Now names.count("Juliet") is 0
names.erase("Juliet"); // Has no effect: "Juliet" is no longer in the bag

A good illustration of the use of sets is a program to check for misspelled words.
Assume you have a file containing correctly spelled words (that is, a dictionary),
and a second file you wish to check. The program simply reads the correctly spelled
words into a set, then reads words from the second file and tests each in the set,
printing the word if it is not found.

void spell_check(istream& dictionary, istream& text)
{
 set<string> words;
 string word;

 // First put all words from dictionary into set.
 while (dictionary >> word)
 words.insert(word);

 // Then read words from text
 while (text >> word)
 if (words.count(word) == 0)
 cout << "Misspelled word " << word << "\n";
}

Defining an Ordering for Container Elements

The set and multiset classes need to compare elements, and the map class needs to
compare keys. By default, these classes use the < operator for comparisons.

Suppose that you want to build a set<Employee>. The compiler will complain that it does
not know how to compare two employees.

To solve this problem you can overload the < operator for Employee objects:

bool operator<(Employee a, Employee b)
{
 return a.get_name() < b.get_name();
}

This < operator compares employees by name. You will learn more about overloading oper-
ators in Chapter 14. Chapter 20 shows additional ways of specifying the comparison.

A multiset (or bag) is
similar to a set, but
elements can occur
multiple times.

ADVANCED TOPIC 13.1

13.2 • Binary Search Trees 509

A set implementation is allowed to rearrange its elements in any way it chooses so
that it can find elements quickly. Suppose a set implementation sorts its entries.
Then it can use binary search to locate elements in O(log(n)) steps, where n is the
size of the set. There is just one wrinkle with this idea. We can’t use an array to store
the elements of a set, because insertion and removal in an array is slow; an O(n)
operation.

In this section we will introduce the simplest of many tree data structures that
computer scientists have invented to overcome that problem.

A linked list is a one-dimensional data structure. Every node has a
pointer to the next node. You can imagine that all nodes are arranged
in a line. In contrast, a binary tree is made of nodes with two node
pointers, called the left and right children. You should visualize it as a
tree, except that it is traditional to draw the tree upside down, like a

family tree or hierarchy chart (see Figure 3). In a binary tree, every node has at most
two children; hence the name binary.

Finally, a binary search tree is constructed to have the following
important property:

• The data values of all descendants to the left of any node are less
than the data value stored in that node, and all descendants to the
right have greater data values.

The tree in Figure 3 has this property. To verify the binary search
property, you must check each node. Consider the node “Juliet”. All
descendants to the left have data before “Juliet”. All descendants on

13.2 Binary Search Trees

A binary tree consists of
nodes, each of which has
at most two child nodes.

Figure 3
A Binary Search Tree

All nodes in a binary
search tree fulfill the prop-
erty that the descendants
to the left have smaller
data values than the node
data value, and the
descendants to the right
have larger data values.

TreeNode

TreeNode

TreeNodeTreeNode

TreeNode

TreeNode

Juliet

Eve

Adam
NULL
NULL

Harry
NULL
NULL

Tom
NULL
NULL

Romeo
NULL

BinarySearchTree

510 CHAPTER 13 • Sets, Maps, and Priority Queues

the right have data after “Juliet”. Move on to “Eve”. There is a child to the left, with
data “Adam” before “Eve”, and a single child to the right, with data “Harry” after
“Eve”. Check the remaining nodes in the same way.

Figure 4 shows a binary tree that is not a binary search tree. Look carefully—the
root node passes the test, but its two children do not.

Let us implement these tree classes. Just as you needed classes for lists and their
nodes, you need one class for the tree, containing a pointer to the root node, and a
separate class for the nodes. Each node contains two pointers (to the left and right
child nodes) and a data field. At the fringes of the tree, one or two of the child
pointers are NULL.

class TreeNode
{
 ...
private:

string data;

 TreeNode* left;

 TreeNode* right;

friend class BinarySearchTree;
};

class BinarySearchTree
{
 ...
private:

TreeNode* root;

};

Figure 4
A Binary Tree
That Is Not a
Binary Search Tree

TreeNode

TreeNode

TreeNodeTreeNode

TreeNode

TreeNode

Tree

Juliet

Adam

Eve
NULL
NULL

Harry
NULL
NULL

Tom
NULL
NULL

Romeo

NULL

These nodes don’t
fulfill the binary search

tree condition.

13.2 • Binary Search Trees 511

To insert data into the tree, use the following algorithm:

• If you encounter a non-NULL node, look at its data value. If the data value of that
node is larger than the one you want to insert, continue the process with the left
child. If the existing data value is smaller, continue the process with the right
child.

• If you encounter a NULL node, replace it with the new node.

For example, consider the tree in Figure 5. It is the result of the following
statements:

BinarySearchTree tree;
tree.add("Juliet");
tree.add("Tom");
tree.add("Dick");
tree.add("Harry");

We want to insert a new element Romeo into it.
tree.add("Romeo");

Start with the root, Juliet. Romeo comes after Juliet, so you move to the right sub-
tree. You encounter the node Tom. Romeo comes before Tom, so you move to the left
subtree. But there is no left subtree. Hence, you insert a new Romeo node as the left
child of Tom (see Figure 6).

Figure 5
Binary Search Tree
After Four Insertions

TreeNode

TreeNode

TreeNode

TreeNode

BinarySearchTree

Juliet

Dick
NULL

Harry
NULL
NULL

Tom
NULL
NULL

1

23

4

1
2

3
4

5

512 CHAPTER 13 • Sets, Maps, and Priority Queues

You should convince yourself that the resulting tree is still a binary search tree.
When Romeo is inserted, it must end up as a right descendant of Juliet—that is what
the binary search tree condition means for the root node Juliet. The root node
doesn’t care where in the right subtree the new node ends up. Moving along to Tom,
the right child of Juliet, all it cares about is that the new node Romeo ends up some-
where on its left. There is nothing to its left, so Romeo becomes the new left child,
and the resulting tree is again a binary search tree.

Here is the code for the insert member function of the BinarySearchTree class:
void BinarySearchTree::insert(string data)
{
 TreeNode* new_node = new TreeNode;
 new_node->data = data;
 new_node->left = NULL;
 new_node->right = NULL;
 if (root == NULL) root = new_node;
 else root->insert_node(new_node);
}

If the tree is empty, simply set its root to the new node. Otherwise,
you know that the new node must be inserted somewhere within the
nodes, and you can ask the root node to perform the insertion. That
node object calls the insert_node member function of the TreeNode
class. That member function checks whether the new object is less
than the object stored in the node. If so, the element is inserted in the

Figure 6
Binary Search Tree
After Five Insertions

TreeNode

TreeNode

TreeNode

TreeNode

BinarySearchTree

Juliet

Dick
NULL

Harry
NULL
NULL

Tom

NULL

1

23

4 TreeNode

Romeo
NULL
NULL

5

To insert a value in a
binary search tree,
recursively insert it into
the left or right subtree.

13.2 • Binary Search Trees 513

left subtree. If it is larger than the object stored in the node, it is inserted in the right
subtree:

void TreeNode::insert_node(TreeNode* new_node)
{
 if (new_node->data < data)
 {
 if (left == NULL) left = new_node;
 else left->insert_node(new_node);
 }
 else if (data < new_node->data)
 {
 if (right == NULL) right = new_node;
 else right->insert_node(new_node);
 }
}

Let us trace the calls to insert_node when inserting Romeo into the tree in Figure 5.
The first call to insert_node is

root->insert_node(new_node)

Because root points to Juliet, you compare Juliet with Romeo and find that you
must call

root->right->insert_node(new_node)

The node root->right contains Tom. Compare the data values again (Tom vs. Romeo)
and find that you must now move to the left. Since root->right->left is NULL, set
root->right->left to new_node, and the insertion is complete (see Figure 6).

We will now discuss the removal algorithm. Our task is to remove a node from
the tree. Of course, we must first find the node to be removed. That is a simple mat-
ter, due to the characteristic property of a binary search tree. Compare the data value
to be removed with the data value that is stored in the root node. If it is smaller, keep
looking in the left subtree. Otherwise, keep looking in the right subtree.

Let us now assume that we have located the node that needs to be removed. First,
let us consider an easy case, when that node has only one child (see Figure 7).

Figure 7
Removing a Node
with One Child

Parent

Node to be removed

Reroute
link

514 CHAPTER 13 • Sets, Maps, and Priority Queues

 To remove the node, simply modify the parent link that points to
the node so that it points to the child instead.

If the node to be removed has no children at all, then the parent
link is simply set to NULL.

The case in which the node to be removed has two children is
more challenging. Rather than removing the node, it is easier to
replace its data value with the next larger value in the tree. That
replacement preserves the binary search tree property. (Alternatively,
you could use the largest element of the left subtree—see Exercise
P13.11).

To locate the next larger value, go to the right subtree and find its
smallest data value. Keep following the left child links. Once you
reach a node that has no left child, you have found the node contain-
ing the smallest data value of the subtree. Now remove that node—it

is easily removed because it has at most one child. Then store its data value in the
original node that was slated for removal. Figure 8 shows the details.

You will find the complete source code for the BinarySearchTree class at the end
of the next section. Now that you have seen how to implement this complex data
structure, you may well wonder whether it is any good. Like nodes in a list, tree
nodes are allocated one at a time. No existing elements need to be moved when a
new element is inserted in the tree; that is an advantage. How fast insertion is, how-

When removing a node
with only one child from a
binary search tree, the
child replaces the node to
be removed.

When removing a node
with two children from a
binary search tree, replace
it with the smallest node
of the right subtree.

Figure 8 Removing a Node with Two Children

Node to be removed

Smallest child in
right subtree

Reroute
link

Copy
value

13.2 • Binary Search Trees 515

ever, depends on the shape of the tree. If the tree is balanced—that is, if each node has
approximately as many descendants on the left as on the right—then insertion takes
O(log (n)) time, where n is the number of nodes in the tree. This is a consequence of
the fact that about half of the nodes are eliminated in each step. On the other hand,
if the tree happens to be unbalanced, then insertion can be slow—perhaps as slow as
insertion into a linked list. (See Figure 9.)

If new elements are fairly random, the resulting tree is likely to be
well balanced. However, if the incoming elements happen to be in
sorted order already, then the resulting tree is completely unbal-
anced. Each new element is inserted at the end, and the entire tree
must be traversed every time to find that end!

There are more sophisticated tree structures whose functions keep trees balanced
at all times. In these tree structures, one can guarantee that finding, adding, and
removing elements takes O(log(n)) time. The standard C++ library uses red-black
trees, a special form of balanced binary trees, to implement sets and maps.

If a binary search tree is
balanced, then inserting
an element takes
O(log(n)) time.

Figure 9 An Unbalanced Binary Search Tree

TreeNode

TreeNode

TreeNode

TreeNode

BinarySearchTree

Tom

NULL

Dick
NULL

Harry
NULL

Romeo
NULL
NULL

516 CHAPTER 13 • Sets, Maps, and Priority Queues

Table 1 summarizes the performance of the fundamental operations on vectors,
lists, and balanced binary trees.

Once data has been inserted into a binary search tree, it turns out to be surprisingly
simple to print all elements in sorted order. You know that all data in the left subtree
of any node must come before the node and before all data in the right subtree. That
is, the following algorithm will print the elements in sorted order:

1. Print the left subtree.
2. Print the data.
3. Print the right subtree.

Let’s try this out with the tree in Figure 6. The algorithm tells us to

1. Print the left subtree of Juliet; that is, Dick and descendants.
2. Print Juliet.
3. Print the right subtree of Juliet; that is, Tom and descendants.

How do you print the subtree starting at Dick?

1. Print the left subtree of Dick. There is nothing to print.
2. Print Dick.
3. Print the right subtree of Dick, that is, Harry.

That is, the left subtree of Juliet is printed as
Dick Harry

The right subtree of Juliet is the subtree starting at Tom. How is it printed? Again,
using the same algorithm:

1. Print the left subtree of Tom, that is, Romeo.
2. Print Tom.
3. Print the right subtree of Tom. There is nothing to print.

Table 1 Execution Times for Container Operations

Operation Vector Linked List Balanced Binary Tree

Add/remove element at end O(1) O(1) N/A

Add/remove element in the middle O(n) O(1) O(log (n))

Get kth element O(1) O(k) N/A

Find value O(n) O(n) O(log (n))

13.3 Tree Traversa l

13.3 • Tree Traversal 517

Thus, the right subtree of Juliet is printed as
Romeo Tom

Now put it all together: the left subtree, Juliet, and the right subtree:
Dick Harry Juliet Romeo Tom

The tree is printed in sorted order.
Let us implement the print member function. You need a worker function

print_nodes of the TreeNode class:
void TreeNode::print_nodes() const
{
 if (left != NULL)
 left->print_nodes();
 cout << data << "\n";
 if (right != NULL)
 right->print_nodes();
}

To print the entire tree, start this recursive printing process at the root, with the fol-
lowing member function of the BinarySearchTree class.

void BinarySearchTree::print() const
{
 if (root != NULL)
 root->print_nodes();
}

This visitation scheme is called inorder traversal. There are two other
traversal schemes, called preorder traversal and postorder traversal.

In preorder traversal,

• Visit the root
• Visit the left subtree
• Visit the right subtree

In postorder traversal,

• Visit the left subtree
• Visit the right subtree
• Visit the root

These two traversals will not print the tree in sorted order. However, they are
important in other applications of binary trees.

Tree traversals differ from an iterator in an important way. An iterator lets you
visit a node at a time, and you can stop the iteration whenever you like. The travers-
als, on the other hand, visit all elements.

It turns out to be a bit complex to implement an iterator that visits the elements
of a binary tree. Just like a list iterator, a tree iterator contains a pointer to a node.
The iteration starts at the leftmost leaf. It then moves to the parent node, then to the
right child, then to the next unvisited parent’s leftmost child, and so on, until it
reaches the rightmost leaf. Exercise P13.12 and Exercise P13.13 discuss two meth-
ods for implementing such a tree iterator.

Tree traversal schemes
include preorder traversal,
inorder traversal, and
postorder traversal.

518 CHAPTER 13 • Sets, Maps, and Priority Queues

ch13/bintree.cpp

1 #include <iostream>
2 #include <string>
3
4 using namespace std;
5
6 class TreeNode
7 {
8 public:
9 void insert_node(TreeNode* new_node);
10 void print_nodes() const;
11 bool find(string value) const;
12 private:
13 string data;
14 TreeNode* left;
15 TreeNode* right;
16 friend class BinarySearchTree;
17 };
18
19 class BinarySearchTree
20 {
21 public:
22 BinarySearchTree();
23 void insert(string data);
24 void erase(string data);
25 int count(string data) const;
26 void print() const;
27 private:
28 TreeNode* root;
29 };
30
31 BinarySearchTree::BinarySearchTree()
32 {
33 root = NULL;
34 }
35
36 void BinarySearchTree::print() const
37 {
38 if (root != NULL)
39 root->print_nodes();
40 }
41
42 void BinarySearchTree::insert(string data)
43 {
44 TreeNode* new_node = new TreeNode;
45 new_node->data = data;
46 new_node->left = NULL;
47 new_node->right = NULL;
48 if (root == NULL) root = new_node;
49 else root->insert_node(new_node);
50 }
51
52 void TreeNode::insert_node(TreeNode* new_node)
53 {

13.3 • Tree Traversal 519

54 if (new_node->data < data)
55 {
56 if (left == NULL) left = new_node;
57 else left->insert_node(new_node);
58 }
59 else if (data < new_node->data)
60 {
61 if (right == NULL) right = new_node;
62 else right->insert_node(new_node);
63 }
64 }
65
66 int BinarySearchTree::count(string data) const
67 {
68 if (root == NULL) return 0;
69 else if (root->find(data)) return 1;
70 else return 0;
71 }
72
73 void BinarySearchTree::erase(string data)
74 {
75 // Find node to be removed
76
77 TreeNode* to_be_removed = root;
78 TreeNode* parent = NULL;
79 bool found = false;
80 while (!found && to_be_removed != NULL)
81 {
82 if (to_be_removed->data < data)
83 {
84 parent = to_be_removed;
85 to_be_removed = to_be_removed->right;
86 }
87 else if (data < to_be_removed->data)
88 {
89 parent = to_be_removed;
90 to_be_removed = to_be_removed->left;
91 }
92 else found = true;
93 }
94
95 if (!found) return;
96
97 // to_be_removed contains data
98
99 // If one of the children is empty, use the other
100
101 if (to_be_removed->left == NULL || to_be_removed->right == NULL)
102 {
103 TreeNode* new_child;
104 if (to_be_removed->left == NULL)
105 new_child = to_be_removed->right;
106 else
107 new_child = to_be_removed->left;

520 CHAPTER 13 • Sets, Maps, and Priority Queues

108 if (parent == NULL) // Found in root
109 root = new_child;
110 else if (parent->left == to_be_removed)
111 parent->left = new_child;
112 else
113 parent->right = new_child;
114 return;
115 }
116
117 // Neither subtree is empty
118
119 // Find smallest element of the right subtree
120
121 TreeNode* smallest_parent = to_be_removed;
122 TreeNode* smallest = to_be_removed->right;
123 while (smallest->left != NULL)
124 {
125 smallest_parent = smallest;
126 smallest = smallest->left;
127 }
128
129 // smallest contains smallest child in right subtree
130
131 // Move contents, unlink child
132 to_be_removed->data = smallest->data;
133 if (smallest_parent == to_be_removed)
134 smallest_parent->right = smallest->right;
135 else
136 smallest_parent->left = smallest->right;
137 }
138
139 bool TreeNode::find(string value) const
140 {
141 if (value < data)
142 {
143 if (left == NULL) return false;
144 else return left->find(value);
145 }
146 else if (data < value)
147 {
148 if (right == NULL) return false;
149 else return right->find(value);
150 }
151 else
152 return true;
153 }
154
155 void TreeNode::print_nodes() const
156 {
157 if (left != NULL)
158 left->print_nodes();
159 cout << data << "\n";
160 if (right != NULL)
161 right->print_nodes();

13.4 • Maps 521

A map is a data type that keeps associations between keys and values.
Every key in the map has a unique value, but a value may be associ-
ated with several keys. Figure 10 gives a typical example: a map that
associates names with colors. This map might describe the favorite
colors of various people.

162 }
163
164 int main()
165 {
166 BinarySearchTree t;
167 t.insert("D");
168 t.insert("B");
169 t.insert("A");
170 t.insert("C");
171 t.insert("F");
172 t.insert("E");
173 t.insert("I");
174 t.insert("G");
175 t.insert("H");
176 t.insert("J");
177 t.erase("A"); // Removing leaf
178 t.erase("B"); // Removing element with one child
179 t.erase("F"); // Removing element with two children
180 t.erase("D"); // Removing root
181 t.print();
182 cout << t.count("E") << "\n";
183 cout << t.count("F") << "\n";
184 return 0;
185 }

Figure 10
A Map

13.4 Maps

A map keeps associations
between key and value
objects.

Romeo

Adam

Eve

Juliet

ValuesKeys

522 CHAPTER 13 • Sets, Maps, and Priority Queues

With the map class in the standard library, you use the [] operator to associate
keys and values. Here is an example:

map<string, double> scores;
scores["Tom"] = 90;
scores["Dick"] = 86;
scores["Harry"] = 100;

You can read a score back with the same notation:
cout << "Tom’s score: " << scores["Tom"];

To find out whether a key is present in the map, use the find member function. It
yields an iterator that points to the entry with the given key, or past the end of the
container if the key is not present.

The iterator of a map<K, V> with key type K and value type V yields elements of
type pair<K, V>. The pair class is a simple class defined in the <utility> header that
stores a pair of values. It has two public (!) data fields first and second.

Therefore, you have to go through this process to see if a key is present:
map<string, double>::iterator pos = scores.find("Harry"); // Call find
if (pos == scores.end()) // Check if there was a match
 cout << "No match for Harry";
else
 cout << "Harry’s score: " << (*pos).second;
 // pos points to a pair<string, int>

As with pointers, you can write pos->second instead of (*pos).second.
The following loop shows how you iterate over the contents of a map:
map<string, double>::iterator pos;
for (pos = scores.begin(); pos != scores.end(); pos++)
{
 cout << "The score of " << pos->first << " is " <<
 pos->second << "\n";
}

A multimap can have multiple values associated with the same key.
Instead of using the [] operator, you insert and erase pairs.

Here is an example:
multimap<string, string> friends;
friends.insert(make_pair("Tom", "Dick"));
 // Dick is a friend of Tom
friends.insert(make_pair("Tom", "Harry"));
 // Harry is also a friend of Tom

The make_pair function (also defined in the <utility> header) makes a pair object
from its arguments.

To enumerate all values associated with a key, you obtain two iterators that
define the range containing all pairs with a given key.

multimap<string, string>::iterator lower = friends.lower_bound("Tom");
multimap<string, string>::iterator upper = friends.upper_bound("Tom");

A multimap can have
multiple values associated
with the same key.

13.4 • Maps 523

Then you visit all pairs in that range.
cout << "Tom’s friends: ";
for (multimap<string, string>::iterator pos = lower; pos != upper; pos++)
 cout << pos->second << " ";

To erase a key/value association, locate it with an iterator, and then call the erase
member function:

friends.erase(pos);

Maps and multimaps are implemented as binary trees whose nodes contain key/
value pairs. The entries are ordered by increasing keys. You may need to define an
operator< for the key type, as described in Advanced Topic 13.1.

A simple example to illustrate the use of maps and multimaps is a telephone data-
base. The database associates names with telephone numbers. One member func-
tion inserts elements into the database. There are member functions to look up the
number associated with a given name, and to carry out the inverse lookup of the
names associated with a given number. Because two people can have the same num-
ber, we use a multimap for the inverse lookup. The member function print_all pro-
duces a listing of all entries. Because maps are stored in order based on their keys,
this listing is naturally in alphabetical order according to name.

ch13/tele.cpp

1 #include <iostream>
2 #include <map>
3 #include <utility>
4 #include <string>
5 #include <vector>
6
7 using namespace std;
8
9 /**
10 TelephoneDirectory maintains a map of name/number pairs
11 and an inverse multimap of numbers and names.
12 */
13 class TelephoneDirectory
14 {
15 public:
16 /**
17 Adds a new name/number pair to database.
18 @param name the new name
19 @param number the new number
20 */
21 void add_entry(string name, int number);
22
23 /**
24 Finds the number associated with a name.
25 @param name the name being searched
26 @return the associated number, or zero
27 if not found in database
28 */
29 int find_entry(string name);
30

524 CHAPTER 13 • Sets, Maps, and Priority Queues

31 /**
32 Finds the names associated with a number.
33 @param number the number being searched
34 @return the associated names
35 */
36 vector<string> find_entries(int number);
37
38 /**
39 Prints all entries.
40 */
41 void print_all();
42 private:
43 map<string, int> database;
44 multimap<int, string> inverse_database;
45 };
46
47 void TelephoneDirectory::add_entry(string name, int number)
48 {
49 database[name] = number;
50 inverse_database.insert(make_pair(number, name));
51 }
52
53 int TelephoneDirectory::find_entry(string name)
54 {
55 map<string, int>::iterator p = database.find(name);
56 if (p == database.end())
57 return 0; // Not found
58 else
59 return p->second;
60 }
61
62 vector<string> TelephoneDirectory::find_entries(int number)
63 {
64 multimap<int, string>::iterator lower
65 = inverse_database.lower_bound(number);
66 multimap<int, string>::iterator upper
67 = inverse_database.upper_bound(number);
68 vector<string> result;
69
70 for (multimap<int, string>::iterator pos = lower;
71 pos != upper; pos++)
72 result.push_back(pos->second);
73 return result;
74 }
75
76 void TelephoneDirectory::print_all()
77 {
78 for (map<string, int>::iterator pos = database.begin();
79 pos != database.end(); pos++)
80 {
81 cout << pos->first << ": " << pos->second << "\n";
82 }
83 }
84

13.4 • Maps 525

Program Run

Constant Iterators

If you carefully look at the source code of the preceding example, you will notice that the
member functions for finding and printing dictionary entries were not marked as const. If
you properly implement them as constant member functions, the compiler will complain
that the iterators are not constant. That is a legitimate problem since you can modify a con-
tainer through an iterator.

Each iterator type has a companion type for a constant iterator, similar to a constant
pointer. Here is a const-correct implementation of the find_entry function:

int TelephoneDirectory::find_entry(string name) const
{
 map<string, int>::const_iterator p = database.find(name);
 if (p == database.end())
 return 0; // Not found
 else
 return p->second;
}

We will discuss iterators in more detail in Chapter 20.

85 int main()
86 {
87 TelephoneDirectory data;
88 data.add_entry("Fred", 7235591);
89 data.add_entry("Mary", 3841212);
90 data.add_entry("Sarah", 3841212);
91 cout << "Number for Fred: " << data.find_entry("Fred") << "\n";
92 vector<string> names = data.find_entries(3841212);
93 cout << "Names for 3841212: ";
94 for (int i = 0; i < names.size(); i++)
95 cout << names[i] << " ";
96 cout << "\n";
97 cout << "All names and numbers:\n";
98 data.print_all();
99 return 0;
100 }

Number for Fred: 7235591
Names for 3841212: Mary Sarah
All names and numbers:
Fred: 7235591
Mary: 3841212
Sarah: 3841212

ADVANCED TOPIC 13.2

526 CHAPTER 13 • Sets, Maps, and Priority Queues

The final container we will examine is the priority queue. A priority
queue is a container optimized for one special task; quickly locating
the element with highest priority. Prioritization is a weaker condi-
tion than ordering. In a priority queue the order of the remaining
elements is irrelevant, it is only the highest priority element that is
important.

Consider this example, where a priority queue contains strings denoting tasks:
priority_queue<string> tasks;
tasks.push("2 - Shampoo carpets");
tasks.push("9 - Fix overflowing sink");
tasks.push("5 - Order cleaning supplies");

The strings are formatted so that they start with a priority number. When it comes
time to do work, we will want to retrieve and remove the task with the top priority:

string task = tasks.top(); // Returns "9 - Fix overflowing sink"
tasks.pop();

The term priority queue is actually a misnomer, because the priority queue does not
have the “first in/first out” behavior as does a true queue. In fact the interface for
the priority queue is more similar to a stack than to a queue. The basic three opera-
tions are push, pop and top. push places a new element into the collection. top returns
the element with highest priority; pop removes this element.

One obvious implementation for a priority queue is a sorted set. Then it is an
easy matter to locate and remove the largest element. However, another data struc-
ture, called a heap, is even more suitable for implementing priority queues. We will
describe heaps in the next section.

Here is a simple program that demonstrates a priority queue. Instead of storing
strings, we use a WorkOrder class. As described in Advanced Topic 13.1 on page 508,
we supply an operator< function that compares work orders so that the priority
queue can find the most important one.

ch13/pqueue.cpp

13.5 Prior i ty Queues

A priority queue is a
collection organized so as
to permit fast access to
and removal of the largest
element.

1 #include <iostream>
2 #include <queue>
3
4 using namespace std;
5
6 class WorkOrder
7 {
8 public:
9 WorkOrder(int priority, string description);
10 int get_priority() const;
11 string get_description() const;
12 private:
13 int priority;
14 string description;

13.5 • Priority Queues 527

Program Run

15 };
16
17 WorkOrder::WorkOrder(int pr, string descr)
18 {
19 priority = pr;
20 description = descr;
21 }
22
23 int WorkOrder::get_priority() const
24 {
25 return priority;
26 }
27
28 string WorkOrder::get_description() const
29 {
30 return description;
31 }
32
33 bool operator<(WorkOrder a, WorkOrder b)
34 {
35 return a.get_priority() < b.get_priority();
36 }
37
38 int main()
39 {
40 priority_queue<WorkOrder> tasks;
41 tasks.push(WorkOrder(2, "Shampoo carpets"));
42 tasks.push(WorkOrder(3, "Empty trash"));
43 tasks.push(WorkOrder(2, "Water plants"));
44 tasks.push(WorkOrder(1, "Remove pencil sharpener shavings"));
45 tasks.push(WorkOrder(4, "Replace light bulb"));
46 tasks.push(WorkOrder(9, "Fix overflowing sink"));
47 tasks.push(WorkOrder(1, "Clean coffee maker"));
48 tasks.push(WorkOrder(5, "Order cleaning supplies"));
49
50 while (tasks.size() > 0)
51 {
52 WorkOrder task = tasks.top();
53 tasks.pop();
54 cout << task.get_priority() << " - "
55 << task.get_description() << "\n";
56 }
57 return 0;
58 }

9 - Fix overflowing sink
5 - Order cleaning supplies
4 - Replace light bulb
3 - Empty trash
2 - Water plants
2 - Shampoo carpets
1 - Remove pencil sharpener shavings
1 - Clean coffee maker

528 CHAPTER 13 • Sets, Maps, and Priority Queues

Discrete Event Simulations

A classic application of priority queues is in a type of simulation called a discrete event simu-
lation. An event has a time at which it is scheduled to occur, and an action.

class Event
{
public:
 double get_time() const;
 virtual void act();
 ...
};

You form derived classes of the Event class for each event type. For example, an Arrival
event can indicate the arrival of a customer, and a Departure event can indicate that the cus-
tomer is departing. Each derived class overrides the act function. Typically, the act function
of one event schedules additional events. For example, when one customer departs, another
customer can be serviced. The act function of the Departure event generates a random time
for the duration of the next customer’s service and schedules that customer’s departure.

The heart of the simulation is the event loop. This loop pulls the next event from the pri-
ority queue of waiting events. Two events are compared based on their time. The comparison
is inverted, so that the element with highest priority is the one with the lowest scheduled
time. Events can be inserted in any order, but are removed in sequence based on their time.
As each event is removed, the “system clock” advances to the event’s time, and the virtual
act function of the event is executed:

while (event_queue.size() > 0)
{
 Event* next_event = event_queue.top();
 current_time = next_event->get_time();
 next_event->act(); // Typically adds new events
 delete next_event;
}

We face a technical issue when defining the event queue. The event queue holds Event*
pointers that point to instances of derived classes. Since pointers already have a < operator
defined, we cannot define an operator< that compares Event* pointers by their timestamp.
Instead, we define a function for this purpose:

bool event_less(const Event* e1, const Event* e2)
{
 return e1->get_time() > e2->get_time();
 // The earliest event should have the largest priority
}

We then tell the priority queue to use this comparison function:

priority_queue<Event*, vector<Event*>,
 bool (*)(const Event*, const Event*)> event_queue(event_less);

Chapter 20 will demystify this declaration.

ADVANCED TOPIC 13.3

13.6 • Heaps 529

Exercise P13.15 asks you to simulate customers in a bank. Such simulations are important
in practice because they give valuable information to business managers. For example,
suppose you expect 60 customers per hour, each of whom needs to see a teller for an average
of 5 minutes. Hiring 5 tellers should be enough to service all customers, but if you run the
simulation, you may find that the average customer has to wait in line about 10 minutes. By
running simulations, you can determine tradeoffs between unhappy customers and idle
tellers.

A heap (or, for greater clarity, max-heap) is a binary tree with two
special properties.

1. A heap is almost complete: all nodes are filled in, except the last
level may have some nodes missing toward the right (see
Figure 11).

2. The tree fulfills the heap property: all nodes store values that are
at least as large as the values stored in their descendants (see
Figure 12).

It is easy to see that the heap property ensures that the largest element is stored in
the root.

13.6 Heaps

A heap is an almost
complete tree in which the
values of all nodes are at
least as large as those of
their descendants.

Figure 11 An Almost Complete Tree

Some nodes missing toward the right

All nodes filled in

530 CHAPTER 13 • Sets, Maps, and Priority Queues

A heap is superficially similar to a binary search tree, but there are two important
differences.

1. The shape of a heap is very regular. Binary search trees can have arbitrary
shapes.

2. In a heap, the left and right subtrees both store elements that are smaller than
the root element. In contrast, in a binary search tree, smaller elements are
stored in the left subtree and larger elements are stored in the right subtree.

Suppose we have a heap and want to insert a new element. Afterwards, the heap
property should again be fulfilled. The following algorithm carries out the insertion
(see Figure 13).

1. First, add a vacant slot to the end of the tree.

Figure 12
A Heap

Figure 13 Inserting an Element into a Heap

80

25 57

16 10 43 29

7 9 4

1 Add vacant slot at end
80

25 57

16 10 43 29

7 9 4

Insert 40

13.6 • Heaps 531

Figure 13 Inserting an Element into a Heap, continued

2 Demote smaller parents
80

25 57

16

10

43 29

7 9 4

Insert 40

80

25

57

16

10

43 29

7 9 4

3 Insert element into vacant slot
80

40 57

16

10

43 29

7 9 4

Insert 40

25

532 CHAPTER 13 • Sets, Maps, and Priority Queues

2. Next, demote the parent of the empty slot if it is smaller than the element to be
inserted. That is, move the parent value into the vacant slot, and move the
vacant slot up. Repeat this demotion as long as the parent of the vacant slot is
smaller than the element to be inserted. (See Figure 13 continued.)

3. At this point, either the vacant slot is at the root, or the parent of the vacant
slot is larger than the element to be inserted. Insert the element into the vacant
slot.

We will not consider an algorithm for removing an arbitrary node from a heap. The
only node that we will remove is the root node, which contains the maximum of all
of the values in the heap. Figure 14 shows the algorithm in action.

1. Extract the root node value.

Figure 14 Removing the Maximum Value from a Heap

1 Remove the maximum element from the root
80

25 57

16 10 43 29

7 9 4

2 Move the last element into the root
4

25 57

16 10 43 29

7 9

13.6 • Heaps 533

2. Move the value of the last node of the heap into the root node, and remove the
last node. Now the heap property may be violated for the root node, because
one or both of its children may be larger.

3. Promote the larger child of the root node. (See Figure 14 continued.) Now the
root node again fulfills the heap property. Repeat this process with the
demoted child. That is, promote the larger of its children. Continue until the
demoted child has no larger children. The heap property is now fulfilled again.
This process is called “fixing the heap”.

Inserting and removing heap elements is very efficient. The reason lies in the bal-
anced shape of a heap. The insertion and removal operations visit at most h nodes,

Figure 14 Removing the Maximum Value from a Heap, continued

3 Fix the heap
57

25 4

16 10 43 29

7 9

57

25 43

16 10 4 29

7 9

534 CHAPTER 13 • Sets, Maps, and Priority Queues

where h is the height of the tree. A heap of height h contains at least 2h–1 elements,
but less than 2h elements. In other words, if n is the number of elements, then

or

This argument shows that the insertion and removal operations in a
heap with n elements take O(log(n)) steps.

Contrast this finding with the situation of binary search trees. When
a binary search tree is unbalanced, it can degenerate into a linked list, so
that in the worst case insertion and removal are O(n) operations.

Heaps have another major advantage. Because of the regular lay-
out of the heap nodes, it is easy to store the node values in an array.
First store the first layer, then the second, and so on (see Figure 15).
For convenience, we leave the 0 element of the array empty. Then the
child nodes of the node with index i have index 2 · i and 2 · i + 1 , and

the parent node of the node with index i has index . For example, as you can see
in Figure 15, the children of node 4 are nodes 8 and 9, and the parent is node 2.

Storing the heap values in an array may not be intuitive, but it is very efficient.
There is no need to allocate individual nodes or to store the links to the child nodes.
Instead, child and parent positions can be determined by very simple computations.

2 21h hn− ≤ <2 21h hn− ≤ <

h n h− ≤ <1 2log ()

Inserting or removing a
heap element is an
O(log(n)) operation.

The regular layout of a
heap makes it possible to
store heap nodes
efficiently in an array.

Figure 15 Storing a Heap in an Array

i 2

80

25 57

16 10 43 29

7 9 4

Layer 1

Layer 2

Layer 3

Layer 4

Layer 4Layer 3Layer 2Layer 1

80 25 57 16 10 43 29 7 9 4

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]

13.6 • Heaps 535

The program at the end of this section contains an implementation of a heap of
integers. Using templates, it is easy to extend the class to a heap of any ordered type.
(See Chapter 16 for information about templates.)

ch13/heap.cpp

1 #include <iostream>
2 #include <vector>
3
4 using namespace std;
5
6 /**
7 This class implements a heap.
8 */
9 class Heap
10 {
11 public:
12 /**
13 Constructs an empty heap.
14 */
15 Heap();
16
17 /**
18 Adds a new element to this heap.
19 @param new_element the element to add
20 */
21 void push(int new_element);
22
23 /**
24 Gets the maximum element stored in this heap.
25 @return the maximum element
26 */
27 int top() const;
28
29 /**
30 Removes the maximum element from this heap.
31 */
32 void pop();
33
34 /**
35 Returns the number of elements in this heap.
36 */
37 int size() const;
38 private:
39 /**
40 Turns the tree back into a heap, provided only the root
41 node violates the heap condition.
42 */
43 void fix_heap();
44
45 /**
46 Returns the index of the left child.

536 CHAPTER 13 • Sets, Maps, and Priority Queues

47 @param index the index of a node in this heap
48 @return the index of the left child of the given node
49 */
50 int get_left_child_index(int index);
51
52 /**
53 Returns the index of the right child.
54 @param index the index of a node in this heap
55 @return the index of the right child of the given node
56 */
57 int get_right_child_index(int index);
58
59 /**
60 Returns the index of the parent.
61 @param index the index of a node in this heap
62 @return the index of the parent of the given node
63 */
64 int get_parent_index(int index);
65
66 /**
67 Returns the value of the left child.
68 @param index the index of a node in this heap
69 @return the value of the left child of the given node
70 */
71 int get_left_child(int index);
72
73 /**
74 Returns the value of the right child.
75 @param index the index of a node in this heap
76 @return the value of the right child of the given node
77 */
78 int get_right_child(int index);
79
80 /**
81 Returns the value of the parent.
82 @param index the index of a node in this heap
83 @return the value of the parent of the given node
84 */
85 int get_parent(int index);
86
87 vector<int> elements;
88 };
89
90 Heap::Heap()
91 {
92 elements.push_back(0);
93 }
94
95 void Heap::push(int new_element)
96 {
97 // Add a new leaf
98 elements.push_back(0);
99 int index = elements.size() - 1;
100

13.6 • Heaps 537

101 // Demote parents that are smaller than the new element
102 while (index > 1
103 && get_parent(index) < new_element)
104 {
105 elements[index] = get_parent(index);
106 index = get_parent_index(index);
107 }
108
109 // Store the new element into the vacant slot
110 elements[index] = new_element;
111 }
112
113 int Heap::top() const
114 {
115 return elements[1];
116 }
117
118 void Heap::pop()
119 {
120 // Remove last element
121 int last_index = elements.size() - 1;
122 int last = elements[last_index];
123 elements.pop_back();
124
125 if (last_index > 1)
126 {
127 elements[1] = last;
128 fix_heap();
129 }
130 }
131
132 int Heap::size() const
133 {
134 return elements.size() - 1;
135 }
136
137 void Heap::fix_heap()
138 {
139 int root = elements[1];
140
141 int last_index = elements.size() - 1;
142 // Promote children of removed root while they are larger than last
143
144 int index = 1;
145 bool more = true;
146 while (more)
147 {
148 int child_index = get_left_child_index(index);
149 if (child_index <= last_index)
150 {
151 // Get larger child
152
153 // Get left child first
154 int child = get_left_child(index);
155

538 CHAPTER 13 • Sets, Maps, and Priority Queues

156 // Use right child instead if it is larger
157 if (get_right_child_index(index) <= last_index
158 && get_right_child(index) > child)
159 {
160 child_index = get_right_child_index(index);
161 child = get_right_child(index);
162 }
163
164 // Check if smaller child is larger than root
165 if (child > root)
166 {
167 // Promote child
168 elements[index] = child;
169 index = child_index;
170 }
171 else
172 {
173 // Root is larger than both children
174 more = false;
175 }
176 }
177 else
178 {
179 // No children
180 more = false;
181 }
182 }
183
184 // Store root element in vacant slot
185 elements[index] = root;
186 }
187
188 int Heap::get_left_child_index(int index)
189 {
190 return 2 * index;
191 }
192
193 int Heap::get_right_child_index(int index)
194 {
195 return 2 * index + 1;
196 }
197
198 int Heap::get_parent_index(int index)
199 {
200 return index / 2;
201 }
202
203 int Heap::get_left_child(int index)
204 {
205 return elements[2 * index];
206 }
207

Chapter Summary 539

Program Run

1. A set is an unordered collection of distinct elements.

2. Sets don’t have duplicates. Adding a duplicate of an element that is already
present is ignored.

3. The standard C++ set class stores values in sorted order.

4. A multiset (or bag) is similar to a set, but elements can occur multiple times.

208 int Heap::get_right_child(int index)
209 {
210 return elements[2 * index + 1];
211 }
212
213 int Heap::get_parent(int index)
214 {
215 return elements[index / 2];
216 }
217
218 int main()
219 {
220 Heap tasks;
221 tasks.push(2);
222 tasks.push(3);
223 tasks.push(2);
224 tasks.push(1);
225 tasks.push(4);
226 tasks.push(9);
227 tasks.push(1);
228 tasks.push(5);
229
230 while (tasks.size() > 0)
231 {
232 int task = tasks.top();
233 tasks.pop();
234 cout << task << "\n";
235 }
236 return 0;
237 }

9
5
4
3
2
2
1
1

CHAPTER SUMMARY

540 CHAPTER 13 • Sets, Maps, and Priority Queues

5. A binary tree consists of nodes, each of which has at most two child nodes.

6. All nodes in a binary search tree fulfill the property that the descendants to the
left have smaller data values than the node data value, and the descendants to
the right have larger data values.

7. To insert a value in a binary search tree, recursively insert it into the left or right
subtree.

8. When removing a node with only one child from a binary search tree, the child
replaces the node to be removed.

9. When removing a node with two children from a binary search tree, replace it
with the smallest node of the right subtree.

10. If a binary search tree is balanced, then inserting an element takes O(log(n))
time.

11. Tree traversal schemes include preorder traversal, inorder traversal, and post-
order traversal.

12. A map keeps associations between key and value objects.

13. A multimap can have multiple values associated with the same key.

14. A priority queue is a collection organized so as to permit fast access to and
removal of the largest element.

15. A heap is an almost complete tree in which the values of all nodes are at least as
large as those of their descendants.

16. Inserting or removing a heap element is an O(log(n)) operation.

17. The regular layout of a heap makes it possible to store heap nodes efficiently in
an array.

Exercise R13.1. A school web site keeps a collection of web sites that are blocked at
student computers. Should the program that checks for blocked sites use a vector,
list, set, or map for storing the site addresses?

Exercise R13.2. A library wants to track which books are checked out to which
patrons. Should they use a map or a multimap from books to patrons?

Exercise R13.3. A library wants to track which patrons have checked out which
books. Should they use a map or a multimap from patrons to books?

Exercise R13.4. In an emergency, a case record is made for each incoming patient,
describing the severity of the case. When doctors become available, they handle the
most severe cases first. Should the case records be stored in a set, a map, or a prior-
ity queue?

REVIEW EXERCISES

Review Exercises 541

Exercise R13.5. You keep a set of Point objects for a scientific experiment. (A Point
has x and y coordinates.) Define a suitable operator< so that you can form a
set<Point>.

Exercise R13.6. A set<T> can be implemented as a binary tree whose nodes store data
of type T. How can you implement a multiset<T>?

Exercise R13.7. What is the difference between a binary tree and a binary search tree?
Give examples of each.

Exercise R13.8. What is the difference between a balanced tree and an unbalanced
tree? Give examples of each.

Exercise R13.9. The following elements are inserted into a binary search tree. Make a
drawing that shows the resulting tree after each insertion.

Adam
Eve
Romeo
Juliet
Tom
Dick
Harry

Exercise R13.10. Insert the elements of Exercise R13.9 in opposite order. Then deter-
mine how the BinarySearchTree.print function prints out both the tree from Exer-
cise R13.9 and this tree. Explain how the printouts are related.

Exercise R13.11. Consider the following tree. In which order are the nodes printed
by the BinarySearchTree.print function?

Exercise R13.12. How does a set achieve fast execution for insertions and removals?

Exercise R13.13. What properties of a binary tree make it a search tree? What prop-
erties make it a balanced tree?

Exercise R13.14. How is a map similar to a vector? How is it different?

Exercise R13.15. Why is a priority queue not, properly speaking, a queue?

Exercise R13.16. Prove that a heap of height h contains at least 2h–1 elements but less
than 2h elements.

1

2 3

4 5 6

7 8 9 10

542 CHAPTER 13 • Sets, Maps, and Priority Queues

Exercise R13.17. Suppose the heap nodes are stored in an array, starting with index 1.
Prove that the child nodes of the heap node with index i have index 2 · i and 2 · i + 1,
and the parent heap node of the node with index i has index .

Exercise P13.1. Reimplement the Polynomial class of Exercise P12.14 by using a
map<int, double> to store the coefficients.

Exercise P13.2. Write functions
set<int> set_union(set<int> a, set<int> b)
set<int> intersection(set<int> a, set<int> b)

that compute the set union and intersection of the sets a and b. (Don’t name the first
function union—that is a reserved word in C++.)

Exercise P13.3. Implement the sieve of Eratosthenes: a function for computing prime
numbers, known to the ancient Greeks. Choose an integer n. This function will
compute all prime numbers up to n. First insert all numbers from 1 to n into a set.
Then erase all multiples of 2 (except 2); that is, 4, 6, 8, 10, 12, …. Erase all multiples
of 3, that is, 6, 9, 12, 15, … . Go up to . The remaining numbers are all primes.

Exercise P13.4. Write a program that counts how often each word occurs in a text
file. Use a multiset<string>.

Exercise P13.5. Repeat Exercise P13.4, but use a map<string, int>.

Exercise P13.6. Write a member function of the BinarySearchTree class
string smallest()

that returns the smallest element of a tree.

Exercise P13.7. Change the BinarySearchTree.print member function to print the
tree as a tree shape. It is easier to print the tree sideways. Extra credit if you instead
print the tree with the root node centered on the top.

Exercise P13.8. Implement member functions that use preorder and postorder tra-
versal to print the elements in a binary search tree.

Exercise P13.9. Implement a traversal function
void inorder(Action& a);

for inorder traversal of a binary search tree that carries out an action other than just
printing the node data. The action should be supplied as a derived class of the class

class Action
{
public:
 void act(string str) {}
};

i 2

PROGRAMMING EXERCISES

n

Programming Exercises 543

Exercise P13.10. Use the inorder function of Exercise P13.9, and a suitable class
derived from Action, to compute the sum of all lengths of the strings stored in a tree.

Exercise P13.11. In the BinarySearchTree class, modify the erase member function so
that a node with two children is replaced by the largest child of the left subtree.

Exercise P13.12. Add a pointer to the parent node to the TreeNode class. Modify the
insert and erase functions to properly set those parent nodes. Then define a Tree-
Iterator class that contains a pointer to a TreeNode. The tree’s begin member func-
tion returns an iterator that points to the leftmost leaf. The iterator’s get member
function simply returns the data value of the node to which it points. Its next mem-
ber function needs to find the next element in inorder traversal. If the current node
is the left child of the parent, move to the parent. Otherwise, go to the right child if
there is one, or to the leftmost descendant of the next unvisited parent otherwise.

Exercise P13.13. Implement a tree iterator as described in the preceding exercise
without modifying the TreeNode class. Hint: The iterator needs to keep a stack of
parent nodes.

Exercise P13.14. This problem illustrates the use of a discrete event simulation, as
described in Advanced Topic 13.3 on page 528. Imagine you are planning on open-
ing a small hot dog stand. You need to determine how many stools your stand
should have. Too few stools and you will lose customers; too many and your stand
will look empty most of the time.
There are two types of events in this simulation. An arrival event signals the arrival
of a customer. If seated, the customer stays a randomly generated amount of time
then leaves. A departure event frees the seat the customer was occupying. Simulate a
hotdog stand with three seats. To initialize the simulation a random number of
arrival events are scheduled for the period of one hour. The output shows what time
each customer arrives and whether they stay or leave. The following is the begin-
ning of a typical run:

time 0.13 Customer is seated
time 0.14 Customer is seated
time 0.24 Customer is seated
time 0.29 Customer finishes eating, leaves
time 0.31 Customer is seated
time 0.38 Customer finishes eating, leaves
time 0.41 Customer is seated
time 0.42 Customer is unable to find a seat, leaves
time 0.48 Customer is unable to find a seat, leaves
time 0.63 Customer is unable to find a seat, leaves
time 0.64 Customer is unable to find a seat, leaves
time 0.68 Customer finishes eating, leaves
time 0.71 Customer is seated

Exercise P13.15. Simulate the processing of customers at a bank with five tellers.
Customers arrive on average once per minute, and they need an average of five min-
utes to complete a transaction. Customers enter a queue to wait for the next avail-
able teller.

544 CHAPTER 13 • Sets, Maps, and Priority Queues

Use two kinds of events. An arrival event adds the customer to the next free teller or
the queue and schedules the next arrival event. When adding a customer to a free
teller, also schedule a departure event. The departure event removes the customer
from the teller and makes the teller service the next customer in the waiting queue,
again scheduling a departure event.
For greater realism, use an exponential distribution for the time between arrivals
and the transaction time. If m is the desired mean time and r a uniformly distributed
random number between 0 and 1, then –m log(r) has an exponential distribution.
After each event, your program should print the bank layout, showing empty and
occupied tellers and the waiting queue, like this:

C.CC.

if there is no queue, or
CCCCC CCCCCCCCCCCCCCCCC

if there is one. Simulate customer arrivals for 8 hours. At the end of the simulation,
print the total number of customers served and the average time each customer
spent in the bank. (Your Customer objects will need to track their arrival time.)

Exercise P13.16. In most banks, customers enter a single waiting queue, but most
supermarkets have a separate queue for each cashier. Modify Exercise P13.15 so that
each teller has a separate queue. An arriving customer picks the shortest queue.
What is the effect on the average time spent in the bank?

Exercise P13.17. Modify the implementation of the Heap class so that the parent and
child index positions are computed directly, without calling helper functions.

Exercise P13.18. Modify the implementation of the Heap class so that the 0 element of
the array is not wasted.

Exercise P13.19. Modify the implementation of the Heap class so that it stores strings,
not integers. Test your implementation with the tasks from the pqueue.cpp program.

Chapter 14
Operator Overloading

• To learn about operator overloading

• To learn the various categories of operators, and their uses

• To learn how operator overloading is employed in the
standard library

• To be able to implement overloaded operators in your
own classes

• To learn how to avoid common errors in operator overloading

CHAPTER GOALS

Operator overloading is both a powerful and error-prone aspect of programming in

C++. Properly used, operators (such as + or <) can make a program intuitive and

easy to understand. Improperly used, the same technique can confuse the reader

and slow both understanding and execution. In this chapter you will learn how to

define the meaning of operators when they are applied to objects. You will be

introduced to the most common categories of operators. You will see how

operators interact with conversions and the type system, and how operators are

used in the standard library.

546 CHAPTER 14 • Operator Overloading

CHAPTER CONTENTS

The use of operators as a convenient shorthand notation predates computer science
by several centuries. Because of this long acquaintance, most people find

a + b * c

much easier to grasp than
plus(a, times(b, c))

Minimalists insist that if you have a language that includes functions there is no
need for operators because they serve much the same purpose. And there are lan-
guages (such as Lisp) that have only functions. But C++, like most computer lan-
guages, supports a rich set of operators for the simple reason that they make
programs easier to read and understand.

14.1 Operator Over loading

14.1 Operator Overloading 546
SYNTAX 14.1: Overloaded Operator Definition 548
SYNTAX 14.2: Overloaded Operator Member

Function Definition 550

14.2 Case Study: Fractional Numbers 551
RANDOM FACT 14.1: The First Algorithm 557

14.3 Overloading Simple
Arithmetic Operators 558

ADVANCED TOPIC 14.1: Returning Local Objects 559
PRODUCTIVITY HINT 14.1: Overload Operators Only

to Make Programs Easier to Read 559

14.4 Overloading Comparison
Operators 560

PRODUCTIVITY HINT 14.2: Define Comparisons in

Terms of Each Other 560
ADVANCED TOPIC 14.2: Symmetry and Conversion 561

14.5 Overloading Input and Output 562
ADVANCED TOPIC 14.3: Peeking at the Input 563

14.6 Overloading Increment and
Decrement Operators 564

QUALITY TIP 14.1: Avoid Dependencies on

Order of Evaluation 565

COMMON ERROR 14.1: Inconsistent Operations 566

14.7 Overloading the Assignment
Operators 568

PRODUCTIVITY HINT 14.3: Define One Operator in

Terms of Another 568

14.8 Overloading Conversion
Operators 569

QUALITY TIP 14.2: Conversion, Coercion,

and Casts 570
COMMON ERROR 14.2: Only One Level

of Conversion 571
COMMON ERROR 14.3: Ambiguous Conversions 571
ADVANCED TOPIC 14.4: The explicit Keyword 572

14.9 Overloading the Subscript
Operator 572

14.10 Overloading the Function
Call Operator 574

ADVANCED TOPIC 14.5: Other Operators 576
ADVANCED TOPIC 14.6: Inline Functions 576

14.11 Case Study: Matrices 577

14.1 • Operator Overloading 547

Where C++ is unusual is that it allows programmers to give new
meanings to operators. Providing a new meaning to an operator is
termed operator overloading. This ability is a powerful and some-
times subtle feature of the C++ language. An operator symbol may
be easier to remember than a function name; for example, the use of
the addition operator for string catenation is intuitive to many users,
whereas they may not be able to remember whether the correspond-
ing member function is named catenate, concatenate, append, combine,

or something entirely different. (In the C++ string class it is append.) Defining an
operator for a new data type may permit the reuse of an existing algorithm, such as
one of the generic algorithms from the standard library that you will examine in
Chapter 20. Finally, operators permit a more concise description of a task, without
the clutter of parentheses associated with the function call syntax.

On the other hand, the fact that operators are concise can be a disadvantage.
Because they provide so little context, the meaning attached to an operator may not
be self evident. In this chapter we will present examples of both good and bad uses
of operators.

The programmer is permitted to define new meanings for operators only if at
least one argument has a class type. A programmer cannot, for example, change the
meaning of the addition operator when it is used with integer arguments.

The language has a predefined set of operators, and the user is not allowed to cre-
ate new ones. The set of valid operators that the user is allowed to overload is
shown in Table 1.

In addition, the precedence and associativity among operators is fixed by the lan-
guage and cannot be changed. A multiplication operator, for example, will always
be performed prior to an addition operator in an expression in which they both
occur, regardless of any new definitions for these two operators. Similarly, with the
exception of the function call operator, the number of arguments required for each
operator is fixed and cannot be altered. One cannot, for example, redefine the unary
operator ! as a binary function. Operators and their precedence are listed in
Appendix C.

You can define new
meanings for C++
operators by defining
functions whose name is
operator followed by the
operator symbol.

Table 1 Overloadable Operators

+ - * / % ^ &

| ~ ! = < > +=

-= *= /= %= ^= &= |=

<< >> >>= <<= == != <=

>= && || ++ -- ->* ,

-> [] () new new[] delete delete[]

548 CHAPTER 14 • Operator Overloading

Operators in C++ can be overloaded in one of two ways. They can be defined as
simple functions, separate from any class definition, or they can be defined as mem-
ber functions within the body of a class definition. In the first form you overload an
operator by defining a function whose name is operator followed by the operator
symbol, as shown in Syntax 14.1. For example, suppose you want to define the dif-
ference between two Time objects as the number of seconds between them. The fol-
lowing operator- function lets you do that:

int operator-(const Time& a, const Time& b)
{
 return a.seconds_from(b);
}

Then you can simply use the - operator instead of calling seconds_from:
Time now;
Time morning(9, 0, 0);
int seconds_elapsed = now - morning;

Note that the operator- function is not a member function. It is a nonmember func-
tion with two parameters. The C++ language interprets the subtraction operator as
a function call, as if the programmer had written

int seconds_elapsed = operator-(now, morning);

Can you use the + operator to add two times? Of course you can, simply by defin-
ing an operator+(const Time& a, const Time& b). But that doesn’t mean you
should. A Time object represents a point in time, not a duration. For example, 3 P.M.
means “a particular time in the afternoon”, which is quite different from “3 hours”
or “15 hours”. It does not make any sense to add two points in time. (For example,
what should 3 P.M. + 1 P.M. be? 4 P.M.? How about 3 P.M. + 1 A.M.?)

14.1.1 Operator Functions

SYNTAX 14.1 Overloaded Operator Definition

return_type operatoroperator_symbol(parameters)
{

statements
}

Example:

int operator-(const Time& a, const Time& b)
{
 return a.seconds_from(b);
}

Purpose:

Supply the implementation of an overloaded operator.

14.1 • Operator Overloading 549

However, it does make sense to add a number of seconds to a Time object, result-
ing in a new Time object. Here is an overloaded + operator for that task.

Time operator+(const Time& a, int sec)
{
 Time r = a;
 r.add_seconds(sec);
 return r;
}

For example:
Time now;
Time later = now + 60; // 60 seconds later

Is this good programming practice? It depends. It is concise, and things should
work well as long as everybody who will use the operator remembers that when an
integer is added to a Time the units are seconds. But will they always remember?
What if a programmer inadvertently thinks the integer refers to minutes? When
using the function add_seconds the name makes this error unlikely. In the operator
version, there is less context, and therefore less information to help the programmer
remember. When using operators you need to carefully consider whether each use
is appropriate and clear, and anticipate the possible sources of confusion.

Instead of using a function, you could define the addition operator as
a member function within the definition of the class Time. This
would, however, require making a change to the original class
definition.

class Time
{
 ...
 Time operator+(int sec) const;
};

Time Time::operator+(int sec) const
{
 Time r = *this; // Copy the implicit parameter
 r.add_seconds(sec);
 return r;
}

Now when an addition operation is encountered involving a Time value and an inte-
ger, it is interpreted as a member function invocation of the left operand, passing as
argument the value of the right operand. The statement

Time later = now + 60; // 60 seconds later

becomes
Time later = now.operator+(60);

For this reason, even though you are implementing a binary operation, only one
argument appears in the member function definition.

14.1.2 Operator Member Functions

Operators can be defined
either as member or
nonmember functions.

550 CHAPTER 14 • Operator Overloading

A few operators, such as the various forms of assignment, must be defined as
member functions. For most operators, however, the programmer can choose to
define it either as a nonmember or member function. Note that the syntax used to
invoke the operator is the same whether it is defined as a nonmember function or a
member function. There will be many examples of both throughout this chapter.

In deciding whether member or nonmember is preferable, there are two points to
keep in mind.

• A nonmember function is normally not permitted access to the private portions
of the class, whereas a member function is allowed such access. (The phrase “nor-
mally” is used because a friend function can override this restriction. You briefly
encountered friend functions in Section 12.2.1, and will study the topic in more
detail later in Chapter 18).

• Implicit conversions, say from integer or double to a user-defined type, will be
performed for both right and left arguments if the operator is defined as a func-
tion, but only for the right argument if the operator is defined as a member
function. You will see how conversions are defined in Section 14.8.

Thus, the member function form is preferable if the left argument is
modified, as in assignment, or if the data fields to be manipulated are
not easily accessible. Encapsulation is one of the primary concerns of
a good object-oriented design, and should not be tossed away lightly.
If an operator requires access to the internal state of a value, it should
be made into a member function. On the other hand, the nonmember
function version is preferable if the data fields being manipulated are
easily accessible, if the left argument is not modified, or if conver-
sions are permitted on both arguments. In many situations either
form is acceptable.

Use a member function for
an operator if you need
access to private data.

Use a nonmember
function for an operator to
allow type conversions for
the left argument.

SYNTAX 14.2 Overloaded Operator Member Function Definition

return_type ClassName::operatoroperator_symbol(parameters)
{

statements
}

Example:

Time Time::operator+(int sec) const
{
 Time r = *this;
 r.add_seconds(sec);
 return r;
}

Purpose:

Supply the implementation of an overloaded operator member function.

14.2 • Case Study: Fractional Numbers 551

Imagine you wish to implement a new data type that represents a fraction (a ratio of
two integer values). Fractional numbers can be declared with both a numerator and
denominator, or simply a numerator:

Fraction c; // Represents 0/1
Fraction b(7); // Represents 7/1
Fraction a(3, 4); // Represents 3/4

Constructors allow a Fraction to be formed with no arguments, one integer argu-
ment, or two integer arguments. In the first case the value is zero, in the second the
denominator is assumed to be 1, and in the third case the Fraction is normalized to
ensure that only the numerator can be negative and the value is in least common
denominator form. (That is, a fraction such as would be converted into .)
Part of the process of normalization is finding the greatest common divisor of two
integer values. The algorithm to discover this value is discussed in Random Fact
14.1 on page 557.

You want fractions to act just like other numbers. That means you should be able
to add and subtract fractional values, compare them to other fractions, perform
input and output of fractions, and so on:

Fraction c(1, 2);
if (a < b)
 c = b - a;
else
 c = a - b;
cout << "Value is " << c << "\n";

Finally, you want to be able to mix fractions with integers:
c = a + 3; // Should mean same as addition of 3/1

The Fraction data type is defined in the files fraction.h and fraction.cpp, and a test
program is provided in fractiontest.cpp. We present the implementation here in its
entirety, but will defer discussion of the implementation details to the following
sections.

ch14/fraction.h

14.2 Case Study: Fract iona l Numbers

2 4− −1 2

1 #ifndef FRACTION_H
2 #define FRACTION_H
3
4 #include <iostream>
5
6 using namespace std;
7
8 class Fraction
9 {
10 public:
11 /**

552 CHAPTER 14 • Operator Overloading

12 Constructs a fraction with numerator 0 and denominator 1.
13 */
14 Fraction();
15
16 /**
17 Constructs a fraction with numerator t and denominator 1.
18 @param t the numerator for the fraction
19 */
20 Fraction(int t);
21
22 /**
23 Constructs a fraction with given numerator and denominator.
24 @param t the initial numerator
25 @param b the initial denominator
26 */
27 Fraction(int t, int b);
28
29 /**
30 Returns the numerator.
31 @return the numerator value
32 */
33 int numerator() const;
34
35 /**
36 Returns the denominator.
37 @return the denominator value
38 */
39 int denominator() const;
40
41 /**
42 Updates a fraction by adding in another fraction value.
43 @param right the fraction to be added
44 @return the updated fraction value
45 */
46 Fraction& operator+=(const Fraction& right);
47
48 /**
49 Increments fraction by 1.
50 */
51 Fraction& operator++(); // Prefix form
52 Fraction operator++(int unused); // Postfix form
53
54 /**
55 Compares one fraction value to another.
56 Result is negative if less than right, zero if equal, and
57 positive if greater than right.
58 @param right the fraction to be compared against
59 */
60 int compare(const Fraction& right) const;
61 private:
62 /**
63 Places the fraction in least common denominator form.
64 */
65 void normalize();
66

14.2 • Case Study: Fractional Numbers 553

ch14/fraction.cpp

67 /**
68 Computes the greatest common denominator of two integer values.
69 @param n the first integer
70 @param m the second integer
71 */
72 int gcd(int n, int m);
73
74 int top;
75 int bottom;
76 };
77
78 Fraction operator+(const Fraction& left, const Fraction& right);
79 Fraction operator-(const Fraction& left, const Fraction& right);
80 Fraction operator*(const Fraction& left, const Fraction& right);
81 Fraction operator/(const Fraction& left, const Fraction& right);
82 Fraction operator-(const Fraction& value);
83
84 bool operator<(const Fraction& left, const Fraction& right);
85 bool operator<=(const Fraction& left, const Fraction& right);
86 bool operator==(const Fraction& left, const Fraction& right);
87 bool operator!=(const Fraction& left, const Fraction& right);
88 bool operator>=(const Fraction& left, const Fraction& right);
89 bool operator>(const Fraction& left, const Fraction& right);
90
91 ostream& operator<<(ostream& out, const Fraction& value);
92 istream& operator>>(istream& in, Fraction& r);
93
94 #endif

1 #include "fraction.h"
2 #include <cassert>
3 #include <stdexcept>
4
5 int Fraction::gcd(int n, int m)
6 {
7 // Euclid’s Greatest Common Divisor algorithm
8 assert((n > 0) && (m > 0));
9 while (n != m)
10 {
11 if (n < m)
12 m = m - n;
13 else
14 n = n - m;
15 }
16 return n;
17 }
18
19 Fraction::Fraction(int t, int b) : top(t), bottom(b)
20 {
21 normalize();
22 }
23

554 CHAPTER 14 • Operator Overloading

24 Fraction::Fraction() : top(0), bottom(1) {}
25
26 Fraction::Fraction(int t) : top(t), bottom(1) {}
27
28 int Fraction::numerator() const
29 {
30 return top;
31 }
32
33 int Fraction::denominator() const
34 {
35 return bottom;
36 }
37
38 void Fraction::normalize()
39 {
40 // Normalize fraction by
41 // (a) moving sign to numerator
42 // (b) ensuring numerator and denominator have no common divisors
43 int sign = 1;
44 if (top < 0)
45 {
46 sign = -1;
47 top = -top;
48 }
49 if (bottom < 0)
50 {
51 sign = -sign;
52 bottom = -bottom;
53 }
54 assert(bottom != 0)
55 int d = 1;
56 if (top > 0) d = gcd(top, bottom);
57 top = sign * (top / d);
58 bottom = bottom / d;
59 }
60
61 Fraction operator+(const Fraction& left, const Fraction& right)
62 {
63 Fraction result(left.numerator() * right.denominator()
64 + right.numerator() * left.denominator(),
65 left.denominator() * right.denominator());
66 return result;
67 }
68
69 Fraction operator-(const Fraction& left, const Fraction& right)
70 {
71 Fraction result(left.numerator() * right.denominator()
72 - right.numerator() * left.denominator(),
73 left.denominator() * right.denominator());
74 return result;
75 }
76

14.2 • Case Study: Fractional Numbers 555

77 Fraction operator*(const Fraction& left, const Fraction& right)
78 {
79 Fraction result(left.numerator() * right.numerator(),
80 left.denominator() * right.denominator());
81 return result;
82 }
83
84 Fraction operator/(const Fraction& left, const Fraction& right)
85 {
86 Fraction result(left.numerator() * right.denominator(),
87 left.denominator() * right.numerator());
88 return result;
89 }
90
91 Fraction operator-(const Fraction& value)
92 {
93 Fraction result(-value.numerator(), value.denominator());
94 return result;
95 }
96
97 int Fraction::compare(const Fraction& right) const
98 {
99 return numerator() * right.denominator()
100 - denominator() * right.numerator();
101 // Return the numerator of the difference
102 }
103
104 bool operator<(const Fraction& left, const Fraction& right)
105 {
106 return left.compare(right) < 0;
107 }
108
109 bool operator<=(const Fraction& left, const Fraction& right)
110 {
111 return left.compare(right) <= 0;
112 }
113
114 bool operator==(const Fraction& left, const Fraction& right)
115 {
116 return left.compare(right) == 0;
117 }
118
119 bool operator!=(const Fraction& left, const Fraction& right)
120 {
121 return left.compare(right) != 0;
122 }
123
124 bool operator>=(const Fraction& left, const Fraction& right)
125 {
126 return left.compare(right) >= 0;
127 }
128
129 bool operator>(const Fraction& left, const Fraction& right)
130 {

556 CHAPTER 14 • Operator Overloading

ch14/fractiontest.cpp

131 return left.compare(right) > 0;
132 }
133
134 ostream& operator<<(ostream& out, const Fraction& value)
135 {
136 out << value.numerator() << "/" << value.denominator();
137 return out;
138 }
139
140 istream& operator>>(istream& in, Fraction& r)
141 {
142 int t, b;
143 // Read the top
144 in >> t;
145 // If there is a slash, read the next number
146 char c;
147 in >> c;
148 if (c == '/')
149 in >> b;
150 else
151 {
152 in.unget();
153 b = 1;
154 }
155 r = Fraction(t, b);
156 return in;
157 }
158
159 Fraction& Fraction::operator++()
160 {
161 top += bottom;
162 return *this;
163 }
164
165 Fraction Fraction::operator++(int unused)
166 {
167 Fraction clone(top, bottom);
168 top += bottom;
169 return clone;
170 }
171
172 Fraction& Fraction::operator+=(const Fraction& right)
173 {
174 top = top * right.denominator() + bottom * right.numerator();
175 bottom *= right.denominator();
176 normalize();
177 return *this;
178 }

1 #include "fraction.h"
2
3 int main()
4 {

14.2 • Case Study: Fractional Numbers 557

Program Run

The First Algorithm

The function normalize is used to reduce a fraction to a standard form, one in which the
denominator is never negative and the numerator and denominator have no common factors.
As part of the latter goal the function gcd is invoked. The letters in this function name stand
for greatest common divisor.

The gcd algorithm was described by the Greek mathematician Euclid in the third century
B.C. in his famous treatise on geometry, The Elements. Many authors consider the gcd to be
one of the first formally developed algorithms [1]. In fact, until the rise of modern computers
the word algorithm was used almost exclusively to refer to Euclid’s gcd algorithm.

Although the logic behind the loop in the gcd algorithm may seem strange, it is not hard
to explain. Imagine you want to find the greatest common divisor of two positive integer val-
ues n and m, and assume n > m . You know that such a number must exist, although you
don’t know what it is. Let us call the value d. Because d is a divisor, both and must
be integers. This means that must also be an integer, and, by the rules of frac-
tional subtraction, must be an integer. So any divisor of n and m must also be a

5 // Test constructors
6 Fraction a; // Value is 0/1
7 Fraction b(4); // Value is 4/1
8 Fraction c(6, 8); // Value is 6/8, which is converted to 3/4
9 cout << "Constructed values " << a << " " << b << " " << c << "\n";
10 cout << "Value of c is " << c.numerator() << "/"
11 << c.denominator() << "\n";
12 // Test arithmetic instructions
13 Fraction d = b + c;
14 cout << "4 + 3/4 is " << d << "\n";
15 d = b - c;
16 cout << "4 - 3/4 is " << d << "\n";
17 Fraction e = (b + (-c));
18 cout << e << " done with negation\n";
19 if (d == e)
20 cout << "Subtraction test successful\n";
21 a = Fraction(6, 8);
22 b = Fraction(7, 8);
23 if (a < b)
24 cout << "Compare successful\n";
25 return 0;
26 }

Constructed values 0/1 4/1 3/4
Value of c is 3/4
4 + 3/4 is 19/4
4 - 3/4 is 13/4
13/4 done with negation
Subtraction test successful
Compare successful

RANDOM FACT 14.1

n d m d
n d m d−

()n m d−

558 CHAPTER 14 • Operator Overloading

divisor of (n – m). So instead of finding the divisor of n and m, we could instead ask for the
divisor of m and (n – m). Since these two values are smaller than the original pair, we have
reduced the problem to a simpler case. (You should contrast this with the type of analysis
you performed when using recursion in Chapter 10.) The process continues until the two
values are the same, in which case they both represent the desired divisor.

Although Euclid is credited with discovering the first algorithm, he did not invent the
name “algorithm”. Instead, the name derives from another mathematician and textbook
author, Abu Ja‘far Mohammed ibn Mûsâ al-Khowârizmî. In roughly 825 A.D. al-
Khowârizmî wrote the book Kitab al-jabr wa’l-muqabala (Rules of restoration and reduc-
tion). Much of the mathematical knowledge of medieval Europe was discovered from Latin
translations of this work. It may seem like a leap from al-Khowârizmî to “algorithm”, but
such is language. Interestingly, in addition to the word algorithm, the word algebra is derived
from the title of this book.

The easiest overloaded operators to describe are the simple binary arithmetic opera-
tors; +, -, *, / and %. As you have already seen with the Time addition operator, each
of these can be written either as a two-argument nonmember function, or as a one-
argument member function.

For our Fraction data type, recall that the addition of and is defined to
be . The following is used to implement the addition of two
fractional values:

Fraction operator+(const Fraction& left, const Fraction& right)
{

14.3 Over loading S imple Ar i thmet ic Operators

a b c d
() ()a d c b b d⋅ + ⋅ ⋅

14.3 • Overloading Simple Arithmetic Operators 559

 Fraction result(left.numerator() * right.denominator()
 + right.numerator() * left.denominator(),
 left.denominator() * right.denominator());
 return result;
}

The remaining operations are similarly defined. Note that when defining the arith-
metic operators it is not necessary that the two arguments match in type. While
they do for the fractional data type, they did not in the earlier example where sec-
onds were added to a Time.

As mentioned earlier, a common example of overloading operators that is not
related to arithmetic is the use of + to mean string catenation. The string data type
in the standard library uses the + operator in this manner. However, as Productivity
Hint 14.1 suggests, one should not go overboard with overloaded operators.

Returning Local Objects

Notice how the operator+ in Section 14.3 created a local variable named result, then imme-
diately returned this object. Since the local variable is not used except as the value being
returned, it is not actually necessary. Common practice among professional C++ program-
mers is not to create a variable in situations such as this, but rather to construct the result as
an unnamed temporary:

Fraction operator+(const Fraction& left, const Fraction& right)
{
 return Fraction(left.numerator() + right.denominator()
 + right.numerator() * left.denominator(),
 left.denominator() * right.denominator());
}

Overload Operators Only to Make Programs Easier to Read

Some programmers are so enamored with operator overloading that they use it in ways that
make programs hard to read. For example, some programmers might want to provide the
ability to insert a value into a list by means of an operator, as in the following:

List staff;
staff += "Harry";

Maybe that’s clever, but it can also be bewildering. It is best to overload operators to mimic
existing use in mathematics or computer science. For example, it is reasonable to overload +
and * for complex or matrix arithmetic, or to overload ++ and * to make iterators look like
pointers.

ADVANCED TOPIC 14.1

PRODUCT IV ITY HINT 14.1

560 CHAPTER 14 • Operator Overloading

The operators +, -, * and & have both binary and unary forms. (Unary * is a pointer
dereference, and unary & is the address operator.) To overload the unary form, sim-
ply reduce the number of arguments by one. For example, unary negation can be
written as a function that takes one argument, instead of two:

Fraction operator-(const Fraction& value)
{
 Fraction result(-value.numerator(), value.denominator());
 return result;
}

A unary operator defined as a member function takes no arguments. You will see an
example of this in Section 14.6.

Comparison operators are defined in a fashion analogous to the arithmetic opera-
tors, except that the results are typically Boolean. Two Time values are equal if the
number of seconds between them is zero. Therefore, you can define:

bool operator==(const Time& a, const Time& b)
{
 return a.seconds_from(b) == 0;
}

Similarly, you can define the less than operator for Fraction values as follows:
bool operator<(const Fraction& left, const Fraction& right)
{
 return numerator() * right.denominator()
 < denominator() * right.numerator();
}

Define Comparisons in Terms of Each Other

The definitions of the six comparison operators are often very similar. Rather than writing
six almost identical functions, a common technique is to write a single comparison method
that returns an integer result. This result is negative if the first argument is less than the sec-
ond, zero if they are equal, and positive if the first is greater than the second. Due to the way
that fractions are normalized, the numerator of the difference of two fractions will satisfy the
properties we seek.

int Fraction::compare(const Fraction& right) const
{
 return numerator() * right.denominator()
 - denominator * right.numerator();
 // Return the numerator of the difference

14.3.1 Overloading Unary Arithmetic Operators

14.4 Over loading Compar ison Operators

PRODUCT IV ITY HINT 14.2

14.4 • Overloading Comparison Operators 561

}

Each of the six comparison operators can then be written as a simple test on the result
yielded by the comparison function:

bool operator<(const Fraction& left, const Fraction& right)
{
 return left.compare(right) < 0;
}

bool operator==(const Fraction& left, const Fraction& right)
{
 return left.compare(right) == 0;
}

bool operator<=(const Fraction& left, const Fraction& right)
{
 return left.compare(right) <= 0;
}

Symmetry and Conversion

The comparison operators are normally defined as nonmember functions, not as member
functions. To see why, imagine that you had instead defined the equality operator as a mem-
ber function:

class Fraction
{
 ...
 bool operator==(const Fraction& right) const;
};

bool Fraction::operator==(const Fraction& right) const
{
 return numerator() * right.denominator()
 == right.numerator() * denominator();
}

Although we have written the equality operator only for fractions, a comparison between a
Fraction and an integer will still work, since the integer will be implicitly converted into a
fraction (see Section 14.8).

Fraction a(3,4);
if (a == 2) ... // Will work

However, for member functions automatic conversions are not applied to the left argument.
Thus the following statement will not work

if (2 == a) ... // Error, no comparison between integer and Fraction

By defining the comparison operator as a nonmember function, both statements become
legal.

ADVANCED TOPIC 14.2

562 CHAPTER 14 • Operator Overloading

The operators << and >> are overloaded in exactly the same fashion as the binary
arithmetic operators. However, because their interpretation as shift operators is not
common in other data types, these operators are often used to define operations
completely unrelated to their original purpose as integer shift left and right. In fact,
you are probably more familiar with these as the stream I/O operators, rather than
as shift operators.

The output stream class, which you encountered in Chapter 9, pro-
vides the ability to write a single character to a file, string, or output
device. All the remaining output routines are constructed using oper-
ator overloading and this basic ability. Among others, the stream
library provides the following overloaded definitions:

ostream& operator<<(ostream& out, char value);
ostream& operator<<(ostream& out, int value);
ostream& operator<<(ostream& out, float value);
ostream& operator<<(ostream& out, double value);
ostream& operator<<(ostream& out, bool value);
ostream& operator<<(ostream& out, const char* value);
ostream& operator<<(ostream& out, string value);

Each of these operators takes an output stream as the left argument and another
value as the right argument. When executed, each operator will, as a side effect,
write the right argument to the stream, then return the stream value as the result.
(Although we warned against functions having side effects in Section 4.6, output is
one place where they are justified.) The fact that these functions return the stream
argument is what allows a complex stream expression to be built out of parts. For
example, consider the evaluation of the statement:

int i = 34;
cout << i << "\n";

The output statement is evaluated in stages left to right. First, the opera-

tor<<(ostream, int) is executed. This operator returns the output stream, so that
next the operator<<(ostream, const char*) can be executed.

The ability to overload the << operator makes it simple to extend the output
library to new data types. All that is needed to add the ability to write fractional val-
ues is to define yet another overloaded meaning for the output operator:

ostream& operator<<(ostream& out, const Fraction& value)
{
 out << value.numerator() << "/" << value.denominator();
 return out;
}

14.5 Over loading Input and Output

14.5.1 Stream Output

The use of operators in
the stream input/output
library makes it easy to
extend input and output
to new data types.

14.5 • Overloading Input and Output 563

With this new ability the output of fractions can be intermixed with the output of
other data types:

Fraction n(3, 4);
cout << "The value of n is " << n << "\n";

As you know, the >> operator is used for stream input. This operator can also be
overwritten to work with new data types. For example, you can define an opera-
tor>> to read a Time object from an input stream. For simplicity, assume that the
Time value is entered as three separate integers, such as

9 15 00

Here is the definition of the >> operator for Time objects:
istream& operator>>(istream& in, Time& a)
{
 int hours;
 int minutes;
 int seconds;
 in >> hours >> minutes >> seconds;
 a = Time(hours, minutes, seconds);
 return in;
}

Note that the second argument must be a non-const reference parameter, since it is
modified when it is filled with the input. The >> operator should return the input
stream, just like the << operator. This allows a sequence of input operations to be
chained together, as they were for output, and as is illustrated in the body of the
Time::operator>> function itself.

Peeking at the Input

The stream I/O library allows the programmer to peek ahead one character in the input; if
you decide you don’t want the character you can put it back. For example, suppose you want
to write an input function for Fraction values. You want to allow the input to be either a
simple integer (such as 7) or a Fraction represented by an integer, a slash, and another integer
(such as 3/4). If the next character after the numerator is not a slash, you want to push it back
and return a Fraction with 1 as the denominator. You can write this function as follows:

istream& operator>>(istream& in, Fraction& r)
{
 int t, b;
 // Read the top
 in >> t;

14.5.2 Stream Input

ADVANCED TOPIC 14.3

564 CHAPTER 14 • Operator Overloading

 // If there is a slash, read the next number
 char c;
 in >> c;
 if (c == '/')
 in >> b;
 else
 {
 in.unget();
 b = 1;
 }
 r = Fraction(t, b);
 return in;
}

As with their integer counterparts, the increment and decrement operators gener-
ally alter their argument value, in addition to producing a result. For this reason
they are usually defined as member functions, not as ordinary functions. A second
unusual characteristic of these operators is that there are two versions of each—a
prefix version that produces a change before the result is determined:

++x

and a postfix form that yields the original value prior to the modification
x++

To distinguish these two cases, the C++ language introduces an extra argument to
the postfix version of the operator. The value of this argument is not used. The fol-
lowing fragment illustrates the definition of these two operators for our Fraction
data type:

class Fraction
{
 ...
 Fraction& operator++(); // Prefix form
 Fraction operator++(int unused); // Postfix form
 ...
};

Fraction& Fraction::operator++()
{
 top += bottom;
 return *this;
}

14.6 Over loading Increment and
Decrement Operators

14.6 • Overloading Increment and Decrement Operators 565

Fraction Fraction::operator++(int unused)
{
 Fraction clone(top, bottom);
 top += bottom;
 return clone;
}

Note that the prefix version is returning a reference, while the postfix version is
returning a value. Reference results are more efficient, but care must be taken to
avoid returning a reference to a local value. A good rule of thumb is if you return a
value that exists outside the scope of the function (such as this) you should return a
reference. If you return the value held by a local variable, return a value. The value
will be duplicated before the local variable is destroyed. Finally, notice that the pre-
fix increment operator does less work than the postfix version. This is typically
true. Because it does less work, the prefix operation should be used whenever the
programmer has a choice of the two forms (as, for example, in the increment por-
tion of a for loop).

Avoid Dependencies on Order of Evaluation

For numbers, both the prefix and postfix increment operators have the same effect: they
increment x. However, they return different values: ++x evaluates to x after the increment,
but x++ evaluates to x before the increment. You notice the difference only if you combine
the increment expression with another expression. For example,

int i = 0;
int j = 0;
vector<double> s(10);
double a = s[i++]; // a is s[0], i is 1
double b = s[++j]; // b is s[1], j is 1

We do not recommend this style (see Quality Tip 6.1)—it is confusing and a common source
of programming errors. Use ++ only to increment a variable and never use the return value;
then it doesn’t make any difference whether you use x++ or ++x.

More subtle errors occur because the order of binary operations is left unspecified in the
C++ language definition. The following statement could produce either 10 or 11, depending
on whether the increment is performed before or after the left argument of the addition is
evaluated.

int i = 5;
int x = i + ++i;

Expressions with ambiguous meaning, such as this example, should be avoided. Unless the
meaning is completely clear, increment a value in one statement, then use the resulting value
in a separate statement.

QUAL ITY T IP 14.1

566 CHAPTER 14 • Operator Overloading

Inconsistent Operations

If you provide overloaded meanings for operators, make sure the meanings of different oper-
ators are consistent with each other. While nothing in the language definition requires it,
most programmers would expect the following equivalences

i++ i = i + 1
++i i = i + 1
i += c i = i + c
i -= c i = i - c
i - j i + (-j)
- (-i) i

There are many others. For example, a copy created by a constructor should match a copy
created by an assignment. In general, try to make your classes as predictable as possible. This
is sometimes termed the principle of least astonishment.

In Chapter 7 you learned how pointer values can be used to step through an array:
double sum(const double data[], int size)
{
 double* p = data;
 double* q = p + size;
 double sum = 0.0;
 while (p != q)
 {
 sum += *p;
 ++p;
 }
 return sum;
}

Let’s list the pointer operations that were used in this function. First, there is the
ability to set a pointer to the beginning of the collection, in this case, to the start of
the array. Next, the ability to set another pointer to the end of the collection, which
in this case was accomplished by adding an integer value to the pointer. The condi-
tion test in the while loop used the ability to compare one pointer to another. The
next statement used the ability to access the value the pointer referenced, using the
dereferencing operator *. The last statement in the loop incremented the pointer so
that it would refer to the next element.

The fact that the operators such as addition, comparison, derefer-
ence, and increment can be overloaded with new meanings is used by
the standard containers. In Section 12.2 you learned how iterators are
used to loop over the elements in a container. All the standard con-
tainers provide functions to return an iterator representing the start

of a collection, and a separate function to return an iterator representing the end of

COMMON ERROR 14.1

14.6.1 Iterators and Overloaded Operators

Iterators use operators to
create objects that
simulate the behavior of
pointers.

14.6 • Overloading Increment and Decrement Operators 567

a collection. Contrast the sum function just defined with the same function as it
would be written to analyze a collection stored in a list instead of an array:

double sum(const list<int>& data)
{
 list<int>::iterator p = data.begin();
 list<int>::iterator q = data.end();
 double sum = 0;
 while (p != q)
 {
 sum += *p;
 ++p;
 }
 return sum;
}

The only statements that have changed are those that define the initial values of p
and q. The remaining operations (comparison, dereference, and increment) are all
written in the same fashion as their pointer counterparts. Of course, they are imple-
mented very differently. It is the technique of overloading that allows us to hide the
different implementations behind a common symbol.

In Section 12.2 we implemented our own List and Iterator classes, using func-
tions for the iterator operations. We could rewrite these functions as operators:

Iterator& Iterator::operator++(int)
{
 assert(position != NULL);
 position = position->next;
 return *this;
}

string Iterator::operator*() const
{
 assert(position != NULL);
 return position->data;
}

bool Iterator::operator==(const Iterator& b) const
{
 return position == b.position;
}

bool Iterator::operator!=(const Iterator& b) const
{
 return position != b.position;
}

Now you can write a loop just like the standard container loops:
Iterator start = names.begin();
Iterator stop = names.end();
while (start != stop)
{
 cout << *start << "\n";
 ++start;
}

568 CHAPTER 14 • Operator Overloading

You might at first imagine that assignment would be one of the operators most
commonly redefined. In fact, the assignment operator is very seldom given an
explicit redefinition. This is because the assignment operator will be automatically
generated should the programmer not override it. The default implementation will
assign all data fields, a process termed a member-wise assignment. For most classes,
such as our class Fraction, this is exactly the right action, and there is no need to do
any more. Other functions that will be automatically provided include the default
and copy constructors. You will see an example of this in Chapter 15.

In general the only reason to explicitly override the automatically generated
assignment operator is when part of the assignment process involves dynamic mem-
ory management, as you will see in Chapter 15.

For primitive data values the operators +=, *=, and the like combine the operations
of arithmetic and assignment. While the assignment operator will be automatically
generated, these operators will not, even if the associated binary operator has been
defined. If a binary operator, such as the addition operator +, is overloaded and if
the assignment operator is appropriate (either the default implementation or an
explicitly overloaded operator definition), the addition assignment operator +=
should be overloaded as well.

Fraction& Fraction::operator+=(const Fraction& right)
{
 top = top * right.denominator() + bottom * right.numerator();
 bottom *= right.denominator();
 normalize();
 return *this;
}

Define One Operator in Terms of Another

An easy way to ensure consistent behavior between an overloaded operator and the com-
pound assignment operator is to define one in terms of the other. If the += operator and an
appropriate constructor are defined, for example, the + operator can be easily implemented:

Fraction operator+(const Fraction& left, const Fraction& right)
{
 Fraction clone(left); // Copy the left argument
 clone += right; // Add the right argument to it
 return clone; // Return the updated value
}

14.7 Over loading the Ass ignment Operators

14.7.1 Overloading the Compound Assignment Operators

PRODUCT IV ITY HINT 14.3

14.8 • Overloading Conversion Operators 569

Alternatively, the += operator can be defined using + and assignment:

Fraction& operator+=(Fraction& left, const Fraction& right)
{
 Fraction sum = left + right;
 left = sum;
 return left;
}

Notice in this case the left argument is declared as a reference parameter, as it is modified
inside the function. This function also returns a reference, since the argument left is not a
local variable, whereas the value clone in the previous function was local.

C++ will perform a wide variety of implicit conversions; that is, con-
versions from one type to another in situations where no explicit
request appears. You are familiar with this concept from the example
of mixed-type arithmetic. In an expression such as

6 * 3.1415926

the left operand is an integer, while the right argument is a floating-point number.
The integer value is implicitly converted to a floating-point equivalent, and the mul-
tiplication acts on these two values.

When dealing with new user-defined classes, there are two categories of type
conversions to consider. The first is the conversion of a type to the new user-
defined class, while the second is a conversion from the user-defined class to
another type. The C++ language allows the programmer to define rules for both
these situations.

Conversions of the first category, conversions to a user-defined type, are handled
using constructors. For example, our Fraction class defines a constructor that takes
a single integer argument. The C++ language rules allow this to be used to convert
an integer value into a Fraction. For example, we have only defined the addition of
two fractional values. Nevertheless, the C++ compiler will handle the addition of an
integer to a Fraction:

Fraction a(3, 4);
a = a + 2; // Addition of fraction and integer

The C++ compiler searches for a meaning to assign to the addition symbol. Since
there is no explicit operator for adding a fraction to an integer, either the left or the
right argument must be converted. There are two possibilities, converting the frac-
tion to an integer and performing integer addition, or converting the integer to a
fraction and performing fraction addition. Initially the compiler has no idea which,
if either, is intended, and so will investigate both. We have not defined a rule that
would convert a fraction into an integer, so that possibility is eliminated. That leaves
only the addition of two fractions. To see whether this is possible the compiler
searches for a conversion rule that could be used to change the right operand into a

14.8 Over loading Convers ion Operators

Operators can be used to
control the conversion of
values from one type to
another.

570 CHAPTER 14 • Operator Overloading

fractional value. It finds such a rule in the constructor. Using the constructor, the
compiler creates an unnamed temporary value. That is, the statement is interpreted
as if it had been written

a = a + Fraction(2); // Convert right operand into fraction, then do addition

The second category of conversion involves changing a user-defined data type into
another type. For example, suppose you want to provide the ability to convert a
Fraction into a floating-point number. This is accomplished by writing a conversion
operator. A conversion operator uses a type as the operator name, has no argu-
ments, and does not specify a result type (since the result type is implicit in the
name). Here is a conversion operator for converting a Fraction into a double:

Fraction::operator double() const
{
 // Convert numerator to double, then do division
 return static_cast<double>(top) / bottom;
}

The operator will be invoked for situations in which a conversion is required, for
example in a mixed-type expression:

Fraction a(1, 2);
double d = 7.0;
double halfd = d * a; // a is converted to double to do multiplication
cout << "one-half seven is " << halfd << "\n";

An interesting and somewhat unorthodox use of conversion operators is found in
the class istream. As you have seen in earlier chapters, a series of values can be read
using a loop, as follows:

while (cin >> x)
 ...

The value returned by the >> operator is type istream. Since this is not a legal type
for a while loop to test, the compiler searches for a conversion. A conversion opera-
tor provided by class istream will return a value that tests false on end of input or
on error. The conversion is applied, and the loop executes as long as the stream is
not exhausted.

Conversion, Coercion, and Casts

The meanings of the terms coercion and conversion are easily confused, since both represent
a change in type. A conversion denotes any change in type. If the type change is automati-
cally carried out by the compiler, then we call the conversion a coercion. If the programmer

14.8.1 Stream Loops and Conversion Operators

QUAL ITY T IP 14.2

14.8 • Overloading Conversion Operators 571

explicitly requests the type change, then we call the conversion a cast. For example, in the
expression

Fraction f = 10;

the compiler coerces the integer value 10 into the fraction f. In the expression

int n = static_cast<int>(x + 0.5);

the programmer casts the floating-point expression x + 0.5 into the integer n.
Conversions can either change the underlying representation (such as when an integer is

converted into a floating-point number) or simply change the type without changing the
representation, such as when a pointer to a derived class is changed into a pointer to the base
class.

Only One Level of Conversion

The C++ compiler does not perform more than one level of user-defined type conversion
when trying to match an overloaded function. For example, suppose you define a Complex
data type, and allow Complex values to be added to other Complex values. You also allow Com-
plex values to be added to double values. This can most easily be performed by having a con-
structor for class Complex that takes an argument of type double. You cannot automatically
expect that a value of type Complex can be combined with a Fraction.

Complex c(2, 3);
Fraction a(1, 3);
c = c + a; // Compiler reports an error

For the latter statement to work, the compiler would have to detect the conversion from
Fraction to double, then from double to Complex. To make this work you could either explic-
itly define an operator Complex in class Fraction, or add a constructor to class Complex that
accepted a Fraction value.

Ambiguous Conversions

If you look at the implementation of our Fraction class, you will note that we did not supply
an operator double. If you supply too many type conversions, then the compiler cannot
decide which conversion to choose, and it will report an error.

For example, consider the expression

Fraction(1, 2) * 2;

This can either mean

Fraction(1, 2).operator double() * 2

or

Fraction(1, 2) * Fraction(2)

COMMON ERROR 14.2

COMMON ERROR 14.3

572 CHAPTER 14 • Operator Overloading

Both choices are equally plausible to the compiler, and it reports an ambiguity. As a rule of
thumb, you should supply conversions in only one direction: either from other types to
your class, or from your class to other types.

For this reason, the string class has a constructor

string(const char*)

but no automatic conversion to a character pointer. You have to call the c_str member func-
tion if you want that conversion.

The explicit Keyword

Occasionally one would like a one-argument constructor to be used only for the creation of
new values, and not used to provide a rule for the implicit conversion from one type to
another. For this purpose C++ provides the explicit keyword. For example, in the class
vector the constructor that takes an integer argument representing the vector size is declared
as explicit:

class vector
{
 ...
 explicit vector(int v);
 ...
};

Without it, a failure to provide an index expression could lead to a very mysterious error

vector<int> v(10);
v = 5; // Error—programmer intended to write v[0] = 5

The compiler will recognize that the assignment statement is operating on a value of type
vector. It will then try to convert the right-hand side, the integer 5, into a value of this type.
Without the explicit keyword, the compiler would interpret the constructor vector(int) as
a method for converting integers into vectors. It would create a new vector of five elements,
and replace the old vector v with this new collection, destroying the old value.

We now continue the exposition of operator overloading with some operators that
are not appropriate for the Fraction class case study. The first of these is the sub-
script operator. The subscript operator is often defined for classes that represent an
indexable container, for example a vector or a map. In this case, the explicit argu-
ment represents the index and the result is the value stored at the given position.
Like the assignment and the function call operator, this operator can only be
defined as a member function.

ADVANCED TOPIC 14.4

14.9 Over loading the Subscr ipt Operator

14.9 • Overloading the Subscript Operator 573

A possible reason for overloading this operator would be to perform a range test
on the index value, something that is not done by the C++ language for ordinary
arrays. The following illustrates how this could be done. The class SafeArray is con-
structed either with a size, or with an existing array and size.

class SafeArray
{
public:
 SafeArray(int s);
 SafeArray(const int v[], int s);
 int& operator[](int i);
 int operator[](int i) const;
private:
 int size;
 int* values;
};

SafeArray::SafeArray(int s) : size(s), values(new int[size]) {}

SafeArray::SafeArray(const int v[], int s) : size(s)
{
 values = new int[size];
 for (int i = 0; i < size; i++)
 values[i] = v[i];
}

int& SafeArray::operator[](int index)
{
 assert((index >= 0) && (index < size));
 return values[i];
}

int SafeArray::operator[](int index) const;
{
 assert((index >= 0) && (index < size));
 return values[i];
}

The subscript operator checks the validity of the index value before returning the
requested value. In the class SafeArray there are two definitions of the subscript
operator. One returns a reference, so the value can be used for both the left and
right sides of an assignment arrow:

SafeArray v(10);
v[2] = 7;
v[3] = v[2] + 12;

The second is declared as const, and is used when the variable is declared as con-
stant. This version returns a value, and not a reference, and so can only be used to
access a value, not to modify the array. (Returning a constant reference would have
the same effect.)

int a[3];
a[2] = 17;
const SafeArray b(a, 3);

574 CHAPTER 14 • Operator Overloading

cout << "Value is " << b[2]; // OK
b[2] = 23; // Error—result of subscript is not assignable

There is no operator[][] for double subscripts in the C++ language. As you have
seen in Section 6.5.4, multiple subscripts can be treated as successive applications of
single subscripts. When overloading, this means the first subscript must return a
value (for example, MatrixRow) that is then a target for the second subscript opera-
tion. An alternative is to define the function call operator for multiple subscripts.
We will illustrate both of these possibilities in Section 14.11.

The function call operator permits the development of objects that are created using
classes, but can be used as if they were functions. The advantage of this is that the
class can, like all classes, encapsulate and carry its own data values.

The use of this operator is most easily illustrated with an example. Suppose you
need a function that returns a random number between 1 and 100. This is easy to
write:

int rand_100()
{
 return 1 + rand() % 100;
}

Now imagine that you need a similar function that returns a random value between
a and b, where a and b are quantities that will not be known until run time. This is
much harder to do with ordinary functions. The solution is to create a class, and ini-
tialize the values of a and b with the constructor:

class RandomInt
{
public:
 RandomInt(int ia, int ib);
 int operator()();
private:
 int a, b;
};

RandomInt::RandomInt(int ia, int ib) : a(ia), b(ib) {}

int RandomInt::operator()()
{
 return a + rand() % (b - a + 1);
}

You declare an instance of this class just like you would any other object. The dif-
ference is that once created, the object can be invoked just as you would a function:

RandomInt a(7, 15); // Return random values from 7 to 15
cout << "one random value " << a() << "\n";
cout << "and another " << a() << "\n";

14.10 Over loading the Funct ion Ca l l Operator

14.10 • Overloading the Function Call Operator 575

Because it can be used as if it were a function, such a value is termed a
function object. As with assignment, this operator can only be
defined as a member function. The function call operator is unique,
in that it is the only operator in the C++ language for which the
number of arguments is not fixed. Binary operators, such as operator
<<, take only two arguments. Some operators, such as +, have both a
one-argument and two-argument form. Like a function, the function
call operator takes as many arguments as are specified in the function

heading. This can be illustrated by the following generalization of the random num-
ber generator, which provides three different overloaded versions of the operator.
When no arguments are specified it works as before. When one argument is given it
is used as the new upper bound, and when two arguments are specified they are
used as the lower and upper bounds:

class RandomInt
{
public:
 RandomInt(int ia, int ib);
 int operator()();
 int operator()(int nb);
 int operator()(int na, nb);
private:
 int a, b;
};

RandomInt::RandomInt(int ia, int ib) : a(ia), b(ib) {}

int RandomInt::operator()()
{
 return a + rand() % (b - a + 1);
}

int RandomInt::operator()(int nb)
{
 return a + rand() % (nb - a + 1);
}

int RandomInt::operator()(int na, int nb)
{
 return na + rand() % (nb - na + 1);
}

The function selected will be determined by the number of arguments provided:
RandomInt r(3, 7);
cout << "random value between 3 and 7 " << r() << "\n";
cout << "random value between 3 and 10 " << r(10) << "\n";
cout << "random value between 23 and 30 " << r(23, 30) << "\n";

Function objects are used extensively by various generic algorithms in the Standard
Template Library (STL). We will return to function objects and the function call
operator in more detail when we discuss the STL in Chapter 20.

A function object defines
the function call operator
and so can be used in the
fashion of a function, but
it retains the properties of
an object.

576 CHAPTER 14 • Operator Overloading

Other Operators

There are a variety of operators that are not commonly used, and hence not commonly over-
loaded. The comma operator, for example, evaluates its operands left to right, then discards
the left and returns the right. The operator has a precedence that is lower than assignment.
Thus, the following expression will, perhaps surprisingly, assign the value of 7 to x and the
value of 12 to y. (It is probable the programmer intended the comma to be a period.)

y = (x = 7,12);

The &, |, and ^ operators provide bitwise and, or, and exclusive or operations when used with
integers. (See Appendix G.) They can be overloaded to provide other meanings as ordinary
binary operators. Note, however, that their precedence cannot be changed. Programmers
often imagine that it would be useful to overload the ^ operator so as to make it mean expo-
nentiation. However, the statement

b = a ^ 3 + 1 // DON’T—precedence is likely not what you think

does not, as one would like, compute a3 + 1. Because + has a higher precedence than ^, the
expression is interpreted as a ^ (3 + 1), thereby computing a4.

As you learned in Section 3.5, the operators && and || provide the logical operations and
and or. In their normal interpretation they use lazy evaluation; the right operand is not even
evaluated if the result can be determined from the left alone. When overridden they become
simple binary operators, and the lazy evaluation property is lost. When used as a unary oper-
ator, & produces the address of its argument (see Advanced Topic 7.2). This, too, can be over-
ridden and provided with a new meaning.

The unary operators ~ and ! provide bitwise negation (when used with integers) and logi-
cal negation, respectively. Most users are more familiar with the latter, and thus it is a more
common candidate for overloading.

The -> operator can be overloaded to create smart pointers, classes that perform similar to
pointers. While this is frequent in professional C++ programs, the issues involved are complex
and we will not explore them here. For more information on these technical issues, see [2].

The operators new and delete are used to control memory management, and will be dis-
cussed in the next chapter.

Inline Functions

When function bodies are very short, such as with the comparison operators in class
Fraction, the execution time involved in the function call (pushing arguments on to the acti-
vation record stack, transfer of control, return from function, popping arguments off the
stack) can often be greater than the execution time required by the body of the function
itself. Moreover, many processors fetch and decode subsequent instructions as they execute
an instruction. Branches and function calls slow down this mechanism.

When an inline function is invoked, the compiler expands the body of the function in
place. This eliminates the execution cost of the function call, but results in multiple copies of

ADVANCED TOPIC 14.5

ADVANCED TOPIC 14.6

14.11 • Case Study: Matrices 577

the function body (one each time the function is called). For this reason, inline functions
should only be used when the function body is very short.

To create an inline function the keyword inline is placed before the function body. The
function definition is then placed in the interface file, not the implementation file:

inline bool operator<(const Fraction& left, const Fraction& right)
{
 return left.compare(right) < 0;
}

Member functions can also be inlined using a similar syntax:

inline Fraction& Fraction::operator++()
{
 top += bottom;
 return *this;
}

It is also possible to place the body of an inlined member function directly into a class decla-
ration. In this case the inline keyword is not necessary:

class Fraction
{
 ...
 Fraction& Fraction::operator++()
 {
 top += bottom;
 return *this;
 }
 ...
};

However, this style can make reading the class definition difficult, since it combines interface
and implementation features. In this book we will use only the first style.

A good rule of thumb is to use inlining when a function is three or fewer assignment
statements, a single conditional (if) statement, and/or a return statement. Anything more
complex should be written as a normal function.

Although we have not used inlining for functions in the Fraction case study (we have left
that as an exercise), the Matrix case study in Section 14.11 contains several examples of func-
tion inlining.

To illustrate once more the technique of operator overloading we begin a case study
that we will, in subsequent chapters, build on and expand with new features. Imag-
ine you are developing a library of matrix algorithms. A matrix is a tabular arrange-
ment of numbers, such as the following:

14.11 Case Study: Matr ices

−
−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

0 15 0 28 1 4
0 26 0 24 3 36

0 0 1

. . .
. . .

578 CHAPTER 14 • Operator Overloading

Matrices are a very important tool in mathematics. Most science and engineering
students take a course in linear algebra in which they learn about matrix arithmetic.
Here is a brief refresher.

You add two matrices by adding the corresponding elements. For example,

You can multiply a matrix with a number, simply by multiplying each element by
the given number. This process is called scalar multiplication.

Finally, you can multiply two matrices. This operation is more complex. The (i, j)
element of the product is formed by multiplying the ith row of the first matrix with
the jth column of the second matrix. You multiply a row with a column by multi-
plying corresponding elements and adding up the products. Here is a product of a
single row and a column.

To form the matrix product, you carry out that operation for all rows of the first
matrix and all columns of the second matrix.

If you never had a course in linear algebra, you will need to take it on faith that
these operations are useful. At any rate, they are easy enough to program in C++.

In order to supply a matrix library, we need to choose a data type for matrices.
The most obvious choice seems to be the two-dimensional arrays that were
described in Section 6.5.4. However, you would encounter a number of problems.
Array indexes are not checked. You need helper functions to copy two-dimensional
arrays. Perhaps most importantly, you cannot use the standard mathematical sym-
bols for matrix operations. Users of your library would have to use function calls
such as

multiply(a, b, c)

instead of
c = a * b

1 3 0
0 1 3
0 0 1

1 0 0
4 1 0
0 4 1

2 3 0⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

+
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

= 44 2 3
0 4 2

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

2
1 3 0
0 1 3
0 0 1

2 6 0
0 2 6
0 0 2

⋅
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

1 3 0
1
4
0

1 1 3 4 0 0 13⎡⎣ ⎤⎦ ⋅
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

= ⋅ + ⋅ + ⋅ =

1 3 0
0 1 3
0 0 1

1 0 0
4 1 0
0 4 1

13 3⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=⋅
00

4 13 3
0 4 1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

14.11 • Case Study: Matrices 579

Therefore, it is better to develop your own data type. Using overloaded operators,
users of your library will be able to use the familiar mathematical notation.

The class Matrix maintains a collection of elements, in much the same fashion
that the string class manages an array of character values. If ROWS and COLUMNS
denote the dimensions of the matrix, then the matrix holds ROWS * COLUMNS ele-
ments. Because the number of rows and columns is variable, we cannot use a two-
dimensional array to store the matrix elements. Instead, we use a one-dimensional
array. Figure 1 shows the organization. The matrix element from row i and column
j is found in the position

i * COLUMNS + j

The process of subscripting is fundamental to matrices. As was pointed out in Sec-
tion 14.9, the C++ language does not directly support a two-dimensional subscript
operator. There are two ways this is normally handled, and we will illustrate both.
One way is to use the function call operator for subscripting.

class Matrix
{
 ...
 double& operator()(int i, int j); // Return element [i][j]
};

The second solution is slightly more complicated. A subscript will return an inter-
mediate value, an instance of class MatrixRow. This class will retain a pointer to the
original matrix, and the row subscript. In a subscript expression, such as

Matrix m;
m[i][j] = 7.0;

The first subscript generates a MatrixRow, and it is this object that receives the second
subscript, and ultimately produces the desired element.

As with the subscript operators described in Section 14.9, indexing a constant
matrix will produce a value, while indexing a nonconstant matrix will produce a ref-
erence. In order to support this behavior, there is, in addition to MatrixRow, a second
class ConstMatrixRow.

As described in Advanced Topic 14.6 on page 576, execution time can be
improved by expanding small function bodies inline. Subscript operators, as well as
other small functions, have all been given inline definitions. This means the function
bodies are prefixed with the inline modifier and appear in the interface file, rather
than in the implementation file.

Figure 1 Storing Matrix Elements in an Array

Matrix element [i][j]

i * COLUMNS

[i]

[j]

is stored in position i * COLUMNS + j

580 CHAPTER 14 • Operator Overloading

In addition to the subscript operators, we supply operations such as += (an ele-
mentwise addition of one matrix to another), + (the element-wise addition of two
matrices), and * (scalar or matrix product, depending on the parameters). A stream
output operator produces a printed representation of the matrix.

In this chapter, we only implement 3 × 3 matrices. Variable dimensions will be
introduced in Chapter 15. Subsequent chapters will make additional changes. The
programming exercises suggest a number of additions to this class.

ch14/matrix1.h

1 #ifndef MATRIX1_H
2 #define MATRIX1_H
3
4 #include <iostream>
5 #include <cassert>
6
7 using namespace std;
8
9 /**
10 This class describes a row in a matrix.
11 */
12 class Matrix; // Forward definition
13 class MatrixRow
14 {
15 public:
16 /**
17 Remembers a row for a given matrix.
18 @param m a pointer to the matrix
19 @param s the size of the row
20 */
21 MatrixRow(Matrix* m, int s);
22
23 /**
24 Accesses a row element.
25 @param j the column index
26 @return a reference to the element with the given index
27 */
28 double& operator[](int j);
29
30 private:
31 Matrix* mat;
32 int i;
33 };
34
35 /**
36 This class describes a row in a constant matrix.
37 */
38 class ConstMatrixRow
39 {
40 public:
41 /**
42 Constructs a row with a given start and size.
43 @param m a pointer to the matrix

14.11 • Case Study: Matrices 581

44 @param s the size of the row
45 */
46 ConstMatrixRow(const Matrix* m, int s);
47
48 /**
49 Accesses a row element.
50 @param j the column index
51 @return a reference to the element with the given index
52 */
53 double operator[](int j) const;
54
55 private:
56 const Matrix* mat;
57 int i;
58 };
59
60 /**
61 This class describes a 3 × 3 matrix.
62 */
63 class Matrix
64 {
65 public:
66 /**
67 Constructs a matrix filled with zero elements.
68 */
69 Matrix();
70
71 /**
72 Accesses a matrix element.
73 @param i the row index
74 @param j the column index
75 @return a reference to the element with the given indexes
76 */
77 double& operator()(int i, int j);
78
79 /**
80 Accesses a matrix element.
81 @param i the row index
82 @param j the column index
83 @return the element with the given indexes
84 */
85 double operator()(int i, int j) const;
86
87 /**
88 Accesses a matrix row.
89 @param i the row index
90 @return the row with the given index
91 */
92 MatrixRow operator[](int i);
93
94 /**
95 Accesses a matrix row.
96 @param i the row index

582 CHAPTER 14 • Operator Overloading

97 @return the row with the given index
98 */
99 ConstMatrixRow operator[](int i) const;
100
101 /**
102 Computes the matrix sum.
103 @param right another matrix
104 @return the updated matrix
105 */
106 Matrix& operator+=(const Matrix& right);
107
108 static const int ROWS = 3;
109 static const int COLUMNS = 3;
110
111 private:
112 double elements[ROWS * COLUMNS];
113 };
114
115 /**
116 Computes the matrix sum.
117 @param right another matrix
118 @return the sum of two matrices
119 */
120 Matrix operator+(const Matrix& left, const Matrix& right);
121
122 /**
123 Computes the matrix product.
124 @param right another matrix
125 @return the product of two matrices
126 */
127 Matrix operator*(const Matrix& left, const Matrix& right);
128
129 /**
130 Computes the scalar product of a scalar value and a matrix.
131 @param left a scalar value
132 @param right a matrix
133 @return the product of the given value and the given matrix
134 */
135 Matrix operator*(double left, const Matrix& right);
136
137 /**
138 Computes the scalar product of a matrix and a scalar value.
139 @param right a scalar value
140 @return the product of this matrix and the given value
141 */
142 Matrix operator*(const Matrix& left, double right);
143
144 /**
145 Prints a matrix to an output stream.
146 @param left an output stream
147 @param right a matrix
148 @return the given output stream
149 */
150 ostream& operator<<(ostream& left, const Matrix& right);
151

14.11 • Case Study: Matrices 583

ch14/matrix1.cpp

152 inline double& Matrix::operator()(int i, int j)
153 {
154 assert(0 <= i && i < ROWS && 0 <= j && j < COLUMNS);
155 return elements[i * COLUMNS + j];
156 }
157
158 inline double Matrix::operator()(int i, int j) const
159 {
160 assert(0 <= i && i < ROWS && 0 <= j && j < COLUMNS);
161 return elements[i * COLUMNS + j];
162 }
163
164 inline MatrixRow Matrix::operator[](int i)
165 {
166 return MatrixRow(this, i);
167 }
168
169 inline ConstMatrixRow Matrix::operator[](int i) const
170 {
171 return ConstMatrixRow(this, i);
172 }
173
174 inline MatrixRow::MatrixRow(Matrix* m, int s) : mat(m), i(s) {}
175
176 inline double& MatrixRow::operator[](int j)
177 {
178 return (*mat)(i, j);
179 }
180
181 inline ConstMatrixRow::ConstMatrixRow(const Matrix* m, int s)
182 : mat(m), i(s) {}
183
184 inline double ConstMatrixRow::operator[](int j) const
185 {
186 return (*mat)(i, j);
187 }
188
189 inline Matrix operator*(double left, const Matrix& right)
190 {
191 return right * left;
192 }
193
194 #endif

1 #include <iomanip>
2 #include "matrix1.h"
3
4 Matrix::Matrix()
5 {
6 for (int i = 0; i < ROWS; i++)
7 for (int j = 0; j < COLUMNS; j++)
8 (*this)(i, j) = 0;

584 CHAPTER 14 • Operator Overloading

The test program, matrixtest1.cpp, simply creates a matrix and exercises the arith-
metic operations.

9 }
10
11 Matrix& Matrix::operator+=(const Matrix& right)
12 {
13 for (int i = 0; i < ROWS; i++)
14 for (int j = 0; j < COLUMNS; j++)
15 (*this)(i, j) += right(i, j);
16 return *this;
17 }
18
19 Matrix operator+(const Matrix& left, const Matrix& right)
20 {
21 Matrix result = left;
22 result += right;
23 return result;
24 }
25
26 Matrix operator*(const Matrix& left, const Matrix& right)
27 {
28 Matrix result;
29 for (int i = 0; i < Matrix::ROWS; i++)
30 for (int j = 0; j < Matrix::COLUMNS; j++)
31 for (int k = 0; k < Matrix::COLUMNS; k++)
32 result(i, j) += left(i, k) * right(k, j);
33 return result;
34 }
35
36 Matrix operator*(const Matrix& left, double right)
37 {
38 Matrix result;
39 for (int i = 0; i < Matrix::ROWS; i++)
40 for (int j = 0; j < Matrix::COLUMNS; j++)
41 result(i, j) = left(i, j) * right;
42 return result;
43 }
44
45 ostream& operator<<(ostream& left, const Matrix& right)
46 {
47 const int WIDTH = 10;
48 for (int i = 0; i < Matrix::ROWS; i++)
49 {
50 for (int j = 0; j < Matrix::COLUMNS; j++)
51 left << setw(WIDTH) << right(i, j);
52 left << "\n";
53 }
54 return left;
55 }

Further Reading 585

ch14/matrixtest1.cpp

1. You can define new meanings for C++ operators by defining functions whose
name is operator followed by the operator symbol.

2. Operators can be defined either as member or nonmember functions.

3. Use a member function for an operator if you need access to private data.

4. Use a nonmember function for an operator to allow type conversions for the left
argument.

5. The use of operators in the stream input/output library makes it easy to extend
input and output to new data types.

6. Iterators use operators to create objects that simulate the behavior of pointers.

7. Operators can be used to control the conversion of values from one type to
another.

8. A function object defines the function call operator and so can be used in the
fashion of a function, but it retains the properties of an object.

1. Donald Knuth, The Art of Computer Programming: Vol 1: Fundamental Algorithms,
Addison-Wesley, 1973.

2. Bjarne Stroustrup, The C++ Programming Language, Special Ed., Addison-Wesley, 2000.

1 #include "matrix1.h"
2
3 int main()
4 {
5 Matrix m;
6 m[0][0] = m[1][1] = m[2][2] = 1;
7 m(0, 1) = m(1, 2) = 2;
8 cout << 2 * m << "\n";
9 cout << m * m << "\n";
10 cout << 2 * m + m * m;
11 return 0;
12 }

CHAPTER SUMMARY

FURTHER READING

586 CHAPTER 14 • Operator Overloading

Exercise R14.1. To give an existing operator a new meaning, what property must the
argument types possess?

Exercise R14.2. When would you choose an overloaded operator for a particular
operation, and when would you choose a function?

Exercise R14.3. Overload the + operator to raise an employee salary. For example,
harry + 5 gives Harry a 5 percent raise. Is this a good use for operator overloading?

Exercise R14.4. Could you overload the unary negation operator so that -T would
decrement the Time value T by 60 seconds? Would this be a good idea or not?

Exercise R14.5. When should an operator function be a member function?

Exercise R14.6. Both of the following assignments are legal, but neither is likely to
have the intended effect. Explain what values will be held by the two variables fol-
lowing the statements:

double pi = (3,14159); // Comma, not period
double pi_two;
pi_two = 3,14159;

Exercise R14.7. To print an object, access to the private data fields is often necessary.
Can the operator<< function be defined as a member function to grant this access? If
so, give an example. If not, explain why not.

Exercise R14.8. Why are there two versions of the ++ and -- operator functions? Are
there any other operators with two versions?

Exercise R14.9. Why should the prefix version of an increment operator be used
instead of the postfix version whenever you have a choice between the two?

Exercise R14.10. What are the possible resulting values from the following three
assignments?

i = 7;
j = ++i + i++;
k = j++ + ++j;

Exercise R14.11. What operators are necessary to use a value as an Iterator?

Exercise R14.12. What is the effect of declaring the assignment operator as private?

Exercise R14.13. Why do you seldom need to overload the assignment operator? In
what situation is it necessary to define an assignment operator?

Exercise R14.14. What is the difference between a conversion and a coercion?

Exercise R14.15. How would you implement a conversion from float to Fraction?
What problems do you run into?

Exercise R14.16. Imagine you have implemented a class Polynomial. How do you
achieve the type conversion of a double to a Polynomial?

REVIEW EXERCISES

Programming Exercises 587

Exercise R14.17. What is the purpose of the explicit keyword? What potential error
does the use of this keyword eliminate?

Exercise R14.18. Which operators does the string class overload?

Exercise R14.19. What unique characteristic makes the function call operator differ-
ent from all other operators?

Exercise R14.20. What is a function object? How is a function object different from a
function? What capabilities does a function object possess that an ordinary function
does not?

Exercise P14.1. Finish the implementation of the class Fraction by overloading the
remaining arithmetic operations.

Exercise P14.2. Modify the class Fraction to permit fractions with a zero denomina-
tor. Change the stream output operator so that it will produce a special marker,
*****, when such a value is printed. Modify the conversion operator double so that
it will produce the value zero in this case. Finally, add a conversion operator bool so
as to test whether a Fraction is proper.

Exercise P14.3. Determine which functions in class Fraction are candidates for inlin-
ing. Rewrite the class to inline those you identify, and test the resulting application.

Exercise P14.4. Implement both the prefix and the postfix form of Iterator::opera-
tor-- for the list class in Chapter 12.

Exercise P14.5. Define a class Money, which maintains two integer data fields, dollars
and cents. Overload arithmetic operators, comparison operators, and input and
output operators for your class. Should you overload the * and / operators? What
argument types should they accept? Overload the % operator so that if n is a float-
ing-point value, n % m yields n percent of the money amount m.

Exercise P14.6. Define a class Complex for complex numbers. Provide implementa-
tions for addition, subtraction, multiplication, and the stream input and output
operators. Implement the compound assignment operators for each of the sup-
ported binary arithmetic operations.

Exercise P14.7. Define a class BigInteger that stores arbitrarily large integers by
keeping their digits in a vector<int>. Supply a constructor BigInteger(string) that
reads a sequence of digits from a string. Overload the +, -, and * operators to add,
subtract, and multiply the digit sequences. Overload the << operator to send the big
integer to a stream. For example,

BigInteger a("123456789");
BigInteger b("987654321");
cout << a * b;

prints 121932631112635269.

PROGRAMMING EXERCISES

588 CHAPTER 14 • Operator Overloading

Exercise P14.8. Implement a class for polynomials. Store the coefficients in a vector
of floating-point values. Then provide operators for addition, subtraction, multipli-
cation, and output.

Exercise P14.9. Define a class Set that stores a finite set of integers. (In a set, the
order of elements does not matter, and every element can occur at most once.) Sup-
ply add and remove member functions to add and remove set elements. Overload the
| and & operators to compute the union and intersection of the set, and the << oper-
ator to send the set contents to a stream.

Exercise P14.10. Continue Exercise P14.9 and overload the ~ operator to compute
the complement of a set. That is, ~a is the set of all integers that are not present in
the set a. Hint: Add a bool field to the Set class to keep track of whether a set is
finite or has a finite complement.

Exercise P14.11. Can you make the class vector<double> act like the mathematical
concept of a vector? Implement the addition operator so as to compute the vector
sum of two vectors. Why might it be more efficient to implement += as an operator
that computes the vector sum in place in the left argument? Measure the difference
in speed between v += w and v = v + w.

Exercise P14.12. Modify the class Matrix described in Section 14.11 to provide the
following operations:

1. The negation of a matrix. This should yield the matrix in which every element
is negated.

2. The compound assignment operator -=.
3. The subtraction operator -. Write this in two ways. First, just as the addition

operator was written using +=, this can be written using -=. Second, write the
operator using addition and unary negation.

4. The input of a matrix from an input stream.

Exercise P14.13. Extend the multiplication operator for class Matrix to allow matri-
ces to be multiplied by vectors. As is conventional in mathematics, a matrix times a
vector should multiply the matrix rows by the vector.

Exercise P14.14. Implement an associative array that uses strings for keys and stores
values of type double. Overload the subscript operator (operator[]) to provide
access as in the following example

AssociativeArray prices;
prices["Toaster Oven"] = 19.95;
prices["Car Vacuum"] = 24.95;

Chapter 15
Memory Management

• To learn about the different categories of memory

• To learn how to write and use constructors and destructors

• To be able to create classes that manage their own memory
allocation and deallocation

• To understand how to avoid common memory
management errors

CHAPTER GOALS

In Chapter 7 you were introduced to the concepts of dynamic memory allocation

using the new operator, and the need to release dynamic memory using the delete

operator. These operations are part of the task termed memory management. In

C++ memory management is explicitly under the direction of the programmer. If

properly used, this can result in very efficient programs. But if improperly used (or,

more often, ignored) memory management issues can make a program use more

memory than is necessary, use more execution time than necessary, or cause

mysterious errors that are nearly impossible to discover and correct. For this

reason, writing effective C++ programs requires a clear understanding of how the

memory management system operates.

590 CHAPTER 15 • Memory Management

CHAPTER CONTENTS

Memory in C++ programs is divided into four categories:

1. Code. This area contains machine instructions for all functions
and member functions. As a program runs, instructions are read
from memory and executed.

2. Static Data. This area contains all global variables, as well as
any local variables or class data members that are declared using
the static modifier.

3. Run-time Stack. This is the area used by most C++ variables. All local, non-
static variables reside on the run-time stack.

4. Free Store, or Heap. This is the area for memory explicitly requested using the
new operator.

The code memory contains the machine instructions that represent all functions
and function members. Beginning programmers sometimes don’t think of this as

15.1 Categor ies of Memory

Memory is divided into
four areas: code, static
data, the run-time stack,
and the heap.

15.1.1 Code Memory

15.1 Categories of Memory 590

15.2 Common Memory Errors 594
QUALITY TIP 15.1: Avoid Buffer

Overflow Errors 597

15.3 Constructors 602
COMMON ERROR 15.1: Forgetting the Dual Use of

Single Argument Constructors 605
SYNTAX 15.1: Default Constructor 607
COMMON ERROR 15.2: Default Constructor

and Parentheses 607
SYNTAX 15.2: Copy Constructor 609
QUALITY TIP 15.2: When to Use the System-Defined

Copy Constructor 609
ADVANCED TOPIC 15.1: Constructors Are

Always Extensions 611
QUALITY TIP 15.3: Observing Constructors 612

15.4 Destructors 613
SYNTAX 15.3: Destructor Definition 614

COMMON ERROR 15.3: Confusing Destruction

and Deletion 615
PRODUCTIVITY HINT 15.1: Tracing Execution 616
COMMON ERROR 15.4: Not Declaring

Destructors Virtual 617
QUALITY TIP 15.4: Include Virtual Destructors 618
QUALITY TIP 15.5: If Destructor, Then Copy

Constructor and Assignment 619
ADVANCED TOPIC 15.2: Overloading the Memory

Management Operators 621

15.5 Reference Counting 622
COMMON ERROR 15.5: Self Assignment 626
COMMON ERROR 15.6: Reference Counting

Fails in the Presence of Cycles 627

15.6 Case Study: Matrices, Continued 627

15.1 • Categories of Memory 591

part of memory, because you generally cannot change these values once a function
has been compiled. Nevertheless, they do occupy space in the computer memory.

It is possible to make a pointer reference a value in the code section of memory
by using a function pointer. We discussed function pointers in Section 7.6.

This section of memory holds two categories of values, global and static. As you
learned in Section 4.9, global variables are variables defined outside the scope of any
functions or classes. Variables such as cin and cout are examples of global variables.
For the memory management system, global variables have one important property.
Within each name space, each name can be mapped one to one to an object. A local
variable, in contrast, is created anew each time a function is executed. A recursive
function, such as those you examined in Chapter 10, can cause the same name to be
attached to several different currently active values. This will never happen with
global variables. There is only one variable named cin. (In Chapter 18 we will
return to the issue of name spaces and global names.) This means that each global
variable can, prior to execution, be assigned a fixed-size block of memory.

Global variables can be initialized, either by an assignment or by using a con-
structor. The value is initialized only once, before execution of main begins. The fol-
lowing example function uses a global variable named counter to count the number
of times that the function has been called, returning the updated count as the func-
tion result.

int counter = 0;

int counting_fun()
{
 // Count how many times the function is called
 counter++;
 return counter;
}

The second category of values in this portion of memory is static variables. Both
local variables and data members can be declared to be static. An item with the
static modifier, like a global variable, has only one value attached to the name.
Again, like global variables, a static variable is assigned memory once, initialized
before main begins execution, and will continue to exist until the end of execution.
You could rewrite the counting function to use a static variable as follows:

int counting_fun()
{
 static int counter = 0; // Will be initialized only once
 counter++;
 return counter;
}

15.1.2 Static Data Memory

592 CHAPTER 15 • Memory Management

Values in the run-time stack are tied to function entry and exit. Func-
tion invocations execute in an orderly fashion. If function f invokes
function g, and function g in turn invokes function h, then function h
must terminate before g will continue with execution, and g in turn
must terminate before f will resume.

This last-in first-out behavior allows stack memory to be managed
very efficiently. An internal pointer refers to the top of the run-time

stack. When a function is invoked, the stack pointer is incremented, thereby allocat-
ing a block of memory. When a function returns, the stack pointer is decremented,
allowing the memory to be reused by the next function call. The block of memory
is termed the activation record. An activation record will maintain space for param-
eters, the return address (a pointer into code memory), space for saved internal reg-
isters and other machine-specific information, and space for local variables. If
function f has called g, which in turn has called h, the most recent portion of the
run-time stack will look like Figure 1.

The efficiencies of stack memory are not without cost. There are two major
drawbacks to the use of the stack for storing local variables:

• The lifetime of stack-memory values is tied to function entry and exit. This
means that stack-resident values cease to exist when a function returns. An
attempt to use a stack-resident value after it has been deleted will cause an error.

• The size of stack-resident values must be known at compile time, which is when
the structure of the activation record is laid out.

15.1.3 The Run-time Stack

Stack-based memory is
tied to function entry and
exit. Errors can occur if
references continue to
exist after a function exits.

Figure 1
Activation Records on the Stack

Local variables for f

Return address back to f ’s caller

Parameters for f

Local variables for g

Return address back to f

Parameters for g

Local variables for h

Return address back to g

Parameters for h

Top of stack

Activation record
for h

Activation record
for g

Activation record
for f

Stack

15.1 • Categories of Memory 593

You will examine the implications of these limitations later in this chapter when we
discuss common memory errors.

There are many situations where stack memory is inappropriate. It is often difficult
or impossible to estimate beforehand how large an object should be—for example,
how many elements an array needs to contain. It may also be difficult to determine
how many items a program might require; for example, how many nodes will be
contained in a linked list. Finally, it is also common that the lifetime of a value is not
tied to procedure entry and exit. For example, when a value is placed into a linked
list, the value will continue to exist even after the insertion function finishes execu-
tion. In such cases, local variables on the stack cannot be used, and dynamic alloca-
tion of storage is necessary. The heap—or free store—is the storage area for values
explicitly requested using the new operator.

Employee* boss = new Employee("Lin, Lisa", 68000);

As you learned in Section 7.1, when you ask for a section of memory using this
operator, a memory allocator finds a storage location for the new object in the heap.
The memory allocator tells you where the object is located by returning the mem-
ory address for the value. This is termed dynamic memory allocation.

Dynamically allocated values are accessed through a pointer, which itself might
reside either on the stack or on the heap. The statement above declares a pointer
variable named boss that resides on the stack. The value of the pointer references a
data area stored on the heap (see Figure 2).

Once you are finished with the dynamically allocated memory you must notify
the memory allocator that it can be returned to the free store. This is done using the
delete operator:

delete boss;

This statement deletes the heap memory that variable boss refers to.

Figure 2 Values on the Stack and on the Heap

15.1.4 Heap Memory

Heap

Employee

Stack

boss =

594 CHAPTER 15 • Memory Management

Allocation and deletion of arrays requires a slightly different syntax (see
Figure 3):

double* data = new double[7]; // Allocate an array of 7 double cells
...
delete[] data; // Free the array

Because the programmer is responsible for memory management in
C++, and because pointers can refer to memory in any of the four
areas, several errors are possible. These include the following:

• Using a value that has not been initialized.
• Using a pointer to reference a memory location that is no longer valid.
• Forgetting to delete a dynamically allocated section of memory.
• Deleting a memory value that was never allocated.
• Deleting a dynamically allocated section of memory more than once.

Each of these potential errors will be illustrated in the following sections.

In Quality Tip 2.1 you were warned to never declare a variable with-
out providing an initial value. Otherwise, the value of the variable is
whatever happened to be in memory at the time the variable was cre-
ated, resulting in unpredictable results:

int nickels; // Error—no initialization
int dimes = 3;
double total = nickels * 0.05 + dimes * 0.10;
 // Error—unpredictable result

Figure 3 A Pointer to an Array

data =

15.2 Common Memory Errors

Pointers can refer to
memory in all four areas.

15.2.1 Initialization Errors

Initialization errors can
occur for variables in any
section of memory.

15.2 • Common Memory Errors 595

The use of constructors (which were introduced in Chapter 5, and which will be
examined in more detail later in this chapter) alleviates this problem to some extent.
A constructor ties together the operations of creation and initialization, ensuring
that every value created is also initialized.

Pointers compound the problem of initialization. Now there are two data values
to manage; the value of the pointer itself, and the data area it points to. Either data
value can fail to be initialized. An initialization error occurs when the programmer
forgets to allocate memory, but uses a pointer value anyway:

Employee* boss;
cout << "My boss earns " << boss->salary();
 // Error—almost certain crash, because pointer is undefined

Accessing this pointer will probably terminate the program. However, in particu-
larly unfortunate circumstances, this value can refer to a valid section of memory,
which may allow the program to proceed for a while longer, until the section of
memory that the pointer references is used. However, the results are unpredictable,
and almost always useless.

Alternatively, a pointer for a dynamically allocated value can be
properly initialized, but the space the pointer references still fails to
be initialized.

int* coins = new int[3];
 // Array for counts of pennies, nickels, and dimes
 // Error—coins uninitialized
double total = coins[0] + coins[1] * 0.05 + coins[2] * 0.10;

Here the variable coins is properly set to point to an array of integer
values. However, the array elements themselves are not initialized.

By default, these dynamically allocated primitive values start out with random values.

You must always remember that after a function returns from execution, the top of
the stack pointer is decremented, and any local variables are no longer valid.
Although the stack pointer is decremented, the memory occupied by the activation
record will not be changed until overwritten by the next function call. This can be a
source of subtle errors. A pointer to a local variable in a discarded activation record
will no longer be valid, although it may appear to work for a short period of time—
that is, until the next function call. Here is an example:

// Error—this function returns a reference to an invalid memory location
char* read_a_line()
{
 char buffer[200]; // Declare a buffer to hold the text
 cin >> buffer; // Read a line of text
 return buffer; // Return the text
}
...
char* p = read_a_line();

Dynamically allocated
memory introduces two
potential pointer
initialization errors: failure
to initialize the pointer,
and failure to initialize the
space the pointer
references.

15.2.2 Lifetime Errors

596 CHAPTER 15 • Memory Management

The read_a_line procedure returns a pointer to the array named buffer. However,
memory for the buffer will be deleted once the function is finished executing. The
pointer p will end up referencing values that may or may not be correct (see
Figure 4), and will almost certainly be overwritten once the next function is called.
As was noted in Common Error 7.3, a pointer that refers to a location that is no
longer valid is termed a dangling pointer.

Returning a reference to a local variable is another common cause of lifetime
errors:

Fraction& operator+(const Fraction& left, const Fraction& right)
{
 Fraction result(left.numerator() * right.denominator()
 + right.numerator() * left.denominator(),
 left.denominator() * right.denominator());
 return result; // Error—returns reference to a local variable
}

Some of the more sophisticated C++ compilers will warn about such errors, but
you should not depend on this.

Global values and stack-resident arrays must have a size that is known at compile
time. Often, programmers try to avoid this restriction by allocating an array with a
size that is purposely too large. In the example in the previous section the program-
mer is reading lines of input from a file, and has allocated a character array to hold
200 elements. Why 200? When using arrays instead of vectors, one must make some

Figure 4 Creation of a Dangling Pointer

Return address

When read_a_line executes After read_a_line returns

Top of stack

Top of stack

Stack

buffer =

...

p = p =

Return address

Stack

buffer =

...

15.2.3 Array Bounds Errors

15.2 • Common Memory Errors 597

fixed choice for the size. The programmer probably believed that no input line
would have more than 200 characters. This is a dangerous assumption.

Problems can occur because array bounds are not checked in C++ at run time.
Should a line longer than 200 characters be encountered, the buffer will simply be
exceeded, and the values read will flow into whatever happens to follow the array in
the activation record. This will have the effect of changing the values of other vari-
ables unpredictably, with generally undesirable results. This problem can be
avoided by using a vector instead of an array whenever the size of the array cannot
be determined at compile time.

Avoid Buffer Overflow Errors

If you read the description of software patches or updates, you will often discover that a
patch has been applied to overcome a “potential buffer overflow condition”. What this
means is that the original programmer has committed an error exactly like that described
earlier, namely, allocating a fixed-size buffer, then reading a line of text of unknown size:

// Error—this function can potentially overwrite a fixed-size array
char buffer[200]; // Making array global avoids deletion error
char* read_a_line()
{
 cin >> buffer;
 return buffer;
}

The problem is only “potential”, because it will only manifest itself when an input consisting
of, in this case, more than 200 characters is encountered. When this occurs, whatever hap-
pens to follow the array in memory will be overwritten. Normally an error of this nature
results in unpredictable garbage. However, malicious programmers, such as virus writers,
have been known to use this behavior to their advantage. See Random Fact 6.1 for a case in
which a programmer, by carefully analyzing how a compiler placed values into memory, dis-
covered that the area following a global buffer was the return address for the activation
record. By entering a carefully constructed, overly long line of text, it was possible to alter
the return address. When the function finished, execution continued with the code supplied
by the virus writer.

Avoid buffer overflow errors by never allocating a fixed-sized buffer. When doing string
input and output, use the newer stream I/O classes and strings rather than the older charac-
ter arrays. If you need a dynamically sized, indexed data structure, use a vector, not an array.

In Section 8.4 you learned that a pointer declared as referencing an object of one
class could, in fact, be referring to an object from a derived class. However, the
behavior of pointers and nonpointers in this regard is subtly different, and it is
important to understand what is going on.

QUAL ITY T IP 15.1

15.2.4 Object Slicing

598 CHAPTER 15 • Memory Management

Consider the following statements:
TravelClock* p = new TravelClock(true, "Rome", 9);

Clock* cp = p;

Clock c = *p;

cout << cp->get_location() << " time is " << cp->get_hours() << "\n";
cout << c.get_location() << " time is " << c.get_hours() << "\n";

If you run these statements, the output will be as follows:
Rome time is 6
Local time is 21

Both cases start from an object of type TravelClock. The first case assigned the
address of this object to a variable declared as a pointer to an object of type Clock.
This polymorphic assignment is permitted, because the class TravelClock is derived
from Clock. In the second statement a simple assignment is used to copy the value
from an instance of TravelClock to an instance of Clock. Given the similarities in the
assignments, why are the results different?

Figure 5 Data Fields Being Sliced by an Assignment

1
2

3

2

3 Clock c = *p

p =

cp =
military =

TravelClock

location =

time_difference =

true

“Rome”

9

c =

military =

Clock

location =
time_difference =

true

“Rome”
9

Clock
data field

TravelClock
data fields are

sliced away

Variable of type
Clock

1 p =

military =

TravelClock

location =

time_difference =

true

“Rome”

9

15.2 • Common Memory Errors 599

The answer is that the polymorphic behavior conflicts with the
memory allocation model used by C++. Note that the objects of
class TravelClock are larger than the objects of class Clock, since they
include additional data members. This additional space was not taken
into consideration when the activation record was constructed on the
stack to hold the contents of the variable c. To maintain the efficien-
cies of the memory allocation, these additional fields are simply
sliced away when the assignment takes place (see Figure 5). One way

to remember this is to think that the object ceases to be an instance of the derived
class and becomes an instance of the base class.

When you understand the memory layout issues involved, it becomes clear why
a member function call on an object is never polymorphic. For example, in the call

c.get_location()

there is no ambiguity about the type of c. It will always be a Clock. In contrast, the
call

cp->get_location()

is polymorphic because cp might point to a Clock or an object of a derived class.
Also note that the call

(*cp).get_location()

is polymorphic. Because the expression *cp is a reference to an object, not an actual
object, it can refer to a derived class object.

 Because of slicing, it is common in C++ to access objects in an inheritance hier-
archy through pointers or references.

As was noted in Common Error 7.4, we say that a memory leak occurs when the
programmer fails to return a dynamically allocated section of memory back to the
memory manager using delete or delete[]. Often such a leak causes no harmful
effect; however, in a long-running program, or if memory allocation occurs in a sec-
tion of the program that is executed repeatedly, then a memory leak can cause a pro-
gram to halt because the memory manager is unable to service a request for new
memory. Memory leaks are often the result of successive assignments to the same
pointer variables:

Clock* a_clock;
...
a_clock = new TravelClock(true, "Rome", 9);
...
a_clock = new TravelClock(true, "Tokyo", -7); // Leak, old memory is now lost

After the second assignment, both dynamically allocated objects remain on the
heap, as shown in Figure 6. There are, however, no remaining pointers to the first
object, so it cannot be recovered. The memory used by this object is lost.

Simple objects are not
polymorphic in the way
that pointers or references
are. An assignment to
such an object slices off
data fields defined in the
derived class.

15.2.5 Memory Leaks

600 CHAPTER 15 • Memory Management

In an attempt to avoid memory leaks, programmers sometimes return a value to the
memory manager before all references to the value have been deleted. As part of the
process of managing and recycling heap-resident values, the heap manager often
stores pertinent information in the values it manages. For example, the heap man-
ager may keep a list of similarly sized blocks of memory, and store in each block a
pointer to the next element. Reading such a value will produce garbage, and

Figure 6 First Value Is Still on Heap, But Unreachable

Heap

After first assignment

After second assignment

Heap

military =

TravelClock

location =

time_difference =

true

“Rome”

9

military =

TravelClock

location =

time_difference =

true

“Rome”
9

military =

TravelClock

location =

time_difference =

true

“Tokyo”
-7

Stack

a_clock =

Stack

a_clock =

15.2.6 Using Invalid Memory References

15.2 • Common Memory Errors 601

writing to such a value will confound the heap manager. Both errors are typically
catastrophic.

Errors of this type are sometimes committed by a programmer forgetting that
the update portion of a for loop is executed after the body of the loop, as in the
following:

for (Node* p = ptr; p != NULL; p = p->next)
{
 delete p; // Error—p->next is referenced after p is deleted
}

The error occurs because the reference to p->next can be executed after the memory
that p refers to has been recovered and, potentially, overwritten. The solution is to
read this value first, before performing the deletion:

for (Node* p = ptr; p != NULL;)
{
 Node* q = p->next; // OK. Read p->next before deleting p
 delete p;
 p = q;
}

If you call delete twice, chances are excellent that the heap is corrupted and that at
some future point in time it will give out memory blocks twice or act unpredictably
in some other way. These problems are extremely difficult to debug.

This error can sometimes be avoided by assigning a pointer a NULL value as soon
as it is deleted. Using the delete statement with a NULL pointer has no effect. This
practice can also help detect the previous error, using a dynamically allocated mem-
ory value after it has been deleted, because such uses will produce a NULL pointer
error.

Clock* my_clock = new TravelClock(true, "Rome", 9);
...
delete my_clock;
my_clock = NULL; // Assign to NULL after deleting
...
cout << "Time is " << my_clock->get_hours << "\n";
// Error—using my_clock after it has been deleted
delete my_clock; // However, delete on NULL pointer will have no effect

However, the assignment of a NULL value will not help if the same value is accessed
by two different variables and both are deleted. This error is also common.

Clock* my_clock = new TravelClock(true, "Rome", 9);
Clock* your_clock = my_clock;
...
delete my_clock;
my_clock = NULL;
delete your_clock; // Same value being deleted twice

15.2.7 Deleting a Value More Than Once

602 CHAPTER 15 • Memory Management

Deleting a pointer that was never initialized and, therefore, contains a garbage value
is a sure path to chaos. The heap manager may try to recover the memory returned
by the pointer, which is likely not associated with the heap.

TravelClock* tc;
...
delete tc; // Error—attempting to delete garbage

On the other hand, the delete operator recognizes the value NULL, and will do noth-
ing if a NULL pointer is deleted.

TravelClock* tc = NULL;
...
delete tc; // This time OK, delete does nothing

This once again reinforces the rule that a variable should never be declared without
being initialized.

In Chapter 5 you were introduced to constructors. A constructor is a member func-
tion with the same name as the class in which it appears. In addition, a constructor
does not specify a return type. The constructor is implicitly invoked as part of the
process of object creation, and ties together the actions of memory allocation and
initialization.

The purpose of a constructor is to ensure that every value created
is also properly initialized. Along with destructors, which you will
examine in Section 15.4, constructors encapsulate the management of
the internal state of an object value behind the class definition, so
that users of the class need not worry, or even be aware, of the imple-

mentation details. Often an important part of this task is the management of
dynamically allocated memory.

A good illustration of this is the class string. You have been using string vari-
ables since the beginning of this book. What you may not have realized is that the
contents of a string are not actually stored within the string value itself. Instead, a
variable of type string holds a pointer to an array of character values. (That is, to a
C style character array. See Section 7.5 for a discussion of C style strings.) The
string value is typically stored on the stack, while the dynamically allocated charac-
ter array is part of the heap, as shown in Figure 7.

Separating the string value from the character array allows the string to grow and
shrink in response to string operations, such as catenation or substring, without
running into the array fixed-size limitations. So effective is the job of hiding the
management of this dynamic memory area within the string class, that many pro-
grammers using the string data type do not even know that it uses heap memory.

To see how this is done, imagine that the standard class string does not exist, and
you want to write your own. Call the new class String. The following is the class

15.2.8 Deleting a Value That Was Never Allocated

15.3 Constructors

Constructors tie together
memory allocation and
object initialization.

15.3 • Constructors 603

definition for this class. Some of the member functions have been labeled; the
implementation of these will be discussed in following sections.

class String
{
public:
 String(); // Default constructor
 String(const char p[]); // Simple constructor
 String(const String& right); // Copy constructor
 ~String(); // Destructor
 String& operator=(const String& right); // Assignment operator
 String& operator+=(const String& right);
 int length() const;
 char& operator[](int index);
 char operator[](int index) const;
private:
 char* buffer;
 int len;
};

A constructor for class String will be called in the following situations.

• Execution enters a block in which a variable of class String is declared. Space for
this variable will be created on the stack, and the constructor will be invoked
before the block is executed.

• A global variable of class String is declared. Space for this variable is set aside in
the static section of memory. The constructor is called before main starts.

• A static local variable of class String is declared. As with globals, static variables
are assigned space in the static section of memory, and are initialized before main
starts.

• An instance of class String is created on the heap by calling new String. The heap
memory allocator creates a block of memory, then initializes the memory by
invoking the constructor, before returning the address of the now initialized
value.

Figure 7 String Has Values on Both Stack and Heap

Heap

F r e d \0

Heap

Stack

c =

604 CHAPTER 15 • Memory Management

• An unnamed temporary variable is created on the stack to hold the return value
of a function, returning a value of type String. The constructor is called as part of
the process of creating the temporary variable.

• A variable is being initialized that has a data field of type String. The constructor
for the data field is invoked as part of the process of constructing the larger
object.

• A variable is initialized that is from a class derived from String. The constructor
for the base class is invoked as part of the construction and initialization of an
instance of the derived class.

The various categories of constructors are examined in the following sections.

A constructor performs whatever tasks are necessary to initialize the newly created
object. In our example we have purposely selected a class that must manage a
dynamically allocated section of memory, namely the character array that will hold
the underlying character values. Our constructor must see that this area is allocated
and that it is properly initialized:

String::String(const char p[])
{
 // Determine number of characters in string
 len = 0;
 while (p[len] != '\0')
 len++;
 // Allocate buffer array, remember to make space for NULL character
 buffer = new char[len + 1];
 // Copy new characters
 for (int i = 0; i < len; i++)
 buffer[i] = p[i];
 buffer[len] = '\0';
}

We could have used the functions strlen and strcpy, described in Section 7.5, to
manipulate the character array. However, for readers unfamiliar with these func-
tions it is easier to understand the tasks being performed if they are spelled out in
more detail.

The function length returns the length of the string, which is stored in a data
field.

int String::length() const
{
 return len;
}

Access to each character in the string is provided by overloading the subscript oper-
ator. The second form will be used with constant values.

char& String::operator[](int index)
{

15.3.1 Constructors with Arguments

15.3 • Constructors 605

 assert((index >= 0) && (index < len));
 return buffer[index];
}

char String::operator[](int index) const
{
 assert((index >= 0) && (index < len));
 return buffer[index];
}

These two are combined in the implementation of the stream output operator:
ostream& operator<<(ostream& out, const String& right)
{
 int n = right.length();
 for (int i = 0; i < n; i++)
 out << right[i];
 return out;
}

Forgetting the Dual Use of Single Argument Constructors

In Section 14.8 you learned that single argument constructors have a dual use. They are used
to initialize a newly created value, but they are also used to convert a value from one type to
another. Forgetting the second purpose can sometimes lead to strange errors, particularly
given the complex C++ rules for conversion. For example, imagine that you had written a
constructor for class String that takes an integer argument, producing the string representa-
tion of the integer:

class String
{
public:
 ...
 String(int n);
 ...
};

String::String(int a)
{
 char temp_buf[10];
 ostringstream outstr(temp_buf, 10);
 outstr << a;
 len = 0;
 while (temp_buf[len] != '\0')
 len++;
 buffer = new char[len + 1];
 for (int i = 0; i < len; i++)
 buffer[i] = temp_buf[i];
 buffer[len] = '\0';
}

COMMON ERROR 15.1

606 CHAPTER 15 • Memory Management

Now imagine that you invoke a function that is looking for a String, passing it a character:

print_name('a');

You might imagine that the character value would be converted into a C string, which could
then be used to initialize a temporary string. But there is no implicit conversion from charac-
ter to string. There is, on the other hand, a conversion from character to integer, based on the
ASCII value. (See Appendix D.) The ASCII value of character 'a' is 97. So this statement
will use the constructor to convert the character to integer, and so will, perhaps surprisingly,
pass to the function the string "97".

As you learned in Section 14.8, the use of constructors for the purpose of conversion can
be avoided using the keyword explicit.

As you learned in Chapter 5, a constructor with no arguments is known as a default
constructor. If a local variable is declared with no arguments the default constructor
will be invoked automatically:

String name; // Automatically initialized to empty string by default constructor

There are a number of other situations in which the default constructor will be
invoked. For example, unless a field initializer is used, a data field will be initialized
using a default constructor:

class Worker
{
public:
 ...
private:
 String name;
};

Worker fred; // When created, fred.name will be empty string

When an array is created, the default constructor is called to initialize each array
element.

String classmates[5]; // An array of five strings, all initialized to empty strings

While it is possible to write an array initializer for an array of primitive values (see
Common Error 15.6 on page 627 for an example), there is no similar facility for
arrays of objects. If a class has constructors, but no default constructor, then an
attempt to allocate an array using the class will produce an error.

In our example class, the default constructor indicates a string with no characters.
In this case it is not necessary to allocate memory for an array:

String::String()
{
 len = 0;
 buffer = NULL; // No need to allocate array to hold zero characters
}

15.3.2 Default Constructors

15.3 • Constructors 607

Default Constructor and Parentheses

Notice that the parentheses are omitted when invoking a default constructor.

String new_name;

This can be confusing, because a declaration that uses parentheses is syntactically correct,
but has a different meaning. The following statement does not create, as you might expect, a
new String initialized with the default constructor.

String new_name();

Instead, this statement is a function prototype. See Advanced Topic 4.1 for a discussion of
prototypes. This statement is asserting that new_name is a function (defined elsewhere) that
returns a value of type String.

The only place where parentheses are used to indicate a call on the default constructor is
in the creation of an unnamed temporary. Such values are often used as arguments in a func-
tion call.

print_time(Time()); // Pass current time to print_time

SYNTAX 15.1 Default Constructor

ClassName::ClassName()
{

statements
}

Example:

String::String()
{
 len = 0;
 buffer = NULL;
}

Purpose:

The default constructor will be invoked when a variable is declared with no arguments.
In addition, it is used to initialize elements in an array, and to initialize data fields when
no other initialization is provided.

COMMON ERROR 15.2

608 CHAPTER 15 • Memory Management

A constructor that takes as argument a reference to an object of the
same class is termed a copy constructor. A copy constructor is used to
create a copy, or clone, of a value:

String first("Fred");
String second(first);
 // second is initialized from first using copy constructor
String third = first; // Also uses copy constructor

The body of the copy constructor must do whatever is necessary to copy the value
from the argument. In our example every String value manages its own dynami-
cally allocated buffer. Therefore the copy constructor creates and initializes a new
area:

String::String(const String& right)
{
 len = right.length();
 buffer = new char[len + 1];
 for (int i = 0; i < len; i++)
 buffer[i] = right[i];
 buffer[len] = '\0';
}

Copy constructors are invoked whenever a new object needs to be created as an
exact copy of an existing object. This happens, for example, when an object is
passed as an argument to a function that has declared a value parameter.

void print_line(String a)
{
 cout << a;
 a = "\n"; // Function modifies parameter variable
 cout << a;
}

String name("Fred");
print_line(name); // Argument is initialized by copy constructor
cout << name;

The fact that a copy has been created can be observed by noting that the value of
name remains unchanged, even though the function modified the parameter variable.
No copy constructor is used when you use a reference parameter.

void print_line2(String& a)
{
 cout << a;
 a = "\n";
 cout << a;
}

String name("Fred");
print_line2(name); // No copy is created because argument is by reference
cout << name; // Value is now changed

15.3.3 Copy Constructors

Copy constructors are
used internally to
create copies, or clones,
of objects.

15.3 • Constructors 609

You can observe that no copy was created because the function changed the variable
that was passed as a parameter.

When to Use the System-Defined Copy Constructor

Unless the programmer provides one, the C++ compiler will automatically generate a copy
constructor. This automatically generated function recursively invokes the copy constructor
for each data field. This is termed a memberwise copy. In situations where a memberwise
copy is appropriate (such as in the class Fraction), there is no need to write an explicit copy
constructor or assignment operator. However, when classes use dynamically allocated mem-
ory (such as class String), this default behavior is usually not the desired action, and the
functions should be defined.

SYNTAX 15.2 Copy Constructor

ClassName::ClassName(const ClassName& parameter)
{

statements
}

Example:

String::String(const String& right)
{
 len = right.length();
 buffer = new char[len + 1];
 for (int i = 0; i < len; i++)
 buffer[i] = right[i];
 buffer[len] = '\0';
}

Purpose:

The copy constructor will be invoked when a variable is declared using another variable
as an argument. In addition, copy constructors are used whenever an internal clone, or
copy, of a value is needed. An example is creating a copy of an object to be passed to a
value parameter.

QUAL ITY T IP 15.2

610 CHAPTER 15 • Memory Management

As you learned in Advanced Topic 5.1, a data field can be assigned in a field initial-
ization list. The unusual syntax for field initializers is found only in constructors
(see Syntax 5.4).

class Employee
{
public:
 Employee(String employee_name, double initial_salary);
 ...
private:
 String name;
 double salary;
};

Employee::Employee(String employee_name, double initial_salary)
: name(employee_name), salary(initial_salary)

{
}

Failing to use the field initializer list may result in a data field being modified twice;
once by a default constructor, and the second time in the body of the constructor.

Employee::Employee(String employee_name, double initial_salary)
{
 // name is initialized first, using the default constructor for the String class
 name = employee_name; // Then it is reassigned here, using the assignment operator
 salary = initial_salary;
}

As noted in Section 8.2, a similar syntax is used for invoking the base-class con-
structor from the constructor in a derived class. The name of the base class replaces
the name of the data field being initialized, as in the following example:

class TeachingAssistant : public Employee
{
public:
 TeachingAssistant(String student_name);
};

TeachingAssistant::TeachingAssistant(String student_name)
 // Teaching assistants all get same starting salary

: Employee(student_name, 5000)

{
}

If you omit the invocation of the base-class constructor, the default constructor for
the base class will be automatically invoked. In this case an error is reported if the
base class has no default constructor.

Other data fields can be initialized using the same syntax. This form is required
for data fields declared as constant, or for references (which, like constants, are
assigned once and never modified). The notation is also necessary when assigning a
size to a vector:

15.3.4 Field Initializer Lists

15.3 • Constructors 611

class PartDescription
{
public:
 PartDescription(String part_name, int inventory_number);
private:
 const String name;
 const int part_number:
 vector<PartDescription*> subcomponents;
};

PartDescription::PartDescription(String part_name, int inventory_number)
: name(part_name), part_number(inventory_number), subcomponents(3)

{
}

Constructors Are Always Extensions

As you learned in Section 8.3, a derived class D can override a function in a base class B
either as an extension or as a replacement. A member function D::f is an extension if it
invokes B::f in the body of the function, otherwise the body of D::f replaces that of B::f.

Although not the same mechanism, a constructor in a derived class does, in some fashion,
override the constructor in the base class. However, a constructor is always an extension,
never a replacement. The constructor for the derived class will always invoke the constructor
for the base class, using the default constructor for the base class if no alternative is provided.
It is not possible to avoid the execution of the constructor in the base class.

Although not technically a constructor, an assignment operator is similar to a con-
structor in the way it sets a variable to a new value. For this reason the tasks per-
formed by an assignment operator are almost always very similar to those
performed by the copy constructor. In the String class, the assignment operator
must delete the old buffer, then create space for a new buffer and copy the character
values.

String& String::operator=(const String& right)
{
 if (this != &right)
 {
 delete[] buffer; // Get rid of old buffer
 len = right.length();
 buffer = new char[len + 1];
 for (int i = 0; i < len; i++)
 buffer[i] = right[i];
 buffer[len] = '\0';
 }
 return *this;
}

ADVANCED TOPIC 15.1

15.3.5 Assignment Operators

612 CHAPTER 15 • Memory Management

Assignments should always check for the possibility of self assignment, assigning a
variable to itself. As shown, this can be easily checked by comparing the value of
this to the address of the argument. No action should be performed when a self
assignment is detected. Assignments should also always return a reference to the
current value, matching the action of the assignment operator for built-in types.

Other functions or operators may have similar actions. In the class String the +=
operator is overloaded to give it the meaning of catenation.

String& String::operator+=(const String& right)
{
 int n = length();
 int m = right.length();
 len = n + m;
 char* new_buffer = new char[len + 1];
 for (int i = 0; i < n; i++)
 new_buffer[i] = buffer[i];
 for (int j = 0; j < m; j++)
 new_buffer[n + j] = right[j];
 new_buffer[len] = '\0';
 delete[] buffer;
 buffer = new_buffer;
 return *this;
}

It is often convenient to make a single internal function to perform the common
actions, and have both the copy constructor and the assignment operator call that
function. You will see an example of this in Section 15.5.

Observing Constructors

To observe when constructors and assignment statements (and destructors, which you will
encounter shortly) are executed, simply place debugging messages into the body of the
appropriate functions. For example, suppose this is done in our String example for each
constructor and operator:

String::String(const char p[])
{
 cout << "Entering String::String(const char[])\n";
 ...
}
// And so on for all constructors and operators

Executing the following series of declarations and statements then allows us to observe the
sequence of constructor invocations.

String one;
one = "Bert";
String two;
two = one;
one += " and Ernie";

QUAL ITY T IP 15.3

15.4 • Destructors 613

The output would tell us which constructors or operators are being executed in these five
statements:

Entering String()
Entering String(const char[])
Entering String::operator=(String)
Entering String()
Entering String::operator=(String)
Entering String(const char[])
Entering String::operator+=(String)

The execution performance can be improved by using initialization rather than assignment.

String one = "Bert";
String two = one;
two += " and Ernie";

Now there will be only three constructor calls and the append operator.

Entering String(const char[])
Entering String(const String&)
Entering String(const char[])
Entering operator+=(const String&)

If this small bit of code were to appear within a loop, the difference between seven opera-
tions and four could be very significant.

If the purpose of a constructor is to ensure that every allocated value is
properly initialized, then the purpose of a destructor is to ensure that
values are properly prepared for their deallocation. A destructor is a
member function with the name ~ClassName, no arguments, and no
return type. Like constructors, destructors are never directly invoked;
instead they will be implicitly invoked when a value is destroyed.

This can occur in the following situations:

• At the end of a block, destructors for any local variables will be invoked.
• At the end of a function, destructors for any arguments will be invoked.
• At the end of a statement, destructors for any named or unnamed temporary

variables will be invoked.
• When a dynamically allocated value is deleted, the destructor is invoked before

the memory is recovered.
• When main terminates, destructors for all static local and global values will be

invoked.

15.4 Destructors

Destructors are defined to
take care of resource
management when an
object is deleted.

614 CHAPTER 15 • Memory Management

• When an object variable is deleted, destructors for any data fields will be
invoked.

• When an object variable from a derived class is deleted, destructors for the base
class will be invoked.

• When an exception is thrown and execution leaves a block, destructors for any
local variables will be invoked.

The purpose of a destructor is to perform any housekeeping tasks that may be nec-
essary before a value is discarded. The most common housekeeping task is to avoid
a memory leak by releasing any dynamically allocated memory, but other tasks that
might appear in a destructor include closing files or releasing other system
resources. If no destructor is provided, a default destructor will be automatically
generated. The default destructor has an empty body; that is, it performs no actions.
Destructors are much less common than constructors. While almost every class
requires some initialization, a destructor is only necessary if an object requires some
kind of resource management. There is no need for a destructor in class Fraction,
for instance. When a Fraction is deleted (such as a local variable going out of scope),
its memory is simply recovered and that is that.

The destructor for our String class is a good example. The destructor must
ensure that when a value of type String is deleted, the dynamically allocated charac-
ter array is returned to the heap memory manager.

String::~String()
{
 delete[] buffer;
}

SYNTAX 15.3 Destructor Definition

ClassName::~ClassName()
{

statements
}

Example:

String::~String()
{
 delete[] buffer;
}

Purpose:

Perform any housekeeping tasks that should be performed before an object is deleted.

15.4 • Destructors 615

Confusing Destruction and Deletion

Beginning programmers often confuse destruction and deletion. These concepts are closely
related, but it is important that you separate them in your mind.
• Deletion means that a pointer is passed to the delete operator.
• Destruction means that a destructor (~ClassName()) is called when an object goes out of

scope.
In other words, pointers are deleted and objects are destroyed.

Here are a couple of examples. Here, the name object goes out of scope:

{
 String name("Fred");
 ...
} // name.~String() automatically invoked here

The name object is destroyed. That is, the destructor is executed. As a consequence, the
pointer name.buffer is deleted.

The next example is more complex. Consider this deletion of a pointer to a heap object.

String* p = new String("Alice");
...
delete p; // p->~String() automatically invoked here

The delete operator causes destruction of the object to which p points, which in turn causes
the pointer p->buffer to be deleted. In other words, two blocks of memory are recycled to
the heap: the String object and the internal buffer it contains. See Figure 8.

Figure 8 Destruction of Stack and Heap Objects

COMMON ERROR 15.3

Heap

F r e d \0

A l i c e \0

name = String

buffer =

String

buffer =
p =

Stack
Destructor

invoked when name
goes out of scope

Destructor
invoked when
delete is called

616 CHAPTER 15 • Memory Management

Tracing Execution

Earlier, you learned about the technique of placing output statements in a constructor as a
means of seeing when and where constructors were being invoked. A useful programming
tool can be built by extending this idea. Consider the following class definition:

ch15/trace.h
1 #ifndef TRACE_H
2 #define TRACE_H
3
4 #include <iostream>
1 #include <string>
2
3 using namespace std;
4
5 class Trace
6 {
7 public:
8 Trace(string n);
9 ~Trace();
10 private:
11 string name;
12 };
13
14 Trace::Trace(string n) : name(n)
15 {
16 cout << "Entering " << name << "\n";
17 }
18
19 Trace::~Trace()
20 {
21 cout << "Exiting " << name << "\n";
22 }
23
24 #endif

ch15/tracetest.cpp
1 #include <iostream>
2 #include "trace.h"
3
4 using namespace std;
5
6 int main()
7 {
8 int a = 5;
9 Trace one("TraceTest");
10 if (a < 10)
11 {
12 Trace two("if");
13 // ...
14 }

PRODUCT IV ITY HINT 15.1

15.4 • Destructors 617

15 else
16 {
17 Trace three("else");
18 // ...
19 }
20 return 0;
21 }

The only purpose of the class is to display a message both when the constructor is invoked
and when the destructor is executed. By creating local variables inside blocks, one can trace
the flow of control inside a procedure. The output from variable one will be printed when
execution of the function commences and when it terminates. The output from variable two
will only appear if the condition tested by the if statement is true, while the output from
variable three will be printed if the else branch is taken.

Not Declaring Destructors Virtual

Whenever a class that is intended to serve as a base class for inheritance declares a destructor,
the destructor should be declared as virtual. To illustrate, consider the following class
declaration:

class Employee
{
public:
 ...
 virtual ~Employee();
private:
 char* name;
};

Employee::~Employee()
{
 delete[] name;
}

class TeachingAssistant : public Employee
{
 ...
private:
 string department;
};

At first glance, it doesn’t look as if TeachingAssistant needs a destructor, but it has one, pro-
vided by the C++ compiler. That destructor invokes the string destructor on the department
member.

Now imagine that you create and delete a polymorphic variable, as follows:

Employee* a = new TeachingAssistant();
delete a;

COMMON ERROR 15.4

618 CHAPTER 15 • Memory Management

If the destructor in Employee is declared virtual, as shown, both the destructors in class
Employee and class TeachingAssistant will be executed. If the virtual designation is omitted,
only the function in class Employee will be performed. As a result, the memory of the depart-
ment member will not be reclaimed.

Include Virtual Destructors

Any class that includes at least one virtual member function should define a virtual destruc-
tor, even if it performs no explicit memory management. To illustrate, consider the following
class declaration:

class Person
{
 ...
 // No destructor
private:
 int id;
};

No destructor has been provided, and of course, none is needed since the class does not man-
age heap memory or other resources. But now suppose that a derived class is formed.

class Employee : public Person
{
 ...
private:
 string name;
};

Now imagine that you create and delete a polymorphic variable, as follows:

Person* a = new Employee();
delete a;

The Employee class has a destructor, provided by the C++ compiler, that destroys the name
member. But that destructor is not called when deleting the Person* pointer.

The remedy is to add a virtual do-nothing destructor to the Person class:

class Person
{
 ...
 virtual ~Person() {}
};

A good rule of thumb is to include a destructor (even if it does nothing) and declare it as vir-
tual if there are any other virtual member functions in your class. Otherwise, destructors
from any derived classes may not be executed.

QUAL ITY T IP 15.4

15.4 • Destructors 619

If Destructor, Then Copy Constructor and Assignment

The assignment operator, copy constructor, and destructor are collectively called the “big
three”. A simple rule of thumb is that if you define a destructor, then you should always
provide a copy constructor and an assignment operator, and make sure all three perform in a
similar fashion [1]. You must implement them for any class that manages heap memory. The
equivalence of a copy constructor and the assignment operator should be clear; both are ini-
tializing a new value using an existing value. But the assignment operator is both deleting an
old value, and creating a new one. You must make sure the first part of this task matches the
actions of the destructor.

Imagine, for example, that our String class defined a destructor, but we had forgotten to
define the copy constructor. In this case a default copy constructor would be automatically
generated for us. This default would use memberwise initialization. An inadvertent copy
could then produce a premature buffer deletion (see Figure 9):

String a = "Fred"; // Internal buffer is allocated here
{
 String b = a; // Error—memberwise copy produces shared buffer
} // Destructor b.~String() invoked, buffer is deleted
cout << a << "\n"; // Sure to cause error, because buffer is now deleted

Here is a simple summary of the tasks for each of the big three.

Destructor
Free all dynamic memory that the object manages.

Copy Constructor
Initialize the object as a copy of the parameter object. For values with dynamic memory,
this usually means allocating and initializing a duplicate copy of any dynamic memory values.

Figure 9 When b Is Deleted, Buffer for a Becomes Invalid

QUAL ITY T IP 15.5

b =

a = Heap

F r e d \0

String

buffer =

String

buffer =

620 CHAPTER 15 • Memory Management

Assignment Operator
Check whether this == &right. If so, do nothing.
Free the dynamic memory of the object that is no longer needed. Copy the value of the
argument. Again, this usually means allocating and initializing a duplicate copy of any
dynamic memory values. Return *this.

Notice that the big three are actually constructed out of two lower level operations. If
copy(right) is a member function that copies the argument, and free() a member function
that frees dynamically allocated resources, the “big three” for class X can be described as
follows:

X::X(const X& right)
{
 copy(right);
}

X& X::operator=(const X& right)
{
 if (this != &right)
 {
 free();
 copy(right);
 }
 return *this;
}

X::~X()
{
 free();
}

Some authors refer to the “big four”, including the default
constructor in the group. What unites the big four is that they
will all be automatically generated should the programmer
not provide an alternative, and the automatically generated
versions are generally incorrect if there are dynamically man-
aged data fields. However, the default constructor is usually
needed only if you are creating an array of values.

Finally, note that you only need to worry about the “big
three” (or “big four”) if your class manages heap memory. If

you use the library classes, such as vector or list, there is nothing to worry about; these
classes already implement the “big three” for you.

The relationship between a String object and the underlying buffer is a pattern that
is repeated many times in programs. That is, there is an object that must dynami-
cally allocate another memory value in order to perform its intended task. How-
ever, the lifetime of the dynamic value is tied to the lifetime of the original object; it
exists as long as the original object exists, and should be eliminated when the origi-
nal object ceases to exist.

Constructors, destructors,
and the assignment
operator must all be
defined to work together
to manage internally
allocated dynamic
memory.

15.4.1 The Class auto_ptr

15.4 • Destructors 621

To simplify the management of memory in this case, the standard library imple-
ments a useful type named auto_ptr. The definition of auto_ptr is found in file <mem-
ory>. When a variable declared as an auto_ptr is deleted, the dynamic memory
associated with the variable is automatically recovered:

int f()
{
 auto_ptr<Employee> p = new Employee(...);
 ...
} // Destructor of p will automatically delete Employee object

Local variables of type auto_ptr are useful in combination with exceptions, which we
will examine in Chapter 17. When an exception terminates execution of a block, it
still invokes the destructor of the auto_ptr, and the memory is properly recycled.

Overloading the Memory Management Operators

As we noted in Chapter 14, it is possible to overload the operators new and delete, thereby
obtaining even more control over these tasks than is provided by the C++ run-time system.
To illustrate the use of these operators, imagine that you wanted to change the allocation and
recovery of nodes in the List class, so that deleted values would be stored in a global linked
list. A request for a new Node would first check this list, removing the value if found, and
otherwise asking the run-time system for a new value, as before:

class Node
{
public:
 Node(string s);
 void* operator new(size_t bytes);
 void operator delete(void* value);
private:
 string data;
 Node* previous;
 Node* next;
};

Node* free_store_list = NULL; // Global list, initially empty

void* Node::operator new(size_t types)
{
 if (free_store_list != NULL)
 {
 result = free_store_list;
 free_store_list = free_store_list->next;
 }
 else result = ::new Node;
 return result;
}

void Node::operator delete(void* value)
{

ADVANCED TOPIC 15.2

622 CHAPTER 15 • Memory Management

 Node* p = static_cast<Node*>(value);
 p->next = free_store_list;
 free_store_list = p;
}

The arguments and return types to these operators must be as shown. The type size_t is a
standard type used to represent the size of object values. The double colon preceding the new
operator is a global qualifier, indicating that the global new operator should be used when the
free store list contains no elements. The argument to delete is declared void*. This type will
match any pointer type, in particular the pointer to Node. However, to be used as a pointer to
Node, it must first be cast to the correct type. In a program with many allocations and remov-
als the improvement in time for these simple functions over the standard memory allocation
routines could be significant.

A simple rule of thumb is that if an object allocates any dynamic
memory it should be responsible for ensuring the memory is eventu-
ally freed when it is no longer useful. As is true in life, this simple
rule of thumb becomes more complicated as soon as you introduce
sharing. If two objects share a common data value, which one should
be held responsible for ensuring the common data is freed?

In some cases, one of the objects can be designated as the “owner” of the shared
resource, but this is not always possible. In these cases, one common solution is to
use a technique termed reference counting. The basic idea is to maintain a count, or
reference, that indicates the number of references to the shared resource. When an
object is first created, the reference count is one.

When the data value is shared with another object, the reference is incremented.

15.5 Reference Count ing

Reference counts can be
used to manage memory
when there is no clear
owner for a dynamically
allocated value.

1

2

15.5 • Reference Counting 623

When an object is destroyed, or removes the reference to the value, the count is
decremented.

When the reference count is decremented to zero, it means that all objects using the
shared value have been deleted and the shared data value itself can be deleted. To
illustrate the idea of reference counts, imagine you wanted to change the semantics
for the assignment of strings so that two strings would share a common internal
data buffer. The following class declaration illustrates this technique. The main func-
tion prints each statement before it is executed.

ch15/sharedstring.cpp

1

1 #include <iostream>
2
3 using namespace std;
4
5 class SharedString
6 {
7 public:
8 SharedString();
9 SharedString(const char* right);
10 SharedString(const SharedString& right);
11 ~SharedString();
12 SharedString& operator=(const SharedString&);
13 private:
14 class StringReference;
15 StringReference* p;
16 void reassign(StringReference*);
17 };
18
19 class SharedString::StringReference
20 {
21 public:
22 int count;
23 char* buffer;
24 StringReference(const char* right);
25 ~StringReference();
26 };
27
28 SharedString::SharedString() : p(NULL)
29 {
30 cout << "Entering SharedString() \n";
31 }
32
33 SharedString::SharedString(const char* right) : p(NULL)
34 {

624 CHAPTER 15 • Memory Management

35 cout << "Entering SharedString(const char*) ";
36 reassign(new StringReference(right));
37 }
38
39 SharedString::SharedString(const SharedString& right) : p(NULL)
40 {
41 cout << "Entering SharedString(const SharedString&) ";
42 reassign(right.p);
43 }
44
45 SharedString::~SharedString()
46 {
47 cout << "Entering ~SharedString() ";
48 reassign(NULL);
49 }
50
51 SharedString& SharedString::operator=(const SharedString& right)
52 {
53 cout << "Entering operator=(const SharedString&) ";
54 reassign(right.p);
55 return *this;
56 }
57
58 void SharedString::reassign(SharedString::StringReference* np)
59 {
60 if (np == NULL) // Print old values
61 cout << "value: " << p->buffer << " count: " << p->count << "\n";
62 if (np != NULL) // Increment count on the new value
63 np->count += 1;
64 if (p != NULL) // Decrement reference count on old value
65 {
66 p->count -= 1;
67 if (p->count == 0)
68 delete p;
69 }
70 p = np; // Change binding
71 if (p != NULL) // Print new values
72 cout << "value: " << p->buffer << " count: " << p->count << "\n";
73 }
74
75 SharedString::StringReference::StringReference(const char* right)
76 {
77 count = 0;
78 int n = 0;
79 while (right[n] != '\0')
80 n++;
81 buffer = new char[1 + n];
82 for (int i = 0; i < n; i++)
83 buffer[i] = right[i];
84 buffer[n] = '\0';
85 }
86
87 SharedString::StringReference::~StringReference()
88 {
89 delete[] buffer;

15.5 • Reference Counting 625

Program Run

The structure holding both the reference count and the buffer is defined by a nested
class, StringReference, within the body of the SharedString class. References are
managed by the function named reassign. This function is used by the construc-
tors, the destructor, and by the assignment. It is not uncommon for these tasks to be
very similar, and factoring their common aspects into a single internal function is
good programming style. The function reassign takes as argument a pointer to a
StringReference. This pointer could be NULL. If it is not NULL, the reference to the

90 }
91
92 SharedString g; // Global value
93
94 int main()
95 {
96 cout << "Entering main\n";
97 cout << "SharedString a = \"Fred\";\n";
98 SharedString a = "Fred";
99 cout << "SharedString b = \"Alice\";\n";
100 SharedString b = "Alice";
101 cout << "SharedString c;\n";
102 SharedString c;
103 cout << "c = a;\n";
104 c = a;
105 cout << "a = b;\n";
106 a = b;
107 cout << "g = b;\n";
108 g = b;
109 cout << "Exiting main\n";
110 return 0;
111 }

Entering SharedString()
Entering main
SharedString a = "Fred";
Entering SharedString(const char*) value: Fred count: 1
SharedString b = "Alice";
Entering SharedString(const char*) value: Alice count: 1
SharedString c;
Entering SharedString()
c = a;
Entering operator=(const SharedString&) value: Fred count: 2
a = b;
Entering operator=(const SharedString&) value: Alice count: 2
g = b;
Entering operator=(const SharedString&) value: Alice count: 3
Exiting main
Entering ~SharedString() value: Fred count: 1
Entering ~SharedString() value: Alice count: 3
Entering ~SharedString() value: Alice count: 2
Entering ~SharedString() value: Alice count: 1

626 CHAPTER 15 • Memory Management

argument value is incremented. Then the reference to the current value is decre-
mented. If the decremented reference becomes zero, the space for the internal char-
acter array is recovered.

The output illustrates how the various reference counts are incremented and dec-
remented during the course of execution.

The default constructor is invoked even before the first statement is executed, in
order to initialize the global variable named g. After the first statement, the value
Fred has reference count 1. The second statement leaves the value Alice with a simi-
lar reference count of 1. The first assignment statement causes the value Fred to be
shared, and hence the reference count is incremented to 2. The second assignment
causes Alice to be incremented to 2. The reference on the original value in a is dec-
remented to 1. The assignment to the global variable g means that there are now
three variables that refer to the value Alice. After execution ends the three destruc-
tors are invoked to remove the three local variables. Finally, the destructor is
invoked to remove the global variable g.

Reference counts may seem complex, but once mastered they can be imple-
mented in a routine fashion. The following guidelines summarize the technique:

• Create separate classes for the clients (e.g., SharedString), reference
(SharedString::StringReference), and the shared data (the character buffer inside
of StringReference).

• Assignment among the clients of the shared data increments the reference count
for the new value, and decrements the count for the old value. Note that assign-
ment in C++ can occur in multiple ways, such as through the copy constructor as
well as the assignment statement.

• When a client is destroyed, the reference to the shared resource is decremented.
Destructors can be used to detect when the client is destroyed.

• When the reference count reaches zero, the shared resource is released.

Self Assignment

We have been careful in our description of reference counting to insist that in an assignment
the reference count for a new value is incremented first, and then the reference for the old
value is decremented. A common error is to perform these tasks in the opposite order.
This will often work until a self assignment is performed; that is, a statement such as the
following:

SharedString a = "Fred";
a = a;

If the order of operations is reversed, the assignment will first decrement the reference count,
which will then become zero, and the shared buffer will be deleted. Then the reference count
will be incremented, but now it is too late, as the space for the shared buffer has already been
deleted.

COMMON ERROR 15.5

15.6 • Case Study: Matrices, Continued 627

A simple solution to the problem of self assignment is to not do anything in this situation.
A test for self assignment is to compare the argument to the value of this:

SharedString& SharedString::operator=(const SharedString& right)
{
 if (this != &right)
 reassign(right.p); // Only assign if not self assignment
 return *this;
}

.

Reference Counting Fails in the Presence of Cycles

Reference counting is an excellent form of storage management for many applications. It
does, however, have some drawbacks. Assignment, or copying a reference counted object,
takes more time than simply copying a plain pointer. The updating of the reference count
does extract a small performance cost. But this cost is typically negligible. Most importantly,
reference counts do not work for complex data structures if they can ever produce a cycle.
As Figure 10 illustrates, a cycle of shared values may never be deallocated, because each value
references another, and so, even if there are no other references outside the cycle (and thus,
the data could potentially be recovered), the reference counts will not reach zero.

Before using the technique of reference counting you should study your problem descrip-
tion carefully to ensure that cycles cannot arise.

In this section we show how to extend the matrix case study we began in Section
14.11. Instead of 3 × 3 matrices, the class Matrix will now represent matrices with an
arbitrary number of rows and columns. Because the size of the internal array cannot
be determined at compile time, it is necessary to use dynamic memory allocation.
The big three (copy constructor, assignment operator, and destructor) are written in
the form described in Section 15.4. Access methods return the number of rows and
columns in a matrix, which replace the static constants used in the earlier version.
Smaller member functions have been inlined, as in Chapter 14. Other than these

Figure 10 A Reference Count Cycle

COMMON ERROR 15.6

1

1

1

15.6 Case Study: Matr ices, Cont inued

628 CHAPTER 15 • Memory Management

changes, the code is just as before. In the following listings the sections that are the
same as before have been omitted.

ch15/matrix2.h

1 #ifndef MATRIX2_H
2 #define MATRIX2_H
3
 ... Same as in matrix1.h

59
60 /**
61 This class describes a matrix with arbitrary rows and columns.
62 */
63 class Matrix
64 {
65 public:
66 /**
67 Constructs a matrix filled with zero elements.
68 */
69 Matrix(int r, int c);
70
71 /**
72 The big three: copy constructor, assignment operator, and destructor.
73 */
74 Matrix(const Matrix& other);
75 Matrix& operator=(const Matrix& other);
76 ~Matrix();
77
78 /**
79 Gets the number of rows of this matrix.
80 @return the number of rows
81 */
82 int get_rows() const;
83
84 /**
85 Gets the number of columns of this matrix.
86 @return the number of columns
87 */
88 int get_columns() const;
89
 ...

126
127 private:
128 /**
129 Copies another matrix into this matrix.
130 @param other the other matrix
131 */
132 void copy(const Matrix& other);
133
134 /**
135 Frees the memory for this matrix.
136 */
137 void free();
138

15.6 • Case Study: Matrices, Continued 629

ch15/matrix2.cpp

139 int rows;
140 int columns;
141 double* elements;
142 };
143

 ...
180
181 inline Matrix::Matrix(const Matrix& other)
182 {
183 copy(other);
184 }
185
186 inline Matrix::~Matrix()
187 {
188 free();
189 }
190
191 inline int Matrix::get_rows() const
192 {
193 return rows;
194 }
195
196 inline int Matrix::get_columns() const
197 {
198 return columns;
199 }
200
201 inline void Matrix::free()
202 {
203 delete[] elements;
204 }
205

 ...
247
248 #endif

1 #include <iomanip>
2 #include "matrix2.h"
3
4 Matrix::Matrix(int r, int c)
5 : rows(r), columns(c), elements(new double[rows * columns])
6 {
7 for (int i = 0; i < rows * columns; i++)
8 elements[i] = 0;
9 }
10
11 Matrix& Matrix::operator=(const Matrix& other)
12 {
13 if (this != &other)
14 {

630 CHAPTER 15 • Memory Management

ch15/matrixtest2.cpp

Program Run

15 free();
16 copy(other);
17 }
18 return *this;
19 }
20
21 void Matrix::copy(const Matrix& other)
22 {
23 rows = other.rows;
24 columns = other.columns;
25 elements = new double[rows * columns];
26 for (int i = 0; i < rows * columns; i++)
27 elements[i] = other.elements[i];
28 }
29

 ... Same as in matrix1.cpp

1 #include "matrix2.h"
2
3 int main()
4 {
5 Matrix m(3, 3);
6 m[0][0] = m[1][1] = m[2][2] = 1;
7 m[0][1] = m[1][2] = 2;
8 Matrix a = 2 * m;
9 Matrix b(4, 4);
10 b = m * m;
11 cout << a << "\n";
12 cout << b << "\n";
13 cout << a + b;
14 return 0;
15 }

 2 4 0
 0 2 4
 0 0 2

 1 4 4
 0 1 4
 0 0 1

 3 8 4
 0 3 8
 0 0 3

Review Exercises 631

1. Memory is divided into four areas: code, static data, the run-time stack, and the
heap.

2. Stack-based memory is tied to function entry and exit. Errors can occur if refer-
ences continue to exist after a function exits.

3. Pointers can refer to memory in all four areas.

4. Initialization errors can occur for variables in any section of memory.

5. Dynamically allocated memory introduces two potential pointer initialization
errors: failure to initialize the pointer, and failure to initialize the space the
pointer references.

6. Simple objects are not polymorphic in the way that pointers or references are.
An assignment to such an object slices off data fields defined in the derived
class.

7. Constructors tie together memory allocation and object initialization.

8. Copy constructors are used internally to create copies, or clones, of objects.

9. Destructors are defined to take care of resource management when an object is
deleted.

10. Constructors, destructors, and the assignment operator must all be defined to
work together to manage internally allocated dynamic memory.

11. Reference counts can be used to manage memory when there is no clear owner
for a dynamically allocated value.

1. Marshall Cline and Greg A. Lomow, C++ Frequently Asked Questions, Addison-Wesley,
1995.

Exercise R15.1. When is memory for a local variable allocated? When is it recovered?

Exercise R15.2. Why might you want to allocate an array on the heap, rather than on
the run-time stack?

CHAPTER SUMMARY

FURTHER READING

REVIEW EXERCISES

632 CHAPTER 15 • Memory Management

Exercise R15.3. Describe the different named values in the following program, and
explain in what category of memory each value resides.

int master_count = 0;

int counting_function(int increment)
{
 static int internal_count = 0;
 internal_count += increment;
 master_count += increment;
 return internal_count;
}

int main()
{
 for (int i = 0; i < 10; i++)
 if (master_count != counting_function(i))
 cout << "Why aren't these the same?";
 return 0;
}

Exercise R15.4. Show the state of the run-time stack and the location and value of
each variable when execution reaches the output statement in the following program.

void print_result(int value)
{
 cout << "Final result is " << value << "\n";
}

void add_to(int start, int increment, int limit)
{
 if (start < limit)
 add_to(start + increment, increment, limit);
 else
 print_result(start + limit);
}

int main()
{
 add_to(5, 2, 10);
 return 0;
}

Exercise R15.5. What is the error in the following program fragment?
char* secret_message()
{
 char message_buffer[100];
 char* text = "Use the force, Luke!";
 int n = 0;
 while (text[n] != '\0')
 n++;
 for (int i = 0; i <= n; i++)
 message_buffer[i] = text[i];
 return message_buffer;
}

Review Exercises 633

Exercise R15.6. Compile and execute the following program. Try inputting values
of various lengths. Can you explain the results when the inputs are larger than four
characters?

int main()
{
 char a[4], b[4], c[4];
 a[0] = b[0] = c[0] = '\0';
 cin >> b;
 cout << "a is " << a << "\n";
 cout << "b is " << b << "\n";
 cout << "c is " << c << "\n";
 return 0;
}

Exercise R15.7. Why is the initialization of pointers to dynamically allocated mem-
ory more complex than the initialization of simple variables?

Exercise R15.8. What error is being committed in the assignment operator for the
following class?

class String
{
public:
 String(const char right[]);
 String& operator=(const String& right);
private:
 char* buffer;
};

String::String(const char right[])
{
 len = 0;
 while (right[len] != '\0')
 len++;
 buffer = new char[len + 1];
 for (int i = 0; i < len; i++)
 buffer[i] = right[i];
 buffer[len] = '\0';
}

String& String::operator=(const String& right)
{
 int n = right.length();
 for (int i = 0; i <= n; i++)
 buffer[i] = right.buffer[i];
 return *this;
}

Exercise R15.9. What is the error in the assignment operator for this class?
class String
{
public:
 String(const char right[]);
 String& operator=(const String& right);

634 CHAPTER 15 • Memory Management

private:
 char* buffer;
};

String::String(const char right[])
{
 len = 0;
 while (right[len] != '\0')
 len++;
 buffer = new char[len + 1];
 for (int i = 0; i < len; i++)
 buffer[i] = right[i];
 buffer[len] = '\0';
}

String& String::operator=(const String& right)
{
 if (this != &right)
 {
 delete[] buffer;
 len = right.length();
 char* buffer = new char[len + 1];
 for (int i = 0; i < len; i++)
 buffer[i] = right[i];
 buffer[len] = '\0';
 }
 return *this;
}

Exercise R15.10. What output will be printed by the following program?
class Base
{
public:
 virtual void display();
};

void Base::display()
{
 cout << "In base class \n";
}

class Derived : public Base
{
public:
 Derived(int v);
 virtual void display();
private:
 int value;
};

Derived::Derived(int v)
{
 value = v;
}

Review Exercises 635

void Derived::display()
{
 cout << "In derived class, value is " << value << "\n";
}

int main()
{
 Base b;
 Derived d(4);
 b = d;
 b.display();
 Base* bp = new Derived(7);
 bp->display();
}

Exercise R15.11. What output will be printed by the following program?
class Base
{
public:
 Base();
 Base(int v);
 virtual void display();
private:
 int value;
};

Base::Base()
{
 value = 7;
}

Base::Base(int v)
{
 value = v;
}

void Base::display()
{
 cout << "In base class, value is " << value << "\n";
}

class Derived : public Base
{
public:
 Derived(int v);
 virtual void display();
private:
 int new_value;
};

Derived::Derived(int v)
{
 new_value = v;
}

636 CHAPTER 15 • Memory Management

void Derived::display()
{
 Base::display();
 cout << "In derived class, value is " << new_value << "\n";
}

int main()
{
 Derived d(5);
 d.display();
}

Exercise R15.12. Section 15.2.2 discusses the error that can arise when a function
returns a reference to a local variable. To explore this further, imagine that the
operator+ has been defined as shown in that section, and the statement
a = (b + c) + d is being executed, where a, b, c, and d are variables of type
Fraction. Remember that the operator has been redefined, so that this statement is
internally the same as

Fraction temp& = operator+(b, c);
a = operator+(temp, d);

Draw a picture, similar to Figure 1, that shows the state of the stack prior to the
statement, assuming that a, b, c, and d are all local variables. Then show the stack
during the execution of the first operator, and again following the return of the sec-
ond operator. Indicate the location of each variable on the stack. For reference vari-
ables, draw pointers to the location being referenced. Using these diagrams, explain
why erroneous results are likely to be produced.

Exercise R15.13. Consider this code:
void f(int n)
{
 list<Employee*> e;
 for (int i = 1; i <= n; i++)
 e.push_back(new Employee());
}

At the end of the function, the list destructor will automatically delete the nodes of
e. Why does the function still have a memory leak?

Exercise R15.14. The copy constructor for a class X has the form X(const X& b). Why
is the parameter passed by reference? Explain why you can’t define a constructor of
the form X(X b)?

Exercise R15.15. What would be the implication of declaring a copy constructor
private?

Exercise R15.16. What is the difference between destruction and deletion of an
object?

Exercise R15.17. What problems could a programmer encounter if they defined a
destructor for a class but no assignment operator? Illustrate your description with
an example class.

Programming Exercises 637

Exercise R15.18. What problems could a programmer encounter if they defined a
destructor for a class but no copy constructor? Illustrate your description with an
example class.

Exercise R15.19. Which objects are destroyed when the following function exits?
Which values are deleted?

void f(const Fraction& a)
{
 Fraction b = a;
 Fraction* c = new Fraction(3, 4);
 Fraction* d = &a;
 Fraction* e = new Fraction(7,8);
 Fraction* f = c;
 delete f;
}

Exercise R15.20. You can find the code for the vector template in the header file
<vector>. Locate and copy the “big three” memory management functions in the
class definition.

Exercise R15.21. Show the value of each reference count at the point the output state-
ment is executed in the following program.

int main()
{
 SharedString one = "Fred";
 SharedString two = "Alice";
 SharedString three = one;
 SharedString four;
 four = three;
 three = two;
 cout << "What are the values here?\n";
}

Exercise R15.22. The nested class StringReference has a destructor, but no copy con-
structor or assignment operator. Explain why these are not needed.

Exercise P15.1. Predict what the output will be in the following program, then test
your prediction. Explain at what point in execution each message is generated.

void f(Trace t)
{
 cout << "Entering f \n";
}

int main()
{
 Trace tracer("main");
 f(tracer);
}

PROGRAMMING EXERCISES

638 CHAPTER 15 • Memory Management

Exercise P15.2. Extend the class Trace with a copy constructor and an assignment
operator, printing a short message in each. Use this class to demonstrate

a. the difference between initialization
 Trace t("abc");
 Trace u = t;

and assignment.
 Trace t("abc");
 Trace u("xyz");
 u = t;

b. the fact that all constructed objects are automatically destroyed.
c. the fact that the copy constructor is invoked if an object is passed by value to a

function.
d. the fact that the copy constructor is not invoked when a parameter is passed

by reference.
e. the fact that the copy constructor is used to copy a return value to the caller.

Exercise P15.3. Continue the implementation of the String class. Add each of the
following:

• A constructor String(int n, char c) that initializes the string with n copies of
the character c.

• The + operator to perform concatenation of two String objects.
• A member function compare(String) that returns –1, 0, or 1 depending upon

whether the string is lexicographically less than, equal to, or greater than the
argument. Then, using this member function, provide definitions for the com-
parison operators <, <=, ==, !=, >, and >=.

• A function resize(int n, char c) that changes the size of the string to n, either
truncating characters from the end, or inserting new copies of character c.

• The function call operator, so that s(int start, int length) returns a sub-
string starting at the given position of the given size.

Exercise P15.4. Our String class always deletes the old character buffer and reallo-
cates a new character buffer on assignment or in the copy constructor. This need
not be done if the new value is smaller than the current value, and hence would fit in
the existing buffer. Rewrite the String class so that each instance will maintain an
integer data field indicating the size of the buffer, then only reallocate a new buffer
when necessary. Abstract the common tasks from the assignment operator and the
copy constructor, and place them into an internal method.

Exercise P15.5. Define a class Set that stores integers in a dynamically allocated array
of integers.

class Set
{
public:
 void add(int n);
 bool contains(int n) const;

Programming Exercises 639

 int get_size() const;
 ...
private:
 int* elements;
 int size;
};

In a set, the order of elements does not matter, and every element can occur at most
once.
Supply the add, contains, and get_size member functions and the “big three” mem-
ory management functions.

Exercise P15.6. Modify the class Matrix from Section 15.6 to provide the following
operations:

1. The negation of a matrix. This should yield the matrix in which every element
is negated.

2. The compound assignment operator -=.
3. The subtraction operator -. Write this in two ways. First, just as the addition

operator was written using +=, this can be written using -=. Second, write the
operator using addition and unary negation.

4. The addition and subtraction of a scalar value and a matrix. This should add or
subtract the value from each element of the matrix.

5. The input of a matrix from an input stream.

Exercise P15.7. Implement operator[] in class SharedString. Can you write this
operator so that changes to a character value alter only the target string and not any
shared strings?

SharedString a = "Jim";
SharedString b = a;
b[0] = 'f'; // a should still have value Jim

Exercise P15.8. Lisp is a language that uses lists as a fundamental data type. Although
the Lisp syntax is different, lists in Lisp are manipulated using three basic functions:

int car(const List& lst);
List cdr(const List& lst);
List cons(int n, const List& lst);

The function car returns the first element from a list. (Our lists will hold only inte-
gers. Lists in Lisp can, of course, hold any data type). The function cdr returns the
argument list with the first element removed. The function cons returns a list in
which the new element has been inserted at the front.
Unlike our lists in Chapter 12, lists in Lisp require only one data type, more or less
analogous to our class Node. A NULL value is used to represent an empty list. Using
reference counts, implement Lisp style lists. Function cons, for example, will add a
new element to the existing list, increasing the reference for the original first ele-
ment of the list.

640 CHAPTER 15 • Memory Management

Exercise P15.9. Write a class OptionalEmployee that stores an optional element of type
Employee*. Here is a typical usage

class Department
{
private:
 ...
 OptionalEmployee secretary;
};

Supply a member function
bool exists() const

that tests whether the optional element exists, a member function
void set(Employee* t)

to set it, and
Employee* get() const

to get it. As an internal representation, use a Boolean field and a field of type
Employee*. Provide the necessary memory management functions to ensure that the
data field is recovered when the enclosing object (for example, the instance of
Department) is deleted.

Exercise P15.10. Add the “big three” memory management functions to the binary
search tree in Chapter 13.

Exercise P15.11. Program a memory game. The game should display a playing sur-
face of 12 square tiles, arranged 3 by 4, as follows

Each tile has a front side and a back side. The front side has various pictures of your
own design, while the back side is blank. There are two instances of each image
(that is, six images in the collection of twelve tiles). Initially all tiles display the
blank back side.
You play the game by clicking on pairs of tiles. After you click the first tile, it is
turned over (displaying the front side). After the second tile is clicked, if their pic-
tures match they are both removed; otherwise they are both flipped back to the
blank back side. The objective is to remove the tiles in the fewest possible steps.
Keep track of the number of steps and display the information at the end of the
game. Store the tiles as pointers to instances of class Tile, and use appropriate mem-
ory management techniques to delete each tile as it is removed from the playing
surface.

G

Chapter 16
Templates

• To be able to use and define template classes and functions

• To learn how to use template parameters

• To distinguish between the polymorphic mechanisms of
templates and inheritance

• To learn how to supply policies to templates

CHAPTER GOALS

A function encapsulates a series of statements, allowing them to be executed with

many different values. A template takes this idea to another level of abstraction. A

template class or function can work with many different types of values. Templates

permit the creation of general purpose, reusable tools and containers. Because the

polymorphism of templates is handled at compile time rather than run time,

templates are very efficient. In this chapter, you will explore the template

mechanism in general. In Chapter 20, you will see how templates are used in the

creation of the standard template library, the primary data structure library in C++.

642 CHAPTER 16 • Templates

CHAPTER CONTENTS

16.1 Template Functions 642
SYNTAX 16.1: Template Function Definition 644
COMMON ERROR 16.1: Invalid Type Parameters 645
QUALITY TIP 16.1: Move from Concrete

to Abstract 646

16.2 Compile-Time Polymorphism 647
ADVANCED TOPIC 16.1: Templates

and Overloading 648
ADVANCED TOPIC 16.2: Forms of

Polymorphism 648

16.3 Template Classes 649
SYNTAX 16.2: Template Class Definition 651
SYNTAX 16.3: Template Member

Function Definition 652

16.4 Turning a Class into a Template 652
ADVANCED TOPIC 16.3: Nested Templates 654
COMMON ERROR 16.2: Templates Don’t

Preserve Inheritance 654
QUALITY TIP 16.2: Document Template

Parameter Requirements 655

16.5 Nontype Template Parameters 655

16.6 Setting Behavior Using
Template Parameters 656

16.7 Case Study: Matrices,
Continued 659

Suppose you want to write a printing function for an array of integers, so that a sin-
gle call to the function will print all the values in the array with a comma between
each element and square brackets around the whole. It’s not hard to do; here is an
example:

void print(ostream& out, int data[], int count)
{
 out << "[";
 for (int i = 0; i < count; i++)
 {
 if (i > 0)
 out << ",";
 out << data[i];
 }
 out << "]";
}

The function works fine for this application. But in your next project, you need to
do the same for an array of doubles. Can you reuse your previous work? One pos-
sibility is to simply copy the source code and edit it:

void print(ostream& out, double data[], int count)
{
 out << "[";
 for (int i = 0; i < count; i++)
 {

16.1 Template Funct ions

16.1 • Template Functions 643

 if (i > 0)
 out << ",";
 out << data[i];
 }
 out << "]";
}

This works, but is not entirely satisfactory, particularly if the function is more com-
plex than our simple example. Cutting and pasting is notoriously error prone. What
if you accidently delete a line? Would a casual examination of the code reveal this
error? And there are other problems. For instance, which uses of the int keyword
need to be replaced? Why was the second parameter in the function header changed
and not the third? What if there were other int variables? Which ones would you
need to change, and which ones would you keep as integer?

In your next program, you want a similar printing routine, but this time your
array contains strings. Rather than copying and editing the source, you begin to
think that there must be a better solution. Fortunately, there is.

Notice that the only difference between these functions is the parameter type.
What you need is a way to abstract away the differences, and keep the parts that are
the same. This is exactly what a template does.

A template allows a function or a class definition to be parameter-
ized by type. This is analogous to the way that function parameters
allow the programmer to abstract an action to be performed and sep-
arate it from the values to be manipulated. The first version of the
function print encapsulates a certain set of actions, that is, printing the

elements in a certain way, and abstracts away through the parameters the elements
held in the array. To generalize the operation, you need a similar way to parameter-
ize the function; only this time the parameters will be types and not values.

To define a template, you first use the keyword template. This is
followed by a list of type parameters. Together these are termed the
template prefix, for example, template<typename T>. The type param-
eter list is surrounded by angle brackets, instead of the parentheses
that surround a parameter list in a function. But like parameters, each
type parameter is written as a keyword followed by a name.

template<typename T>

void print(ostream& out, T data[], int count)
{
 out << "[";
 for (int i = 0; i < count; i++)
 {
 if (i > 0)
 out << ",";
 out << data[i];
 }
 out << "]";
}

There is nothing special about the selection of the name T, it is just an arbitrary
name, just like the selection of the name data for the function parameter. The key-
word typename indicates that the value of T will be a type, and not a value. It could

A template allows a
function or class to work
with a variety of types.

The template separates
actions to be performed
from the type of the
values that the actions
process.

644 CHAPTER 16 • Templates

be a primitive type, such as int, or a class type, such as string. Earlier versions of
C++ use the keyword class for this purpose, writing the template prefix as

template<class T>

The meaning is the same, and you will still often see this use. However, the key-
word class could be easily misunderstood to imply that only class types could be
used in this situation, and not primitive types. The keyword typename is for this rea-
son more descriptive.

Within the body of the function the name T can be used wherever a type would
be appropriate. For example, you can declare a variable as type T (or pointer to T, or
vector of T’s) or you can make a parameter of type T, and so on.

An interesting aspect of template functions is that the type
attached to the template parameter is inferred from the parameter
value:

int a[] = { 2, 4, 5 };
print(cout, a, 3); // Will use int print
double b[] = { 3.14159, 2.7 };
print(cout, b, 2); // Will use double print
string c[] = { "Fred", "Sally", "Alice" };
print(cout, c, 3); // Will use string print

Template parameters are
inferred from the values in
a function invocation.

SYNTAX 16.1 Template Function Definition

template<typename type_variable1, ..., typename type_variablen>
return_type function_name(parameters)
{

statements
}

Example:

template<typename T>
void print(ostream& out, T data[], int count)
{
 out << "[";
 for (int i = 0; i < count; i++)
 {
 out << data[i];
 if (i + 1 < count)
 out << ",";
 }
 out << "]";
}

Purpose:

Define a function that can be reused with different types of parameters.

16.1 • Template Functions 645

An error message will be generated if the compiler is unable to infer the template
parameters from the parameter values.

Invalid Type Parameters

The properties that a type parameter must satisfy are characterized only implicitly, by the
way instances of the type are used in the body of the function itself. This can be illustrated
by another simple template function, one that returns the maximum of two parameters:

template<typename T>
T max(const T& left, const T& right)
{
 if (left < right)
 return right;
 return left;
}

The function max (which is found in the standard library <algorithm>) can be used with any
data type that implements the < operator. We know this not by looking at the function head-
ing, but by examining the way that the variables left and right are used in the function
body. For example, max can be used with integers or doubles:

int i = max(3, 4);
double d = max(3.14, 4.7);

Mixing types will not work, as the compiler is unable to decide which type the programmer
wants to use:

double e = max(2, 3.13); // Error—cannot infer type parameter

However, the programmer can explicitly provide the template parameter in order to avoid
ambiguous situations:

double e = max<double>(2, 3.13); // OK—integer will be converted into double

A common error is to use a value type that is not appropriate for the body of the function.
For example, suppose you try to determine the “maximum” of two employees:

Employee mary("Mary Smith", 25000);
Employee fred("Fred Jones", 37500);
Employee big = max(mary, fred); // Error—invalid types

An unfortunate fact is that many compilers will not report this error by pointing to the state-
ment where the call is made, but will instead point to the line in the definition of the function
where the error is discovered; namely, the point where the two employee values are com-
pared. Because there is no operator< for Employee values, the compiler does not know how
to interpret the programmer’s intent.

You could get around this by providing an explicit meaning for the operation:

bool operator<(const Employee& a, const Employee& b)
{
 return a.salary() < b.salary();
}

COMMON ERROR 16.1

646 CHAPTER 16 • Templates

Now it is perfectly acceptable to use the max function on two values of type Employee, and
the function will return the employee with the largest salary.

Employee big = max(mary, fred); // OK now, as < is well defined

Many template functions depend upon the type parameters having certain properties, such as
recognizing operator< or operator==. Because these operations can themselves be given
overloaded definitions, it is easy to use such functions with your own data types.

Move from Concrete to Abstract

The development of most template functions follows the pattern given in our example. That
is, the function is first created with fixed parameters (such as int), and later generalized by
replacing the fixed types with a template type parameter. This is not necessarily a bad thing,
as error messages from the template processing parts of C++ compilers are often misleading
and obscure. The following is not an atypical error message. In this case, the error was
caused by a single token mistake (a variable declared int that should have been string):

/usr/local/include/c++/3.2.2/bits/stl_algo.h: In function '_InputIter
 std::find_if(_InputIter, _InputIter, _Predicate,
 std::input_iterator_tag)
 [with _InputIter = std::_List_iterator<std::string, std::string&,
 std::string*>, _Predicate = std::binder2nd<std::greater<int> >]':
/usr/local/include/c++/3.2.2/bits/stl_algo.h:318: instantiated from
 '_InputIter std::find_if(_InputIter, _InputIter, _Predicate) [with
 _InputIter = std::_List_iterator<std::string, std::string&,
 std::string*>, _Predicate = std::binder2nd<std::greater<int> >]'
test.cpp:11: instantiated from here
/usr/local/include/c++/3.2.2/bits/stl_algo.h:188: no match for call to '(
 std::binder2nd<std::greater<int> >) (std::basic_string<char,
 std::char_traits<char>, std::allocator<char> >&)'
/usr/local/include/c++/3.2.2/bits/stl_function.h:395: candidates are:
 _Operation::result_type
 std::binder2nd<_Operation>::operator()
 (_Operation::first_argument_type&)
 const [with _Operation = std::greater<int>]
/usr/local/include/c++/3.2.2/bits/stl_function.h:401:
 _Operation::result_type
 std::binder2nd<_Operation>::operator()
 (_Operation::first_argument_type&)
 const [with _Operation = std::greater<int>]

Also, most programmers are more comfortable with a concrete type (for example, an array
of integers) than with an abstract concept (an array of who-knows-what).

For both these reasons, debugging a nontemplate version of a function is often much eas-
ier than debugging a template function. Once the nontemplate version is working, then you
can go back and generalize the concept by adding templates, knowing that the basic algo-
rithms are correct.

QUAL ITY T IP 16.1

16.2 • Compile-Time Polymorphism 647

In Chapter 8 you learned how inheritance and overriding are used to address the
problem of creating general purpose, reusable software components that can be spe-
cialized to fit new applications. Templates are another tool used to address the same
issue. A template function or template class (which we will see shortly) can be
instantiated in many different ways to fit the needs of individual applications. But
while templates and inheritance share a common goal, there are significant differ-
ences in the two approaches.

Most importantly, the template mechanism does most of its work at compile
time, while inheritance and overriding occur at run time. For this reason some
authors use the term “compile-time polymorphism” to describe templates, and
“run-time polymorphism” to describe inheritance/overriding [1].

Each different set of template parameters may cause the generation of an entirely
different internal function definition. That is, the compiler will generate code for
the function max<int> that is completely different from the code generated for
max<double>. On the other hand, the compiler keeps track of which expansions have
been produced. Two uses of the function max with integer parameters will share the
same function; the compiler will not generate two copies of max<int>. (The word
“may” in the first sentence reflects the fact that compilers are free to combine two
expansions into one if they discover that they both use the same instructions,
although few compilers are so intelligent.)

Most important, however, is that this expansion occurs at compile time. There
are few run-time costs associated with the use of templates. This contrasts with
inheritance and overriding, which is a powerful technique but which requires a run-
time mechanism to select the correct member function to bind to each call.

In earlier chapters we have emphasized a distinction between function declara-
tions and definitions, and between class declaration and definition. A declaration
gives bare details, such as the function name and parameter types. A definition fills
this out by providing a function body. Class declarations simply list the member
function names and parameters, while later member function definitions provide
function bodies. When files are compiled separately it is common to put declara-
tions in header files (.h files), while the definitions appear in implementation files
(.cpp files).

Templates create a third possibility. A function template is not, in fact, a function.
It is instead a factory that can be used to produce functions. The functions pro-
duced by a function template are often termed template functions. (Similarly, the
term class template is used to describe the generalization, while the term template
class is used to describe the result of expanding the generalization.)

Because function and class templates are expanded at compile
time, they are commonly stored in header files and not in implemen-
tation files. That is, the entire template body of a function such as
max will appear in a file ending with the suffix .h, and not in a file with

extension .cpp. The header file will then be included in each file that uses the function.

16.2 Compi le-Time Polymorphism

Shared template code
should be placed into a
header file.

648 CHAPTER 16 • Templates

Templates and Overloading

When two or more functions use the same name in a single scope, we say the function name
is overloaded. In one sense templates always produce an overloaded name, because there can
be an infinite set of replacements for the template parameters. However, template function
names can also coexist with ordinary functions that use the same name. When the compiler
must choose between the two, it will always select the nontemplate version over the template
version. This policy allows the programmer to make special cases, or exceptions to template
functions. This process is termed specialization.

For example, suppose you have added your new print
template function to a project, but now need to print an array
of Product values. The class Product does not have an output
stream operator, but does have a member function named
print. You can provide a function definition that will be used
with only this parameter type as follows:

void print(ostream& out, Product data[], int count)
{
 out << "[";
 for (int i = 0; i < count; i++)
 {
 if (i > 0)
 out << ",";

data[i].print(out);

 }
 out << "]";
}

When faced with the three-parameter form of print using an array of Product values, the
compiler has two choices. It can expand the template version, substituting Product for the
template parameter T, or it can use the specialized version. It will select the specialized
version.

Forms of Polymorphism

The term polymorphic means, roughly, many forms (poly = many, morph = form). There are
several different varieties of polymorphism. Overloading, where a single function name has
many definitions that are distinguished at compile time based on their parameter types, is
one form.

// Multiple meanings for same operation
ostream& operator<<(ostream& out, int value);
ostream& operator<<(ostream& out, double value);
ostream& operator<<(ostream& out, string value);

ADVANCED TOPIC 16.1

 When a template and a
nontemplate function with
the same name can be
used, the nontemplate
function is selected.

ADVANCED TOPIC 16.2

16.3 • Template Classes 649

Overriding is another form of polymorphism. Overriding occurs when a function in a base
class is declared virtual, and a function in a derived class has the same name and parameter
signature. The determination of which function to execute is made at run time.

class Employee
{
 ...
 virtual double annual_income() const;
 ...
};

class Manager : public Employee
{
 ...
 virtual double annual_income() const;
 ...
};

Employee* e = new Manager("Sarah Smith", 67000, 2000);
// Although e is a pointer to Employee, it uses the Manager version of annual_income
cout << e->annual_income() << "\n";

Templates are a third form of polymorphism.

vector<int> dates; // Vectors can hold integers
vector<double> data; // or doubles, or any other type of value

Other types of languages, such as functional languages, have even more forms of polymor-
phism [2]. The common thread running through all these mechanisms is multiple meanings
being attached to a single name.

Although template functions are useful and powerful, it is much more common to
use templates in the creation of general purpose classes. Suppose, for example, you
want to write a function that traverses a vector and simultaneously keeps track of
the minimum and the maximum.

int min = v[0];
int max = v[0];
for (int i = 1; i < v.size(); i++)
{
 if (v[i] < min) min = v[i];
 if (v[i] > max) max = v[i];
}

To return both values, make a simple Pair class.
class Pair
{

16.3 Template Classes

650 CHAPTER 16 • Templates

public:
 Pair(int a, int b);
 int get_first() const;
 int get_second() const;
private:
 int first;
 int second;
};

inline Pair::Pair(int a, int b)
{
 first = a;
 second = b;
}

inline int Pair::get_first() const
{
 return first;
}

inline int Pair::get_second() const
{
 return second;
}

Now you can complete the function as follows:
Pair minmax(vector<int> v)
{
 ...
 return Pair(min, max);
}

The caller of the function retrieves both values like this:
Pair p = minmax(data);
cout << p.get_first() << " " << p.get_second() << "\n";

However, the Pair class is not very flexible. Suppose you want to gather a pair of
double or string values. Then you need to define another class. Just as with the
print function, you need a way to parameterize the class definition, allowing it to
be used with many different types.

For this purpose, you can define a class template, which can pro-
duce pairs of particular types. Unlike template functions, the type
parameters to a class template are not inferred. Instead, they must be
explicitly named as part of the declaration. The template can be
instantiated to classes Pair<int, int>, Pair<string, int>, and so on.
You can think of the Pair template as a factory for classes, and an

instantiated class such as Pair<int, int> as a class produced by that factory. (The
general class Pair is termed a class template, while an instantiated class such as
Pair<int, int> is termed a template class.)

To define the template, denote the arbitrary types with type parameters F and S as
shown in Syntax 16.2. Replace the types for the Pair’s first and second data fields

When you declare a
variable of a template
class, you must specify
the parameter types.

16.3 • Template Classes 651

with F and S. Finally, add a line template<typename F, typename S> before the class
declaration:

template<typename F, typename S>
class Pair
{
public:
 Pair(const F& a, const S& b);
 F get_first() const;
 S get_second() const;
private:
 F first;
 S second;
};

Finally, you must turn each member function definition into a function template, as
shown in Syntax 16.3:

template<typename F, typename S>
inline Pair<F, S>::Pair(const F& a, const S& b)
{
 first = a;
 second = b;
}

SYNTAX 16.2 Template Class Definition

template<typename type_variable1, ..., typename type_variablen>
class ClassName
{

features
};

Example:
template<typename F, typename S>
class Pair
{
public:
 Pair(const F& a, const S& b);
 F get_first() const;
 S get_second() const;
private:
 F first;
 S second;
};

Purpose:

Define a class template with a type parameter.

652 CHAPTER 16 • Templates

template<typename F, typename S>
inline F Pair<F, S>::get_first() const
{
 return first;
}

template<typename F, typename S>
inline S Pair<F, S>::get_second() const
{
 return second;
}

Note that each function is turned into a separate template. Each
function name is prefixed by the “Pair<F, S>::” qualifier. And, of
course, the type variables F and S are used in place of the int type.
The Pair template is a simplified version of a similar class named pair
that appears in the standard library in the file <utility>.

The most common use of templates is in container classes. Of course, the stan-
dard vector and list constructs are templates.

In Chapter 12, you learned how to implement a linked list class. That class stored
lists of strings. You now know how to store values of arbitrary types by turning the
class into a template.

Because the List class uses the Node and the Iterator classes, you need to make
templates for these classes as well. Start with the Node class. The original Node class
stored a string value:

Template classes allow the
creation of containers that
work with many different
types of values.

SYNTAX 16.3 Template Member Function Definition

template<typename type_variable>
modifiers return_type ClassName<type_variable>::function_name(parameters) constopt
{

statements
}

Example:
template<typename T>
inline T Pair<T>::get_first() const
{
 return first;
}

Purpose:

Supply the implementation of a member function for a class template.

16.4 Turning a Class in to a Template

16.4 • Turning a Class into a Template 653

class Node
{
public:
 Node(string s);
private:
 string data;
 Node* previous;
 Node* next;
};

Replace each string with T. Prefix the class with template<typename T>. Change
every Node to Node<T>, except for constructor names. The templatized version is

template<typename T>

class Node
{
public:
 Node(T s);
private:

T data;
 Node<T>* previous;
 Node<T>* next;
};

You do the same with the List class:
template<typename T>
class List
{
public:
 List();
 void push_back(T s);
 void insert(Iterator<T> pos, T s);
 Iterator<T> erase(Iterator<T> pos);
 Iterator<T> begin();
 Iterator<T> end();
private:
 Node<T>* first;
 Node<T>* last;
};

Finally, turn each member function definition into a template, as shown in
Syntax 16.3 on page 652:

template<typename T>
Iterator<T> List<T>::begin()
{
 Iterator<T> iter;
 iter.position = first;
 iter.last = last;
 return iter;
}

Remember that template class definitions commonly are stored in header files. In
this case, because the only functions associated with lists are member functions,
there is no list.cpp file. The completion of a template version of the class List is
left as Exercise P16.5.

654 CHAPTER 16 • Templates

Nested Templates

Within the body of a template class, a member function or a nested class can have its own
template definition, independent of the definition in the surrounding class. A simple example
of the use of this feature in the standard library is the constructor that allows a container to
be initialized from a collection defined by a pair of iterators. This occurs, for example, in
class vector:

template<typename T>
class vector
{
public:
 template<typename ITR> vector(ITR start, ITR stop);
 ...
};

template<typename T> template<typename ITR>
vector<T>::vector(ITR start, ITR stop)
{
 // Vector initialization
 while (start != stop)
 {
 push_back(*start);
 ++start;
 }
}

This constructor allows the user to define a new vector, and initialize the vector with a col-
lection defined by a pair of iterators. Because of the use of nested templates, this works even
if the iterators are derived from an entirely different form of container, such as a list:

list<string> a;
a.push_back("one");
a.push_back("two"); // ... so on, to create the list
vector<string> b(a.begin(), a.end());
cout << b.front() << "\n"; // Will print first element of the vector

The invocations of a.begin and a.end will produce list iterators, which are quite different
from vector iterators, but use the same iterator operations. The template parameter ITR will
be bound to list<string>::iterator for the purposes of executing the constructor, which
will copy the values from the list into the vector.

Templates Don’t Preserve Inheritance

Beginning students sometimes assume that because, for example, class Manager derives from
Employee, that the class vector<Manager> must somehow be related to vector<Employee>.
This is not true. There is no relationship between the two vector classes.

ADVANCED TOPIC 16.3

COMMON ERROR 16.2

16.5 • Nontype Template Parameters 655

Document Template Parameter Requirements

As Common Error 16.1 on page 645 shows, the requirements that template parameters must
satisfy are implicitly defined by operations performed on values of the type by the member
functions. If not properly handled, this can impose a heavy burden on a programmer who
needs to use a template class created by another programmer, forcing them to read the entire
class definition and all member function definitions to see what operations are invoked.

There is a subtlety in the requirement that template parameters provide the operations
needed by class member functions—the code for member functions is only generated if the
functions are used. For example, it is perfectly acceptable to instantiate a vector, for example,
vector<Product>, with a class that does not have the equality operator (operator==), as long
as functions that use this operator (such as find) are never invoked.

To avoid surprising the user with unanticipated requirements, you should always
document the minimal set of operations necessary for any template parameters, placing the
information in the comments that are part of the class definition:

/**
A class to hold a collection of values.
Type T must define a copy constructor.
To use the find generic algorithm you must define the equality operator ==.

*/
template<typename T>
class vector
{
 ...
};

/**
A collection of type value pairs.

 type K must have a copy constructor and the less than operator.
 type V must have a copy constructor and the equality operator.
*/
template<typename K, typename V>
class map
{
 ...
};

The examples up to this point have all used types as template param-
eters, specified using the typename keyword. Although type names
are the most common form of template parameter, there are other
possibilities. Integer constants are a common example.

To illustrate, consider the matrix case study explored in several of the previous
chapters. When the example was first described, the size was limited to 3 × 3 matri-
ces so that space could be allocated with the object, instead of using dynamic heap

QUAL ITY T IP 16.2

16.5 Nontype Template Parameters

Template parameters can
be type names or they can
be constants.

656 CHAPTER 16 • Templates

memory. Later the 3 × 3 restriction was removed. To do this, the size of the matrix
was specified by the constructor, but as a consequence, the space for the matrix val-
ues had to be dynamically managed. Template parameters provide a third alternative
that is somewhere between these two. The size of the matrix could be specified by
integer template parameters, as in the following:

template<typename T, int ROWS, int COLUMNS>
class Matrix
{
 ...
private:
 T data[ROWS][COLUMNS];
};

To create an instance of this matrix the programmer would specify both the element
type and the size:

Matrix<double, 3, 4> a; // A 3 × 4 matrix of double values
Matrix<string, 2, 2> b;

By using template parameters for the bounds, they become part of the type. This
means that compatibility between variables of different sizes will be checked at
compile time as part of the process of type checking, rather than needing to be
checked at run time.

Matrix<int, 3, 4> a;
Matrix<double, 3, 4> b;
Matrix<int, 5, 7> c;
Matrix<int, 3, 4> d;

b = a; // Error, element types don’t match.
c = a; // Error, sizes don’t match, so types differ.
d = a; // OK. Element types and sizes match.

Because the row and column sizes are known at compile time, the space for the ele-
ments can be allocated in an array, and does not need to be dynamically managed.
But in this particular case the improvement in memory must be measured against a
serious disadvantage—the requirements for operations such as matrix multiplica-
tion are now much more difficult to specify.

Template parameters can be used for a variety of purposes, not just as
types for containers or bounds for arrays. An interesting use of tem-
plate parameters is as a mechanism for specifying behavior, some-
times termed setting policy. We will illustrate this first with template
functions, and then go on to consider template classes, where the
technique is more commonly used.

Suppose you want to generalize the function max so that it will work with values
that either do not support operator<, or that may have more than one way of
ordering. Instances of class Employee, for example, might be compared either on

16.6 Sett ing Behav ior Us ing Template Parameters

Template parameters can
be used to set behavior,
for example setting the
comparison algorithm for
sorted containers.

16.6 • Setting Behavior Using Template Parameters 657

name or on salary. To do this, the comparison is made into a template parameter, as
follows:

template<typename T, typename CMP>
T max(const T& left, const T& right, CMP cmp)
{
 if (cmp(left, right))
 return right;
 return left;
}

The less than test has been replaced by a function call. This means the third parame-
ter, cmp, must be able to be used in the fashion of a function call. As we saw in Chap-
ter 14, this parameter could either actually be a function or, more likely, be a
function object—a class that implements the function call operator, operator().

To use function objects as template parameters to compare values of type
Employee either by salary or by name, develop the following two classes:

class CompareBySalary
{
public:
 bool operator()(const Employee& a, const Employee& b) const;
};

bool CompareBySalary::operator()(const Employee& a,
 const Employee& b) const
{
 return a.get_salary() < b.get_salary();
}

class CompareByName
{
public:
 bool operator()(const Employee& a, const Employee& b) const;
};

bool CompareByName::operator()(const Employee& a,
 const Employee& b) const
{
 return a.get_name() < b.get_name();
}

The types CompareBySalary and CompareByName represent two completely different
orderings. Each is represented by a function object, a class that implements the
function call operator. Using these, it is now possible to use the function max in
either sense:

Employee alice("Alice Smith", 45000);
Employee fred("Fred Jones", 38500);

Employee one = max(alice, fred, CompareBySalary());
Employee two = max(alice, fred, CompareByName());

The same idea can be used in template class parameters. Consider the problem of
maintaining a collection in sorted order. How do you specify the rules for

658 CHAPTER 16 • Templates

comparing two elements? There are many ways to do this. Do not specify the sort-
ing criteria in the container itself, because there may be many different types of ele-
ments and each may have its own rules for comparisons. As with the function max,
the solution is to use template parameters to represent behavior. Imagine, for exam-
ple, the following class definition for a sorted collection:

template<typename T, typename CMP>
class OrderedCollection
{
public:
 typedef Iterator<T> iterator;
 void add(T value);
 iterator begin();
 iterator end();
private:
 List<T> data;
 CMP comparator;
};

Within the class an instance of the comparison type is created as a private data field.
An instance of this type is then used whenever a comparison is required. For exam-
ple, when inserting a new element:

template<typename T, typename CMP>
void OrderedCollection<T, CMP>::insert(T value)
{
 iterator ptr = begin();
 while (ptr != end())
 {
 if (comparator(value, *ptr))
 {
 // Found place to insert
 data.insert(ptr, value);
 return;
 }
 ++ptr;
 }
 // Insert at end
 data.insert(ptr, value);
}

The creation of a sorted collection now requires two template parameters; the first
identifying the element type, and the second giving the comparison algorithm. The
two values with the same sorting algorithm match in type, while values with differ-
ent sorting algorithms are separate types:

void f(OrderedCollection<Employee, CompareByName>& c)
{
 ...
}

OrderedCollection<Employee, CompareBySalary> a;
a.add(...);
OrderedCollection<Employee, CompareByName> b;
b.add(...);

16.7 • Case Study: Matrices, Continued 659

f(a); // Error—types don’t match.
f(b); // OK—type is OK.

In many situations a default policy can be identified—one that is only rarely
replaced with an alternative. In this case, a default value can be associated with the
template parameter. The default value is used when the programmer does not pro-
vide an explicit value. For sorting algorithms, a convenient default value would be
the template class less<T>, provided in the standard library <functional>. This class
has the following definition:

template<typename T>
class less
{
 bool operator()(const T& x, const T& y) const;
};

template<typename T>
bool less<T>::operator()(const T& x, const T& y) const
{
 return x < y;
}

That is, the less template class defines a function object that invokes the less than
operator. This can be specified as the default template parameter to your sorted col-
lection:

template<typename T, typename CMP = less<T> >
class OrderedCollection
{
 ...
};

Now if the user does not specify any other ordering, the default will be used, which
will in turn use the “less than” operator.

OrderedCollection<int> data; // Will use the less than operator

The standard container classes that depend upon ordering (map, multimap, and set)
all set the ordering behavior in just this fashion. A template parameter that is used
to set policy is called a trait. In addition to using traits to define comparison, the
standard containers include traits that give the programmer control over the mem-
ory allocation for the container.

In previous chapters we developed the class Matrix for performing matrix manipu-
lation. By making a template version of the class we allow the creation of matrices
of strings or integers as well as matrices of doubles. In the code shown here we use
template parameters only for the element type, and not for the row and column
bounds as was discussed in Section 16.4. This makes it easier to overload the arith-
metic operators.

16.7 Case Study: Matr ices, Cont inued

660 CHAPTER 16 • Templates

To create the template version of the class, template prefixes were added to the
class declarations and member function definitions. References to the class Matrix
were then replaced by Matrix<T>. Member function definitions were moved into the
header file.

Because zero may not be an appropriate value for all template parameter types
(think of Matrix<string>), the loop that initializes elements in the constructor has
been eliminated. Other than these, no further changes were necessary. The follow-
ing listing shows typical changes.

ch16/matrix3.h

1 #ifndef MATRIX3_H
2 #define MATRIX3_H
 ... Same as in matrix2.h

9
10 template <typename T> class Matrix;
11
12 /**
13 This class describes a row in a matrix.
14 */
15 template <typename T>
16 class MatrixRow
17 {
18 public:
19 /**
20 Remembers a row for a given matrix.
21 @param m a pointer to the matrix
22 @param s the size of the row
23 */
24 MatrixRow(Matrix<T>* m, int s);
25
26 /**
27 Accesses a row element.
28 @param j the column index
29 @return a reference to the element with the given index
30 */
31 T& operator[](int j);
32
33 private:
34 Matrix<T>* mat;
35 int i;
36 };
 ...

63
64 /**
65 This class describes a matrix with arbitrary rows and columns.
66 */
67 template <typename T>
68 class Matrix
69 {

16.7 • Case Study: Matrices, Continued 661

ch16/matrixtest3.cpp

70 public:
71 /**
72 Constructs a matrix filled with zero elements.
73 */
 ...

110
111 /**
112 Accesses a matrix row.
113 @param i the row index
114 @return the row with the given index
115 */
116 MatrixRow<T> operator[](int i);
117

 ...
125 /**
126 Computes the matrix sum.
127 @param right another matrix
128 @return the updated matrix
129 */
130 Matrix<T>& operator+=(const Matrix<T>& right);
131
132 private:

 ...
143
144 int rows;
145 int columns;
146 T* elements;
147 };
148
149 /**
150 Computes the matrix sum.
151 @param right another matrix
152 @return the sum of two matrices
153 */
154 template <typename T>
155 Matrix<T> operator+(const Matrix<T>& left, const Matrix<T>& right);
156

 ...
271
272 template <typename T>
273 Matrix<T>::Matrix(int r, int c)
274 : rows(r), columns(c), elements(new T[rows * columns])
275 {
276 }

 ... Same as in matrix2.cpp
351
352 #endif

1 #include <string>
2 #include "matrix3.h"
3
4 using namespace std;
5

662 CHAPTER 16 • Templates

Program Run

1. A template allows a function or class to work with a variety of types.

2. The template separates actions to be performed from the type of the values that
the actions process.

3. Template parameters are inferred from the values in a function invocation.

4. Shared template code should be placed into a header file.

5. When a template and a nontemplate function with the same name can be used,
the nontemplate function is selected.

6. When you declare a variable of a template class, you must specify the parameter
types.

7. Template classes allow the creation of containers that work with many different
types of values.

8. Template parameters can be type names or they can be constants.

9. Template parameters can be used to set behavior, for example setting the
comparison algorithm for sorted containers.

6 int main()
7 {
8 Matrix<double> m(3, 3);
9 m[0][0] = m[1][1] = m[2][2] = 1;
10 m[0][1] = m[1][2] = 2;
11 m[0][2] = m[1][0] = m[2][0] = m[2][1] = 0;
12 cout << 2.0 * m + m * m << "\n";
13
14 Matrix<string> s(3, 2);
15 s[0][0] = "First"; s[0][1] = "Last";
16 s[1][0] = "Joan"; s[1][1] = "Jones";
17 s[2][0] = "Lisa"; s[2][1] = "Lin";
18 cout << s + s;
19
20 return 0;
21 }

 3 8 4
 0 3 8
 0 0 3

FirstFirst LastLast
 JoanJoanJonesJones
 LisaLisa LinLin

CHAPTER SUMMARY

Programming Exercises 663

1. Bjarne Stroustrup, The C++ Programming Language, Special Ed., Addison-Wesley, 2000.

2. Adam Brooks Webber, Modern Programming Languages: A Practical Introduction,
Franklin, Beedle & Associates, 2003.

Exercise R16.1. Why is the keyword typename preferable to the use of the keyword
class in a template definition?

Exercise R16.2. Identify the errors in the following template function headers
a. template<typename T> f(int a)

b. template<typename T, typename T> f(T* a)

c. template<typename T1, typename T2> f(T1 a)

Exercise R16.3. Why do you have to specify template parameters when you instanti-
ate a class template, but not when you instantiate a function template?

Exercise R16.4. How is a template class different from a template function?

Exercise R16.5. How is a non-typename template parameter different from a type
name parameter? When might you use such a value?

Exercise R16.6. Explain how template parameters can be used to set policy for a
class.

Exercise R16.7. What happens when you change line 18 of ch16/matrixtest3.cpp to
cout << s * s; ? Explain the error.

Exercise P16.1. Rewrite the selection sort algorithm described in Section 11.1 as a
template function, using the less than operator to compare two elements.

Exercise P16.2. Change your solution to Exercise P16.1 so that the comparison algo-
rithm is also a template parameter. Use the standard class less as a default value.

Exercise P16.3. Rewrite the merge sort algorithm described in Section 11.4 as a tem-
plate function. Use two template parameters, one to set the element type, and the
second to define the ordering algorithm.

Exercise P16.4. Rewrite the binary search algorithm described in Section 11.7 as a
template function.

FURTHER READING

REVIEW EXERCISES

PROGRAMMING EXERCISES

664 CHAPTER 16 • Templates

Exercise P16.5. Finish the implementation of the template List<T> class described in
Section 16.4.

Exercise P16.6. Finish the implementation of the class Matrix using integer template
parameters from Section 16.5. Use the function call operator with two integer
parameters to access each element in the matrix.

Exercise P16.7. Modify the class Pair in Section 16.3 so that the programmer can
specify either one or two template parameters. Hint: Use a default value.

Exercise P16.8. Using the classes list<T> and Pair<T1, T2>, create a map abstraction.
A map, you will recall, is a collection of key/value pairs. Keys are unique, and can
be used to locate the associated values. Your map should implement the following
interface:

insert(key, value)
bool contains_key(key)
value_of(key)
remove_key(key)

Exercise P16.9. Design a template class container that maintains a set. In a set, each
element is unique, so adding an element to a set that already contains the value does
nothing. Provide iterators as well as an addition and removal algorithm for your set.

Exercise P16.10. Create a template definition for a fixed-size array class. The declaration
Array<int, 10> data;

should create an array of 10 integer values. Override the subscript operator to pro-
vide access to the elements.

Exercise P16.11. Define an array class that allows the user to set a lower bound for
index values that is different from zero. That is, a declaration such as

LBArray<int, 1955, 1975> data;

should create an array with 21 integer values, indexed using the integer values 1955
to 1975.

Exercise P16.12. The find algorithm in the standard library
find(begin, past_end, value)

yields an iterator pointing to the first occurrence of value in the given range, or
past_end if the value is not present. Write a template function definition for find.

Chapter 17
Exception Handling

• To understand how exceptional conditions can arise within
a program

• To understand how dealing with exceptional conditions can
make your programs more reliable and robust

• To learn how to use a variety of mechanisms to handle
exceptional conditions

• To understand how to use try blocks and catch handlers in your
own programs

CHAPTER GOALS

Programs must always be prepared to handle exceptional conditions. The ability to

gracefully deal with an exception is what separates robust and reliable programs

from those that are fragile and difficult to use. In this chapter you will encounter the

various mechanisms that are used to address exceptional conditions, and learn how

to apply them in your own programs.

666 CHAPTER 17 • Exception Handling

CHAPTER CONTENTS

17.1 Handling Exceptional Situations 666

17.2 Alternative Mechanisms for
Handling Exceptions 668

QUALITY TIP 17.1: Nobody Cares How Fast You Get

the Wrong Answer 669
COMMON ERROR 17.1: Forgetting to Check

Return Values 671

17.3 Exceptions 674
SYNTAX 17.1: Throwing an Exception 675
SYNTAX 17.2: try Block 676
QUALITY TIP 17.2: Tie Exception Classes to the

Standard Library 681

COMMON ERROR 17.2: Throwing Objects versus

Throwing Pointers 682
COMMON ERROR 17.3: Exceptions During

Construction of Global Variables 686
SYNTAX 17.3: Exception Specification 687
QUALITY TIP 17.3: Use Exceptions for

Exceptional Cases 687
QUALITY TIP 17.4: Throwing an Exception Is Not a

Sign of Shame 688
RANDOM FACT 17.1: The Ariane Rocket Incident 688

17.4 Case Study: Matrices, Continued 689

Things sometimes go wrong. Programmers have always been forced to deal with
error conditions and exceptional situations. The following are just a few types of
errors commonly encountered:

• User input errors. A user enters invalid input, such as a file name that does not
exist. An interactive program may be able to inform the user of the problem and
await further input. The options for a noninteractive program may be much
more limited.

• Device errors. A disk drive may be unavailable. A printer may be turned off.
Such errors may cause a program to be aborted or suspended until the problem is
fixed. Devices may fail in the middle of a task. For example, a printer may run
out of paper in the middle of a long series of printing commands.

• Physical limitations. Disks can fill up. Available memory can become exhausted.
• Component failures. A function or class may perform incorrectly, or use other

functions or classes incorrectly. For example, a function may use an illegal array
index, or try to pop a value from an empty stack.

From the very beginning, programmers and language designers have
had to deal with problems such as these, and have developed a num-
ber of different approaches to address them. Some of these you have
seen already, such as the predicate fail used by the stream I/O
library to report an I/O error (Section 3.10), or the assert macro
(Section 4.13). In this chapter you will examine a variety of other
tools.

17.1 Handl ing Except iona l S i tuat ions

Anomalous situations can
be expected to occur, and
programs should be
written to be robust in the
presence of errors.

17.1 • Handling Exceptional Situations 667

Some errors can be detected and resolved at the point they occur.
An example might be an input format error. If a program is expecting
a number and the user enters a name, the program can alert the user to
the error and ask for a new value. Other errors are more difficult to
deal with, because they are nonlocal. That is, the section of a program
where an exceptional condition is discovered is not the section of a
program where the resolution of the problem is best handled. To see
why, we must first examine the nature of errors in a larger context.

The importance of exception handling has increased as the task of
programming has evolved from a job pursued by a single programmer working in
isolation to a communal activity requiring the combined effort of many—some-
times several hundred—programmers working together. One programmer, P1, will
develop a function or a class that is being used by another programmer, P2.

Programmer P1 will have little control over how his or her software
will be used by programmer P2. Thus a critical design goal for P1
should be to create robust components—software that will be tolerant
of faults and be able to recover gracefully in the presence of errors.

Suppose programmer P1 develops a stack. Programmer P2 will be
using the stack. Programmer P2 need not know how the stack is
implemented (it could be implemented using a list, a vector, or a vari-
ety of other techniques). Instead, programmer P2 need only know

how to use the set of operations provided:
Stack s;
s.push(3.14);
s.push(1.41);
s.push(2.76);
while (s.size() > 0)
{

There are a variety of
mechanisms that can be
used to handle
exceptional conditions.
These include special
return flags and assertions
as well as the exception
mechanism.

Programmer P1 Programmer P2

class Stack
{
 ...
}

Stack data_stack;
data_stack.push(3.14);
...
double value = data_stack.top();

The management of
exceptions becomes even
more critical when
software is developed by
two or more programmers
working on independent
components.

668 CHAPTER 17 • Exception Handling

 cout << s.top() << "\n";
 s.pop();
}

Now imagine that something goes wrong. Perhaps P2 has misunderstood the inter-
face, or perhaps the functions developed by P2 contain a logic error that causes
them to use the component developed by P1 incorrectly. Suppose, for example, that
P2 performs a pop on an empty stack. Programmer P1, who has little or no idea of
the application at hand, will typically have no idea how to respond to the error.
Programmer P2, on the other hand, has more information, and thus is in a better
position to recover from the error. So the code developed by programmer P1 must
somehow report back to the software written by P2 both the fact that an error has
occurred, and the nature of the error.

Nowadays, the preferred mechanism for handling exceptional situations in C++ is
the exception. You will examine exceptions in Section 17.3. However, the exception
mechanism is a relatively recent addition to the C++ language. But programmers
have always had to deal with exceptional situations. For this reason it is useful to
start by examining a number of alternative ways of addressing this problem. Many
of these alternatives are still used by functions in the C++ run-time library.

Probably the worst way to deal with exceptional situations is to simply assume that
they will not occur. Beginning programmers often make this mistake, by writing
functions that will, for example, operate correctly on only a limited range of input
values, and never bothering to check the legitimacy of their arguments. You saw
this, for example, in the function future_value described in Chapter 4. What should
this function do if either n or p is less than zero?

double future_value(double initial_balance, double p, int n)
{
 return initial_balance * pow(1 + p / 100, n);
}

Illegal inputs can lead to erroneous results that will likely lead to even more bizarre
errors later in execution.

More often, mistakes arise not from a single function call, but as a consequence
of the interaction between different member functions. For example, suppose pro-
grammer P1 has developed a stack container class. The programmer provides to
programmer P2 a reasonable set of operations, such as the following:

17.2 Alternat ive Mechanisms for
Handl ing Except ions

17.2.1 Assuming Errors Will Not Occur

17.2 • Alternative Mechanisms for Handling Exceptions 669

class Stack
{
 Stack();
 void push(string value);
 double top();
 void pop();
 int size() const;
};

Programmer P1 may assume that a call on pop will never take place without a previ-
ous call on push to place a value on to the stack so the function doesn’t test for this
case. Programmer P1 has, after all, provided programmer P2 with the ability to
check whether the stack is empty through the method size, so there is no excuse for
such an error. Nevertheless, the error is almost certain to occur at some point.
Whose fault is the error? Is it the fault of programmer P2, for not using the stack
correctly, or is it the fault of programmer P1, for not anticipating the possibility of
the error? Finger pointing aside, it is simply the case that the Stack data type would
be more reliable and robust if programmer P1 had provided a better mechanism for
dealing with errors.

While this description makes it sound as if no reasonable programmer would
ever commit this type of mistake, it is a surprising fact that many parts of the C++
run-time library operate in just this fashion. The stack container in the Standard
Template Library, for instance, simply assumes that a pop will not occur without a
preceding push. The effect of this error is, according to the language definition, sim-
ply undefined. Many systems will fail with a confusing error message (such as “seg-
mentation fault”).

Nobody Cares How Fast You Get the Wrong Answer

Efficiency is usually cited as the reason for creating components that neglect to check their
data, such as the pop function in the STL class stack. The argument is that in those situations
where reliability is a concern a good programmer will use the size function to check their
data before calling pop, that one should not have to pay the execution time cost required by
the check in situations where it is not needed, and that if checks are performed there will be a
tendency to repeatedly check for the same error [1]. A similar argument is used to justify the
fact that array index expressions in C++ programs are not checked.

As machines have become ever faster, however, the balance has shifted from efficiency to
security as a primary concern. Programmers are notorious for not recognizing the possibility
of error. In real terms the execution time cost of checks is small. And this small cost pales in
comparison to the time spent hunting down mysterious errors that occur when “impossible”
things happen. And even this pales in comparison to the millions of man years that have been
spent combating computer viruses, many of which were made possible by the simple deci-
sion not to check array bounds in C and C++.

You should never assume that things will not go wrong—that your arguments will never
be invalid, that two member functions will never be invoked in an incorrect sequence.

QUAL ITY T IP 17.1

670 CHAPTER 17 • Exception Handling

Program defensively. Assume that if something can go wrong, it will go wrong. Check for
these conditions, then take appropriate actions when they occur.

Printing a message to report an error may be reasonable in student programs or
during the process of debugging.

double future_value(double initial_balance, double p, int n)
{

 if (p < 0 || n < 0)

 {

 cout << "Illegal values to future_value " << p << " " << n << "\n";

 return 0;

 }

 return initial_balance * pow(1 + p / 100, n);
}

It is also reasonable for an error message to ask a user to cure those error conditions
that are within their power to remedy, such as closing a disk drive door or turning
on a printer. However, in large systems there may not be enough information to
produce a reasonable error message. Users of commercial software systems get
extremely perturbed when a product emits an error message that is incomprehensi-
ble and does not indicate the appropriate remedy. Often a message such as “Error
Code = –41” makes no more sense than “there was an error while your program
was executing”.

One of the easiest ways to signal that an error has occurred in the processing of a
function is to return a special value as the function result. Suppose the Stack class
was implemented using an array of fixed size. This makes the code easy to write,
but the stack will fill up when too many push operations are performed. To handle
this, we define the push function so that it returns a special value (for example, a
Boolean false) if it fails.

bool ok = my_stack.push(3.14);
if (!ok) cout << "Stack was full\n";

Of course, this leaves it to the programmer to check the resulting value. Using the
stack without first checking the result value can be a source of confusing errors.

Note that this approach is not appropriate if the return type is not suitable for
encoding an error flag; for example if the result is an Employee. It is also not applica-
ble to functions that do not return a value, for example constructors.

Routines that yield numeric, string, or pointer results often return a special value,
such as 0, -1, the empty string, or the NULL pointer when an error is encountered.
For example, we may define Stack.top so that it returns zero if the stack is empty:

17.2.2 Printing an Error Message

17.2.3 Special Return Values

17.2 • Alternative Mechanisms for Handling Exceptions 671

double s = my_stack.top();
if (s == 0) cout << "Stack was empty\n";

However, this introduces another problem. The number zero could be a legal value
that was pushed onto the stack, or it could indicate an error.

The function main uses another example of special return values in C++. The main
function returns a status value, which is zero if execution was successful, and a non-
zero value if execution was not successful. Whether this value is communicated
back to the user is dependent upon the platform. The function exit can be used to
terminate execution and set the status value. A common way of responding to an
error is printing a message and calling exit:

if (my_stack.size() == 0)
{
 cerr << "Stack Underflow Detected\n";

exit(1); // Terminate with nonzero status flag
}

The stream I/O library uses a variation on the idea of a special return value. It does
not return an error status directly, rather it provides a way to convert a value into an
error status. Furthermore, unlike the earlier standard I/O library, it remembers
error flags and will not try to perform an action in an exceptional situation, for
example writing a value to a file that cannot be opened.

istream file_in("my_data.dat");
if (!file_in)

Handle error case

Here it is not the case that file_in is itself a special flag, as it was in the earlier exam-
ple. Rather, the if statement treats the file_in object as a boolean. This boolean
value will tell if the file is currently in a valid state.

Forgetting to Check Return Values

A surprisingly large number of programming errors are caused by the failure to check a
return value. For example, it is common practice when writing functions that return a
pointer to return a NULL pointer as an error indicator:

Employee* new_worker = read_employee();

If the programmer simply assumes the pointer is valid and goes on to use it without checking
for NULL, subtle and difficult to debug errors will likely ensue.

Sometimes programmers elect to return a status flag not as a function result, but
through another variable. One way to do this is to use a reference parameter, which
can be set to one value for correct outcomes and a different value on error.

COMMON ERROR 17.1

17.2.4 External Flags

672 CHAPTER 17 • Exception Handling

Employee* read_employee_info(string name, bool& status)
{
 ...
}
bool read_ok = true;
Employee* new_employee = read_employee_info("Fred Smith", read_ok);
if (!read_ok) cout <<"Unable to read new employee information\n";

Another possibility is to return the error flag in a global variable. The latter
approach is used by many of the standard mathematical routines. The global vari-
able is named errno. The include file <cerrno> provides the declaration of the vari-
able, as well as symbolic constants for a number of error conditions. Common
conditions include EDOM (domain error) and ERANGE (range error). The value of errno
is set by functions such as the square root routine:

#include <cerrno>
...
double x = ...;
errno = 0; // Clear the error flag
double d = sqrt(x);
if (errno == EDOM) // Test the global status flag

Handle error case

The function atoi is another common function that uses errno. This function takes
as argument a string of digits and returns the integer value the string represents. The
flag errno is set to the symbolic constant ERANGE if the string does not represent a
valid integer or if it is not in the range of values that can be represented by an int.

One disadvantage of this approach is that several functions that might set the glo-
bal flag could appear in the same expression. Worse, it is possible that a function
might clear the global flags:

// The function g clears the flag before attempting a calculation
double g(char* num_string)
{
 errno = 0; // Clear flags
 int n = atoi(num_string);
 if (errno == ERANGE)
 n = 0;
 return 3.14159 * sin(n * 3.14159);
}

// Is sqrt handled first or is g?
double d = sqrt(x) * g("34");

If the multiplication operator executes the square root function before invoking g,
an error in calculating the square root could be masked by the function g clearing
the error flag.

A more fundamental problem with this mechanism is that the variable errno is
global. As was noted in Quality Tip 4.2, programmers have increasingly become
aware that the use of global variables is inherently dangerous and error prone [2].
For example, it may be very difficult to trace how a global variable is being set or
used. Because better mechanisms now exist, such as exceptions, they should be
used.

17.2 • Alternative Mechanisms for Handling Exceptions 673

One response to an exceptional condition is to simply halt execution. This can hap-
pen inadvertently, such as when pop on an empty stack causes a segmentation fault.
Or it can happen by choice. The function exit(int) can be invoked to halt execu-
tion and set the return status value. The function exit, however, will not tell the
programmer where the program was at the point of error. Furthermore, there is no
guarantee that the user will check the return status. Since the program halted, the
user might assume, incorrectly, that the program terminated normally.

A better alternative is the assert macro, which you encountered in Section 4.13.
An assertion is simply a Boolean expression that can be evaluated at run time.
Should the expression evaluate to false, a diagnostic error message is printed and the
program is halted. The format for the diagnostic information is implementation-
dependent, but it typically includes the text of the assertion that failed and the file
name and line number at which the assertion appears:

#include <cassert>
...
double future_value(double initial_balance, double p, int n)
{

assert(p >= 0);
assert(n >= 0);

 return initial_balance * pow(1 + p / 100, n);
}

The assertion mechanism is hampered by the fact that assertion checking can be
turned off at the discretion of the programmer simply by setting a compiler switch.
Many programmers use assertions during program development and then, for the
sake of efficiency, turn them off when a program goes into production. Unfortu-
nately, errors occur in production programs as well as in programs under develop-
ment, and such a short-sighted policy not only makes tracing errors more difficult,
but also tends to make programs fail in even more mysterious ways.

More importantly, halting execution is often too radical a move to make in
response to an error. Many errors can be handled if they are reported in a manner
that the programmer can detect and analyze.

Some libraries provide a mechanism for users to specify what should happen in case
of an error. The library user installs an error handler function, and the library calls
that function when an error occurs.

The standard C++ library allows you to install an error handler that is called
when the new operator is unable to allocate more memory. You write a function
with the action that should occur in that unfortunate event.

void out_of_memory_action()
{
 ...
}

17.2.5 Halting Execution with Assertions

17.2.6 Error Handlers

674 CHAPTER 17 • Exception Handling

Install the function by calling
set_new_handler(out_of_memory_action)

This seems like a flexible approach, but in practice it is very limited. There is very
little you can do when the error occurs. Your function can’t mint new transistors to
make more memory. It is also difficult to save the state of the program because the
error handler function will usually not have access to the program internals. For
that reason, most error handlers simply print a message and exit the program.

In the past it was common to specify error handlers for tasks such as memory
allocation. In recent years these have largely been replaced by the exception mecha-
nism. In particular, if you don’t install your own memory error handler, the C++
memory allocator will throw an exception when heap memory is exhausted.

Since the exception mechanism was added to the C++ language, it
has tended to replace earlier techniques for dealing with exceptional
conditions. This is due, in part, to the fact that exceptions interact
well with other aspects of the language and avoid many of the prob-
lems of earlier mechanisms.

When a function detects an error, it can signal that condition to a handler by
throwing an exception (see Syntax 17.1 on page 675). For example,

double future_value(double initial_balance, double p, int n)
{
 if (p < 0 || n < 0)
 {
 logic_error description("illegal future_value parameter");

 throw description;
 }
 return initial_balance * pow(1 + p / 100, n);
}

Here, logic_error is a standard exception class that is declared in the
<stdexcept> header.

Many programmers don’t bother to give the exception object a
name and just throw an anonymous object, like this:

if (p < 0 || n < 0)
 throw logic_error("illegal future_value parameter");

The keyword throw indicates that the function exits immediately. However, the
function does not return to its caller. Instead, it searches the caller, the caller’s caller,
and so forth, for a handler that specifies how to handle a logic error. When a handler
is found, the associated catch clause is executed. The next section describes the syn-
tax for writing catch clauses.

17.3 Except ions

Use exceptions to transmit
error conditions to special
handlers.

When you detect an error
condition, use the throw
statement to signal the
exception.

17.3 • Exceptions 675

You supply an exception handler with the try statement (see
Syntax 17.2 on page 676):

try
{

code
}
catch (logic_error& e)
{

handler
}

If any of the functions in the try clause throws a logic_error, or calls another func-
tion that throws such an exception, then the code in the catch clause executes
immediately.

For example, you can place a handler into the main function that tells the user
that something has gone very wrong and offers a chance to try again with different
inputs.

int main()
{
 bool more = true;
 while (more)
 {
 try
 {

code
 }
 catch (logic_error& e)
 {
 cout << "A logic error has occurred: "
 << e.what() << "\n"
 << "Retry? (y/n)";
 string input;
 getline(cin, input);
 if (input == "n") more = false;

SYNTAX 17.1 Throwing an Exception

throw expression;

Example:

throw logic_error("illegal future_value parameter");

Purpose:

Abandon this function and throw a value to an exception handler.

17.3.1 Catching Exceptions

To handle an exception,
supply a try block with a
catch clause that matches
the exception type.

676 CHAPTER 17 • Exception Handling

 }
 }
}

This handler inspects the exception object that was thrown. Note that the catch
clause looks somewhat like a function with a reference parameter variable e of type
logic_error&. (You can give any name you like to the exception variable.) The catch
clause then applies the what member function of the logic_error class to the excep-
tion object e. That function returns the string that was passed to the constructor of
the error object in the throw statement.

SYNTAX 17.2 try Block

try
{

statements
}
catch (type_name1 variable_name1)
{

statements
}
catch (type_name2 variable_name2)
{

statements
}
...
catch (type_namen variable_namen)
{

statements
}

Example:

try
{
 List staff = read_list();
 process_list(staff);
}
catch (logic_error& e)
{
 cout << "Processing error " << e.what() << "\n";
}

Purpose:

Provide one or more handlers for types of exceptions that may be thrown when
executing a block of statements.

17.3 • Exceptions 677

You can throw any type of value, primitive or object. For example, you can throw
an integer value:

throw 3;

And later catch it with a clause that uses the same type:
try
{
 ...
}
catch (int a)
{
 ...
}

But while this is legal, it is usually not a good idea. What is the meaning of the value
3 as an error? Why not 4? There just isn’t enough information in a primitive value
to make sense of the error. Throwing enumerated constants or strings makes
slightly more sense, but you must be careful. Implicit conversions, such as from int
to double or from char* to string, are not performed when a value is thrown. The
following will probably not operate as the programmer intended:

try
{
 ...
 throw "Stack Underflow";
 ...
}
catch (string err)
{
 cerr << err << "\n";
}

The reason is, as you learned in Chapter 7, the literal string is type char* (pointer to
character). While this is often converted into a string, it is not the same type.
Because thrown values are not converted, the catch clause will not be invoked.

In order to avoid these problems, it is much more common for
programs to throw and catch objects. Often programmers will create
their own classes to represent errors.

For example:
class MyApplicationError
{
public:
 MyApplicationError(const string& r);
 string& what() const;
private:
 string reason;
};

MyApplicationError::MyApplicationError(const string& r) : reason(r) {}

17.3.2 Values Thrown and Caught

Throw and catch objects
of classes that describe
error conditions.

678 CHAPTER 17 • Exception Handling

string& what() const
{
 return reason;
}

Errors are now indicated by throwing an instance of this class:
try
{
 ...
 throw MyApplicationError("illegal value");
 ...
}
catch (MyApplicationError& e)
{
 cerr << "Caught exception " << e.what() << "\n";
}

Note that an object is normally caught as a reference parameter.
There are two reasons for this. First, it is more efficient, because it
avoids the object being duplicated by means of a copy constructor.
Second, it avoids the object-slicing problem that can occur if inherit-
ance is used to define the class.

Why would inheritance be involved with exceptions? While the programmer is
free to select any type of value to be used in a throw statement, it is often a good idea
to reuse classes from the standard library. The standard library provides a hierarchy
of standard exception classes, some of which are shown in Figure 1. The header for
these classes is <stdexcept>. The classes can be used in two ways. One way is to sim-
ply create instances of these standard objects. This technique was illustrated in our
initial example of the throw statement:

if (p < 0 || n < 0)
 throw logic_error("illegal future_value parameter");

The standard library
provides a hierarchy of
exception classes.

Figure 1 The Hierarchy of Standard Exception Types in C++

length_error domain_error out_of_range invalid_argument

exception

bad_alloc bad_cast

overflow_errorrange_error underflow_error

runtime_errorlogic_error

17.3 • Exceptions 679

Another possibility is to use inheritance to define your own exception types as
more specialized categories of the standard classes:

class FutureValueError : public logic_error
{
public:
 FutureValueError(string reason);
};

FutureValueError::FutureValueError(string reason)
 : logic_error(reason) {}

With this declaration, the programmer declares that the Future-
ValueError class is a subclass of logic_error. Notice that the Future-
ValueError constructor passes the string parameter to the base class
constructor. The future_value function can now throw a Future-
ValueError object:

if (p < 0 || n < 0)
 throw FutureValueError("illegal parameter");

Because a FutureValueError is a logic_error, you can still catch it with a
catch (logic_error& e)

clause—that is the reason for using inheritance. Alternatively, you can supply a
catch (FutureValueError& e)

clause that only catches FutureValueError objects and not other logic errors. You
can even do both:

try
{

code
}
catch (FutureValueError& e)
{

handler1
}
catch (logic_error& e)
{

handler2
}
catch (bad_alloc& e)
{

handler3
}

In this situation, the first handler catches all future value errors, the second handler
catches the logic errors that are not future value errors, and the third handler
catches the bad_alloc exception that is thrown when the new operator runs out of
memory. Within the catch clause the error string can be accessed using the member
function what.

The order of catch clauses is important. When an exception occurs, the exception
handling mechanism proceeds top to bottom to look for a matching handler and
executes the first one found. You should match a derived class before matching its

Use inheritance to
organize exceptions
into general and
specialized classes.

680 CHAPTER 17 • Exception Handling

base class. If you reversed the handlers in the preceding code, then the logic_error
handler would match a FutureValueError, and the handler for future value errors
would never be executed.

A try block does not need to catch all exceptions. If an exception is thrown and
not caught by any catch clause, the previous try block in the call sequence is exam-
ined. If that block does not have a catch clause of the appropriate type, the next
most recent block is examined, and so on. Imagine that function process_record in
the following invokes function read, which in turn invokes function future_value,
which throws an exception.

double future_value(...)
{
 if (...) throw FutureValueError("illegal future_value parameter");
 ...
}

void read()
{
 try
 {
 ...
 double d = future_value(...);
 ...
 }
 catch (bad_alloc& e)
 {
 cout << "caught bad_alloc error " << e.what() << "\n";
 }
}

void process_record()
{
 try
 {
 read();
 }
 catch (logic_error& e)
 {
 cout << "caught logic_error " << e.what() << "\n";
 }
}

When the exception is thrown in the function future_value the exception handling
system tries to find a matching catch clause. To do this it first examines the function
future_value itself. But there is no catch clause in this function. So it next examines
the caller, that is, the function read. But the argument type for the catch clause in
function read does not match the type for the exception thrown. So the caller for
read, namely function process_record, is examined. Here a catch clause of the cor-
rect type is found and executed. If the entire call stack is traversed and no catch
clause with the appropriate type is found, the error handler function terminate is
invoked. Normally this function halts execution. Programmers can specify their
own actions by using the function set_terminate to set an error handler.

17.3 • Exceptions 681

A catch clause consisting of three dots is used to catch any remaining
exceptions. Since the exception itself is not named, it normally can-
not be handled. A special form of the throw statement is therefore
used to rethrow the exception, passing it on to another exception

handler. Before the exception is rethrown, typically some error recovery tasks
are performed, such as recovering dynamically allocated memory:

try
{

code
}
catch (FutureValueError& e)
{

statements1
}
catch (...) // Catch any remaining exceptions
{

statements2
 throw; // Rethrow the error
}

An example illustrating the use of this form of catch and rethrow will be presented
in Section 17.3.3.

Tie Exception Classes to the Standard Library

The C++ language permits a throw statement to represent an exception using any type of
value. However, as a practical matter most programmers choose to throw objects. While it is
sometimes sufficient to simply reuse one of the standard classes from Figure 1, more often
than not programmers create their own exception classes. A user-defined class can more
accurately represent the nature of the error in the application at hand and does not run the
risk of being confused with errors arising from other sources.

However, it is useful to tie user-defined exception classes by inheritance to the standard
class hierarchy. There are several advantages to doing this. First, the base class exception
defines the big three memory management operations, freeing the programmer from this
concern. The use of the standard class clearly indicates that the purpose is to describe an
exception. Finally, the use of inheritance permits catch clauses to use polymorphism to catch
an exception using a base class, such as logic_error, in place of the derived class.

As shown in Figure 1, the standard library distinguishes between “logic errors” and “run-
time errors”. When a logic error occurs, it never makes sense to retry the same operation, but
a run-time error may have some chance of going away when the operation is attempted a
second time. For example, logic dictates that getting data from an empty list is doomed to
failure. But reading from a file on a networked file system may fail due to an intermittent
network error, and then later work when the network is up again.

Some standard exceptions do not follow the logic error/run-time error dichotomy. For
example, the exception bad_cast is thrown when a dynamic cast fails. The exception
bad_alloc is thrown when memory becomes exhausted and a memory request cannot be
satisfied. However, most user-defined exception classes fit into either the logic error or run-

Rethrow any exception
that you catch without
fully handling it.

QUAL ITY T IP 17.2

682 CHAPTER 17 • Exception Handling

time error category, and hence are best handled by making them inherit from the appropriate
standard class.

Throwing Objects versus Throwing Pointers

A common source of error is to confuse throwing a pointer with throwing an object. There
is a world of difference between

throw FutureValueError("illegal parameter");

and

throw new FutureValueError("illegal parameter");

A catch clause for the second must use a pointer value:

catch (FutureValueError* e) ...

The catch clause for the object will not catch a pointer value, nor will a catch clause for a
pointer capture an object value. The two are separate types. Throwing an object is preferable
to throwing a pointer, because it avoids a potential memory leak if you neglect to delete the
exception object.

One common use of exception handling is in functions that read input. Consider a
function such as the Product::read function. It expects the name, price, and score of
a product. What should happen if no price or score is given? This may be an indica-
tion of a corrupted file. In such a case, it makes sense to throw an exception.

bool Product::read(fstream& fs)
{
 getline(fs, name);
 if (name == "") return false; // End of file
 fs >> price >> score;
 if (fs.fail())
 throw runtime_error("Error while reading product");
 string remainder;
 getline(fs, remainder);
 return true;
}

The read function shows the distinction between the expected end of file and an
unexpected problem. All files must come to an end, and the function returns false
if the end has been reached in the normal way. But if an error has occurred in the
middle of a product record, then the function throws an exception. Therefore, the
caller of the function only has to worry about the normal case and can leave the
processing of the exceptional case to a specialized handler.

COMMON ERROR 17.2

17.3.3 Stack Unwinding

17.3 • Exceptions 683

Consider this calling function:
void process_products(fstream& fs)
{
 list<Product> products;
 Product p;
 while (p.read(fs))
 products.push_back(p);

do something with products
}

Now suppose that the read function throws an exception. Then the exception-
handling mechanism abandons the process_products function and searches its
callers for an appropriate handler.

But there is a problem. When the process_products function is abandoned, what
happens to the memory in the products list? The list contains some number of
nodes that were allocated on the heap and that need to be deleted (see Figure 2).

The C++ exception-handling mechanism is prepared for this situ-
ation. An important aspect of exception-handling is the process of
unwinding the run-time stack. When an exception is thrown, all
function calls between the throw point and the try block are termi-
nated. The exception handler invokes all destructors of stack objects
before it abandons a function.

Figure 2 Run-Time Stack After Exception is Thrown

Heap

Activation record for read

Activation record
for process_products

Activation record for caller of
process_products

. . . .

Stack

p = Product

Return address

Return address

products = list<Product>

When an object is
removed from the stack
through exception
handling, its destructor
is invoked.

684 CHAPTER 17 • Exception Handling

In our example, the ~list destructor is called and all nodes are deleted. Thus,
there is no memory leak.

Note that this automatic invocation of destructors only applies to objects created
as local variables. If you use a pointer in your code, then no destructor is called for
the heap-based object the pointer refers to. Pointers don’t belong to classes, and
only classes can have destructors. For example, consider this scenario.

Product* p = new Product();
if (p->read())
{
 ...
}
delete p; // Never executes if read throws an exception

If an exception occurs in the read function, then the calling function is abandoned.
But p isn’t an object, so it receives no special treatment from the exception handler.
The memory to which it points is not deleted, causing a memory leak.

This is a serious problem. There are two remedies. The best remedy is to make
sure that all allocated memory is deleted in a destructor. For example, that is the
case for the nodes of a linked list. Replacing a simple pointer with an auto_ptr will
do the trick, because the destructor in the class auto_ptr will handle the deletion.

// Deletion now taken care of by auto_ptr destructor
auto_ptr<Product> p = new Product();

However, if a local pointer variable is unavoidable, you can use the following
construct:

Product* p = NULL;
try
{
 p = new Product();
 if (p->read())
 {
 ...
 }
 delete p;
}
catch (...)
{
 delete p;
 throw;
}

As was noted in the previous section, the special clause catch (...) matches any
exception. The handler contains the local cleanup, followed by the throw statement
without an exception object. That special form of the throw statement rethrows the
current exception. It is important to rethrow the exception so that a competent han-
dler can process it. After all, the catch clause didn’t properly handle the exception.

This local cleanup mechanism is clearly tedious, providing an excellent incentive
to arrange your code in an object-oriented way. Place the pointer variables inside
classes, and put the destructor in charge of cleanup.

17.3 • Exceptions 685

Because a constructor does not return a value, the option of returning a status flag is
not available. Throwing an exception is therefore a much cleaner way to indicate the
failure of a constructor.

Objects are not considered to be “constructed” until the constructor completes
execution. An exception thrown from within a constructor will not cause the
destructor to be triggered. This leaves the programmer in charge of resource man-
agement inside the constructor. A subtle source of memory leaks arises from an
exception being thrown after a dynamically allocated value is created:

class DataArray
{
public:
 DataArray(int s);
 ~DataArray();
 void init(int s);
private:
 int* data;
};

DataArray::DataArray(int s)
{
 data = new int[s];
 init(s); // What happens if init throws exception?
}

DataArray::~DataArray()
{
 delete[] data;
}

If the method init throws an exception, the dynamically allocated memory array
will not be recovered, since the object is not yet considered to be constructed. To
solve this problem, catch the error from within the constructor, delete the memory,
then rethrow the exception:

DataArray::DataArray(int s)
{
 data = new int[s];
 try
 {
 init(s);
 }
 catch (...) // Catch any exception init throws
 {
 delete[] data;
 data = NULL;
 throw; // Rethrow exception
 }
}

17.3.4 Exceptions and Constructors / Destructors

686 CHAPTER 17 • Exception Handling

Because destructors are invoked as part of the process of stack
unwinding during the recovery from an exception, a destructor
should never throw an exception. Doing so would yield two excep-
tions; the one currently being handled by the stack unwinding, and

the one thrown by the destructor. Because it is unclear which exception should take
priority, the program is immediately halted. This is almost never what the program-
mer intended.

Exceptions During Construction of Global Variables

There is one caveat to the suggestion that exceptions be used to signal errors that occur dur-
ing the execution of a constructor. Such use is not safe if the constructor in question is used
to initialize a global variable. Because the initialization of global variables occurs before the
function main is invoked, there can be no catch clause to capture any exceptions that may be
generated. So any exceptions that are thrown will immediately terminate the program. This
is yet another reason to avoid the use of global variables.

If an exception is thrown and no catch clause exists to catch it then
the program invokes an error handler to terminate the program. Fur-
thermore, as you have seen in the preceding section, if an exception
occurs, then some important code may not be executed. Therefore, it
is somewhat dangerous to throw exceptions, or to call methods that

can throw exceptions. In C++, a function can declare that it throws only exceptions
of a certain type, or no exceptions at all. You can use that knowledge to make sure
that it is safe to call certain functions, or to know which kinds of exceptions your
program needs to catch.

A function signature can optionally be followed by the keyword throw and a
parenthesized, comma-separated list of exception types (see Syntax 17.3 on page
687). For example:

void process_products(fstream& fs)
 throw (UnexpectedEndOfFile, bad_alloc)

To denote the fact that a function throws no exceptions, use an empty exception list.
void print_products(const list<Product>& products)
 throw ()

A function without a throw specification is allowed to throw any exception.

Do not throw exceptions
in a destructor.

COMMON ERROR 17.3

17.3.5 Exception Specifications

Exception specifications
describe the exceptions
that a function may throw.

17.3 • Exceptions 687

You must be careful when using exception specifications. The
compiler does not enforce them. If a function calls another function,
and the called function throws an exception that is not caught, then
an exception that is not on the specification list can end up propa-
gating through the function. If a function with an exception specifi-

cation throws an unexpected exception object whose type is not in the list, the
exception handling mechanism invokes an error handler to terminate the program.

Exception specifications are not tied to function signatures during inheritance. A
function in a derived class that overrides a function in a base class can throw an
exception that is not specified in the base class definition. An examination of the
base class will therefore not reveal this possibility.

Use Exceptions for Exceptional Cases

Consider the read function of the Product class. It returns false at the end of the stream.
Why doesn’t it throw an exception?

The designer of this function realized that every stream must come to an end. In other
words, the end of input is a normal condition, not an exceptional one. Whenever you
attempt to read a data record, you must be prepared to deal with the possibility that you
reached the end. However, if the end of input occurs inside a data record that should be com-
plete, then you can throw an exception to indicate that the input came to an unexpected end.
This must have been caused by some exceptional event, perhaps a corrupted file.

In particular, you should never use an exception as a “break statement on steroids”. Don’t
throw an exception to exit a deeply nested loop or a set of recursive method calls; this is con-
sidered an abuse of the exception mechanism. A good tutorial on the use of exceptions is [3].

Exception specifications
are checked at run time.
An unexpected exception
terminates the program.

SYNTAX 17.3 Exception Specification

return_type function_name(parameters)
 throw (type_name1, type_name2, ..., type_namen)

Example:

void process_products(fstream& fs)
 throw (UnexpectedEndOfFile, bad_alloc)

Purpose:

List the types of all exceptions that a function can throw.

QUAL ITY T IP 17.3

688 CHAPTER 17 • Exception Handling

Throwing an Exception Is Not a Sign of Shame

Some programmers prefer to patch a problem locally rather than throw an exception,
because they consider it irresponsible not to handle all problems. For example, some pro-
grammers may implement the Iterator::get method to return an empty string when the
iterator is in an invalid position. However, that view is short-sighted. By supplying a false
return value, a program may muddle through for a while, but it will likely produce unex-
pected and useless results. Furthermore, suppressing the error report deprives an exception
handler of effectively dealing with the problem.

It is entirely honorable to throw exceptions to indicate failures that a function cannot
competently handle. Of course, it is a good idea to document these exceptions.

The Ariane Rocket Incident

The European Space Agency, Europe’s counterpart to NASA, developed a rocket model
called Ariane that it had successfully used several times to launch satellites and scientific
experiments into space. However, when a new version, the Ariane 5, was launched on June 4,
1996, from ESA’s launch site in Kourou, French Guiana, the rocket veered off course
approximately 40 seconds after liftoff. Flying at an angle of more than 20 degrees, rather than
straight up, exerted such an aerodynamic force that the boosters separated, which triggered
the automatic self-destruction mechanism. The rocket blew itself up.

The ultimate cause of this accident was an unhandled exception! The rocket contained
two identical devices (called inertial reference systems) that processed flight data from mea-
suring devices and turned the data into information about the rocket position. The onboard
computer used the position information for controlling the boosters. The same inertial refer-
ence systems and computer software had worked fine on the Ariane 4 predecessor.

However, due to design changes of the rocket, one of the sensors measured a larger
acceleration force than had been encountered in the Ariane 4. That value, computed as a
floating-point value, was stored in a 16-bit integer. Unlike C++, the Ada language, used for
the device software, generates an exception if a floating-point number is too large to be con-
verted to an integer. Unfortunately, the programmers of the device decided that this situation
would never happen and didn’t provide an exception handler.

When the overflow did happen, the exception was triggered and, because there was no
handler, the device shut itself off. The onboard computer sensed the failure and switched
over to the backup device. However, that device had shut itself off for exactly the same rea-
son, something that the designers of the rocket had not expected. They figured that the
devices might fail for mechanical reasons, and the chances of two devices having the same
mechanical failure was considered remote. At that point, the rocket was without reliable
position information and went off course (see Figure 3).

Would it have been better if the software hadn’t been so thorough? If it had ignored the
overflow, the device wouldn’t have been shut off. It would have just computed bad data. But
then the device would have reported wrong position data, which could have been equally
fatal. Instead, a correct implementation should have caught overflow exceptions and come

QUAL ITY T IP 17.4

RANDOM FACT 17.1

17.4 • Case Study: Matrices, Continued 689

up with some strategy to recompute the flight data. Clearly, ignoring an exception was not a
reasonable option in this context.

In Chapters 14 through 16 we developed classes to be used in matrix algorithms. To
modify these classes to use exceptions we first define a pair of exception classes. The
class MatrixMismatchException inherits from the standard class invalid_argument,
while the class MatrixIndexException inherits from out_of_range. By using the stan-
dard library classes that inherit from class exception, both of these exception classes
can be caught by a single catch clause, as shown in the test program. In order to
provide a more meaningful error message we include the out of range index value as
an argument to the constructor for the class MatrixIndexException. Because the base
exception class requires a string, the index value is formatted using a private inter-
nal method before the constructor for the base class is called:

ch17/matrix4.h

Figure 3 The Explosion of the Ariane Rocket

17.4 Case Study: Matr ices, Cont inued

1 #ifndef MATRIX4_H
2 #define MATRIX4_H
3
4 #include <iostream>
5 #include <stdexcept>
6
7 using namespace std;
8
9 /**
10 Matrix exception class for indexing error.
11 */
12 class MatrixIndexException : public out_of_range
13 {
14 public:
15 MatrixIndexException(int i);
16 private:
17 string format_message(int i);
18 };
19

690 CHAPTER 17 • Exception Handling

20 /**
21 Matrix exception class for mismatched argument error.
22 */
23 class MatrixMismatchException : public invalid_argument
24 {
25 public:
26 MatrixMismatchException();
27 };
28
29 /**
30 This class describes a row in a matrix.
31 */
32 class Matrix;
33 class MatrixRow
34 {
 ... Same as in matrix2.h

48 double& operator[](int j) throw (MatrixIndexException);
 ...

53 };
 ...

80 /**
81 This class describes a matrix with arbitrary rows and columns.
82 */
83 class Matrix
84 {
85 public:
 ...

116 double& operator()(int i, int j) throw (MatrixIndexException);
 ...

131 MatrixRow operator[](int i) throw (MatrixIndexException);
 ...

145 Matrix& operator+=(const Matrix& right)
146 throw (MatrixMismatchException);
147
148 private:

 ...
163 };

 ...
170 Matrix operator+(const Matrix& left, const Matrix& right)
171 throw (MatrixMismatchException);

 ...
178 Matrix operator*(const Matrix& left, const Matrix& right)
179 throw (MatrixMismatchException);

 ...
203
204 inline MatrixIndexException::MatrixIndexException(int idx)
205 : out_of_range(format_message(idx)) {}
206
207 inline MatrixMismatchException::MatrixMismatchException()
208 : invalid_argument("Matrix arguments have incompatible sizes") {}
209

 ...
235 inline MatrixRow Matrix::operator[](int i) throw (MatrixIndexException)
236 {

17.4 • Case Study: Matrices, Continued 691

Methods that used assert in the previous version have been rewritten in
matrix4.cpp to throw exceptions on error. Notice that the matrix addition function
is declared as potentially throwing an exception even though none appears in the
body, because the exception from the operator += can propagate through the func-
tion. The same is true for the subscript operators in MatrixRow and ConstMatrixRow.

ch17/matrix4.cpp

237 return MatrixRow(this, i);
238 }
239

 ...
247
248 inline double& MatrixRow::operator[](int j)

throw (MatrixIndexException)
249 {
250 return (*mat)(i,j);
251 }

 ...
267 #endif

1 #include <iomanip>
2 #include <sstream>
3
4 #include "matrix4.h"
5
6 string MatrixIndexException::format_message(int n)
7 {
8 ostringstream outstr;
9 outstr << "Matrix index " << n << " out of range";
10 return outstr.str();
11 }
12

 ... Same as in matrix2.cpp
38
39 double& Matrix::operator()(int i, int j) throw (MatrixIndexException)
40 {
41 if (i < 0 || i >= rows)
42 throw MatrixIndexException(i);
43 if (j < 0 || j >= columns)
44 throw MatrixIndexException(j);
45 return elements[i * get_columns() + j];
46 }

 ...
56
57 Matrix& Matrix::operator+=(const Matrix& right)
58 throw (MatrixMismatchException)
59 {
60 if (rows != right.rows || columns != right.columns)
61 throw MatrixMismatchException();
62 for (int i = 0; i < rows; i++)
63 for (int j = 0; j < columns; j++)
64 (*this)(i, j) += right(i, j);

692 CHAPTER 17 • Exception Handling

ch17/matrixtest4.cpp

Program Run

65 return *this;
66 }
67
68 Matrix operator+(const Matrix& left, const Matrix& right)
69 throw (MatrixMismatchException)
70 {
71 Matrix result = left;
72 result += right;
73 return result;
74 }
75
76 Matrix operator*(const Matrix& left, const Matrix& right)
77 throw (MatrixMismatchException)
78 {
79 if (left.get_columns() != right.get_rows())
80 throw MatrixMismatchException();
81 Matrix result(left.get_rows(), right.get_columns());
82 for (int i = 0; i < left.get_rows(); i++)
83 for (int j = 0; j < right.get_columns(); j++)
84 for (int k = 0; k < left.get_columns(); k++)
85 result(i, j) += left(i, k) * right(k, j);
86 return result;
87 }

 ...

1 #include "matrix4.h"
2
3 int main()
4 {
5 try
6 {
7 Matrix m(4, 3);
8 m[0][0] = m[1][1] = m[2][2] = 1;
9 m[0][1] = m[1][2] = m[2][3] = 2;
10 cout << m * m;
11 }
12 catch (exception& e)
13 {
14 cout << "Caught exception: " << e.what() << "\n";
15 }
16 return 0;
17 }

Caught exception: Matrix index 3 out of range

Further Reading 693

1. Anomalous situations can be expected to occur, and programs should be writ-
ten to be robust in the presence of errors.

2. There are a variety of mechanisms that can be used to handle exceptional condi-
tions. These include special return flags and assertions as well as the exception
mechanism.

3. The management of exceptions becomes even more critical when software is
developed by two or more programmers working on independent components.

4. Use exceptions to transmit error conditions to special handlers.

5. When you detect an error condition, use the throw statement to signal the
exception.

6. To handle an exception, supply a try block with a catch clause that matches the
exception type.

7. Throw and catch objects of classes that describe error conditions.

8. The standard library provides a hierarchy of exception classes.

9. Use inheritance to organize exceptions into general and specialized classes.

10. Rethrow any exception that you catch without fully handling it.

11. When an object is removed from the stack through exception handling, its
destructor is invoked.

12. Do not throw exceptions in a destructor.

13. Exception specifications describe the exceptions that a function may throw.

14. Exception specifications are checked at run time. An unexpected exception ter-
minates the program.

1. Bjarne Stroustrup, The C++ Programming Language, Special Ed., Addison-Wesley, 2000.

2. William A. Wulf and Mary Shaw, “Global Variable Considered Harmful”, Sigplan
Notices, 8(2): 28–43, 1973.

3. Herb Sutter, Exceptional C++, Addison-Wesley, 2000.

CHAPTER SUMMARY

FURTHER READING

694 CHAPTER 17 • Exception Handling

Exercise R17.1. Give three examples not mentioned in the chapter of exceptional con-
ditions that a program could encounter.

Exercise R17.2. Explain why the handling of exceptional conditions is often nonlocal.

Exercise R17.3. What is the argument usually cited for not bothering to check for
exceptional conditions? What is the counter-argument?

Exercise R17.4. What are the dangers inherent in returning an error status value as a
function return value?

Exercise R17.5. Give two reasons why returning an error status value through a global
variable is not a good idea.

Exercise R17.6. What dangers are there in simply halting execution by calling exit
when an error is encountered?

Exercise R17.7. What is the advantage of using assert rather than testing a condition
and calling exit? What are two drawbacks to the use of assert?

Exercise R17.8. What are the advantages of using exceptions in place of other means
of error processing described in this chapter?

Exercise R17.9. Write the statements to throw
a. a runtime_error with an explanation “Network failure”
b. a string "Network failure"
c. the unlucky number 13

Exercise R17.10. Write the statements to catch the exceptions of Exercise R17.9.

Exercise R17.11. If no exceptions are thrown within a try block, where does execu-
tion continue after the statements complete execution?

Exercise R17.12. What happens if an exception is thrown and no matching catch
clause can be found?

Exercise R17.13. What happens if a value being thrown matches several catch clauses?

Exercise R17.14. What happens when a throw statement occurs inside a catch handler?

Exercise R17.15. Write the statements to catch
a. any logic_error

b. any ListError or runtime_error
c. any exception

Exercise R17.16. What is the advantage to creating your own exception class? What is
the benefit of using inheritance from the standard exception class hierarchy?

Exercise R17.17. When do you use the throw; statement without argument?

REVIEW EXERCISES

Programming Exercises 695

Exercise R17.18. Consider the following code:
void f()
{
 List a;
 List* b = new List();
 throw runtime_error("");
}

Which objects are destroyed? Are there any memory leaks?

Exercise R17.19. What is the difference between
void f();

and
void f() throw ();

Exercise R17.20. How do you denote a function that throws only bad_alloc exceptions?
A function that throws no exceptions at all? A function that can throw exceptions
of any type?

Exercise R17.21. What happens in your programming environment if you throw an
exception that is never caught? What happens if you throw an exception that vio-
lates an exception specification?

Exercise P17.1. One argument used to justify the fact that the stack data structure in
the standard library does not throw exceptions is that it is easy to add these facili-
ties. Create a class SafeStack that implements a stack of strings. Use an instance of
stack<string> to hold the underlying values, and implement the same interface as
that data type. However, your class should throw an exception if an attempt is made
to remove a value from an empty stack.

Exercise P17.2. Use the class you developed in Exercise P17.1 to measure the
execution cost of throwing an exception. Create an empty stack and, within a loop,
repeatedly execute the following try block:

try
{ // DON’T—this is not a good idea, just being used for timing
 stack.pop();
}
catch (StackError& s)
{
 ...
}

Compare the execution time to the simpler statement that avoids the exception
altogether

if (!stack.is_empty())
 stack.pop();

PROGRAMMING EXERCISES

696 CHAPTER 17 • Exception Handling

Exercise P17.3. Demonstrate that a try block need not catch every type of error that
could be generated within the block. What happens to exceptions that are not
caught?

Exercise P17.4. Enhance the List class of Chapter 12 to throw an exception whenever
an error condition occurs. Use exception specifications for all functions.

Exercise P17.5. Modify the class Fraction of Chapter 14 to throw an exception if a
zero denominator is specified. What would be an appropriate category for this
exception?

Exercise P17.6. Using the class Trace developed in Chapter 15, verify that destructors
will be properly invoked when an exception is thrown from a function many levels
deep in a function call.

Exercise P17.7. Write a program that can be used to demonstrate that the order in
which catch clauses are listed is important.

Exercise P17.8. Change the Product class of Chapter 5 so that the read member func-
tion reads a product record from a file and throws an exception when there is an
unexpected problem. Change the main function of the product2.cpp program to
prompt the user for a file name, read the file, and print the best product. However,
if an error occurs during reading the file, offer the user the choice of entering
another file name. Test your program with a file that you purposely corrupted.

Exercise P17.9. Change the database.cpp program of Chapter 9 so that the
read_employee function throws an exception when there is an unexpected problem.
If an error occurs during reading the file, offer the user the choice of entering
another file name. Test your program with a file that you purposely corrupted.

Exercise P17.10. In Exercises P8.7–8.9, you implemented an appointment calendar.
Revisit that design and change it so that the program throws an exception when
input is entered in an incorrect format.

Exercise P17.11. In Exercises P8.7–8.9, you implemented an appointment calendar.
Revisit that design and change it so that the program throws an exception when
there is

• an error reading the appointment data (for example, because the input file is
missing or corrupted).

• an error saving the appointment data (for example, because the disk is full).

Chapter 18
Name Scope
Management

• To understand how the management of names is tied to the
management of values

• To understand the concepts of scope and visibility, and the
various scopes found in C++ programs

• To learn how to use protected visibility

• To understand the use of friends, nested classes, and
private inheritance

• To learn how to use name spaces

CHAPTER GOALS

The complexity of large programs comes not from their algorithmic details (such as

finding a better way to sort numbers), but from the management of

communication. For example, how can one programmer avoid using the same

names as another programmer working in a different section of the program? How

much (or how little) information does one programmer need to understand to use

the software created by another programmer? Such complexity is controlled

through the management of names, thereby reducing the amount of information

that must be shared. The C++ language provides a number of mechanisms for name

management; each of these will be examined in this chapter.

698 CHAPTER 18 • Name Scope Management

CHAPTER CONTENTS

18.1 Encapsulation 698

18.2 Name Scopes 699
ADVANCED TOPIC 18.1: Overriding, Shadowing,

and Scopes 702
QUALITY TIP 18.1: Don’t Pollute the

Global Scope 703
COMMON ERROR 18.1: Confusing Scope

and Lifetime 704
ADVANCED TOPIC 18.2: Forward References 705

18.3 Protected Scope 706
SYNTAX 18.1: Protected Members 707
QUALITY TIP 18.2: Use Accessor Functions for

Protected Access to Data 708

18.4 Friends 708
SYNTAX 18.2: Friends 709

QUALITY TIP 18.3: Friendship Is Granted,

Not Taken 710

18.5 Nested Classes 711
SYNTAX 18.3: Nested Class Definition 713
QUALITY TIP 18.4: Manage Encapsulation 713

18.6 Private Inheritance 714
SYNTAX 18.4: Private Inheritance 716

18.7 Name Spaces 716
SYNTAX 18.5: Name Space Definition 718
SYNTAX 18.6: Name Space Alias 719
QUALITY TIP 18.5: Use Unambiguous Names for

Name Spaces 719
ADVANCED TOPIC 18.3: Local Name

Space Declaration 719

18.8 Case Study: Matrices, Continued 720

Encapsulation is one of the primary tools programmers use to con-
trol complexity. As you learned in Section 5.3, part of what encapsu-
late means is to hide or restrict access to a data field or to a member
function. When a data field is declared as private, it is said to be
encapsulated within the class definition. The term conjures up an
image of a capsule, or container—a view of an object as a unit, rather
than a collection of parts.

class Product
{
public:
 Product();

 void read();

 bool is_better_than(Product b) const;

 void print() const;
private:

 string name;

 double price;

 int score;

};

18.1 Encapsula t ion

Encapsulation helps
reduce the number of
visible names, thereby
helping to manage
complexity.

18.2 • Name Scopes 699

What encapsulation does is restrict access to names. When you create a Product, the
values associated with the private data fields name, price, and score are part of the
object; it is only the names that are hidden within the class definition. But restrict-
ing the use of names is effectively the same as restricting access to values—if you
cannot name a value, you cannot use it.

As you saw in the last chapter, many issues in the control of complexity are put
into sharp focus when you imagine a program as being the end result of many pro-
grammers working together (see Figure 1).
Suppose programmer P2 uses a code library that was authored by programmer P1.
Encapsulation limits the information that the second programmer, programmer P2,
must know and understand in order to use the library. Any data fields encapsulated
in the class definitions written by P1 are inaccessible to the code developed by P2,
and this inaccessibility means that they need not even be known to programmer P2.

Encapsulation also addresses the problem of name collision. Name collision
occurs when two programmers use the same name for different purposes in their
independently-developed sections of code. By encapsulating the names, the two
uses can coexist without conflict.

A concept closely related to encapsulation is the notion of scopes. As
you learned in Section 4.9, a scope is the part of a program in which a
name is visible and has a given meaning. A variable defined in a func-
tion header, for example, is meaningful only within that function.
Such a variable is said to have local scope.

Figure 1 Programming Viewed as a Collaborative Task

Programmer P1 Programmer P2

class Stack
{
 ...
}

Stack data_stack;
data_stack.push(3.14);
...
double value = data_stack.top();

18.2 Name Scopes

Scope is the section
of a program in which
a name is visible.

700 CHAPTER 18 • Name Scope Management

Local scope is just one of many scopes you have already encountered:

• Local scope. Parameter variable names are defined as part of a function heading.
Although the associated argument value may exist outside the function, the
name by which the argument is referenced is meaningful only within the body of
the function. Therefore it is said that the name has local scope.

double future_value(double p) // p has local scope
{
 double b = 1000 * pow(1 + p / 100, 10); // b has block scope
 return b;
} // Neither p nor b has any meaning outside the function definition

• Block scope. As you learned in Section 3.7, a variable declared inside a for loop is
meaningful only within the bounds of the loop. It is created when the loop
begins, persists for the execution of the loop, and is then destroyed.

for (int i = 1; i <= 10; i++)
{
 cout << "Hello number " << i << "\n";
} // i no longer defined here

More generally, a variable with block scope can be declared within any block
statement. The name is meaningful from the point of declaration to the closing
brace of the block. The name is attached to the variable only for the body of the
block, and the variable itself exists only for the duration of the statement.

{
 int t = x; // t is created here
 x = y;
 y = t;
} // t no longer defined here

Because a function body is a special case of a block statement, local scope is actu-
ally a special case of block scope.

• Class scope. A data field or member function of a class is said to have class scope.
class Product
{
public:
 ...
private:
 string name; // name, price, and score have class scope
 double price;
 int score;
};

• Global scope. Variables declared outside of function and class definitions are said
to have global scope. Global scope extends from the point of definition until the
end of the file in which the variable appears. Such variables can be used anyplace,
in any function or member function definition. For this reason, knowing how a
global variable is assigned or used may be difficult, making programs hard to
understand. Problems with the use of global variables were one reason for the
introduction of name spaces, which will be discussed in Section 18.7.

18.2 • Name Scopes 701

There are other names that have global scope. When a class is defined at the top
level (that is, outside of any other function or class definition), the class name is
given global scope.

• File Scope. As you read in Section 5.9, large projects are often divided into several
files. In part this is so that individual programmers can work on their own files,
and still contribute to a large multiprogrammer project. Global variables
declared as static have file scope, which means they are meaningful only within
the file in which they are declared. Those not declared as static may be shared
among many files. To do so, the global variable must be declared extern in each
file in which it is used but not defined. The name is then meaningful from the
point of declaration until the end of the file. The use of file scope has now largely
been replaced by the introduction of name spaces.

Notice that scopes overlap with each other. The body of a member function, for
example, has access to variables from the scope of its class as well as local variables.

The two most important scopes that you have not yet seen are protected scope
and namespace scope. These will be examined later in this chapter.

We have been careful to point out that the meaning attached to a name extends
from the point of definition until the end of the scope. The following bit of code is
perverse, but entirely legal:

int count = 0; // Create a global variable
...
int count_items()
{
 int orig_count = count; // orig_count initialized to value in global variable
 int count = 0; // A different variable named count is being created
 for (...)
 count++; // Increment the local variable
 return count + orig_count;
 // Returning value of local variable count + global count contained in orig_count
}
// Local count and orig_count are no longer available, global variable count accessible

The example above illustrates an important principle. A name can hide, or block, a
name from a surrounding scope. Such a name is said to shadow the previous defini-
tion. After exit from the scope, the blocked name resumes its previous meaning.
The following is even more perverse than the previous example but is again per-
fectly legal.

// DON’T WRITE CODE SUCH AS THE FOLLOWING!
double balance; // balance has global scope
class BankAccount
{
public:
 BankAccount(double balance); // Parameter variable balance has local scope
private:
 double balance; // Data field balance has class scope

18.2.1 Shadows and Qualification

702 CHAPTER 18 • Name Scope Management

};

BankAccount::BankAccount(double balance)
{
 this->balance = balance; // Assign data field balance using parameter value
 ::balance = balance; // Assign global variable using parameter value
}

Within the class definition the data field named balance shadows the
global variable with the same name. Within the definition of the con-
structor the parameter variable named balance shadows both the data
field and the global variable.

Access to names that have been shadowed can sometimes be cir-
cumvented using qualified names. For instance, while within the
body of the constructor the name balance refers to the parameter

variable, the data field can be referred to as this->balance. (See Advanced Topic 7.1
for a discussion of the this pointer.) Similarly, the pair of colons are referred to as
the global qualifier, and are used to indicate that a name should be taken from the
global scope, not the local scope. The return statement in the function count_items
could have been written as follows:

return count + ::count; // Return sum of local and global values

Qualification eliminates the need for the local variable orig_count entirely. Qualifi-
cation is used whenever a name could potentially have many meanings. This occurs
in the definition of a member function, as well as when a member function in a
derived class needs to invoke the function of the same name in the parent class:

int TravelClock::get_hours() const
{
 int h = Clock::get_hours(); // Qualify which get_hours is intended
 ...
}

Overriding, Shadowing, and Scopes

The concept of a shadow becomes slightly more subtle when applied to member functions
and inheritance. As you learned in Chapter 8, when a derived class declares a virtual member
function with the same arguments as a member function in the base class, the derived func-
tion overrides the base class function. However, if the argument list is changed then overrid-
ing does not occur, and instead the function name shadows the function in the base class. But
this shadowing does not imply an overloading.

When the C++ compiler is searching for a member function to match a particular
invocation, it first locates a scope in which the function is defined. Having found a scope, the
compiler then tries to match the argument list to the available functions in that scope.
Because the sequence of steps is to first locate a scope, then select a function, a function that
changes an argument list can hide a function in the base class, even one with a different argu-
ment type signature, because they occur in different scopes. This is true whether or not the
base class function is declared virtual.

A variable that hides
another variable of the
same name in a different
scope is said to shadow
the hidden name.

ADVANCED TOPIC 18.1

18.2 • Name Scopes 703

In the following example, the base class Employee declares a function named set_salary.
The derived class Manager defines a function using the same name but a different signature. If
both of these were declared in the same scope, they would exist as two independent func-
tions, and both would be available. But because they are found in separate scopes, the func-
tion in the derived class hides the function in the base class.

class Employee
{
 ...
 virtual void set_salary(int new_salary);
};

class Manager : public Employee
{
 ...
 virtual void set_salary(int new_salary, int yearly_bonus);
};

Manager m;
m.set_salary(45000); // Error—function requires two arguments

To avoid this problem you can overload the function in the derived class, so that both decla-
rations appear in the same scope:

class Manager : public Employee
{
 ...
 virtual void set_salary(int new_salary);
 void set_salary(int new_salary, int yearly_bonus);
};

Although the derived class needs to define the function inherited from the base class, it does
not need to reimplement the function. It can simply use a qualified name to invoke the base
class function:

void Manager::set_salary(int new_salary)
{
 Employee::set_salary(new_salary) // Invoke the base class function
}

Don’t Pollute the Global Scope

Names with global scope are known throughout a program. In large, multiprogrammer
projects, this means they are potentially accessible to every programmer. Names in each
scope must be unique, which means that two programmers cannot independently use the
same name. For this reason it is important to minimize the number of names in the global
scope.

In Quality Tip 4.2 you have already been warned against the use of global variables. Not
only do they populate the global scope, but the assignment and use of global variables is dif-
ficult to track.

QUAL ITY T IP 18.1

704 CHAPTER 18 • Name Scope Management

Global constants do not change, and so tracking modifications to such values is not a
problem. But they, too, populate the global scope. One programmer may think that the
name WM_SIZE is perfectly understandable. But is it a size used somehow for window mes-
sages, or for a widget map? Placing the definition for a constant inside a class definition
makes the name have class scope, rather than global scope. If the definition is public, it is still
available to other programmers by means of a qualified name. Even better, the qualification
now provides a context to understand the meaning.

class WindowMessage
{
public:
 static const int WM_SIZE = 400;
 // Can be referenced as WindowMessage::WM_SIZE
 ...
};

Class names are another item in the global scope. Auxiliary classes, such as Node, may be
found in several different types of container. Using a nested class (see Section 18.5) moves the
class name from the global scope to a class scope. This avoids conflicts with other similarly
named classes.

class List
{
 ...
 class Node; // Name Node now has class scope
 ...
};

class List::Node // Name must be fully qualified
{
 ...
};

Finally, name spaces (Section 18.7) can be used to move functions from a global scope to a
more restricted namespace scope, where they will not interfere with other programmers’
names.

Confusing Scope and Lifetime

Don’t confuse the two concepts of scope and lifetime. Scope is a static characteristic; it indi-
cates in what sections of a program a name is visible. Lifetime is a dynamic characteristic; it
refers to how long during execution a variable will exist.

An example students often find confusing is the use of a static local variable. A static local,
such as the variable counter in the following example, has local scope. The name is meaning-
ful only within the body of the function. However, the variable has global lifetime, meaning
it is stored in the section of memory reserved for global variables, and exists as long as the
program is executing.

int counting_fun()
{

COMMON ERROR 18.1

18.2 • Name Scopes 705

static int counter = 0; // Local scope, global lifetime
 counter = counter + 1;
 return counter;
}

Forward References

In any scope, names are meaningful from the point at which they are defined until the end of
their scope. Occasionally it is necessary to introduce a name before a full definition would be
appropriate. This is termed a forward reference.

You have seen already some examples of forward references. A function prototype, dis-
cussed in Advanced Topic 4.1, is one form of forward reference. The prototype provides the
function header, and is sufficient to declare the function. Later, the function definition
provides the body of the function. However, the function can be called knowing only the
declaration at any time after the declaration. This allows functions to be mutually recursive,
as you saw in Section 10.5.

int term_value(); // Forward reference
int factor_value(); // Forward reference

int expression_value()
{
 int result = term_value();
 ...
}

int term_value()
{
 int result = factor_value();
 ...
}

int factor_value()
{
 ...
 if (c == '(')
 {
 result = expression_value(); // Recursive call
 }
 ...
}

Class names can also be declared using a forward reference. Again, the forward reference
allows two classes to be mutually recursive:

class Person; // Forward reference

class BankAccount
{
 ...

ADVANCED TOPIC 18.2

706 CHAPTER 18 • Name Scope Management

private:
Person* owner; // Permitted, because name Person has been declared

};

class Person
{
 ...
private:
 BankAccount retirement_account;
};

Nested classes, which you will examine in Section 18.5, are also often first declared with a
forward reference and defined later.

The relationship between a derived class and a base class can be subtle. In Chapter 8
you examined a class TravelClock that inherited from class Clock. An instance of the
derived class inherits the data fields from the Clock base class, although it is not
allowed access to these fields (see Figure 2).

Up to this point it has appeared as if the designer of a class had two choices. He
or she could declare data fields and member functions as public, in which case they
were open to the world, or he or she could declare these features as private, in
which case they were accessible only within the class itself. But often the designer of
a class would like something between these two extremes.

Imagine, for example, a class Chart that stores an array of numbers. Derived
classes PieChart, BarChart, and so on will each display the data in a different fashion.

class Chart
{
public:
 virtual void draw() const;
 ...
protected:
 vector<double> data;
};

class PieChart : public Chart
{
public:
 virtual void draw() const;
 ...
};

If the data in the base class is declared private, the derived class can-
not access it. If it is declared public, anybody can access it, which is
probably not a good idea. What is needed is an indication that
derived classes, and only derived classes, are allowed access. That
purpose is achieved with the keyword protected. Features declared with

18.3 Protected Scope

Data fields and member
functions declared as
protected are accessible
to derived classes.

18.3 • Protected Scope 707

protected scope are accessible from within a base class or within any derived class,
but are not accessible outside of class definitions.

With the introduction of protected, there are now three different faces, or inter-
faces, that a class projects. There is the public face, the interface to the rest of the
world. There is the private face, the interface to the member functions within the
class itself. And finally there is the protected face, the interface to derived classes.
Users of a class and developers of derived classes can both be considered to be cli-
ents. But the two groups have very different needs and requirements. Users of a
class need to know how to use the services the class provides. Developers of derived
classes want to know how to specialize a class to make it fit a new purpose. The pro-
tected keyword allows the class designer to control what information is available to
each group.

Figure 2 A Derived Class Maintains Data from the Base Class

military =

TravelClock

location =

time_difference =

Clock portion

SYNTAX 18.1 Protected Members

class ClassName
{
 ...
protected:

member functions and data fields
};

Example:

class Chart
{
 ...
protected:
 vector<double> data;
 double value_at(int index) const;
};

Purpose:

Declare member functions and data fields that are visible to derived classes.

708 CHAPTER 18 • Name Scope Management

Use Accessor Functions for Protected Access to Data

Although both data fields and member functions can be declared protected, many style
guides suggest that protected data fields are usually a bad idea. The argument against pro-
tected data fields is similar to the argument against global variables and against declaring
public data fields. By making a data field protected, the class designer is giving control to the
authors of the derived classes. There is nothing to prevent a derived class member function
from corrupting the base-class data. A better alternative is to leave the data fields private, and
provide derived classes with a protected accessor function:

class Chart
{
public:
 virtual void draw() const;
 ...
protected:
 double value_at(int index) const; // ... only allows access, not modification
 ...
private:
 vector<double> data; // Now data is safely private
};

Because a class has no control over who will derive from it, protected operations should be
written with the same care as public operations.

The modifiers private, protected, and public give the programmer control over
access to names, which implicitly gives the programmer control over access to their
associated data values. However, the three possibilities of public, protected, and pri-
vate cannot cover all situations. Oftentimes a programmer would like to make a
data field or member function accessible to another function or another class that is
not a derived class, and to do so without making the name accessible in a public
fashion. The solution in this case is to declare a friend.

A friend can be either another class or a function. The friend must
be explicitly named within a class definition. By naming the friend,
the class is granting access to all the private features of the class.
Declaring a class as friend means that all member functions in the
friend class are friends. Needless to say, this is a dangerous mechanism
because it exposes the encapsulated state of a class to outside modifi-
cation. Friendship is not something that should be given away freely.
But because friends are named, and because friends are allowed direct
access to internal data fields, friendship is a more precise and efficient
mechanism than, for example, the creation of accessor functions.

QUAL ITY T IP 18.2

18.4 Fr iends

A friend is a class or
function that is allowed
access to all features in
another class.

Friends must be
explicitly declared as
part of a class definition.

18.4 • Friends 709

You have seen an example of friends in Section 12.2.1. In the implementation of
linked lists there were three classes, List, Node, and Iterator. The data fields in class
Node were encapsulated behind a private declaration. Normally, this would make the
data inaccessible outside the class declaration. But by declaring the classes List and
Iterator as friends, these classes, and only these classes, were allowed to view and
modify the data fields.

class Node
{
public:
 Node(string s);
private:
 string data;
 Node* previous;
 Node* next;
friend class List;

friend class Iterator;

};

SYNTAX 18.2 Friends

class ClassName
{
 ...
friend class ClassName;
friend return_type function_name(parameter list);
};

Example:

class Node
{
public:
 Node(string s);
private:
 string data;
 Node* previous;
 Node* next;
friend class List;
friend class Iterator;
};

class Employee
{
 ...
friend ostream& operator<<(ostream& out, const Employee& e);
};

Purpose:

Allow other classes and functions to access the private features of a class.

710 CHAPTER 18 • Name Scope Management

A common example of a function being declared as a friend is an output stream
operator. Often the output operator requires access to the inner state of an object.

class Employee
{
public:
 Employee(string employee_name, double initial_salary);
 ...
private:
 string name;
 double salary;
friend ostream& operator<<(ostream& out, const Employee& e);

};

ostream& operator<<(ostream& out, const Employee& e)
{
 out << "Employee: " << e.name;
 return out;
}

Note that even though the description of a friend function appears in a class defini-
tion, the friend is not a member function. Also, the placement of the friend designa-
tion is unimportant. A friend will have access to all data fields, including private
ones, regardless whether the friend declaration appears in the public, private, or
protected portions of a class definition.

Friendship Is Granted, Not Taken

The designer of a class explicitly names the classes and functions that are to be considered
friends. It is not possible to attach a new class or function as a friend to an existing class with-
out changing the original class. Friendship is also not symmetric; if class Iterator is a friend
of class List, it does not imply that class List is a friend of class Iterator. Friendship is not
transitive. If List is a friend to Node, and Node a friend to Iterator, it does not automatically
make List a friend to Iterator. Finally, friendship is not inherited. If a base class is friend to
another class, it does not mean that derived classes are friends.

Friendship opens a crack in the encapsulation provided by the class mechanism, allowing
modification to a class state from outside the class boundary. For this reason, the use of
friends and friendship should be carefully considered when classes are designed. Oftentimes
a careful design, or the use of nested classes discussed in the next section, can avoid the
necessity of declaring friends.

On the positive side, friends are conveniently listed in the class definition. If the imple-
mentation of a class changes, both member functions and friends may need to be modified.
Derived classes may also need to be changed, but they are not so easy to find, as the base
class contains no reference to derived classes.

QUAL ITY T IP 18.3

18.5 • Nested Classes 711

In Chapter 12 you examined the development of three classes, List, Node, and Iter-
ator. There is a difference between these classes and those in the standard C++
library version of linked lists. In Chapter 12, we defined an iterator as

Iterator pos = staff.begin();

However, with the standard library classes, you use a different syntax:
list<string>::iterator pos = staff.begin();

In the standard library, the iterator class is nested inside the list class
(see Syntax 18.3 on page 713). The use of a nested class (sometimes
called a member class [1]) allows other collection classes, such as vec-
tors, maps, and sets, to define their own iterators. All of these itera-
tors have different internal implementations. They just share the same
name, iterator, because they represent the same concept. To avoid

name conflicts, each of the container classes uses nesting to make sure it owns the
name for its iterator. Nested names are expressed with a qualified name, as follows:

vector<double>::iterator p = a.begin();
list<string>::iterator q = b.begin();

Let’s do the same for the List and Iterator classes from Chapter 12, namely nest
the Iterator class inside the List class and then use it as

List::Iterator pos = staff.begin();

To nest a class inside another involves two steps. First, declare the nested class with
a forward reference inside the outer class:

class List
{
 ...
 class Iterator; // Forward reference
 ...
};

Then define the class and its member functions, always referring to the class by its
full name (such as List::Iterator).

class List::Iterator
{
public:
 Iterator();
 string get() const;
 ...
private:
 ...
};

List::Iterator::Iterator()
{
 ...

18.5 Nested Classes

A nested class is defined
inside another class to
limit the nested class’s
names to the outer
class’s scope.

712 CHAPTER 18 • Name Scope Management

}

string List::Iterator::get() const
{
 ...
}

Note that the name of the class is List::Iterator, but the name of the constructor is
still just Iterator.

Except for the nesting of the names, nested classes act exactly the same as regular
classes. A nested class has no right to access private members of the outer class
(unless it has been declared as a friend), and the outer class has no right to access
private members of the inner class.

It is legal to include the entire definition of the nested class inside the definition
of the outer class:

class List
{
 ...
 class Iterator
 {
 public:
 Iterator();
 string get() const;
 ...
 };
 ...
};

This looks quite confusing, and it makes it appear as if the List object contains an
Iterator object inside it. That is not the case. The List class merely owns the Itera-
tor class, or, in other words, the name Iterator is in the scope of the List class. The
List member functions can simply refer to it as Iterator, all other functions must
refer to it as List::Iterator.

In general, you use nested classes for just one reason: to place the name of a class
inside the scope of another class. Nested classes need not be in the public portion of
a class definition. Declaring a nested class as private encapsulates the entire class
definition. It means that instances of the nested class can only be manipulated by
functions that are permitted to access private members of the outer class. You saw
an example of this in Chapter 15.

class SharedString
{
 ...
private:

class StringReference;
 ...
};

class SharedString::StringReference
{
public:
 int count;
 char* buffer;

18.5 • Nested Classes 713

 StringReference(const char* right);
 ~StringReference();
};

The class StringReference is private to SharedString. There is no danger in making
the data members public since the class itself a private nested class.

Manage Encapsulation

The C++ programmer has a variety of tools that are used to manage encapsulation. These
include class definitions; access modifiers, such as private and public; nested classes; and
name spaces. Often several mechanisms could potentially be used to address the same prob-
lem. For example, the class Node could be declared as friend to class List, as in Chapter 12.
An alternative is to declare the class Node as nested within class List (see Exercise P18.1).
How should you select among various design alternatives?

There are several considerations, all of which can be summarized as ways to manage
encapsulation. Loosening access control can compromise the encapsulation of a class. If a
class names a single function as a friend, this is normally not a problem. The friend function
is listed in the class definition, and becomes part of the interface. If the class implementation
is changed, the friend must track the change just as all other functions declared in the class
definition.

Declaring another class a friend is more dangerous. By doing this, the designer of the class
agrees that all operations in the friend class, whether they exist now or will be added later,

SYNTAX 18.3 Nested Class Definition

class OuterClassName
{
 ...
 class NestedClassName;
};
OuterClassName::NestedClassName
{

members
};

Example:

class List
{
 ...
 class Iterator;
};

Purpose:

Declare a class whose scope is contained in the scope of another class.

QUAL ITY T IP 18.4

714 CHAPTER 18 • Name Scope Management

will have access to all private features. This should only be carried out to join closely related
classes, such as Node and List. Friendship should seldom cross programmer boundaries; that
is, a class being developed by one programmer should almost never declare as friend a class
being developed by another programmer.

The designer of a class usually knows what friends are going to do, but cannot predict
what a derived class might do. Hence access to protected features should be guarded even
more closely than friendship. This is not to say that protected operations are a bad idea.
Protected member functions (and, rarely, data fields) divide an interface into three parts.
There are those features known to all users, the public part. There are those features known
to developers of derived classes, the protected part. And finally there is the private part,
accessible only to the class itself. As always, planning and careful thought are the key to cre-
ating a good design.

Normally inheritance is used to create a more specialized version of an existing
abstraction. This idea is captured in a rule of thumb, called the “is-a” test (see Sec-
tion 22.5). The is-a test says to form the English sentence “a B is an A”. If the sen-
tence sounds right to your ear, then inheritance is very likely an acceptable
mechanism for forming a new class for B out of an existing class for A. So, for
example, saying that “a manager is an employee” makes sense, as does “a travel
clock is a clock”. Saying “a company is an employee” does not make sense,
although a company may have employees. So, a class that represents a company
would likely not be constructed using inheritance from class Employee.

Another variation on the is-a test is the substitution principle. The substitution
principle says that if you are expecting an instance of class A, your code should con-
tinue to work if you are given an instance of class B instead. If you were expecting a
Clock, would your code continue to work if you were given a TravelClock instead?
Because a TravelClock has all the functionality of the class Clock, you would hope
that the answer is yes.

A practical consequence of this view of inheritance is that the interface of the
base class becomes the basis for the interface of the derived class. One way to think
of this is that names for member functions in the base class flow through to the
derived class, to emerge as member functions in the derived class. This is true even if
the member functions are not redefined in the derived class.

Occasionally it seems desirable to use inheritance to form a new class using an
existing class—even when the is-a and substitution tests fail. Generally this occurs
when the functionality of the base class is useful, but the new class and the base class
do not fit the is-a relationship.

To illustrate, assume you need a class to represent the concept of a set. A set is a
collection of unordered elements, with no element repeated. Imagine you have
already written the class List, and you want to reuse the List class in order to sim-
plify the creation of the class Set. The substitution principle fails for this example;
you would not imagine that code designed to deal with a List would continue to

18.6 Private Inher i t ance

18.6 • Private Inheritance 715

work if presented with a Set. Similarly there are member functions in the interface
for List that do not seem appropriate to a Set. Nevertheless, the functionality of
class List seems useful in the construction of a set.

A solution is to declare that the class Set inherits privately from the class List. In
a private inheritance, the functionality of the base class is still available to the new
derived class. But the interface for the base class does not flow through to the
derived class, and it does not automatically become the interface for the new class.

class Set : private List
{
public:
 void add(string s);
 Iterator erase(Iterator pos);
 Iterator begin();
 Iterator end();
};

void Set::add(string s)
{
 Iterator iter = begin();
 Iterator stop = end();
 while (iter != stop)
 {
 if (s.equals(iter.get()))
 return; // Already in set, don’t add
 }
 push_back(s); // Can use inherited push_back function
}

Iterator Set::erase(Iterator pos)
{
 List::erase(pos);
}

Iterator Set::begin()
{
 return List::begin();
}

Iterator Set::end()
{
 return List::end();
}

Notice how it is legal to call push_back from within a function in class
Set. However, because inheritance is private, this function does not
become part of the interface for class Set:

Set a_set;
a_set.add("Sally"); // legal
a_set.push_back("Fred"); // Error
 // push_back not part of interface for Set

While private inheritance is legal, it is rare that it is actually useful. In
this example the same effect could have been achieved by having class Set maintain

Private inheritance uses a
base class for the
functionality it provides.
But the interface of the
base class does not
become the interface for
the new class.

716 CHAPTER 18 • Name Scope Management

its own private internal data field of type List. The amount of work involved in the
implementation would be about the same, and would be much easier to understand.

It is also possible to declare a class to use protected inheritance, although this is
even less common than private inheritance. You will encounter private inheritance
again in the next chapter, when you examine the relationship between this mecha-
nism and polymorphism.

Name spaces are another mechanism used to avoid naming conflicts.
For example, in a large software project, it is quite possible that sev-
eral programmers come up with names for functions or classes that
conflict with another. Suppose a programmer comes up with a class
called map—perhaps to denote a map in a computer game—unaware
that there is already a map class in the standard library. By using name
spaces, it becomes possible to use both classes in the same program.

The standard library classes are in the std name space. You can unambiguously ref-
erence the standard map class using the qualified name std::map. If the other map class
is in a different name space, say acme, then you can specify it as acme::map.

To add classes, functions, or variables to a name space, surround their declara-
tions with a namespace block (see Syntax 18.5 on page 718):

SYNTAX 18.4 Private Inheritance

class DerivedClassName : private BaseClassName
{

features
};

Example:

class Set : private List
{
public:
 void add(string s);
 Iterator erase(Iterator pos);
 Iterator begin();
 Iterator end();
};

Purpose:

To allow the derived class access to the functionality of the base class, without
declaring the derived class as a specialized form of the base class.

18.7 Name Spaces

In larger programming
projects, you should place
the names of classes,
global functions, and
global variables in a name
space with a unique name.

18.7 • Name Spaces 717

namespace acme
{
 class map
 {
 ...
 };

 void draw(map m);
}

Unlike classes, name spaces are open. You can add as many items to a name space as
you like, simply by starting another namespace block.

namespace acme
{
 class maze
 {
 ...
 };
}

This is how, for example, the container classes are added to the standard name
space:

namespace std
{
 class string
 {
 ...
 };
}

Of course, it is tedious to prefix all standard classes with the std:: qualifier if there
are no name conflicts. Therefore, your programs start out with the directive

using namespace std;

The purpose of that directive is to specify that all names should be looked up in the
std name space. For example, when the compiler sees cout, it will find the declara-
tion of std::cout in the iostream header, and know that you really want to use that
variable. If you want to use just one or two names you can instruct the compiler to
include only those, instead of the entire name space:

using std::cout; // Include only the name cout from the std name space

In one important aspect, the std name space is atypical. Because you use name spaces
to avoid name clashes, you normally want to use name space names that are truly
unambiguous and therefore long, such as ACME_Software_San_Jose_CA_US. At first
glance, this looks very tedious—programmers would not be happy to type

ACME_Software_San_Jose_CA_US::map

To solve this problem, you can define a short alias for a long name space (see
Syntax 18.6 on page 719). For example

namespace acme = ACME_Software_San_Jose_CA_US;

718 CHAPTER 18 • Name Scope Management

Then you can use the alias, such as acme::map, in your program and
the compiler automatically translates the alias to the complete name
of the name space. Different aliases can be used for the same name
space in different source files, avoiding a conflict of alias names.

In professional programs, it is an excellent idea to use name
spaces, particularly if you build libraries for other programmers. Follow these rules:

• Come up with long and unique names for your name spaces.
• Use the alias feature to establish short aliases.
• Don’t use the using directive for name spaces other than std.

It is best to avoid using and namespace alias declarations in a header (.h) file. Other-
wise, every programmer who includes the header file is forced to live with those
declarations. A better approach is to use only fully qualified names in the header
file, such as

void print(std::ostream& out)

In the case study described in Section 18.8, we illustrate this technique, placing fully
qualified names into the header file and employing a using statement only in the
implementation file.

Use name space aliases
to conveniently refer to
long name space names.

SYNTAX 18.5 Name Space Definition

namespace name_space_name
{

feature1
feature2

 ...
featuren

}

Example:

namespace ACME_Software_San_Jose_CA_US
{
 class map
 {
 ...
 };
}

Purpose:

Include a class, function, or variable in a name space.

18.7 • Name Spaces 719

Use Unambiguous Names for Name Spaces

Some programmers use their initials or the initials of a product or company as names for
name spaces. Searching on the Web, one can find C++ libraries with name spaces such as MRI
and IPL. This is not a good practice—it is just a matter of time before Irene P. Lee uses her
initials for her name space, and then needs to use the Image Processing Library that does the
same.

Use a long name, such as

Image_Proc_Lib_ACME_Software_San_Jose_CA_US

for the library name space. Programmers using the library can easily use a convenient alias of
their own choosing.

Local Name Space Declaration

A using statement is subject to the same scope rules as declaration statements. This can
sometimes be useful. For example, suppose ACME software distributes their own form of
stack. You want to use this stack within the body of a function, but outside the function dec-
laration, you want to use the standard library container. To do this, nest the using statement
for ACME inside the function definition:

using namespace std; // Allows stack to mean the standard library

void f(double data)
{

using acme::stack; // ACME version now shadows std::stack
 ...
}

SYNTAX 18.6 Name Space Alias

namespace alias_name = name_space_name;

Example:

namespace acme = ACME_Software_San_Jose_CA_US;

Purpose:

Introduce a short alias for the long name of a name space.

QUAL ITY T IP 18.5

ADVANCED TOPIC 18.3

720 CHAPTER 18 • Name Scope Management

In this section we continue the matrix case study started in previous chapters. In
order to improve encapsulation, the classes MatrixRow and ConstMatrixRow (now
renamed simply Row and ConstRow) have been changed to nested classes and moved
inside the class definition for Matrix. They are declared as private, as there is never
any need for instances of these classes to be created outside the matrix class itself. In
the class definition in the interface file, and everywhere in the implementation file,
references to MatrixRow are replaced by Matrix::Row (the class Row that appears inside
class Matrix).

Similarly, the two classes that describe exceptional conditions, MatrixIndex-
Exception and MatrixMismatchException, have been renamed IndexException and
MismatchException and are now nested inside the class. This means that the catch
clause in the test program must use a qualified name Matrix::IndexException to
describe the exception value being caught.

We have also added a second name space. The class Matrix is defined in its own
name space, BigCPlusPlus_Matrix. Notice how both the interface and implementa-
tion classes place definitions in this name space. As suggested in Section 18.6, the
interface file does not import the entire standard name space, but uses qualified
names for those features it requires (the exception classes std::out_of_range and
std::invalid_argument, and the stream class std::ostream). The implementation file
(matrix5.cpp) on the other hand, imports the entire std name space, and so can refer
to these values by the simpler names out_of_range, invalid_argument, and ostream.

The application file matrixtest5.cpp could have included both complete name
spaces, using the following statements:

using namespace std;
using namespace BigCPlusPlus_Matrix;

We have instead simply included the one feature from the standard name space that
is required (std::cout), defined an alias for the matrix name space, and used quali-
fied names.

ch18/matrix5.h

18.8 Case Study: Matr ices, Cont inued

1 #ifndef MATRIX5_H
2 #define MATRIX5_H
3
4 #include <iostream>
5 #include <stdexcept>
6
7 namespace BigCPlusPlus_Matrix
8 {
9
10 /**
11 This class describes a matrix with arbitrary rows and columns.
12 */
13 class Matrix
14 {

18.8 • Case Study: Matrices, Continued 721

15 private:
16 /**
17 Forward reference for classes Row and ConstRow.
18 */
19 class Row;
20 class ConstRow;
21
22 public:
 ... Same as in matrix4.h

62
63 /**
64 Accesses a matrix row.
65 @param i the row index
66 @return the row with the given index
67 */
68 Row operator[](int i);
69
70 /**
71 Accesses a matrix row.
72 @param i the row index
73 @return the row with the given index
74 */
75 ConstRow operator[](int i) const;
 ...

83
84 /**
85 Forward reference for classes MismatchException and IndexException.
86 */
87 class MismatchException;
88 class IndexException;
89
90 private:
 ...

106 };
107
108 /**
109 This class describes a row in a matrix.
110 */
111 class Matrix::Row
112 {

 ...
156 };
157
158 /**
159 Matrix exception class: Indexing error
160 */
161 class Matrix::IndexException : public std::out_of_range
162 {
163 public:
164 IndexException(int i);
165 private:
166 std::string format_message(int i);
167 };
168

722 CHAPTER 18 • Name Scope Management

ch18/matrix5.cpp

169 /**
170 Matrix exception class: Mismatched Argument error
171 */
172 class Matrix::MismatchException : public std::invalid_argument
173 {
174 public:
175 MismatchException();
176 };
177

 ...
213 std::ostream& operator<<(std::ostream& left, const Matrix& right);
214
215 inline Matrix::IndexException::IndexException(int idx)
216 : out_of_range(format_message(idx)) {}
217
218 inline Matrix::MismatchException::MismatchException()
219 : invalid_argument("Matrix arguments have incompatible sizes") {}

 ...
256 inline Matrix::Row::Row(Matrix* m, int s) : mat(m), i(s) { }
257
258 inline double& Matrix::Row::operator[](int j)
259 {
260 return (*mat)(i,j);
261 }
262

 ...
276 }
277 #endif

1 #include <iomanip>
2 #include <sstream>
3 #include "matrix5.h"
4
5 using namespace std;
6
7 namespace BigCPlusPlus_Matrix
8 {
9
10 string Matrix::IndexException::format_message(int n)
11 {
12 ostringstream outstr;
13 outstr << "Matrix index " << n << " out of range";
14 return outstr.str();
15 }
16
 ... Same as in matrix4.cpp

44
45 double& Matrix::operator()(int i, int j)
46 {
47 if (i < 0 || i >= rows)
48 throw Matrix::IndexException(i);

Chapter Summary 723

ch18/matrixtest5.cpp

Program Run

1. Encapsulation helps reduce the number of visible names, thereby helping to
manage complexity.

2. Scope is the section of a program in which a name is visible.

3. A variable that hides another variable of the same name in a different scope is
said to shadow the hidden name.

4. Data fields and member functions declared as protected are accessible to
derived classes.

49 if (j < 0 || j >= columns)
50 throw Matrix::IndexException(j);
51 return elements[i * get_columns() + j];
52 }
53
 ...

110
111 }

1 #include "matrix5.h"
2
3 using std::cout;
4 namespace mat = BigCPlusPlus_Matrix;
5
6 int main()
7 {
8 mat::Matrix m(3, 3);
9 m[0][0] = m[1][1] = m[2][2] = 1;
10 m[0][1] = m[1][2] = 2;
11 cout << 2 * m + m * m;
12 try
13 {
14 m[4][2] = 7; // Purposeful subscript error
15 }
16 catch (mat::Matrix::IndexException& e)
17 {
18 cout << "Caught exception: " << e.what() << "\n";
19 }
20 return 0;
21 }

 3 8 4
 0 3 8
 0 0 3
Caught exception: Matrix index 4 out of range

CHAPTER SUMMARY

724 CHAPTER 18 • Name Scope Management

5. A friend is a class or function that is allowed access to all features in another
class.

6. Friends must be explicitly declared as part of a class definition.

7. A nested class is defined inside another class to limit the nested class’s names to
the outer class’s scope.

8. Private inheritance uses a base class for the functionality it provides. But the
interface of the base class does not become the interface for the new class.

9. In larger programming projects, you should place the names of classes, global
functions, and global variables in a name space with a unique name.

10. Use name space aliases to conveniently refer to long name space names.

1. Bjarne Stroustrup, The C++ Programming Language, Special Ed., Addison-Wesley, 2000.

Exercise R18.1. What does encapsulation mean? How does encapsulation help con-
trol the complexity of multiprogrammer applications?

Exercise R18.2. Identify the scope of each variable in the following:
vector<int> v;

namespace Acme_Search
{
 const int maxdata = 100;

 int binary_search(int from, int to, int a)
 {
 if (from > to)
 return -1;
 int mid = (from + to) / 2;
 if (v[mid] == a)
 return mid;
 else if (v[mid] < a)
 return binary_search(mid + 1, to, a);
 else
 return binary_search(from, mid - 1, a);
 }
}

Exercise R18.3. What does it mean for one variable to shadow another?

Exercise R18.4. How is protected visibility different from private or public visibility?

FURTHER READING

REVIEW EXERCISES

Programming Exercises 725

Exercise R18.5. What does friendship mean? What are the positive benefits and nega-
tive consequences of friendship?

Exercise R18.6. In what ways is a nested class similar to a friend class? In what ways
is it different?

Exercise R18.7. How is private inheritance different from public inheritance?

Exercise R18.8. In what situation is private inheritance preferable to public
inheritance?

Exercise R18.9. Explain in which sense classes are closed while name spaces are open.

Exercise R18.10. When would you define a class as a nested class, and when would
you define it in a name space?

Exercise R18.11. Suppose Harry J. Hacker develops a code library that he wants oth-
ers to use. Why would it not be a good idea to place it into a name space hjh? What
name space name might be appropriate?

Exercise R18.12. Why is it acceptable to use short aliases for name spaces, even
though short names for name spaces are not appropriate?

Exercise P18.1. In Section 18.5 you saw how to make the class Iterator a nested class
within List, rather than a friend. Do the same with class Node. What accessibility
should the nested class Node possess?

Exercise P18.2. Finish the implementation of classes Chart and BarChart from Section
18.3. Class BarChart should display a simple textual representation of the data, simi-
lar to the following:

3 ***
5 *****
2 **
7 *******

Exercise P18.3. Modify the application you created for Exercise P18.2 and add a
nested Iterator class and public member functions begin and end to the Chart class.
These functions should yield iterator objects, allow a user to write an iterator loop
to access the elements of the chart.

Exercise P18.4. Define output operators for Clock and TravelClock. Modify the
classes Clock and TravelClock to declare the output operators as friends.

Exercise P18.5. Implement a 2 × 2 Matrix class that holds four floating-point numbers,
and a Vector class that holds two floating-point numbers. Supply constructors and
print operators, but do not expose the values of either class. Overload the multipli-
cation operator so that a Matrix can be multiplied by a Vector object. To do this will
you need to make Vector a friend of Matrix.

PROGRAMMING EXERCISES

726 CHAPTER 18 • Name Scope Management

Exercise P18.6. Redo the implementation of class Fraction from Section 14.2, but
remove the member functions numerator and denominator. What operators must
now be declared as friends?

Exercise P18.7. Implement two classes, Stack and Queue, using private inheritance
from class List. Note that you can access both the front and the back of a list by
manipulating the iterators returned from begin and end.

Exercise P18.8. Define two functions
void cout(string& s)
void cin(string& s)

The first one removes all consonants from the string s. The second removes all
vowels from the string s. Place both functions into a name space whose name is
your name and student ID number. Then write a program that prompts the user to
enter a string and prints the result of applying both functions.

Exercise P18.9. Define two functions
bool endl(string s)
void setw(string& s, char c)

The first function returns true if s ends in a lowercase letter. The second function
changes all white space in s to the character c. Place both functions into a name
space whose name is your name and student ID number. Then write a program that
prompts the user to enter a string and prints the result of applying both functions.

Exercise P18.10. Modify the application you created for Exercise P18.2 using the
graphical library from Chapter 2. Create derived classes PieChart and BarChart that
display the chart information in graphical format.

G

Chapter 19
Class Hierarchies

• To be able to group classes into a class hierarchy

• To work with abstract classes

• To understand the concept of run-time type identification

• To learn how to use multiple inheritance

• To study the design of software frameworks

CHAPTER GOALS

Hierarchies of classes are common in large programs. In this chapter, you will

study advanced features of C++ that facilitate working with class hierarchies, such

as abstract classes, run-time type identification, and multiple inheritance. We

conclude this chapter with a discussion of software frameworks.

728 CHAPTER 19 • Class Hierarchies

CHAPTER CONTENTS

19.1 Class Inheritance Hierarchies 728
ADVANCED TOPIC 19.1: A Forest, Not a Tree 730

19.2 Abstract Classes 730
SYNTAX 19.1: Pure Virtual Member Function 731

19.3 Obtaining Run-Time
Type Information 731

SYNTAX 19.2: Dynamic Cast 732
SYNTAX 19.3: typeid 733
COMMON ERROR 19.1: Taking Type of Pointer,

Not Object 734
COMMON ERROR 19.2: Using Type Tests Instead

of Polymorphism 734

ADVANCED TOPIC 19.2: Virtual Function Tables 735

19.4 Multiple Inheritance 736
SYNTAX 19.4: Multiple Inheritance 738
COMMON ERROR 19.3: Failing to Preserve the

Is-a Relationship 738
QUALITY TIP 19.1: Avoid Multiple Inheritance 742

19.5 Software Frameworks 743
QUALITY TIP 19.2: Design Your Own

Software Frameworks 745
RANDOM FACT 19.1: Functional Programming 745

In the real world, you often categorize concepts using a hierarchy. Businesses use
corporate hierarchies, which describe the supervisor/worker relationship (who
reports to whom). Family relationships are described using family trees, which
describe child, parent, and marriage relationships. As these examples illustrate, hier-
archies are usually represented as trees, with the most general concepts at the root
of the hierarchy, and more specialized ones forming the branches. Figure 1 shows a
typical example. Note that the shape is inverted, with the root at the top.

19.1 Class Inher i t ance Hierarchies

Figure 1 A Typical Hierarchy

Bird Reptile

Animal

Mammal

Dog HumanCatGeckoSnakePigeonPeacock

19.1 • Class Inheritance Hierarchies 729

The class inheritance relationship fits this hierarchical pattern.
Base classes appear at the top of the diagram, and derived classes fall
below. Levels in the tree are linked by the is-a relationship—each
derived class is a more specialized form of the base class. Some class
hierarchies are very short, as shown in Figure 2.

But other class hierarchies can be quite complex. For example,
suppose you are representing regular shapes for a drawing program; you might end
up with a hierarchy as shown in Figure 3.

Figure 2 Simple Class Hierarchies

Manager Worker

Employee

TravelClock

Clock

Classes can be organized
into inheritance
hierarchies based on the
base class/derived class
inheritance relationship.

Figure 3 A More Complex Class Hierarchy

Polygon

Shape

Oval

Triangle Rectangle Pentagon

Square

Circle

730 CHAPTER 19 • Class Hierarchies

A Forest, Not a Tree

Some object-oriented programming languages (Smalltalk and Java to name just two) place all
objects into a single large inheritance hierarchy. This means that all objects in these languages
ultimately descend from a single base class, usually named Object. This has certain advan-
tages. It means that a variable declared as Object can hold any type of value. It also means
that any behavior defined in class Object is common to all values. But it also makes classes
much more interconnected, as they are all part of one large collection.

The C++ language does not do this. Instead of requiring a single large inheritance tree, it
allows programmers to create a forest of many small inheritance trees.

In designing a class hierarchy, it may sometimes be the case that a
certain behavior should be attached to a base class, but no imple-
mentation of that behavior makes sense. An example might be com-
puting the area of a shape. For each concrete derived class it is
possible to describe how to determine an area, so each class might
define an appropriate member function. But in order to be used with

the polymorphic variable of class Shape, the base class must also define the member
function named area. What behavior should this function have? Without a concrete
representation, no value makes sense.

Shape* s = new Triangle(4, 5, 6); // First s is a triangle
s = new Square(3, 4); // Now it is a square
cout << "Area is " << s.area() << "\n";

The C++ language provides for this by allowing a member function to be described
by a prototype that has no implementation. This is indicated by an equal sign and
the value zero:

class Shape
{
 ...
 virtual double area() const = 0;
};

Such a function is termed a pure virtual member function. While it is legal to define
a body for a pure virtual member function, it is not required and not usually done.
A class that contains at least one pure virtual member function is termed an abstract
class.

Abstract classes are used only as a base class for inheritance. It is
not possible to create an instance of an abstract class. Attempting to
do so will produce a compiler error:

Shape s1; // Error, Shape is abstract
Shape* s2 = new Shape(); // Also error, Shape is abstract
Shape* s3 = new Square(3, 4); // But this is OK

ADVANCED TOPIC 19.1

19.2 Abstract C lasses

An abstract class contains
at least one virtual
function that is declared
but not defined.

It is not legal to create an
instance of an abstract
class, although you may
use a pointer or reference
to an abstract class.

19.3 • Obtaining Run-Time Type Information 731

A class that consists entirely of pure virtual member functions is sometimes termed
an interface. An interface describes desired behaviors as a set of functions but does
not define how the behaviors should be implemented.

When you have a pointer or reference that can refer to an object of
multiple classes in a hierarchy, you occasionally need to obtain the
actual type of an object. There are two common ways that this is
done. A dynamic cast verifies that the pointer or reference can be
safely converted to a pointer or reference of a derived class. The typeid

operator yields the exact type of an object. We describe both features in the follow-
ing sections.

The dynamic_cast operator requires a type as a template parameter, followed by a
parameter that must be a pointer or reference (see Syntax 19.2 on page 732).

// Implicitly converts from Manager to Employee
Employee* e = new Manager("Sarah Smith", 67000, 2000);
// Explicitly converts from Employee to Manager
Manager* m = dynamic_cast<Manager*>(e);

SYNTAX 19.1 Pure Virtual Member Function

class ClassName
{
 ...
 virtual return_type function_name(parameters) = 0;
 ...
};

Example:

class Shape
{
 ...
 virtual double area() const = 0;
};

Purpose:

Declare a member function with no definition. A class that contains at least one pure
virtual function is termed abstract. Derived classes must override the function and
provide their own definition or they themselves will be considered abstract.

19.3 Obta in ing Run-Time Type Informat ion

The dynamic type of a
polymorphic variable
can be tested using a
dynamic cast.

19.3.1 Dynamic Casts

732 CHAPTER 19 • Class Hierarchies

The dynamic cast succeeds if the template type matches the actual type of the
pointer or reference. In that case, the dynamic_cast operator returns the pointer or
reference, converted to the template type. If the type is not correct, a NULL pointer is
returned. Comparing the result to NULL is therefore equivalent to testing the type of
the parameter.

for (int i = 0; i < department.size(); i++)
{
 Manager* m = dynamic_cast<Manager*>(department[i]);
 if (m != NULL)
 {
 cout << "Employee " << department[i]->get_name()
 << " is a manager.\n";
 m->set_bonus(2000); // Can now invoke manager member functions
 }
 else
 cout << "Employee " << department[i]->get_name()
 << " is not a manager.\n";
}

The assignment of a Manager value to an Employee variable is sometimes termed an
upcast, because you are moving “up” the class hierarchy. Similarly, the use of the
dynamic cast, which does just the reverse, is termed a downcast, because you are
moving down the class hierarchy as it is written on the page.

If the dynamic_cast operation is used with a reference, instead of a pointer, a fail-
ure results in a bad_cast exception being thrown, rather than a NULL pointer, because
there is no equivalent to a NULL pointer when using references.

To use a dynamic cast, objects must belong to a class with at least one virtual
function.

A static_cast is similar, but performs no run-time check on the result. If the
programmer has made a mistake and the change in type is not valid, no indication
will be given. This makes static casts much more dangerous than dynamic casts. A
static cast should only be used for primitive types (for example, converting an inte-
ger into a double) or non-polymorphic types.

int max = 42;
double dmax = static_cast<double>(max); // One way to convert to double

SYNTAX 19.2 Dynamic Cast

dynamic_cast<type_name>(expression)

Example:

Manager* m = dynamic_cast<Manager*>(department[i]);

Purpose:

Safely test the type of a polymorphic variable, converting to derived class type if
appropriate, returning a NULL pointer if not.

19.3 • Obtaining Run-Time Type Information 733

A dynamic cast tests whether a pointer or reference can be safely
converted to a given type, but it does not give the actual type of the
object that is being referenced. To obtain that specific type, you can
use the typeid operator. This operator takes as parameter either an
expression or a class name. It returns an object of type type_info,

which is defined in the header file <typeinfo>. (Note that the type name contains
an underscore, the header file name does not.) Among other things, the type_info
object contains the name of a class as a string.

For example, executing the following:
for (int i = 0; i < department.size(); i++)
 cout << typeid(*department[i]).name() << "\n";

will produce
Manager
Employee
Employee

An alternative way to test the type of an object is to compare the typeinfo value to
that of a known class type:

for (int i = 0; i < department.size(); i++)
{
 if (typeid(*department[i]) == typeid(Manager))
 cout << "Employee " << department[i]->get_name()
 << " is a manager. \n";
 else
 cout << "Employee " << department[i]->get_name()
 << " is not a manager. \n";
}

However, both dynamic casts and the typeid operator should be avoided whenever
possible in favor of virtual member functions (see Common Error 19.1 on page
734).

19.3.2 The typeid Operator

The typeid operator
yields a type_info object
that describes a type.

SYNTAX 19.3 typeid

typeid(expression)
typeid(type_name)

Example:

#include <typeinfo>
if (typeid(*department[i]) == typeid(Manager)) ...

Purpose:

Obtain dynamic type information from a polymorphic expression.

734 CHAPTER 19 • Class Hierarchies

Taking Type of Pointer, Not Object

Note carefully that the expressions in the previous example dereferenced the pointer values
before using them as a parameter to typeid. This resulted in accessing the type of value the
pointer referred to, not the type of the pointer itself:

Employee* e = new Manager("Sarah Smith", 67000, 2000);
typeid(*e); // Returns description of type of object pointed to by e, Manager
typeid(e); // Returns description of type of pointer, Employee*

A common error is to compare a pointer type to a class type. This will never succeed:

// Error—cannot be true, because e is a pointer
if (typeid(e) == typeid(Manager))

Using Type Tests Instead of Polymorphism

Beginning programmers often perform explicit type tests as part of a complex conditional
statement, as in the following:

void give_raise(Employee* e, double percent)
{
 if (typeid(*e) == typeid(Employee))
 {
 ... // Do actions specific to Employee
 }
 else if (typeid(*e) == typeid(Manager))
 {
 ... // Do actions specific to Manager
 }
}

Such code is a sign of poor design. What happens if the type of e is neither an Employee nor a
Manager? What happens if later a new derived type, say HourlyEmployee, is added to the sys-
tem? When this occurs you will have to go back and locate all the places where the condi-
tional statements are used and add new code to handle the new class.

A far better alternative is to use polymorphism. Create a virtual member function in the
base class, and override it in each of the derived classes.

class Employee
{
 virtual void give_raise(double percent);
};

class Manager : public Employee
{
 virtual void give_raise(double percent);
};

COMMON ERROR 19.1

COMMON ERROR 19.2

19.3 • Obtaining Run-Time Type Information 735

Now instead of testing the type of the value, you can simply invoke the virtual member
function. Even better, when a new derived class is created, the new class simply overrides the
member function, and no change is necessary in the calling function.

Virtual Function Tables

You may wonder how the compiler can generate code at compile time that will, when exe-
cuted at run time, select the correct virtual function to execute. In order to accomplish this
the compiler creates a special table for each class, called the virtual function table, or vtable.
The vtable maintains pointers to each virtual member function implemented by the class.
Each object is then augmented with an additional hidden data field, termed the vtable
pointer, that points to the virtual function table appropriate to the class of the value currently
being held by the variable. Instances of the same class point to the same vtable, while
instances of a derived class will have a different vtable (Figure 4).

To see how the virtual function table is used, imagine that a variable declared as a pointer
to Employee actually holds a value that is type Manager:

Employee* emp = new Manager("Sarah Smith", 67000, 2000);

The value of the pointer will point to a section in memory where the data for the object is
stored. Along with the data fields for the object (name, salary, and so on) will be the vtable

Figure 4 Instances of the Same Class Share a Virtual Function Table

ADVANCED TOPIC 19.2

vtable for class Employee

Employee::get_name

Employee::get_salary

vtable for class Manager

Employee::get_name

Manager::get_salary

name =

Employee

vtable =

salary =

name =

Employee

vtable =

salary =

name =

Manager

vtable =

salary =

736 CHAPTER 19 • Class Hierarchies

pointer. This value will point to the virtual function table for Manager, the type used in the
new statement that created the data (see Figure 5). If a member function is inherited from the
base class, as is get_name in Figure 4, then the vtable in the derived class points to the same
function as the vtable in the base class. If a member function is overridden, as is get_salary,
then the entry in the vtable points to the derived class function. Code generated for a call on
a virtual function, such as get_salary, examines the virtual function table and transfers con-
trol to the correct function. Just as the same function can execute differently based on differ-
ences in data values, the same code generated by the compiler will at different times transfer
to different functions, depending on the contents of the vtable pointer.

You have seen inheritance described as a form of classification. A derived class is a
more specialized type of the base class. A TravelClock, for example, is a specialized
form of Clock. Similarly, a Manager is a more specialized form of Employee. Objects in
the real world, however, seldom fit such a neat and simple pattern. Consider model-
ing a university. You will want a class for Employee, to represent workers at the uni-
versity. A Professor is a specialized form of Employee, and so might be derived using
inheritance. Universities also have students, which might be represented by the
class Student. But how should you represent the class TeachingAssistant? A teach-
ing assistant is both an employee and a student—instances of the class will exhibit
characteristics of both (earning a salary like an employee, taking classes like a stu-
dent). Multiple inheritance can be used to describe such classes.

In C++, a class can have more than one base class. We can define a teaching assistant
class as follows:

class TeachingAssistant : public Employee, public Student
{
 ...
};

Figure 5 The vtable Is Used to Locate a Member Function at Run Time

name =

Manager

vtable =

salary =

vtable for class Manager

Employee::get_name

Manager::get_salary

Run-time stack

emp =

19.4 Mult ip le Inher i t ance

19.4.1 Multiple Base Classes

19.4 • Multiple Inheritance 737

A TeachingAssistant is a blending of the behavior of the classes
Employee and Student. A class, such as TeachingAssistant, that inher-
its from two or more base classes is said to exhibit multiple inherit-
ance (see Figure 6).

When multiple inheritance is used, the class inheritance diagram is
no longer a tree. But neither is it an arbitrary graph; there are some

restrictions. No class can be its own direct or indirect parent, for example. This pre-
vents the inheritance diagram from ever having cycles. A directed graph with no
cycles is termed a directed acyclic graph, or DAG. Class diagrams for classes with
multiple inheritance are one example of a DAG.

Instances of derived classes maintain the data fields associated with base classes.
An instance of Manager, for example, maintains the data fields associated with class
Employee. In the same fashion, an instance of class TeachingAssistant will maintain
the data fields associated with both base classes Employee and Student, as shown in
Figure 7.

The idea of polymorphic assignment works for each of the base classes. That is, a
pointer to a value of type TeachingAssistant can be assigned either to a variable
declared as a pointer to a Student, or as a pointer to an Employee.

TeachingAssistant* fred = new TeachingAssistant();
Employee* new_hire = fred; // Legal, because a TeachingAssistant is-a Employee
Student* advisee = fred; // Legal, because a TeachingAssistant is-a Student

Figure 6
TeachingAssistant Inherits from
Both Employee and Student

Employee Student

Teaching
Assistant

A class that inherits from
two or more base classes
is said to use multiple
inheritance.

Figure 7 A TeachingAssistant Object Holds Data Fields from Both Base Classes

Employee
base object

Student
base object

TeachingAssistant objectsalary =

TeachingAssistant

name =

id =

738 CHAPTER 19 • Class Hierarchies

Just as with ordinary inheritance, a dynamic cast can be used to determine if an
instance of Student is in reality an instance of TeachingAssistant:

Student* mary = ...;
TeachingAssistant* lab_instructor = dynamic_cast<TeachingAssistant*>(mary);
if (lab_instructor != NULL)
 cout << "Yes, mary is a TeachingAssistant. \n";
else
 cout << "No, mary is not a TeachingAssistant. \n";

Failing to Preserve the Is-a Relationship

The use of multiple inheritance does not mean you should abandon the is-a relationship that
is the defining characteristic of single inheritance hierarchies. The new abstraction must be a
specialization of each of the base classes. (A TeachingAssistant is-a Student, and a
TeachingAssistant is-an Employee.)

A common error is to use multiple inheritance as a tool for composition rather than for
specialization. Just because a car has an engine and also has a transmission as well as a body,
it does not mean that a class that models a car should inherit from each of these:

class Car : public Engine, public Transmission, public Body // Error
{
 ...
};

Without the characteristic of specialization as captured in the is-a relationship, the use of
inheritance (either single or multiple) is seldom appropriate.

SYNTAX 19.4 Multiple Inheritance

class DerivedClassName : public BaseClass1, ..., public BaseClassn
{

features
};

Example:

class TeachingAssistant : public Student, public Employee
{
 ...
};

Purpose:

Define a class that inherits features from two or more base classes.

COMMON ERROR 19.3

19.4 • Multiple Inheritance 739

A common difficulty arising from the use of multiple inheritance is that similar
names can be used for different operations in the base classes. For example, it is
likely that employees have identification numbers, and so class Employee might have
a member function get_id. But students also have identification numbers, and so
class Student might easily have a similar function. There is no reason to expect that
the two identification numbers would be the same, (unless the university has made
the mistake of using Social Security numbers for student identification numbers, see
Random Fact 9.2). If you invoke the function get_id with an instance of class
TeachingAssistant, which one should be executed?

TeachingAssistant* fred = new TeachingAssistant();
cout << "Your number is " << fred->get_id() << "\n";
 // Error, ambiguous member function name

The C++ compiler cannot determine which function is intended—the get_id func-
tion in class Employee or the get_id function in class Student. There are two ways to
get around this problem. One solution is to use a fully qualified function name:

TeachingAssistant* fred = new TeachingAssistant();
cout << "Your teaching assistant is " << fred->Employee::get_id() << "\n";

A better solution is to redefine the ambiguous function in the new class, and hide
the use of the qualified name within the body of the function.

class TeachingAssistant : public Student, public Employee
{
public:
 string get_id() const;
 string student_id() const;
};

// get_id will return Employee identification number
string TeachingAssistant::get_id()
{
 return Employee::get_id();
}

string TeachingAssistant::student_id()
 // Make student value available by a different name
{
 return Student::get_id();
}

It is not legal to specify the same base class more than once in a class heading:
class MultiplePartTime : public Employee, public Employee // Error
{
 ...
};

19.4.2 Name Ambiguities

19.4.3 Replicated Base Classes

740 CHAPTER 19 • Class Hierarchies

However, nothing prevents the same class from appearing indirectly more than
once as a consequence of inheritance. To illustrate, imagine that you had a class Per-
son used to maintain information such as a name:

class Person
{
public:
 Person(string n);
 string get_name() const;
private:
 string name;
};

It would make perfectly good sense to have both Student and Employee derive from
the base class Person, as both students and employees have names:

class Student : public Person
{
 ...
};

class Employee : public Person
{
 ...
};

The problem now arises when you create the class TeachingAssistant that inherits
from both Employee and Student. In addition to the function name ambiguity prob-
lem you have already considered, there is a problem associated with the data field in
class Person. Remember that an instance of a derived class contains the memory
associated with the parent class. An instance of Employee contains the data for class
Person.

An instance of Student also contains the data for class Person.

Should an instance of class TeachingAssistant contain one copy of the data fields
from class Person, or two?

Person
base object

Employee objectsalary =

Employee

name =

Student objectid =

Student

name =
Person
base object

19.4 • Multiple Inheritance 741

There is no single right answer to this question. One can imagine situations where
separate data fields might be appropriate, as well as situations where a single data
field seems called for. In this case, for example, the latter seems most likely (unless
you want to allow teaching assistants to have one name when they are sitting in
class, and another name when they are in front of the class).

The C++ language allows the programmer to control which of these two possi-
bilities occurs. The default behavior is to generate separate copies of the data mem-
bers of all base classes, as previously described. To avoid the duplication of base
class data members, the programmer must specify the inheritance as virtual, as in
the following.

class Student : virtual public Person
{
 ...
};

class Employee : virtual public Person
{
 ...
};

class TeachingAssistant : public Student, public Employee
{
 ...
};

Figure 8 shows the effect on the data layout. The virtual derived class gains a
pointer that points to the Person part of the class. When forming another derived
class that inherits twice from Person, that class has two copies of that pointer, one

Employee
base object

Student
base object

TeachingAssistant object
salary =

TeachingAssistant

name =

name =

id =

Person
base object

Person
base object

Figure 8 Virtual Inheritance Alters Placement of Base Class Data

Person fields

Fields defined in
Student

class Student : virtual public Person class Employee : virtual public Person

Employee

name =

salary =

Student

name =

id =

Person fields

Fields defined in
Employee

742 CHAPTER 19 • Class Hierarchies

from each of its parents, but only one copy of the Person data. The pointers are
adjusted so that they both point to the shared data members (see Figure 9)

Notice that the virtual keyword must be used in the intermediate classes Stu-
dent and Employee, and not in the class TeachingAssistant where the conflict actu-
ally occurs.

Avoid Multiple Inheritance

Multiple inheritance is much more complex than single inheritance. We have only hinted at
the numerous possibilities for confusion that arise from the use of multiple inheritance (both
from the programmers’ and the compiler writers’ points of view). True uses for this feature
are exceedingly rare. Some authors, and some programming languages, go so far as to say
that multiple inheritance should never be used [1].

Often multiple inheritance can be eliminated by using other mechanisms. The class
TeachingAssistant might, for example, simply maintain a data field of type Student, or one
of type Employee. This prevents the polymorphic assignment of a TeachingAssistant value to
a variable of type Employee, but often this is not important. Alternatively, a Teaching-
Assistant might have a nested class that is derived from class Employee. The nested class can
maintain an instance of the outer class, and can be used polymorphically with Employee.

class TeachingAssistant : public Student
{
 ...
private:
 class EmployeePart;
 EmployeePart* employee_ptr;
};

class TeachingAssistant::EmployeePart : public Employee
{

Figure 9 Virtual Inheritance Combines Data from Common Base Classes

TeachingAssistant

id =

salary =

.

.

.

name =

class TeachingAssistant : public Student, public Employee

Fields defined in TeachingAssistant

Employee fields

Student fields

Shared fields

QUAL ITY T IP 19.1

19.5 • Software Frameworks 743

public:
 EmployeePart(TeachingAssistant&);
 ...
private:
 TeachingAssistant* ta_part; // Allows access back to outer class
};

TeachingAssistant::TeachingAssistant()
{
 employee_ptr = new EmployeePart(this); // Pass pointer to implicit parameter
}

TeachingAssistant::EmployeePart::EmployeePart(TeachingAssistant* taval)
 : ta_part(taval) {}

Ruling out multiple inheritance altogether goes too far. There are legitimate uses for the
technique. Inheriting from several interfaces (classes that consist entirely of pure virtual
functions) can never cause the ambiguity problems described here. Classes that cannot share
any common data areas are also safe. Nevertheless, the careful programmer will always con-
sider the alternatives before using this technique.

A hallmark of modern programming is an emphasis on software
reuse. The idea of software reuse is to develop general purpose soft-
ware components that can be carried from one project to the next
without needing to be rewritten. This makes software development
more like other engineering fields, such as mechanical engineering,

where reusable components such as girders or bolts are put together in a variety of
ways, or electrical engineering where the reusable components are capacitors and
resistors.

But there is a fundamental conflict inherent in the notion of a reusable software
component. To be reusable the component must be general purpose—it must not
require details that are specific to any one application. But the component must also
be useful, it must address and solve the problem at hand, which often requires very
individual detail in each new application. How can this tension between general
purpose use and specific application be resolved?

One solution in object-oriented languages makes use of polymor-
phism. A very general base class can be developed and distributed
across many projects. This base class can be quite complex, but must
not contain any information specific to any given application. The

developers for each new application then use inheritance to create specialized ver-
sions of the general purpose classes. It is in these specialized classes that the details
specific to each application are contained.

An easy example to envision, and the example that drove the development of
object-oriented programming as a useful programming technique, is the creation of
a graphical user interface. As you will see in Chapter 25, programming a GUI is a

19.5 Software Frameworks

A software framework is a
collection of classes that
capture the common
features of a task.

Programmers specialize
the behavior by overriding
member functions.

744 CHAPTER 19 • Class Hierarchies

nontrivial task. First there is the sheer number of different components, such as
buttons, scroll bars, text areas, windows, and dialog boxes. Furthermore, each of
these can have complex behavior. A window can be moved, resized, iconified, or
have menus. Windows can overlap, and must be repainted when an overlapping
window is removed.

Rewriting all this behavior for each new application would be almost impossibly
difficult. Fortunately, it does not have to be done. Instead, developers use a software
framework. A framework is nothing more than a collection of reusable classes and
functions (often termed a toolkit) that developers employ as a starting point in the
creation of new applications. In Chapter 25 you will learn about the wxWidgets
toolkit.

Consider the basic task of putting a window up on a screen. The concept of the
window is generic, and a lot of code can be written to handle general purpose tasks,
such as moving the window, handling menu bars, and so on. But a fundamental
problem remains: the general purpose class does not know how to render (or paint)
the contents of the window, or how to respond to events such as mouse clicks. To
overcome this, the base class simply leaves these tasks as member functions and
provides either a pure virtual member function or a simple default behavior (such as
doing nothing):

class wxWindow
{
public:
 ...
 // Pure virtual member function
 virtual void OnPaint(wxPaintEvent& event) = 0;
 virtual void OnMouseEvent(wxMouseEvent& event);
 ...
};

void wxWindow::OnMouseEvent(wxMouseEvent& event)
{
 // Default behavior, do nothing
}

Each new application uses inheritance to construct a special purpose class that
derives from wxWindow. The new class can then fill in the application-specific details,
such as what a mouse event means in the context of this given application.

class ClockWindow : public wxWindow
 // ClockWindow will be developed in Chapter 25
{
public:
 ...
 virtual void OnPaint(wxPaintEvent& event);
 virtual void OnMouseEvent(wxMouseEvent& event);
 ...
};

void ClockWindow::OnMouseEvent(wxMouseEvent& event)
{

19.5 • Software Frameworks 745

 ... // Implement mouse events for this specific application
}

By using inheritance, the vast majority of the code needed to handle the manipula-
tion of windows is reused across many applications. By overriding key member
functions, this general behavior is then specialized in each new application. Poly-
morphism is important, because the framework itself thinks of the application as an
instance of wxWindow, while the programmer views the application as an instance of
the new application class (such as ClockWindow). This combination of inheritance,
overriding, and polymorphism is repeated many times on many different levels in
the development of a GUI. You will see more of this in Chapter 25.

Design Your Own Software Frameworks

A framework is a skeleton application, a structure onto which specialized details can be
added while avoiding the repetition of common features. Any time you anticipate creating
several programs that are variations on a common theme you should think about the possi-
bility of creating your own software framework. To create a framework, ask yourself
• What features are common to most or all example problems?
• What features must be specialized in each new application?
For example, in a game framework common features might be the use of a board, a mecha-
nism to keep and display a score, and the fact that play flips from one player to another (or
perhaps from one player to the computer). Variations include the actual display of the board,
and the actions to be performed on each turn.

You then determine how those aspects in the second category can be described as a series
of one or more member function invocations. For example, you might create a member
function to paint the display of the board, another to update the score for each player, and
yet a third to perform the actions of one turn.

You then develop the framework by concentrating on the common features, ignoring the
aspects that are particular to each different application. If you are successful, it makes the
creation of new applications that fit the pattern of your framework much easier, as each new
application need not rewrite all the common code.

Functional Programming

The C++ language encourages a style of programming termed object-oriented, which is in
turn often considered to be a special category of a more general style of programming
termed imperative programming. Imperative programming is based on the idea of a com-
mand, or instruction, telling the computer to do something. An assignment statement is the
best example of an imperative. Each command makes a small change in memory, and

QUAL ITY T IP 19.2

RANDOM FACT 19.1

746 CHAPTER 19 • Class Hierarchies

computation consists of ensuring that a long sequence of commands are executed one after
the other in the proper sequence.

There are, however, other styles of programming. The most widely used alternative is
functional programming. Functional programming is based not on commands, but on
expressions. A functional program is nothing more than the evaluation of a single large
expression. In order to manage complexity, functions are used to break expressions into
smaller and easier to understand units. Functional programs do not have variables and
assignment statements, in the sense of identifiers that change over time. Instead, functional
programs have identifiers (parameters or local variables) that can be set once and thereafter
do not change. When a task needs to be performed repeatedly, functional programs use
recursion in place of loops. The following function is a typical example. The function is writ-
ten in the language ML, and computes the number of ways that m items can be selected from
a group of n:

fun comb(n, m) =
 if m = 0 orelse m = n then 1
 else comb(n-1, m) + comb(n-1, m-1)

Other than the use of orelse instead of || as the or symbol the meaning is not difficult to
understand. To compute the number of combinations of m things from a group of n, if m is 0
or m is the entire collection then the answer is 1. Otherwise two recursive calls are performed,
and their sum is the result.

Notice there are no assignment statements. Recursion is used for repetition, instead of
loops. Functions in ML and other functional languages possess a property termed referential
transparency. What this means is that the same parameters given to a function will always
produce the same result. Because of this property, ML interpreters are free to cache the
results of a recursive function call, and if the same parameters later arise they can return the
cached value. Another interesting characteristic of ML is that it does not use declaration
statements. Instead, the types of identifiers are inferred from their use. Here, n and m are
being compared to integers, and hence they must themselves be integers.

Most functional programming languages use lists as their basic data structures. Programs
that manipulate lists tend to be highly recursive. The following program to generate the
reverse of a list illustrates these characteristics, as well as the syntax used by ML:

fun reverse(L) =
 if L = nil then nil
 else reverse(tl(L)) @ [hd(L)];

The value nil represents the empty list. The function hd returns the head of a list, that is, the
first element. The function tl returns the tail, that is, the list that remains once the head is
removed. The square brackets are making a list out of a single item, while the @ symbol
appends two lists. So this function can be read as follows: to produce the reverse of a list, if
the list is empty then return the empty list. Otherwise, remove the first element, reverse the
rest of the list, and append the head of the list to the end. Notice that once again there are
neither assignment statements nor variables, and the outcome is simply the result of evaluat-
ing an expression.

Type inference on this function illustrates an unusual property. The use of the built-in
functions hd and tl, and the comparison to nil all tell the compiler that L is a list. But a list of
what? Because nothing is done with the head of the list except to make a new list, there is no
way to tell. But rather than report an error, the ML compiler is satisfied to record the type of
the variable L as ‘‘list of alpha’’, where alpha is an unknown type. This is similar in many
ways to the C++ template parameter. A function, such as reverse, that will work with
incompletely specified types is termed polymorphic. The function reverse does not care

Chapter Summary 747

what type of elements the list is maintaining, and will work just the same with a list of inte-
gers or a list of strings, or even a list of lists.

Finally, functional programming languages incorporate an idea termed a higher order
function. A higher order function uses a function as parameter in the course of evaluating
another function. A simple example is the function map, which is written as follows:

function map(F, L) =
 if L = nil then nil
 else [F(hd(L))] @ map(F, tl(L))

The function map takes two values as parameter, the first is a function and the second a list. If
it is given an empty list it returns the empty list. Otherwise, it applies the function to the first
element of the list, and appends the result to the list generated by the recursive call on the
remainder. To illustrate, consider the following function that adds 3 to its parameter:

fun addThree(X) = X + 3

A call on map(addThree, [2 4 7]) would produce the list [5 7 10]. Note how the function
addThree is being used as a value that is passed as a parameter to map. This is similar (although
there are some technical differences) to the use of function objects and the overloading of the
function call operator in C++.

Further information on ML can be found in [2]. Another functional language that is
widely used is Haskell [3].

1. Classes can be organized into inheritance hierarchies based on the base class/
derived class inheritance relationship.

2. An abstract class contains at least one virtual function that is declared but not
defined.

3. It is not legal to create an instance of an abstract class, although you may use a
pointer or reference to an abstract class.

4. The dynamic type of a polymorphic variable can be tested using a dynamic cast.

5. The typeid operator yields a type_info object that describes a type.

6. A class that inherits from two or more base classes is said to use multiple
inheritance.

7. A software framework is a collection of classes that capture the common features
of a task.

8. Programmers specialize the behavior by overriding member functions.

CHAPTER SUMMARY

748 CHAPTER 19 • Class Hierarchies

1. Tom Cargill, C++ Programming Style, Addison-Wesley, 1992.

2. Jeffrey D. Ullman, Elements of ML Programming, Prentice-Hall, 1994.

3. Simon Thompson, Haskell: The Craft of Functional Programming, Addison-Wesley,
1996.

Exercise R19.1. Explain the relationship between levels in an inheritance tree.

Exercise R19.2. What does it mean to say that the C++ language allows the program-
mer to create an inheritance forest, and not a tree?

Exercise R19.3. What is a pure virtual member function? What is an abstract class?

Exercise R19.4. What is a dynamic cast? What is the purpose of this operation?

Exercise R19.5. What are the problems that arise with statements that branch on dif-
ferent types? Why is it better to use polymorphism in this situation?

Exercise R19.6. When an overridden virtual member function is executed, the vtable
helps determine which function to execute. Explain how this mechanism works.

Exercise R19.7. What does it mean to say that a class uses multiple inheritance?

Exercise R19.8. Why are the function name and data ambiguity problems inherent in
multiple inheritance not an issue with single inheritance?

Exercise R19.9. What is virtual inheritance? What problem does this feature address?

Exercise R19.10. Investigate the use of multiple inheritance in the iostream hierarchy.
Why does iostream inherit from both istream and ostream? Why doesn’t fstream
inherit from ifstream and ofstream?

Exercise R19.11. Exercise P6.25 asked you to implement a tic-tac-toe game. Suppose
you now want to make a software framework for several different board games.
What functions would you keep in class Game? How would those functions be
specialized in an application-specific class, such as TicTacToeGame?

Exercise R19.12. What is a software framework? How does the use of a software
framework simplify the creation of new applications?

FURTHER READING

REVIEW EXERCISES

Programming Exercises 749

Exercise P19.1. Design a class hierarchy that links the classes Bicycle, Boat, Bus,
Airplane, Horse, and Automobile.

Exercise P19.2. Finish the implementation of the Shape hierarchy started in Figure 3,
adding member functions to compute the area of each. Write a function that takes a
vector of shapes and computes the total area of the collection.

Exercise P19.3. Does it make sense for class Square to be a subclass of class Rectangle,
or for class Rectangle to be a subclass of class Square? Write both versions, keeping
track of appropriate data values. The first is termed using inheritance for specializa-
tion, and the other is sometimes termed using inheritance for extension. Which
organization makes more sense? Why?

Exercise P19.4. Rewrite the clocks3 program from Chapter 8 to use dynamic casts
instead of virtual function calls. (This is not a good idea; the purpose of this exercise
is only to become familiar with dynamic casts.)

Exercise P19.5. Rewrite the clocks3 program from Chapter 8 to use the typeid
operator and static casts instead of virtual function calls. (This is not a good idea;
the purpose of this exercise is only to become familiar with run-time type
identification.)

Exercise P19.6. Finish the implementation of the class TeachingAssistant. Show that
the same TeachingAssistant value can appear both in a vector of Students and in a
vector of Employees.

Exercise P19.7. Change the class TeachingAssistant to use nested classes. Add a
member function as_employee to the class TeachingAssistant that will return an
object of type Employee, and the member function as_student that will, from this
value, return the Student object. Again show how to use the same value on a list of
Students and a list of Employees. Is this technique easier or more difficult to use than
the multiple inheritance technique?

Exercise P19.8. Design a framework for solitaire card games. What features are com-
mon to many different solitaire games? What features are unique to each game?

Exercise P19.9. Design a framework for discrete event simulations, as described in
Chapter 13. Make Event into an abstract class. The main function should be a part of
your framework and not supplied by the framework user.

Exercise P19.10. Create an abstract class Chart that maintains a collection of integer
data values stored in a vector. Include a member function draw(Point& p) as a pure
virtual member function to display the data at the given point. Create derived
classes PieChart and BarChart that each display the data in the indicated format.

PROGRAMMING EXERCISES

G

750 CHAPTER 19 • Class Hierarchies

Exercise P19.11. Create a class StringRectangle that inherits from both string and
Rectangle. When displayed, the output should be the text of the string contained
within a rectangle, like this:

Exercise P19.12. Create the class ShadedRectangle that draws a Rectangle with lines
across it, like this:

Then create the class ShadedStringRectangle that inherits from both ShadedRectan-
gle and StringRectangle from Exercise P19.11. A ShadedStringRectangle should
draw the text of a string inside a shaded rectangle.

Exercise P19.13. Design a framework for animation. The framework should clear the
graphics window between each frame, and pause for a short time after each new
frame is displayed. Derived classes are responsible for drawing the images. A simple
way to pause is to have a loop that executes many times, but does nothing. Use your
framework to create an animation of a car driving around the edges of the window.

G

A String

G

G

Chapter 20
The Standard

Template Library

• To understand how iterators generalize the idea of pointers

• To learn the various categories of iterators and the operations
they provide

• To understand the purpose and use of the containers in the
Standard Template Library

• To understand how functions, generators, and predicates can
be generalized using function objects

• To explore the library of generic algorithms

• To learn how generic algorithms can be extended through the
use of binders, negators, and adapters

• To explore how stream iterators can be used to permit generic
algorithms to work with external files

CHAPTER GOALS

The Standard Template Library, or STL, is a library of collection classes and

associated functions. These collections are of the sort commonly found in almost all

nontrivial applications. Using these standard container data structures simplifies the

creation of new applications and promotes the portability of the resulting code.

Each of the standard containers can produce iterators that provide access to the

elements in a collection. A large library of standard algorithms can be used to

manipulate containers through the use of iterators. You will learn about the variety

of iterators, and the generic algorithms and functions that make use of iterators.

752 CHAPTER 20 • The Standard Template Library

CHAPTER CONTENTS

Almost all nontrivial computer programs maintain a collection of
elements of one type or another. Because such collections are so
common, the study of data structures used to store collections is a
fundamental part of any computer science curriculum. Over the
years, computer programmers have identified a small set of collection

data structures that occur repeatedly across many different problem domains and
applications. These basic data structures, or container classes, are therefore ideal
candidates to be developed as reusable abstractions. A reusable library of data struc-
tures allows programs to be developed more easily, since the container classes do
not have to be rewritten in each new application. They promote reliability, because
library classes are extensively used and debugged, and portability, because a stan-
dard library is the same on every platform. For this reason most programming lan-
guages now come with libraries of common data structures.

The Standard Template Library, or STL, is the C++ library of
data structures and their associated algorithms. As one would expect
in an object-oriented language, containers are represented by
classes. However, one of the most interesting features of the STL is
the use of “generic algorithms”. Rather than placing a large amount
of functionality in each container, the STL provides container classes
that have relatively small interfaces. These small interfaces make it
easier to understand and use the classes.

This minimal functionality is greatly extended by a library of
functions. A simple example is the function count, which counts the

20.1 The STL

The Standard Template
Library, or STL, is a library
of container classes.

Each class in the STL
supports a relatively small
set of operations.

This basic functionality
can be extended though
the use of generic
algorithms.

20.1 The STL 752

20.2 Iterators 753
COMMON ERROR 20.1: Mismatched Iterators 756
COMMON ERROR 20.2: Assuming the Ending Iterator

Is Included in a Range 756

20.3 The Fundamental Containers 758
QUALITY TIP 20.1: Experimentally Evaluate

Execution Times 761
ADVANCED TOPIC 20.1: Memory Allocation

Traits 765

20.4 Container Adapters 765

20.5 Associative Containers 767

20.6 Case Study: Dijkstra’s
Shortest Algorithm 771

20.7 Functions, Generators,
and Predicates 775

20.8 Generic Algorithms 781
COMMON ERROR 20.3: Forgetting to Erase Removed

Elements 790

20.9 Iterator Adapters 791

20.10 Case Study: File Merge Sort 792

20.2 • Iterators 753

number of specific elements in a collection. The number of 7s that occur in a list of
integers could be calculated as follows:

int seven_count = count(numbers.begin(), numbers.end(), 7);

Through the use of templates, these generic algorithms can be used with many dif-
ferent types of containers. That is why they are termed “generic”.

Alex Stepanov, the principal designer of the STL, has said that the reason the
container data structures and algorithms in the STL can work together seamlessly is
that they do not know anything about each other. The containers do not know
what algorithms they will be used with. This reduces the size of the interface for
each container, because the algorithms are not part of the container operations. The
containers provide iterators, and that is all.

The algorithms, on the other hand, never actually manipulate the containers
directly. Instead, algorithms operate only through the use of a middleman, the itera-
tor. By working in this indirect fashion, an algorithm need not know what sort of
container the data is derived from, only the operations for the iterators it requires.

The use of iterators as mediators makes the coupling between con-
tainers and algorithms extremely loose, and is what allows containers
and algorithms to be mixed in an almost infinite variety of ways.

Like the container classes, iterators and algorithms in the STL are
generalized by the use of template parameters. This allows these fea-
tures to operate with a wide variety of types. Just as important, the

compile-time polymorphism of templates means that the majority of work needed
to specialize a generic algorithm to a specific application is performed at compile
time. This results in fast execution times for the algorithms in the STL library.

Fundamental to the use of the container classes in the STL and their
associated algorithms is the concept of an iterator. As you learned in
Chapter 12, an iterator is simply an object used to cycle through the
elements stored in a container. By means of operator overloading,
iterators can use the same syntax as pointers. In fact, for some con-
tainers, iterators are simply pointers.

Like a pointer, an iterator can be used in variety of different ways. An iterator
can be used to denote a specific location, in the same way that a pointer is used to
reference a specific memory address. Just as the * operator is used to indicate the
value associated with a pointer (see Section 7.1) the same operator is used to access
the value associated with an iterator. The following will, for example, print the first
element in a vector of integers:

vector<int>::iterator p = a_vector.begin();
cout << *p << "\n";

Through the use of
iterators, generic algorithms
can be made to work with
a variety of containers.

20.2 Iterators

Iterators are high-level
abstractions that serve the
same role as pointers, but
can be applied to a variety
of data structures.

754 CHAPTER 20 • The Standard Template Library

On the other hand, a pair of iterators can be used to describe a range
of values. This is analogous to the way in which two pointers can be
used to describe a contiguous region of memory, such as the values in
an array. Imagine you have declared an array of integers. If a is a
pointer to an array, then a + n is the address of the nth element in the
array. A pair of pointers describes a range in the array:

int a[10];
int* p = a + 2;
int* q = a + 5;

When two pointers describe a range, it is conventional that the ending pointer is not
considered to be part of the range. For example, one would normally interpret the
values p and q in Figure 1 as describing the range consisting of the three elements
a[2], a[3], and a[4]. Notice that q points to the element after a[4], which is not con-
sidered to be part of the range. In fact, to describe the entire collection, the ending
pointer will be the value just beyond the last element in the array. Because subscript
bounds are not checked in C++, this can be written as a + 10. This memory address
is not part of the array a, it is simply a place holder, a marker for the end of the
array.

Iterators work in the same fashion. The only difference is that the values refer-
enced by iterators need not be in adjacent memory locations. But in the same fash-
ion as pointers, iterators are used to describe a starting location and a past-the-end
location. For container classes, the member function begin returns a starting itera-
tor, and the member function end returns a past-the-end location, a special marker
to indicate the end of the collection. For a linked list, we could imagine these two
locations as shown in Figure 2.

As the past-the-end pointer for the array shows, a pointer can fail to reference a
legal value in the collection. Just as it is improper to try to dereference and obtain a
value from a past-the-end pointer, it is improper to dereference a past-the-end
iterator of a container. However, just as pointer bounds are not checked, iterators
are not obligated to check for illegal use, and so it is up to you, the programmer, to
ensure that no illegal dereference operations are performed.

Pairs of iterators can
be used to refer to a
complete collection of
values, or a subportion
of a collection.

Figure 1 Pointers Referencing an Array

[0]
[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]

a

p =

a + 2

q =

a + 5

a + 10

20.2 • Iterators 755

When two iterators refer to a range of values, a loop is sometimes used to access
each value in the range. The increment operator (operator++) is used to move from
one element to the next, and the equality operators (operator== and operator!=) are
used to terminate the loop.

for (p = start; p != past_end; ++p)
{

Process *p;
}

In Chapter 7, we recommended the use of index values instead of pointers to create
loops for arrays, because many programmers find them easier to understand and
less error prone. However, in this chapter, you will see how the use of array point-
ers can unify algorithms, so that they work using the same syntax for arrays and for
STL containers. Through the application of operator overloading, exactly the same
operators are used to describe an iterator loop for each of the STL containers.

Ranges can be used to describe the entire contents of a container, by constructing
an iterator to the initial element and the special ending iterator. But just as pointers
p and q in the earlier example described a portion of the larger container, ranges can
also be used to describe subsequences within a container. The first iterator describes
the first value in the subsequence, while the second iterator serves as the past-the-
end value for the subsequence.

Recall from Chapter 14 that there are two forms of the ++ operator. Both forms
increment their argument, but the prefix form (++p) yields the value after the incre-
ment, whereas the postfix form (p++) yields the value before the increment. Since
iterators can be more heavyweight than numbers or pointers, it is a good idea to
avoid the postfix form unless you really want to capture the old value. For that rea-
son, we will use ++p whenever we advance an iterator.

Figure 2 Iterators for a Linked List

Node Node Node

List

Iterator Iterator

756 CHAPTER 20 • The Standard Template Library

Mismatched Iterators

In Chapter 7 we advised that pointers be avoided whenever possible because errors involving
pointers are often subtle and algorithms using pointers are difficult to understand. As
iterators generalize pointers, they might at first seem prone to some of the same difficulties.
Generally, however, iterators are easier to use than simple pointers. One reason is that
iterators are almost always used over a very small region of the program, such as the body of
a single loop. This makes it much easier to see and correct errors. Another reason is that the
use of iterators is very stylized, such as the iterator loop. Finally, while there are NULL point-
ers, iterators can never have a NULL value.

However, as with pointers, one problem with iterators is that they are manipulated in
pairs. Mismatching a pair is a certain source of problems. The following bit of code compiles
without warning, but could potentially produce an infinite loop, since it compares an itera-
tor produced by one container to an ending iterator from a different container. It will never
find a value that matches the termination condition.

list<int> one;
list<int> two;
...
list<int>::iterator p = one.begin();
while (p != two.end())
{
 ...
 ++p;
}

Care must be taken to ensure that elements of an iterator pair always come from the same
container.

Assuming the Ending Iterator Is Included in a Range

In mathematics there is a concept called a half-open interval, often represented as [a,b). The
description [1,5), for example, represents the range of numbers starting from and including 1,
up to but not including 5. (If we are discussing integers, it would be the values 1, 2, 3, and 4.)
When iterators are used to represent a range of elements they can be imagined as a type of
half-open interval. The first iterator denotes an element that is included in the collection, and
the collection extends to but does not include the element denoted by the second iterator.

This is easy to remember when the iterators are produced using the member functions
begin and end, but students are sometimes confused when iterators are used to represent a
range that is a part of a collection. For example, suppose you have a list of words, and you
want to print all the words between ‘‘ant’’ and ‘‘bee’’. Using the find algorithm you encoun-
tered in earlier chapters, this could be written as follows:

COMMON ERROR 20.1

COMMON ERROR 20.2

20.2 • Iterators 757

list<string> words;
// words is initialized with a list of words
list<string>::iterator pos = find(words.begin(), words.end(), "ant");
if (pos != words.end())
{
 list<string>::iterator end = find(pos, words.end(), "bee");
 while (pos != end)
 {
 cout << "word is " << *pos << "\n";
 ++pos;
 }
}

The word ‘‘bee’’, if it occurs at all in the list, will not be printed by the loop. The iterator that
describes the location of bee is a marker for the end of the range, and is not part of the range.

Up to this point we have used only four operators with our iterators. The * opera-
tor is used to access the value associated with an iterator, the ++ operator is used to
advance an iterator to the next element, and the equality operators (operator== and
operator!=) are used to compare two iterators for equality or inequality. But certain
containers provide iterators that support a wider range of operations. In Section
12.1 we noted that list iterators support both operator++ and operator--, allowing
iterators to move both forward and backward through the container. And just as
regular pointers can be subscripted (see Chapter 7), vector iterators recognize the
subscript operator:

vector<int> a(10);
vector<int>::iterator p = a.begin();
++p;
++p;
cout << p[3] << "\n"; // Prints out a[5]!

Recall that for a pointer p, the expression p[n] is the same as *(p + n). The addition
in the latter is not normal arithmetic addition, but instead indicates a reference to
the nth element after p. Ordinary pointers can also be subtracted; the expression q - p
returning the number of elements between p and q.

Finally, recall that for a pointer, the expression p->m is the same as (*p).m, where m
is a data member or member function. The same relationship holds for iterators.
This is useful if you have an iterator that points to an object. For example,

vector<string>::iterator p = names.begin();
int n = p->length(); // The length of the string *p

Not all operations are recognized by all iterators. List iterators, for example, do not
support the subscript operator and will generate a compiler error if you attempt to
use one. This is because lists do not support constant time access to arbitrary ele-
ments. The iterators in the STL can be divided into five different categories accord-
ing to the operators they support. These five categories are described in Table 1.

20.2.1 Varieties of Iterators

758 CHAPTER 20 • The Standard Template Library

Member functions in the classes vector and deque return random access iterators.
Lists, sets, and maps return bidirectional iterators. We have not yet seen examples of
the other categories, however, later in this chapter we will see how some of these are
produced.

A container declared as constant, such as a const vector, will return a type of iter-
ator termed a const_iterator. A const_iterator can be used to access a value, but
not to make changes to the underlying container.

Containers in the STL can be divided into three categories. The first
category represents fundamental containers, sometimes termed
sequential containers. The three fundamental containers are the vec-
tor, list, and deque. The second category consists of classes called
adapters, which are layered on top of the fundamental containers.

The three collection types in this category are the stack, the queue, and the prior-
ity queue. Finally, there are the associative containers. In an associative container,
elements are ordered in a way that allows for fast retrieval. The two collection types
in this category are the set and the map. Except for the deque (which will be
described in Section 20.3.3), you have encountered these containers in Chapters 12
and 13.

An interesting feature of the STL is the degree to which the operations provided
by these three containers overlap. This is shown in Table 2. Many operations are
supported by all three containers, and most of the remainder are supported by two
of the three. This means that programs written with one container in mind can often

Table 1 Categories of Iterators

Iterators Operators

Input Iterator Supports operators ==, !=, ++, *, and -> only for returning a value

Output Iterator Supports operators ==, !=, ++, *, and -> only for assignment

Forward Iterator Supports operators ==, !=, ++, *, and ->

Bidirectional Iterator Supports operators ==, !=, ++, --, *, and ->

Random Access Iterator Supports operators ==, !=, ++, --, [], *, -> as well as iterator + n
and iterator – iterator. As with pointers, iterator + n references
the next nth value following the iterator, and iterator – iterator the
number of elements between two iterators

20.3 The Fundamenta l Conta iners

The three fundamental
sequential data structures
are the vector, list,
and deque.

20.3 • The Fundamental Containers 759

Table 2 Operations Provided by the Fundamental Containers

Operation Vector List Deque

container() O(1) O(1) O(1)

container(size) O(1) O(n) O(1)

container(size, value) O(n) O(n) O(n)

container(iterator, iterator) O(n) O(n) O(n)

at(int) O(1) O(1)

back() O(1) O(1) O(1)

begin() O(1) O(1) O(1)

capacity() O(1)

clear() O(1) O(1) O(1)

empty() O(1) O(1) O(1)

end() O(1) O(1) O(1)

erase(iterator) O(n) O(1) O(n)

erase(iterator, iterator) O(n) O(1) O(n)

front() O(1) O(1) O(1)

insert(iterator, value) O(n) O(1) O(n)

pop_back() O(1) O(1) O(1)

pop_front() O(1) O(1)

push_back(value) O(1)+ O(1) O(1)+

push_front(value) O(1) O(1)+

rbegin() O(1) O(1) O(1)

rend() O(1) O(1) O(1)

resize(size, value) O(n) O(n)

size() O(1) O(1) O(1)

operator[](int) O(1) O(1)

operator=(container) O(n) O(n) O(n)

760 CHAPTER 20 • The Standard Template Library

use any of the three. For example, invoking begin with any container will yield an
iterator. This iterator can be used to cycle over the elements in the container, and the
loop will be the same regardless of the container type. The element that an iterator
references can be erased from a collection using the same operation, and so on.

The following loop removes all even numbers from a vector of integers. If the
container had been a list or deque, rather than a vector, the only difference would
be the declaration type of the iterator. Without reading this declaration, it is impos-
sible to infer from the operations involved what type of container is being used.

vector<int>::iterator current = a_container.begin();
while (current != a_container.end())
{
 // Number is even if remainder is zero after division by two
 if (0 == *current % 2)
 current = a_container.erase(current);
 else
 ++current;
}

All the containers support a variety of constructors. The default constructor creates
an empty collection. An integer argument creates a container with the indicated
number of elements, initialized to the default value for the element type. A second
form of this constructor allows the user to explicitly set an initial value for the ele-
ments. Finally, a collection can be initialized using another collection specified by a
pair of iterators.

The function at, supported by both vectors and deques, checks the index for
validity, unlike operator[], which performs no checking. The functions front and
back return references to the first and last elements in the collection. The function
empty returns true if the container has no elements. An element referenced by an
iterator can be erased, as can a range of elements specified by a pair of iterators. The
value returned by erase is the iterator that references the next element in sequence
(that is, the element after the erased value). Elements can be inserted at a location
specified by an iterator, however the efficiency of this operation varies by data
structure. The functions push_front and push_back insert values at the front and
back of a collection, while the operations pop_front and pop_back remove them.
(Vectors don’t support push_front and pop_front because adding and removing val-
ues at the beginning of an array is inefficient.) The functions rbegin and rend return
iterators that traverse the collection in reverse order.

In addition to the operations provided by member functions in each of the three
classes, the utility of these data structures is greatly extended by the use of generic
algorithms. A few of these, such as the generic algorithm find, you have seen. You
will examine more of these in Section 20.8.

The similarity of operations among these three containers does not mean that the
container types are identical. Often there is a difference in the big-Oh execution
time between containers for the same operation. Recall the discussion of execution
times from Section 11.5. Some operations are constant time, meaning they take the
same amount of time in a container holding ten elements as they would in a con-
tainer holding ten thousand. Constant time operations are often described as O(1).
Other operations are linear time, meaning the time they take is proportional to the

20.3 • The Fundamental Containers 761

size of the container. This is written as O(n). A linear time operation would take
approximately a thousand times longer on a container with ten thousand elements
as it would on a container with ten elements. Between these two are various other
timings. In the sections on sets and maps (Sections 20.5.1 and 20.5.2) you will
encounter logarithmic time, which is in practice almost as fast as constant time. And
finally there is amortized constant time, which in Table 2 is written O(1)+. Amor-
tized constant time means that the operation is fast (that is, constant time) most of
the time. However, this property is not guaranteed, and once in a while the opera-
tion may require more than constant time (usually, O(n) time). It must be the case,
however, that in any sufficiently long sequence of operations, the average amount
of time required for the operation remains constant. Insertion at the end of a vector
is a good example of an operation that requires amortized constant time, as you saw
in Section 12.3 on the implementation of the vector.

Selecting an appropriate container for any problem requires knowing what oper-
ations the problem demands, the approximate size of the collection being held by
the container, and how often (at least in relative terms) each operation will be per-
formed. A task that requires indexed access could use either a vector or a deque.
However, if elements are frequently inserted at the front of the container, the O(1)
performance of the deque for push_front is preferable to the O(n) cost of placing an
element at the front of a vector using insert. On the other hand, if indexing is not
used, but elements are frequently being placed into the middle of the collection
using insert, then the O(1) performance of the list for this operation is better than
the O(n) time required by vectors or deques.

Experimentally Evaluate Execution Times

Selecting a container for any task should depend first upon the operations required and
second upon an evaluation of big-Oh execution times. That is, if the key part of an applica-
tion is a loop that will be repeated performing an insertion in the middle of a collection, then
the O(1) versus O(n) difference between insertions for lists and insertions for vectors or
deques dominates any other consideration.

However, having performed this analysis, it is often the case that two or more containers
appear to be acceptable candidates for use. If the difference between using a vector or using a
deque is simply one or two declaration statements, collecting actual execution times is an
appealing alternative. Using a small sample of test data, try executing the program using first
one container, then another. Gather the resulting execution times, and select the container
with the fastest time.

QUAL ITY T IP 20.1

762 CHAPTER 20 • The Standard Template Library

As you know, a vector is an indexed container. The fundamental
operation is subscripting, using operator[]. However, elements can
also be added to the end of the vector using the member function
push_back. The interface for the vector was described in Table 2.

The implementation of the vector maintains both the size and the
capacity as integer data fields. The buffer is a simple array, accessed
using a pointer. (See Section 7.4 for a discussion of array and pointer

equivalences). Iterators can be represented by pointers into the buffer.
template <typename T>
class vector
{
public:
 typedef T* iterator;
 vector();
 ...
private:
 T* buffer;
 int current_size;
 int current_capacity;
};

The implementation of the remaining operations is explored in programming exer-
cises at the end of the chapter.

As you have seen in Chapter 12, lists are implemented as linked lists.
This allows rapid insertions into either the front or the back of the
list. By means of iterators, elements can be inserted into the middle
of lists.

Of the three fundamental data structures, the list is the only one
that supports constant time insertions into the middle of a collection.

(The constant time efficiency assumes that the insertion point is known. If it is not
known, finding a location in a linked list may require O(n) steps. This is still more
efficient on average than adding an element to the middle of a vector, which is
always an O(n) operation even if the insertion point is known.)

Lists also support a number of operations, defined in Table 3, that are not recog-
nized by the other two containers. Some of these operations are similar to functions
provided by the generic algorithms we will examine later in this chapter. For exam-
ple, while sorting is a member function for a list, the same task is performed using a
generic algorithm for a vector. Where this is true, it is because the list-specific mem-
ber functions use a technique that is more efficient than the container-independent
generic algorithm.

20.3.1 Vectors

The vector and deque are
indexed data structures;
they support efficient
access to each element
based on an integer key.

20.3.2 Lists

A list supports efficient
insertion into or removal
from the middle of a
collection. Lists can also
be merged with other lists.

20.3 • The Fundamental Containers 763

The name deque (pronounced ‘‘deck’’) is short for double-ended
queue. Like a vector, a deque is indexed. Like a list, it provides con-
stant time insertions at either the front or the back of the collection.
However, insertions into the middle are not as fast as insertions into
the front or back.

A deque is not as commonly used as a vector or list, but there are situations
where it is preferable:

• If you need random access into the middle of the container and also frequently
add and remove elements at both ends, use a deque. If you only add and remove
elements at one end, use a vector.

• If you have a long queue (with insertion and removal only at the ends), a deque is
more efficient than a linked list since a deque does not maintain a link field for
each element.

On the plus side, because it does not maintain a link field for each element, the
deque uses less memory than a list containing the same number of elements.

The implementation of the deque is not specified by the language standard, how-
ever one approach is to use a variation on the vector. (A more complicated, but also
more efficient, alternative for implementing the deque is described in [1].) As in the
vector, elements are stored in an underlying array. The capacity is the size of this

Table 3 List Operations Not Found in Other Container Classes

Operation Description

merge(list) Merge the current list, which is assumed to be sorted, with
the argument list, which is also assumed to be sorted

remove(value) Remove all instances of the given value

remove(pred) Remove values for which predicate returns true

reverse() Reverse order of elements

sort() Place the values into sorted order

sort(cmp) Place values into order using the given comparison

splice(iterator, list) Splice the values of the argument list into the list
at the given location

unique() Remove duplicate copies of values from a sorted list

unique(pred) Compare adjacent values in a sorted list using predicate;
when true remove second value

20.3.3 Deque

A deque provides random
access and insertions at
the front and back in
constant time.

764 CHAPTER 20 • The Standard Template Library

array. Another integer data field holds the current size of the collection. A third
data field represents the current start of the collection in the array. Unlike the vec-
tor, this starting location need not be the beginning of the array. Elements continue
from the starting location one after another, as in Figure 3.

From Figure 3 it is easy to see why, as with the vector, the push_back operation is
generally fast, but not always so. If no buffer reallocation is necessary, adding an
element is simply a matter of incrementing an index and copying the element. It is
only when the entire buffer is full that the operation requires a significant amount
of time. Furthermore, push_front is also generally fast, which was not true for the
vector. All that is needed is to move the starting location back one position, and
place the new element at the front of the container (see Figure 4).

However, a complication is that elements can “wrap around” the end of the
underlying array. The starting location could be near the end of the buffer. If the
number of remaining positions is smaller than the size, the elements continue at the
start of the array, as in Figure 5.

Figure 3 Internal Data Fields Maintained by Deque

Figure 4 Deque after push_front

Figure 5 Deque Data Wrapping Around Internal Buffer

2 4 7

current_size =

Deque

current_capacity =

buffer =

3

current_start = 2

8

3 2 4 7

current_size =

Deque

current_capacity =

buffer =

4

current_start = 1

8

4 7 3 2

current_size =

Deque

current_capacity =

buffer =

4

current_start = 6

8

20.4 • Container Adapters 765

The need to handle the possibility of wrapping around makes the implementa-
tion of the deque slightly more complicated than the vector. This is explored in pro-
gramming assignments at the end of the chapter.

Memory Allocation Traits

If you examine the template definition for the fundamental containers in the standard library,
you will see that they contain an additional template argument that we have not discussed.

template <typename T, typename A = allocator<T> >
class list
{
 ...
};

The argument A is termed the memory allocator trait. (Recall from Section 16.6 that a trait is
a template argument used to set policy.) The allocator is used to allocate and reclaim the
memory used by the data structure, such as the nodes of a linked list and the memory blocks
of a vector. In most applications, the default memory allocator will work fine and there
should be little reason to replace it with an alternative. Further information on allocators can
be found in [1].

As you learned in Chapters 12 and 13, stacks and queues are data structures that
support a FIFO (first in, first out) or LIFO (last in, first out) data access. Priority
queues yield data with the highest priority. Data is placed into the container by the
operation push, returned by either top (stack and priority queue) or front (queue),
and removed by the pop operation.

An interesting feature of stacks, queues, and priority queues in the
STL is that they are not, in fact, containers in their own right, but
adapters built on top of one of the fundamental containers. An
adapter is a wrapper, a class that uses another container to maintain
elements, but that changes the interface for the underlying class.
Operations for the adapter are ultimately performed by passing a

request to the class it is holding. To illustrate this, the following is a slightly simpli-
fied implementation of the class stack:

template <typename T, typename C = deque<T> >
class stack
{
public:
 int size() const;
 void push(const T& x);

ADVANCED TOPIC 20.1

20.4 Conta iner Adapters

Stacks, queues, and
priority queues are
adapters built on top
of the fundamental
collections.

766 CHAPTER 20 • The Standard Template Library

 T& top();
 void pop();
protected:
 C values;
};

template <typename T, typename C>
int stack<T, C>::size() const
{
 return values.size();
}

template <typename T, typename C>
void stack<T, C>::push(const T& x)
{
 values.push_back(x);
}

template <typename T, typename C>
T& stack<T, C>::top()
{
 return values.back();
}

template <typename T, typename C>
void stack<T, C>::pop()
{
 values.pop_back();
}

The data field named values is the container that is holding the elements. Each stack
operation is implemented by making a further call to a member function for this
container. Notice that this class description has two template arguments, while the
declarations in Chapter 16 used only one. This is because the second argument, the
type of the actual underlying container, has a default value that depends upon the
first argument. The declaration

stack<int> data;

is the same as
stack<int, deque<int> > data;

If for some reason you do not want to use the deque as the underlying container,
then you can simply provide a different template argument for the second value:

stack<int, vector<int> > data; // Will use a vector instead of a deque

Stacks work with either vectors or deques, and queues work with either lists or
deques. The deque is the default for both. Notice how all operations are imple-
mented using operations for the underlying container. The implementation of
queue is a programming exercise at the end of the chapter.

Priority queues use a vector or deque to build a heap, as described in Chapter 13.
The default is a vector.

20.5 • Associative Containers 767

An associative container does not keep its elements in the order in
which they were inserted, but it is optimized for fast insertion,
removal, and finding of elements. The STL has four associative con-
tainers: set, multiset, map, and multimap.

A set is an associative container that does not allow the same element to appear
more than once. If an existing element is added to a set, the second addition is
ignored. A variation included in the STL, called a multiset, eliminates this restric-
tion, instead providing a count of how many additions have occurred. Sets support
the operations shown in Table 4.

To understand better the need for the set data structure, compare the use of a set
to the use of a list. To determine whether or not a list contains a specific element
requires in the worst case examining every value in the collection, a potentially

20.5 Associa t ive Conta iners

An associative container
maintains elements in an
order that is optimized for
fast insertion, removal,
and finding of elements.

20.5.1 Sets and Multisets

Table 4 Operations Provided by the Set Container

Operation Description

set() Construct an empty set

set(iterator, iterator) Construct a set from the given range of values

begin() Return iterator for set

count(value) Return number of instances of value

empty() Return true if set is empty

end() Return ending iterator for set

erase(iterator) Erase position from set

erase(value) Erase value from set

find(value) Return iterator for value

insert(value) Insert value into set

rbegin() Return iterator for values in reverse order

rend() Return ending iterator for values in reverse order

size() Return number of elements in set

768 CHAPTER 20 • The Standard Template Library

costly O(n) time operation. The same task can be performed with a set in O(log(n))
time.

But the fast execution time of set operations is not attained with-
out difficulty. The set is able to achieve fast execution by maintaining
elements in sequence, that is, in sorted order. As you saw in Chapter

13, maintaining a collection in sorted order permits the use of efficient data struc-
tures, such as binary search trees. Because of the need to establish an ordering, sets
can only be used with values that can be compared with each other. The need to
order elements was not a requirement for any of the fundamental containers.

The template arguments for class set are as follows:
template <typename T, typename CMP = less<T> >
class set
{
 ...
};

The first template argument is, as always, the element type. The second argument is
the strategy that will be used to compare two elements. The default value for this
argument is the type of the standard less function object, which uses the < operator.
(Function objects were introduced in Section 14.10.) If the element ordering is
given by the < operator, you need only specify the element type of a set, not the
comparator:

set<int> a;
set<string> b;

There are three ways to form sets of a new object type. Suppose we want to main-
tain elements of type Employee in a set. One approach is to override operator< and
thereby allow the normal declaration:

bool operator<(const Employee& a, const Employee& b)
{
 return a.salary() < b.salary();
}

set<Employee> workers; // Will be sorted by salary

Another approach is to use a pointer to a comparison function.
bool salary_less(const Employee& a, const Employee& b)
{
 return a.salary() < b.salary();
}

set<Employee, bool (*)(const Employee&, const Employee&)>
 workers(salary_less); // Will be sorted by calling the salary_less function

The second template parameter is the type of the comparison function.
A third approach is to provide an explicit function object that defines the order-

ing. Notice that the function object is a class that implements the function call oper-
ator, and not operator<.

Sets and multisets keep
elements in sorted order.

20.5 • Associative Containers 769

class SortByName
{
public:
 bool operator()(const Employee& a, const Employee& b) const;
};

bool SortByName::operator()(const Employee& a, const Employee& b) const
{
 return a.get_name() < b.get_name();
}

The class that defines the sorting algorithm can then be used as the second template
argument in the set definition:

set<Employee, SortByName> workers; // Now sorted by name

A map is an indexed data structure, similar to a vector or a deque.
However, maps differ from vectors or deques in two important
respects. First, in a map, unlike a vector or deque, the indices (called
the keys) need not be integers, but can be any ordered data type. For
example, maps can be indexed by strings, or by real numbers. Any

data type for which a comparison operator can be defined can be used as a key.
As with a vector or deque, elements can be accessed for both insertion and

retrieval through the use of the subscript operator, although there are other tech-
niques. Like a set, a map is an ordered data structure. This means that elements are
maintained in sequence, the order being determined by the keys. Because a map main-
tains elements in order, it can very rapidly find the element specified by a given key.

There are two varieties of maps provided by the standard library. The map data
structure demands unique keys. That is, there is a one-to-one association between
keys and their corresponding values. A multimap, on the other hand, permits multi-
ple entries to be indexed by the same key. The operations of the map data structure
are listed in Table 5.

The map data type has three template arguments. The first two are the key and
value types. The third is the comparison for keys. This third argument defaults to
the simple less than comparison for keys.

template <typename K, typename V, typename CMP = less<K> >
class map
{
 ...
};

Should the user wish to use a comparison algorithm that is different from the less
than operator, he or she can explicitly provide it as the third argument, just as with
the set.

The implementation of the map is simplified by the fact that a map can be consid-
ered to be a set that maintains a collection of pairs. Each key/value pair is stored in

20.5.2 Maps and Multimaps

Maps and multimaps
associate keys with
values. Keys can belong to
any ordered data type.

770 CHAPTER 20 • The Standard Template Library

an element of type pair. When an entry is inserted into the map, it must first be
written as a pair. Iterators for maps produce a sequence of pairs. The key and value
can each be accessed as part of the pair:

map<string, int> database;
...
map<string, int>::iterator current = database.begin();
while (current != database.end())
{
 pair<string, int> element = *current;
 cout << "key is " << element.first << ", value is " <<
 element.second << "\n";
 ++current;
}

Table 5 Operations Provided by the Map Container

Operation Description

map() Construct an empty map

map(iterator, iterator) Construct a map from the given range of values

begin() Return iterator for map

count(key) Return number of entries with key (always 0 or 1 for map)

empty() Return true if collection is empty

end() Return ending iterator for map

erase(iterator) Erase value at indicated location

erase(iterator, iterator) Erase range of values

find(key) Return iterator to value with given key

insert(element) Insert element, which must be a key/value pair

lower_bound(key) Return iterator for first entry with given key
(multimap only)

rbegin() Return iterator for map in reverse order

rend() Return ending iterator for map in reverse order

size() Return number of elements in container

upper_bound(key) Return iterator for past-the-end entry with given key
(multimap only)

operator[key] Return value associated with given key

20.6 • Case Study: Dijkstra’s Shortest Algorithm 771

We will use a typical application to illustrate the use of several different forms of
container in one program. Imagine a bus company that runs buses in triangular
routes to various cities. The routes are labeled with their associated costs in
Figure 6. The problem is to determine the minimum cost to travel from one city, for
example Pierre, to each of the other cities.

To begin with, we need a way to represent a destination and the cost associated
with traveling there. We could use a pair for this purpose, but because we also need
to override the comparison operator it is just as easy to define a new class:

class DistanceToCity
{
public:
 DistanceToCity(string n, int d);
 string name;
 int distance;
 bool operator<(const DistanceToCity& right) const;
};

DistanceToCity::DistanceToCity(string n, int d)
{
 name = n;
 distance = d;
}

bool DistanceToCity::operator<(const DistanceToCity& right) const
{
 return right.distance < distance;
}

Figure 6 A Typical Directed Graph

20.6 Case Study: Di jks t ra ’s Shortest A lgor i thm

Pierre
Pendleton

Pittsburgh

Phoenix

Pensacola

PrincetonPeoria
Pueblo

3

2

3
8

4 3

4

10

5

5 2

4
5

772 CHAPTER 20 • The Standard Template Library

A single instance of this class represents a destination and the cost (represented as
distance) to travel to the destination. Our graph can then be represented as a type of
map. The key will be a city name, and an element will be an instance of Distance-
ToCity. Because some cities are origins for several different possible destinations
(from Pendleton you can travel to either Phoenix or Pueblo, for example), we must
use a multimap.

multimap<string, DistanceToCity> CityMap;

The class DistanceFinder will hide the details of the actual map by providing two
member functions. The first adds a single link to the graph. The second takes a
source node, and fills in a map of destinations and their minimal costs.

The algorithm used to find the shortest distance is known as Dijkstra’s shortest
path algorithm. The algorithm, named for its inventor Edsger Dijkstra, is relatively
simple. A priority queue is used to represent the list of possible destinations and the
cost associated with traveling to them. This priority queue is sorted on smallest dis-
tance. Initially, the source is placed in the queue with distance zero. A loop then
pulls elements from the queue. If the item pulled from the queue represents a city
that has not yet been visited (a fact that is determined by seeing if there is an entry
in the shortest distance map with the given key) then the value and cost is placed
into the map because it represents the least distance to the new city. Knowing the
distance to the city, and by consulting the graph to discover the distance to get from
that city to the next, new entries are then placed into the queue. Some of these may
represent cities that have already been visited. If so, when they are removed from
the priority queue the shortest distance map will already have an entry for the given
key, and they will be ignored.

In the middle of the inner loop, as new entries are being placed into the queue,
the distance from the current city to the next is found in the multimap named cities.
The function lower_bound returns the first entry, while the function upper_bound
returns the iterator just past the last entry. The characteristic iterator loop is used to
examine each element in between.

ch20/dijkstra.cpp

1 #include <map>
2 #include <queue>
3 #include <iostream>
4
5 using namespace std;
6
7 /**
8 A utility class representing distance to a given city.
9 */
10 class DistanceToCity
11 {
12 public:
13 DistanceToCity();
14 DistanceToCity(string n, int d);
15 bool operator<(const DistanceToCity& right) const;
16 string get_name() const;

20.6 • Case Study: Dijkstra’s Shortest Algorithm 773

17 int get_distance() const;
18 private:
19 string name;
20 int distance;
21 };
22
23 DistanceToCity::DistanceToCity()
24 {
25 name = "";
26 distance = 0;
27 }
28
29 DistanceToCity::DistanceToCity(string n, int d)
30 {
31 name = n;
32 distance = d;
33 }
34
35 bool DistanceToCity::operator<(const DistanceToCity& right) const
36 {
37 return right.distance < distance;
38 }
39
40 inline string DistanceToCity::get_name() const { return name; }
41
42 inline int DistanceToCity::get_distance() const { return distance; }
43
44 /**
45 A framework for finding shortest paths
46 using Dijkstra’s shortest path algorithm.
47 */
48 class DistanceFinder
49 {
50 public:
51 /**
52 Sets the distance between two cities.
53 @param from originating city
54 @param to destination city
55 @param distance distance between cities
56 */
57 void set_distance(string from, string to, int distance);
58
59 /**
60 Produces map of shortest distances.
61 @param start originating city
62 @param shortest map of shortest distances from start
63 */
64 void find_distance(string start, map<string, int>& shortest);
65
66 private:
67 typedef multimap<string, DistanceToCity> CityMap;
68 typedef CityMap::iterator Citr;
69 CityMap cities;
70 };

774 CHAPTER 20 • The Standard Template Library

71
72 void DistanceFinder::set_distance(string from, string to, int distance)
73 {
74 cities.insert(CityMap::value_type(from, DistanceToCity(to,
75 distance)));
76 }
77
78 void DistanceFinder::find_distance(string start,
79 map<string, int>& shortest)
80 {
81 priority_queue<DistanceToCity> que;
82 que.push(DistanceToCity(start, 0));
83
84 while (!que.empty())
85 {
86 DistanceToCity new_city = que.top();
87 que.pop();
88 if (shortest.count(new_city.get_name()) == 0)
89 {
90 int d = new_city.get_distance();
91 shortest[new_city.get_name()] = d;
92 Citr p = cities.lower_bound(new_city.get_name());
93 Citr stop = cities.upper_bound(new_city.get_name());
94 while (p != stop)
95 {
96 DistanceToCity next_destination = (*p).second;
97 int total_distance = d + next_destination.get_distance();
98 que.push(DistanceToCity(next_destination.get_name(),
99 total_distance));
100 ++p;
101 }
102 }
103 }
104 }
105
106 int main()
107 {
108 DistanceFinder d;
109 d.set_distance("Pendleton", "Phoenix", 4);
110 d.set_distance("Pendleton", "Pueblo", 8);
111 d.set_distance("Pensacola", "Phoenix", 5);
112 d.set_distance("Peoria", "Pittsburgh", 5);
113 d.set_distance("Peoria", "Pueblo", 3);
114 d.set_distance("Phoenix", "Peoria", 4);
115 d.set_distance("Phoenix", "Pittsburgh", 10);
116 d.set_distance("Phoenix", "Pueblo", 3);
117 d.set_distance("Pierre", "Pendleton", 2);
118 d.set_distance("Pittsburgh", "Pensacola", 4);
119 d.set_distance("Princeton", "Pittsburgh", 2);
120 d.set_distance("Pueblo", "Pierre", 3);
121
122 map<string, int> shortest;
123 d.find_distance("Pierre", shortest);
124 map<string, int>::iterator current = shortest.begin();

20.7 • Functions, Generators, and Predicates 775

We will trace the first few steps of the algorithm in order to illustrate its behavior.
Initially the starting city, Pierre, is placed into the priority queue with distance zero.
Because this is the only element in the priority queue, it is removed. From Pierre
the next city is Pendleton, which is placed into the queue with cost 2. Removing
Pendleton, the next two possible cities are Pueblo (cost 10) and Phoenix (cost 6).
Because the latter has a smaller cost than the former, it will be the element examined
next. From Phoenix one can reach Pueblo (cost 9), Peoria (cost 10), and Pittsburgh
(cost 16). At this point the priority queue has four items, Pueblo with cost 10 reach-
able from Pendleton, Pueblo with cost 9 reachable from Phoenix, Peoria (cost 10),
and Pittsburgh (cost 16). The smallest entry will be Pueblo with cost 9. Notice that
later when Pueblo with cost 10 is removed from the queue it will be noted that the
city has already been reached, and no further processing of the city will be per-
formed. Execution continues in this fashion until all reachable cities have been
examined.

Many of the generic algorithms provided in the standard library require functions
or function objects as arguments. A simple example is the algorithm for_each,
which has the following definition:

template<typename Iterator, typename Action>
void for_each(Iterator current, Iterator stop, Action action)
{
 while (current != stop)
 {
 action(*current);
 ++current;
 }
}

There are two template arguments. The first is used to match the pair
of iterators that describe the sequence of values in the collection.
Because these are tied to template arguments, the same algorithm can
be used with iterators from any type of container. The second template

argument matches the action, which must be a function or function object.

125 map<string, int>::iterator stop = shortest.end();
126 while (current != stop)
127 {
128 pair<string, int> p = *current;
129 cout << "distance to " << p.first << " is " << p.second << "\n";
130 ++current;
131 }
132 return 0;
133 }

20.7 Funct ions, Generators , and Predicates

Many generic algorithms
take functions or function
objects as arguments.

776 CHAPTER 20 • The Standard Template Library

The following, for example, declares a list of integers, then invokes the function
print_element on each value in the list:

void print_element(int value)
{
 cout << value << "\n";
}

list<int> a_list;
...
for_each(a_list.begin(), a_list.end(), print_element);

Each value from the list is passed, in turn, as an argument to the print_element
function.

A predicate is simply a function that returns a true/false value. This
can be a bool type (the preferred technique) or, because C++ inter-
prets integer values as Boolean, an int. In the latter case an integer
zero is interpreted as false, and anything nonzero as true. (Characters
and pointers can also be interpreted as Boolean values.)

The following are some example predicates. The first takes an integer value and
returns true if it has a zero remainder when divided by two—that is, if the number
is even. The second takes an integer that represents a year, returns true if the year is
a leap year, and returns false otherwise:

bool is_even(int val)
{
 return 0 == val % 2;
}

bool is_leap_year(int year)
{
 if (0 == year % 400) return true; // Every 400 years is a leap year
 if (0 == year % 100) return false; // Otherwise centuries are not
 if (0 == year % 4) return true; // Every fourth year is
 return false; // Otherwise not
}

An example of a generic algorithm that uses a predicate is find_if. This algorithm
returns the first value that satisfies the predicate, returning the second argument
(which is generally the end-of-range value) if no such element is found. Using this
algorithm, the following locates the first leap year in a list of years:

list<int>::iterator first_leap = find_if(a_list.begin(), a_list.end(),
 is_leap_year);
if (first_leap != a_list.end()) ... // Found it

Predicates are also often created using function objects, which we will describe
shortly.

20.7.1 Predicates

A predicate is a
function that returns
a Boolean value.

20.7 • Functions, Generators, and Predicates 777

A generator is a function that takes no arguments and that returns a
value, possibly a different value, each time it is invoked. The most
common generator is the random number generator rand, which you
learned about in Section 3.11. Each time rand is executed, it returns a
new random integer value.

An example of a generic algorithm that uses a generator is the
function generate. This function replaces each element in a sequence

with a new value returned by the generator. The following, for example, creates a
vector with ten random integers.

vector<int> a(10);
generate(a.begin(), a.end(), rand);

Suppose that instead of random integers you needed to create random integers
between 1 and 100. Using the same logic as the rand_int function (Section 3.11) you
could write this as follows:

int rand_one_hundred()
{
 return 1 + rand() % 100;
}

You could then use this new generator to create a vector of values between 1 and
100:

vector<int> b(50);
generate(b.begin(), b.end(), rand_one_hundred);

Generators, like predicates, are also often written as function objects.

A function object is an instance of a class that defines the function call
operator. Because the class defines this operator, its objects can be
invoked using the same syntax as an ordinary function. There are a
number of reasons why you might want to define a function object,
rather than simply writing an ordinary function. Being an object, a
function object can be stored in a variable, passed as an argument, or
returned as a result from a function. Function objects can be
expanded inline, for more efficient execution. Most importantly, func-

tion objects can carry state. This means they can be initialized and can remember
values from creation until they are used, or from one invocation to the next.

A simple example will illustrate the difference between a function and a function
object. The function rand returns random integers. The function rand_one_hundred
uses rand and returns random values between 1 and 100. Suppose you wanted to
generalize this so that you could generate random values between a and b, where a
and b are values set at run time. You know how to create a single random number in

20.7.2 Generators

A generator is a
function with no
arguments that returns
a different value each
time it is called.

20.7.3 Function Objects

A function object is an
object of a class that
implements the function
call operator, and hence
can be used in the same
manner as a function.

778 CHAPTER 20 • The Standard Template Library

this form, using the function rand_int. But now you need a generator, that is, a
function that takes no arguments and will return a different random value each time
it is invoked. But how to set the values of a and b? The solution is to create a class,
and set the values of a and b in the constructor:

class RandomInt
{
public:
 RandomInt(int ia, int ib);
 int operator()();
private:
 int a, b;
};

RandomInt::RandomInt(int ia, int ib)
{
 a = ia;
 b = ib;
}

inline int RandomInt::operator()()
{
 return a + rand() % (b - a + 1);
}

If you create an instance of this class, then each time you invoke the function call
operator you will get a different random number:

RandomInt r10(1, 10);

cout << "one random number " << r10() << "\n";
cout << "and another " << r10() << "\n";

You could use this class to, for example, create a vector of random values between 1
and 10. One way would be to pass an instance of the class to the generator:

vector<int> a(10);
generate(a.begin(), a.end(), r10);

More commonly, the instance is created as an unnamed temporary, a value that will
exist only for the duration of the function call, and will then be destroyed:

vector<int> b(10);
generate(b.begin(), b.end(), RandomInt(1, 10));

Predicates are also often written as function objects. Suppose you want to general-
ize the function even to a divisible-by-n predicate, where n is a value that is not
known until run time. The following shows how this can be done:

class DivisibleBy
{
public:
 DivisibleBy(int in);
 bool operator()(int x);
private:
 int n;
};

20.7 • Functions, Generators, and Predicates 779

DivisibleBy::DivisibleBy(int in) : n(in) {}

inline bool DivisibleBy::operator()(int x)
{
 return 0 == x % n;
}

With this class, the value of the divisor can be set by the constructor when an
instance of the class is created. Afterward, the object can be used in the fashion of a
function, and will return true if the argument is a multiple of the value. For exam-
ple, imagine you had a list of integers, and you needed to find the first value after
the initial element that is divisible by the initial element. You could do this as
follows:

list<int> a_list;
...
list<int>::iterator current = a_list.begin();
DivisibleBy pred(*current); // Create the predicate
++current; // Advance to next element
list<int>::iterator ele = find_if(current, a_list.end(), pred);
if (ele != a_list.end()) // Found it

Another reason to use a function object in place of a function is when each invoca-
tion must remember some state set by earlier invocations. Suppose, for example,
that you need a generator that will produce the sequence 1, 2, 3, and so on, return-
ing a different integer value on each call. This sequence generator could be written
as:

class SequenceGenerator
{
public:
 SequenceGenerator(int sv); // Can set starting value
 int operator()();
private:
 int current;
};

SequenceGenerator::SequenceGenerator(int sv)
{
 current = sv;
}

inline int SequenceGenerator::operator()()
{
 int r = current;
 current++;
 return r;
}

Using this class, a twenty-element vector could be initialized to the values 1 to 20:
vector<int> a(20); // Declare a new vector
generator(a.begin(), a.end(), SequenceGenerator(1)); // Initialize it

780 CHAPTER 20 • The Standard Template Library

There are a number of function objects that are already defined in the standard
library. These will be described in the next section, when we explore some of the
generic algorithms that make them useful.

The standard library provides a number of predefined function
objects in the header file <functional>. These can often be combined
with generic algorithms to extend their utility without having to
write new code.

Earlier in this chapter you encountered the binary predicate
less<T>, which was a predicate version of the operator <. The class
less is a template class, from which a function object can be pro-
duced. There are predicate versions of all the standard relational

operators. These are named equal_to, not_equal_to, greater, less, greater_equal,
and less_equal. One place these can be used is as the comparison arguments in the
standard containers. For instance, to create a set that stores values in decreasing
order rather than increasing order, you can write the following declaration:

set<int, greater<int> > new_set;

Another group of function objects encapsulate the standard arithmetic operations.
These include plus, minus, multiplies, divides, modulus, and negate. These can be
used with generic algorithms. For example, the default version of the accumulate
function calculates the sum of the values in a range. But the binary function used in
this algorithm need not be summation. An alternative can be explicitly passed as
argument.

The accumulate function has four arguments: two iterators denoting a range, the
default value that is returned when the range is empty, and a function that defaults
to plus<T>. The following returns the product of a vector of integers instead of their
sum.

int prod = accumulate(a.begin(), a.end(), 1, multiplies<int>());

While the use of these function objects can simplify certain tasks, it is often the case
that a needed predicate or function is a minor variation of an existing function. For
example, suppose you are searching for the first negative number in a collection of
values. The predicate you need can be expressed as “less than zero”. But this is a
minor variation on “less than”, with the second argument bound to zero.

This idea is termed a binder. In other languages the same concept is often termed
a curry, after a logician, Haskell Curry, who investigated the use of this technique in
the 1950s. There are two binders in C++. The first, bind1st, takes a two-argument
function and binds the first argument, yielding a one-argument function. The func-
tion bind2nd does the same, but binds the second argument. Using these, our search
for the first element less than zero could be written as follows:

list<int>::iterator first_negative =
 find_if(a.begin(), a.end(), bind2nd(less<int>(), 0));

20.7.4 Standard Function Objects and Binders

The STL provides
predefined function
objects for arithmetic and
relational operators, and a
mechanism for combining
function objects.

20.8 • Generic Algorithms 781

Another category of binder is a negator. An example is the negator not1. This func-
tion takes a unary (one argument) Boolean predicate, and inverts the sense of the
result. Finding the first value larger than or equal to zero could be written as:

list<int>::iterator first_positive =
 find_if(a.begin(), a.end(), not1(bind2nd(less<int>(), 0)));

In Chapter 1 you learned that an algorithm is a solution technique
that is unambiguous, executable, and terminating. Later, you learned
that algorithms could be represented by functions, and that these
functions could be generalized by parameters, so that they could
work with a wide variety of values. In Chapter 16 you learned about
function templates. A function template not only allows a function
to work with a wide variety of values, but also allows the function to
work with a variety of different types. A generic algorithm takes this

concept one step further. A generic algorithm is an algorithm that has been general-
ized so that it can operate not only with a wide variety of values and a variety of
types, but also with multiple types of containers.

Two features, templates and iterators, are key to the development of generic algo-
rithms. Templates allow algorithms to work with multiple types. Template parame-
ter values are matched at compile time, and do not impose any additional run-time
overhead. Iterators are used to tie the algorithms to containers, and allow the same
algorithm to work with many different containers.

In the generic algorithms these two features come together. In the container
classes, the template arguments were generally used to represent the type of element
the container was holding. For generic algorithms, the template arguments typically
represent the type of iterator the algorithm will use. You saw this in the definition
of the for_each algorithm:

template<typename Iterator, typename Action>
void for_each(Iterator current, Iterator stop, Action action)
{
 while (current != stop)
 {
 action(*current);
 ++current;
 }
}

Notice that neither template argument indicates the type of element being held in
the container. This information, as well as knowledge of the kind of container the
loop is cycling over, is only implicitly defined by the type of the iterator. As we
noted at the beginning of the chapter, this makes an extremely loose connection
between the generic algorithm and the container classes.

There are several dozen generic algorithms in the standard library. We will
present only the most common and useful. A more complete description can be

20.8 Gener ic Algor i thms

Generic algorithms can be
used to initialize a
container, transform a
collection, search for a
value within a container,
remove elements from a
container, or other tasks.

782 CHAPTER 20 • The Standard Template Library

found in reference manuals for the standard library, such as [1]. In order to simplify
the presentation of these algorithms, we will divide them into several categories.
First you will examine algorithms that are mainly used to initialize a sequence. The
algorithm generate is an example of this category. The next category is algorithms
used to make transformations. A third category is those used for searching. The
generic algorithms find and find_if that you have seen already are examples of this
variety. Next are algorithms used to remove values from a collection. All the generic
algorithms described are defined in the header file <algorithm>.

A container can be initialized by filling, copying, or generating. To fill means to ini-
tialize with a single fixed value. To copy means to duplicate values from one con-
tainer in order to fill a second. Finally, to generate means, as we have seen, to
execute a function repeatedly and use the resulting values to initialize a container.

There are two algorithms that can be used to fill a container. The first, fill, takes
as arguments an iterator range and a value, and assigns each element in the range the
given value. The following illustrates this function being used to initialize a ten-
element vector with the value 1.

vector<int> a(10);
fill(a.begin(), a.end(), 1);

The second algorithm, fill_n, takes an iterator, an integer count, and a value. It ini-
tializes the number of positions specified by the count with the given value. The fol-
lowing will fill the first five positions in the previous vector with the value 2.

fill_n(a.begin(), 5, 2);

It is important to note that both of these algorithms reassign an existing element in a
container. As shown they cannot be used to, for example, create new values in an
empty list. When using fill_n you must be careful that the container can hold the
given number of elements.

The generic algorithm copy is used to copy one collection into another. It takes
three arguments, the first two specifying the range of the input container, and the
third indicating the starting location for the destination container. It is assumed, but
not checked, that the destination is large enough to accommodate the input.

vector<int> b(20);
copy(a.begin(), a.end(), b.begin()); // Will initialize first 10 positions of b

You have already seen how the generic algorithm generate can be used to initialize a
container using a generator. The following assigns a twenty-element vector with
random values between 50 and 75.

vector<int> c(20);
generate(c.begin(), c.end(), RandomInt(50, 75));

The function generate_n can be used to generate a fixed number of values. Surpris-
ingly, there is no copy_n algorithm.

generate_n(c.begin(), 10, RandomInt(10, 20)); // Overwrite first 10 positions

20.8.1 Initialization Algorithms

20.8 • Generic Algorithms 783

In Section 20.9, you will see how the utility of the initialization algorithms can be
greatly extended through the use of inserters.

The category of algorithms in the standard library used to transform a sequence
into a new sequence has two subcategories. Some, like reverse, change a sequence in
place, overwriting the original values. Others, such as transform, are normally used
to produce a new sequence.

Sorting is a common task for computer programs. The list container provides
for sorting as a member function. Sets and maps are ordered already and cannot be
sorted. But it is frequently necessary to sort collections stored in a vector, deque, or
ordinary array. For this purpose you can use the sort generic algorithm:

vector<int> a(10);
generate(a.begin(), a.end(), rand); // Create list of random numbers
sort(a.begin(), a.end()); // Then sort them

An advantage of sorted containers is that they can be rapidly searched. We will
return to this when we discuss the searching algorithms in the standard library. The
sort algorithm cannot be used with lists, because it requires the use of random-
access iterators, which are not provided by lists. But this is not a significant limita-
tion because, as we have noted already, the class list provides a member function
for sorting, which uses a different algorithm.

The algorithm reverse reverses the elements in a sequence, so that the last ele-
ment becomes the new first, and the first element the new last, and so on. Note that
lists provide this same action as a member function.

vector<int> a(10);
generate(a.begin(), a.end(), SequenceGenerator(1)); // Initially 1, 2, ... 10
reverse(a.begin(), a.end()); // Now 10, 9, 8, ... 2, 1

The algorithm random_shuffle randomly rearranges the elements in a collection.
This could be useful, for example, in sorting a deck of playing cards. The arguments
must be random access iterators, which means that the function is only useful with
vectors, deques, or ordinary arrays. It cannot be used with lists, sets, or maps. In the
playing card example, the deck might be represented by a vector of elements of type
Card instead of type int.

vector<int> a(10);
generate(a.begin(), a.end(), SequenceGenerator(1)); // Initially 1, 2, ... 10
random_shuffle(a.begin(), a.end());

It is impossible to predict what the resulting sequence will be. One potential
sequence is 4, 7, 2, 3, 5, 8, 9, 1, 10, 6.

There are a number of transformations that are less commonly encountered in
practice. For example, the algorithm rotate provides a rotation around a point that
is specified by an iterator. A rotation of a sequence divides the sequence into two
sections, then swaps the order of the sections, maintaining the relative ordering of

20.8.2 Transformations

784 CHAPTER 20 • The Standard Template Library

the elements within the sections. Suppose, for example, we have a vector containing
the values 1 to 10, and we rotate around the element 7.

vector<int> a(10);
generate(a.begin(), a.end(), SequenceGenerator(1));
vector<int>::iterator rotate_point = find(a.begin(), a.end(), 7);
rotate(a.begin(), rotate_point, a.end());

The result places the values 7 to 10, the values from the rotation point to the end, at
the beginning of the sequence. The values 1 to 6, the elements before the rotation
point, are moved to the end. Note that the two subsequences need not be the same
length, and that the rotation point argument appears between the starting and end-
ing iterators in the argument list.

A partition is formed by moving all the elements that satisfy a predicate to one end
of a sequence, and all the elements that fail to satisfy the predicate to the other end.
For example, suppose you start with a vector of values 1 to 10, and partition using
the predicate is_even:

vector<int> a(10);
generate(a.begin(), a.end(), SequenceGenerator(1));
partition(a.begin(), a.end(), is_even);

The result is that all the even values will be moved to the front, and all the non-even
values moved to the end. The relative order of the elements within a partition in the
resulting container may not be the same as the values in the original sequence. A
second version of partition, named stable_partition, is not as fast but guarantees
the ordering of the resulting values. The stable partition of the example would be 2
4 6 8 10 1 3 5 7 9. Partitioning is one step in a famous and very fast sorting algorithm
termed Quicksort that you saw in Advanced Topic 11.1. You can learn more about
Quicksort in any data structures textbook [2].

The transform algorithm is an example of a generic algorithm that can be used to
generate a new sequence. There are two versions of this algorithm. The first takes an
input sequence (specified by a starting and ending iterator), an output destination
(specified by a single iterator), and a unary function. It applies the function to each
element in the input to form the output. For example, by writing the following you
could use this algorithm to form the squares of the first ten integers:

int square(int n)
{
 return n * n;
}

1 2 3 4 5 6 7

rotate_point

8 9 10

1 2 3 4 5 67 8 9 10

2 3 1 7 5 910 6 8 4

20.8 • Generic Algorithms 785

vector<int> a(10);
generate(a.begin(), a.end(), SequenceGenerator(1));
vector<int> b(10);
transform(a.begin(), a.end(), b.begin(), square);

The second form takes two sequences, and applies a binary function in a pair-wise
fashion to corresponding elements. The function assumes, but does not check, that
the second sequence has at least as many elements as the first. The result is placed
into a third sequence, which also must have sufficient space for the result:

int add(int a, int b)
{
 return a + b;
}

vector<int> c(10);
transform(a.begin(), a.end(), b.begin(), c.begin(), add);

When we discussed the list container earlier in this chapter we noted that two lists
of sorted values can be merged to form a new sorted collection. The merge algorithm
generalizes this to other containers. It is assumed the inputs are sorted. It is also
assumed that the target has enough space to store the values.

vector<int> a(10);
vector<int> b(20);
generate_n(a.begin(), 10, SequenceGenerator(1));
generate_n(b.begin(), 20, SequenceGenerator(1));
vector<int> c(30);
merge(a.begin(), a.end(), b.begin(), b.end(), c.begin());

One of the more unusual transformation algorithms is next_permutation. A permu-
tation is a reordering of values in a sequence. There are, for example, six permuta-
tions of the values 1 2 3. These are 1 2 3, 1 3 2, 2 1 3, 2 3 1, 3 1 2, and 3 2 1. In general
an n element sequence will have n! permutations. Note that in the first permutation
the values appear in increasing order, while in the last they appear in decreasing
order. This idea can be generalized and used to order the series of permutations.
The algorithm next_permutation transforms a sequence into the next permutation in
this series. The function returns a Boolean value indicating whether there was or
was not a next permutation. This allows the function to be executed in a loop, as
follows:

vector<int> a(4);
generate(a.begin(), a.end(), SequenceGenerator(1)); // Initialize 1, 2, 3, 4
while (next_permutation(a.begin(), a.end()))
{
 cout << "Output permutation ";
 for (vector<int>::iterator p = a.begin(); p!= a.end(); ++p)
 {
 cout << *p << " ";
 }
 cout << "\n";
}

You can compare this loop to the recursive algorithm for permutations described in
Section 10.1. A permutation of a word is termed an anagram. Permutations of the

786 CHAPTER 20 • The Standard Template Library

word able, for example, include beal, bela, and bale (as well as aleb, aelb, aebl, and a
variety of other nonsense words). The entire series of permutations can be gener-
ated using the following:

char word[] = "able";
char* p = word; // Beginning iterator
char* q = word + strlen(word); // Ending iterator
sort(p, q); // Initially sort letters into increasing order
while (next_permutation(p, q))
 cout << word << "\n";

The next category of algorithms includes those that are used to locate elements
within a sequence. Rather than returning actual values from a container, the search-
ing algorithms return an iterator that describes a position. Among other benefits,
this allows these algorithms to produce a sensible result when given an empty
sequence. (They will return the past-the-end iterator in this case). The first two
algorithms we describe are max_element and min_element. These two algorithms gen-
eralize the standard library routines max and min, allowing them to operate with an
entire collection.

vector<int> d(10);
generate(d.begin(), d.end(), rand); // Generate ten random numbers
vector<int>::iterator mx =
 max_element(d.begin(), d.end()); // Find largest value
vector<int>::iterator mn =
 min_element(d.begin(), d.end()); // Find smallest value
if (mx != d.end()) // Will fail for empty vector
 cout << "Largest is " << *mx << " and smallest is " << *mn << "\n";

Another common searching algorithm is find. This function returns an iterator that
identifies the first element that matches a given element. For example, the following
call returns an iterator to the first element in the list that equals 7. If there is no
matching element, the past-the-end iterator is returned.

list<int> values;
...
list<int>::iterator p = find(values.begin(), values.end(), 7);

A variation on the find algorithm is find_if. This generic algorithm takes a predi-
cate and returns the first value that satisfies the predicate. The following would
return the first leap year in a list of years:

list<int> years;
...
list<int>::iterator first_leap =
 find_if(years.begin(), years.end(),is_leap_year);

A sequential search such as those used by find and find_if is inefficient for large
collections. But as you learned in Chapter 11, searching can be very fast in a sorted
collection. Imagine trying to discover whether or not a certain value occurs in a col-
lection of 10,000 elements. A sequential search would require an examination of all

20.8.3 Searching Algorithms

20.8 • Generic Algorithms 787

10,000 values. If, however, the container were sorted, a binary search would give
you the same information after examining only 14 elements.

There are a number of generic algorithms that operate on sorted sequences. The
function binary_search returns a Boolean value indicating whether or not the value
is found in the container. The function lower_bound performs a similar task, but
returns an iterator indicating where a value can be inserted so as to maintain order-
ing. That is, the iterator refers either to the first element larger than or equal to the
search key, or to the ending iterator if no element is larger than the search key. The
function upper_bound does the same, but locates the first element strictly larger than
the search key. If a collection already contains multiple copies of the search key, the
subrange indicated by these two values describes the section of the container in
which the values are found.

vector<int> a(20);
generate(a.begin(), a.end(), RandomInt(1, 10));
sort(a.begin(), a.end());
if (binary_search(a.begin(), a.end(), 7))
{
 vector<int>::iterator p = lower_bound(a.begin(), a.end(), 7);
 vector<int>::iterator q = upper_bound(a.begin(), a.end(), 7);
 while (p != q)
 {
 cout << "found " << *p << "\n";
 ++p;
 }
}

A number of other generic algorithms treat a sorted collection as if it were a set, and
produce values such as the set union, intersection, or difference. These are explored
in exercises at the end of the chapter.

There are yet more algorithms that search for values of a specialized nature. We
will mention some of these, but not describe them in detail. The function
adjacent_find returns the position of the first element that is equal to the next
immediately following element. For example, if a sequence contained the values 1 4
2 5 6 6 7 5, it would return an iterator corresponding to the first 6 value. The algo-
rithm search is used to locate the beginning of a subsequence within a larger
sequence. The function equal works with two sequences of similar size, and returns
true if the associated elements are each equal, while the algorithm mismatch takes a
similar pair of sequences and returns a pair of iterators that together indicate the
first positions where the sequences have differing elements.

Removal algorithms can be categorized in two different ways. First, they can be cat-
egorized as to whether they operate with a fixed value or use a predicate. This is
analogous to the difference between find (which searches for a specific value) and
find_if (which searches for an element that satisfies a predicate). Next, there are
those algorithms that work in place, changing a container directly, in contrast to
those that copy their result to a new container.

20.8.4 Removal and Replacement Algorithms

788 CHAPTER 20 • The Standard Template Library

These possibilities can be illustrated by the various forms of remove. The function
remove_copy takes a specific value as argument, and copies to another container the
sequence of the original container with all instances of the value removed. For
example, suppose a is an eight-element vector with the values shown below, and b is
a vector with all zero values:

An invocation of remove_copy(a.begin(), a.end(), b.begin(), 2) would copy all
values except the 2s, resulting in the following:

Notice that the resulting sequence is smaller than the original. The function returns
the iterator to b that indicates the end of the result sequence.

An invocation of remove_copy_if(a.begin(), a.end(), b.begin(), DivisibleBy(2))
would copy all values except those divisible by 2, resulting in the following:

You may have noticed that these examples did not change the size of the result con-
tainer, b, even though only the initial portion was being used. In general, generic
algorithms do not alter the size of the containers they operate on. This can be some-
what confusing when using those algorithms that operate in place, such as remove.
Consider the call remove(a.begin(), a.end(), 2) using the same input as before.
The purpose of this call is to remove all instances of the value 2. After this call, the
sequence will be as shown below, and the value returned will be an iterator pointing
to the indicated element:

Notice that the initial portion, the values before the iterator, are the desired result.
The values from the iterator to the end are just the original elements in the con-
tainer. To eliminate the unwanted values it is necessary to use the erase function
provided by the container:

vector<int>::iterator p = remove(a.begin(), a.end(), 2);
a.erase(p, a.end()); // Remove the remaining values

The function remove_if is similar, but uses a predicate:
vector<int>::iterator = remove_if(a.begin(), a.end(), DivisibleBy(2));
a.erase(p, a.end()); // Collection is now 1, 3, 5

0 0 0 00 0 0 0b =

4 2 5 61 2 3 2a =

6 0 0 01 3 4 5b =

4 2 5 61 2 3 2a =

0 0 0 01 3 5 0b =

4 2 5 61 2 3 2a =

6 2 5 61 3 4 5a =

20.8 • Generic Algorithms 789

The following illustrates a use of remove_if in an implementation of the Sieve of
Eratosthenes algorithm, which was described in Exercise P13.3. The container
being manipulated is initially a collection of values from 2 to the upper bound. On
each recursive call, we extract the first value from the container. A call to remove_if
then eliminates all the multiples of this value. Recall that calling remove_if does not
shrink the size of the container. This is accomplished by the subsequent call to
erase. We then recursively call the function again, and upon its return restore the
extracted value to the front.

void sieve(deque<int>& numbers)
{
 if (numbers.empty())
 return;
 int n = numbers.front();
 numbers.pop_front();
 deque<int>::iterator p =

remove_if(numbers.begin(), numbers.end(), DivisibleBy(n));
numbers.erase(p, numbers.end());

 sieve(numbers);
 numbers.push_front(n);
}

deque<int> a(100);
generate_n(a.begin(), 100, SequenceGenerator(2));
sieve(a);

The algorithm unique is similar to the member function of the same name in the
list container. The algorithm searches for adjacent elements that are the same.
When found, the second (and any successive) values are removed. The sequence 1 3
3 3 2 2 5 4 4 would, after processing by unique, become 1 3 2 5 4. Note that the val-
ues need not be sorted. As with remove, no values from the container are actually
deleted, instead the iterator that refers to the end of the new sequence is returned.
Any remaining values must then be removed using the erase function provided by
the container.

list<int>::iterator p = unique(a.begin(), a.end());
a.erase(p, a.end()); // Remove the remaining values

The member function unique in the list container does not require the erase
operation. A variation on unique, named unique_copy, makes a copy of the trans-
formed collection, instead of making the modification in place. An example of the
use of unique_copy will be shown in the case study examined in Section 20.10.

The algorithms replace and replace_if are used to replace occurrences of certain
elements with a new value. For both functions, the new value is fixed when the
function is invoked, and will replace all instances of the specified value, no matter
how many replacements are performed. In replace the test is against a constant
value, for example replacing all 3s with 4s. In replace_if the test is provided by a
predicate, for example replacing all even numbers with zero:

vector<int> a(10);
generate(a.begin(), a.end(), RandomInt(1, 5));
replace(a.begin(), a.end(), 3, 4);

replace_if(a.begin(), a.end(), is_even, 0);

790 CHAPTER 20 • The Standard Template Library

Forgetting to Erase Removed Elements

Because the generic algorithms manipulate containers indirectly through iterators, they
never change the size of a container they are iterating over. A common error is to assume that
operations such as unique or remove will actually alter the size of the underlying container,
forgetting to supply the additional erase step. For example, suppose that vector x is initial-
ized with the values 1 2 2 3 3 3 4 4 4 4. Performing the operation

unique(x.begin(), x.end());

will leave x holding the values 1 2 3 4 3 3 4 4 4 4. The unwanted ending parts of this collection
are eliminated by using a subsequent erase operation:

vector<int>::iterator p = unique(x.begin(), x.end());
x.erase(p, x.end()); // Now x will hold 1 2 3 4

Two counting algorithms are count and count_if. These are used to count the num-
ber of values in a collection, or to count the number of values that satisfy a
predicate:

int three_count = count(a.begin(), a.end(), 3);

int even_count = count_if(a.begin(), a.end(), is_even);

cout << "number of 3's " << three_count <<
 ", number even " << even_count << "\n";

A few numeric algorithms are described in the header file <numeric>, rather than
<algorithm>. An example is the function accumulate which forms the sum of a range.

list<double> data;
double sum = accumulate(data.begin(), data.end(), 0);
// Now sum contains the sum of the elements in the list

The same function works if you have a container of strings:
vector<string> words;
string longword = accumulate(words.begin(), words.end(), "");

The last argument is the starting value of the summation. This value is returned
when the range is empty.

You can optionally supply a function other than summation (which is the
default)—see Section 20.7.4 for an example.

Other more specialized numeric algorithms include those that find inner prod-
ucts and partial sums of sequences.

COMMON ERROR 20.3

20.8.5 Other Algorithms

20.9 • Iterator Adapters 791

Adapters allow you to reuse algorithms for new situations. For example, through
the use of an adapter, you can use an algorithm that is designed to fill a container to
send data to an output stream. The following sections discuss the algorithm adapt-
ers provided by the STL.

Algorithms such as fill, copy, or generate are normally used to overwrite the
contents of an existing location. For example, the following creates a ten-element
vector, then reassigns the first five locations using the function fill_n:

vector<int> a(10);
fill(a.begin(), a.end(), 1); // Fill all ten locations with 1
fill_n(a.begin(), 5, 0); // Reassign first five locations with 0

Even lists can be overwritten in this fashion, but only if they already have elements
to be given new values by the operation. It would be useful, however, if the
functionality provided by fill, copy, or generate could be used to create or insert
new elements into the container.

In the STL this is accomplished by defining an adapter called an
inserter. An adapter, as you saw in Section 20.4 when you encountered
the stack and queue adapters, is a class that wraps around an existing
class and changes the interface. A typical inserter is back_inserter.
The back_inserter function takes a container (typically a vector or
list) as argument. It creates a class that satisfies the iterator interface.
But unlike the iterator, when a value is assigned to the inserter, instead
of changing an existing location, the value is inserted into the container

using the function push_back. An example will illustrate this. Create an initially
empty list, then copy the values from the vector into the list using the following
commands:

list<int> b;
copy(a.begin(), a.end(), back_inserter(b));

The copy algorithm that we normally use to copy elements from one container into
another is now being used to insert values into an empty container using the
push_back operation. The front_inserter does the same, but uses the operation
push_front instead of push_back. (Because vectors do not support the push_front
operation, they cannot be used to form a front_inserter.) Using this adapter, the
following example takes an initially empty list and initializes it using twenty ran-
dom values between 2 and 10.

list<int> c;
generate_n(front_inserter(c), 20, RandomInt(2, 10));

20.9 Iterator Adapters

20.9.1 Inserters

Many algorithms assign
values to a container
using an iterator. An
inserter can be used to
replace this assignment
action with an insertion
into a container.

792 CHAPTER 20 • The Standard Template Library

A stream iterator is another form of adapter that is used to convert
iterator operations into I/O stream operations. An example is
ostream_iterator. This class implements the operations of an iterator.
However, each time the iterator is assigned, the value is not stored, it
is output into the stream. This allows operations such as copy to be
used to print an entire collection, as in the following:

copy(c.begin(), c.end(), ostream_iterator<int>(cout));

When executed, each value from the list c will be copied to the standard output. An
optional second argument to the constructor is a string that will be used as a separa-
tor between the values:

copy(c.begin(), c.end(), ostream_iterator<int>(cout, "\n"));

Input stream iterators are similar. An input stream iterator implements the iterator
interface. However, each time a value is requested from the iterator, a new element
is instead read from the input stream. The sequence ends when the input stream is
exhausted. The default value from the class is used to represent the end-of-sequence
iterator. The following, for example, reads integer values from the standard input
and copies them into a list:

list<int> d;
copy(istream_iterator<int>(cin), istream_iterator<int>(),
 back_inserter(d));

Simple file transformation programs can be created by combining input and output
stream iterators and the various algorithms provided by the standard library. The
following short program reads a file of integers from the standard input, removes all
the even numbers, and copies those that are not even to the standard output, sepa-
rating each value with a newline:

int main()
{
 vector<int> x;
 copy(istream_iterator<int>(cin), istream_iterator(), back_inserter(x));
 vector<int>::iterator p = remove_if(x.begin(), x.end(), is_even);
 x.erase(p, x.end());
 copy(x.begin(), x.end(), ostream_iterator<int>(cout, "\n"));
 return 0;
}

Imagine that you want to make a list of all the words used in a document, such as
this book. You have the input as a text file, but most words are used more than
once. You want to eliminate duplicates, and list each word only once. But there is
another problem; the source file is so large (or your computer memory so small)

20.9.2 Stream Iterators

A stream iterator changes
iterator operations into
those that manipulate an
I/O stream.

20.10 Case Study: F i le Merge Sort

20.10 • Case Study: File Merge Sort 793

that you cannot store all the words in a single container in memory. The solution is
to use a variation on a technique termed a file merge sort.

The general approach works in two phases. In the first phase the input is divided
into smaller units that can be held in memory. In this example we will read the input
in blocks of 1,000 words. After the given number of words are read, the input is
sorted, and repeated words removed. The remaining values are then written to a
temporary file. This process is repeated until all the input has been read. (See
Figure 7.) At that point the input has been divided into some number of temporary
files, each of which holds a sorted sequence of words. These are stored in a queue.

Now phase two begins. The first two temporary files are opened, and their
names removed from the queue. The contents of these files are merged to form a
new sorted file of words. (See Figure 8.) Merging two files can be performed hold-
ing only a few elements from each collection in memory. This means the merge can
be accomplished even if the collection is too large to represent in memory. But there
is a problem with this. The merge can now contain repeated words. To remove
these, a second pass over the input using the algorithm unique is required. This
removes the repeated words. (Exercise P20.23 suggests an alternative solution to
this problem.) Once the files are merged, the new temporary is added to the end of
the queue, and the process repeated.

This continues until there is only a single file remaining. Because at each step two
files are merged into one, this must eventually occur. At this point the final file rep-
resents the desired result, and it can be copied to the standard output.

A variety of generic algorithms are used in this application. In the first phase a
generator is used to initialize a vector of words. This generator reads words from
the standard input. Because there is no standard library function to do this, a func-
tion object named WordGen is written for this purpose. WordGen returns an empty
string when the end of input is detected. After initialization with the list of words,
the vector is sorted (using the generic algorithm sort) and duplicate words removed
(using the algorithm unique). The resulting values are then copied into a temporary
file. A utility function temp_name creates file names using an output stream. The copy
generic algorithm is then employed to copy the vector to the temporary file. To use

Figure 7 Temporary Files after Phase 1

Figure 8 Temporary Files Being Merged in Phase 2

t1 t2 t3 tn. . .

t1 t2 t3 tn tn+1. . .

merge unique

794 CHAPTER 20 • The Standard Template Library

copy an output iterator is necessary. The output iterator changes the assignment
operations in the copy algorithm into file output commands. This entire process
repeats until the input is exhausted.

ch20/filesort.cpp

1 #include <algorithm>
2 #include <fstream>
3 #include <iostream>
4 #include <iterator>
5 #include <queue>
6 #include <sstream>
7 #include <vector>
8
9 using namespace std;
10
11 /**
12 Creates a temporary file name.
13 */
14 string temp_name()
15 {
16 static int file_count = 0;
17 ostringstream name;
18 name << "temp" << file_count;
19 file_count++;
20 return name.str();
21 }
22
23 /**
24 A generator for strings from standard input.
25 */
26 class WordGen
27 {
28 public:
29 string operator()();
30 };
31
32 string WordGen::operator()()
33 {
34 string in;
35 if (cin >> in)
36 {
37 return in;
38 }
39 return "";
40 }
41
42 void phase1(queue<string>& file_names)
43 {
44 const int max_words = 10;
45 WordGen wgen;
46 while (cin)
47 {

20.10 • Case Study: File Merge Sort 795

48 // Read max_words into vector, sort them, write to temp file
49 vector<string> a;
50 generate_n(back_inserter(a), max_words, wgen);
51 sort(a.begin(), a.end());
52
53 vector<string>::iterator p = unique(a.begin(), a.end());
54 a.erase(p, a.end());
55
56 string tname = temp_name();
57 file_names.push(tname);
58 ofstream out_file(tname.c_str());
59 copy(a.begin(), a.end(),
60 ostream_iterator<string>(out_file, "\n"));
61 out_file.close();
62 }
63 }
64
65 void phase2(queue<string>& file_names)
66 {
67 while (file_names.size() > 1)
68 {
69 // Merge two temp files into one
70 string t1 = file_names.front();
71 file_names.pop();
72 string t2 = file_names.front();
73 file_names.pop();
74
75 ifstream f1(t1.c_str());
76 ifstream f2(t2.c_str());
77 string tname = temp_name();
78 ofstream out_file(tname.c_str());
79
80 merge(istream_iterator<string>(f1),
81 istream_iterator<string>(),
82 istream_iterator<string>(f2),
83 istream_iterator<string>(),
84 ostream_iterator<string>(out_file, "\n"));
85
86 f1.close();
87 f2.close();
88 out_file.close();
89
90 // Now remove duplicates from resulting file
91 ifstream in_file(tname.c_str());
92 string tname2 = temp_name();
93 ofstream out_file2(tname2.c_str());
94
95 unique_copy(istream_iterator<string>(in_file),
96 istream_iterator<string>(),
97 ostream_iterator<string>(out_file2, "\n"));
98
99 in_file.close();
100 out_file2.close();
101 file_names.push(tname2);

796 CHAPTER 20 • The Standard Template Library

In phase two the file names are removed from the file_names queue and the associ-
ated files are opened. The contents of the files are then merged, using the algorithm
merge. Note that both of the input iterators for this algorithm are file-input itera-
tors, while the output is a file-output iterator. The resulting file may now contain
repeated elements. To eliminate these the file is opened once more, this time for
reading. The generic algorithm unique_copy performs the task of eliminating
repeated elements as the values are copied to the output. The resulting file is sorted
and contains no duplicates. The name of this file is placed back in the queue, and the
process is repeated until only one file remains.

When phase two finishes the last file contains the desired results. A final call on
the generic algorithm copy is used to copy the values from this file to the standard
output.

1. The Standard Template Library, or STL, is a library of container classes.

2. Each class in the STL supports a relatively small set of operations.

3. This basic functionality can be extended though the use of generic algorithms.

4. Through the use of iterators, generic algorithms can be made to work with a vari-
ety of containers.

5. Iterators are high-level abstractions that serve the same role as pointers, but can
be applied to a variety of data structures.

6. Pairs of iterators can be used to refer to a complete collection of values, or a sub-
portion of a collection.

7. The three fundamental sequential data structures are the vector, list, and deque.

102 }
103 }
104
105 int main()
106 {
107 queue<string> file_names;
108
109 phase1(file_names);
110 phase2(file_names);
111
112 string tname = file_names.front();
113 ifstream in_file(tname.c_str());
114 copy(istream_iterator<string>(in_file),
115 istream_iterator<string>(),
116 ostream_iterator<string>(cout, "\n"));
117
118 return 0;
119 }

CHAPTER SUMMARY

Further Reading 797

8. The vector and deque are indexed data structures; they support efficient access
to each element based on an integer key.

9. A list supports efficient insertion into or removal from the middle of a collec-
tion. Lists can also be merged with other lists.

10. A deque provides random access and insertions at the front and back in con-
stant time.

11. Stacks, queues, and priority queues are adapters built on top of the fundamental
collections.

12. An associative container maintains elements in an order that is optimized for
fast insertion, removal, and finding of elements.

13. Sets and multisets keep elements in sorted order.

14. Maps and multimaps associate keys with values. Keys can belong to any
ordered data type.

15. Many generic algorithms take functions or function objects as arguments.

16. A predicate is a function that returns a Boolean value.

17. A generator is a function with no arguments that returns a different value each
time it is called.

18. A function object is an object of a class that implements the function call
operator, and hence can be used in the same manner as a function.

19. The STL provides predefined function objects for arithmetic and relational
operators, and a mechanism for combining function objects.

20. Generic algorithms can be used to initialize a container, transform a collection,
search for a value within a container, remove elements from a container, or
other tasks.

21. Many algorithms assign values to a container using an iterator. An inserter can
be used to replace this assignment action with an insertion into a container.

22. A stream iterator changes iterator operations into those that manipulate an I/O
stream.

1. Nicolai M. Josuttis, The C++ Standard Library: A Tutorial and Reference, Addison-
Wesley, 1999.

2. Timothy Budd, Data Structures in C++ Using the Standard Template Library, Addison-
Wesley, 1997.

FURTHER READING

798 CHAPTER 20 • The Standard Template Library

Exercise R20.1. In what way is an iterator similar to a pointer? In what way is it
different?

Exercise R20.2. What is a past-the-end value? How is it different from a regular
pointer or iterator?

Exercise R20.3. Explain how pairs of iterators are used to describe a sequence of val-
ues or a subsequence of values in a container.

Exercise R20.4. What are the different varieties of iterators? What operations are rec-
ognized by each? What type of iterator is used by a list? By a vector? By a deque?

Exercise R20.5. What is a container class?

Exercise R20.6. What does it mean to say an operation is O(1)? O(n)? O(1)+?

Exercise R20.7. Explain why inserting an element into the middle of a list is faster
than inserting an element into the middle of a vector.

Exercise R20.8. Explain why the push_back operation with a vector is usually con-
stant time, but occasionally much slower.

Exercise R20.9. What does the term deque stand for?

Exercise R20.10. What is a container adapter? How does this term apply to the stack
and queue containers?

Exercise R20.11. How does a set achieve fast execution for insertions and removals?

Exercise R20.12. How is a map similar to a vector? How is it different?

Exercise R20.13. Why is a priority queue not, properly speaking, a queue?

Exercise R20.14. What is a generator? Give an example of the use of a generator in a
generic algorithm.

Exercise R20.15. What is a predicate? Give an example of the use of a predicate in a
generic algorithm.

Exercise R20.16. What is a function object? What can a function object do that an
ordinary function cannot?

Exercise R20.17. What are the three forms of initialization provided by the generic
algorithms in the standard library? Give an example of each.

Exercise R20.18. List four example transformations provided by the standard library.

Exercise R20.19. How is the search performed by find different from that performed
by lower_bound? What are the requirements for the use of the first? For the use of
the second?

Exercise R20.20. What is an inserter? How does an inserter change the execution of a
generic algorithm such as copy?

REVIEW EXERCISES

Programming Exercises 799

Exercise R20.21. What is a stream iterator? How does a stream iterator change the
execution of a generic algorithm such as copy?

Exercise R20.22. What is a binder? Show how to use a binder to find values in a list
that are less than 10.

Exercise P20.1. Section 20.3.1 described in general terms the implementation of the
vector data type. Complete the implementation of the vector by providing defini-
tions for the following operations:

• A default constructor, which should create a buffer with capacity 5 and size 0.
• A constructor that takes an integer argument, and creates a buffer with the

given size and capacity.
• A member function set_capacity(int), which changes the capacity to the

indicated limit, copying elements from the current buffer. If the new capacity
is larger than the current size, the size remains unchanged; otherwise the size
is made the same as the new capacity.

• The operation at, which returns the element at the given location in the buffer.
• The operation push_back, which adds the element to the end of the buffer,

increasing the size, and invoking set_capacity to increase the capacity of the
buffer if necessary.

Exercise P20.2. Section 12.3 described why the vector function push_back is said to
have amortized constant time cost. Extend the analysis to 50 consecutive push_back
operations and see if the trends identified in Section 12.3 continue. Next, perform
the same analysis for 12 operations, but assume the buffer has an initial capacity for
10 elements.

Exercise P20.3. Using the implementation of the class List you developed in Chapter
12, add the following operations:

• remove(value)—remove all instances of the given value
• reverse()—reverse the order of elements in the list
• unique()—remove all but the first instance of any adjacent similar values

Exercise P20.4. Add the following operations to the implementation of the List data
type in Chapter 12.

• merge(list)—assuming both current and argument lists are sorted, merge two
lists into one

• splice(iterator, list)—splice the argument list at the indicated location,
removing all values from the argument list

PROGRAMMING EXERCISES

800 CHAPTER 20 • The Standard Template Library

Exercise P20.5. Building on the description of the deque presented in Section 20.3.3,
implement the deque and provide a default constructor, subscript operator, and the
functions push_front, pop_front, push_back, and pop_back.

Exercise P20.6. Show how a queue adapter can be written on top of the deque or list
containers.

Exercise P20.7. Show how a map can be implemented using a set that maintains a col-
lection of pairs by implementing the specialized map using strings for keys, integers
for values, and the operations at(key), at_put(key, value).

Exercise P20.8. Many of the generic algorithms have almost trivial implementations,
no more complicated than the definition of for_each given in Section 20.7. Using
for_each as a model, provide implementations for the following algorithms:

a. copy

b. fill

c. generate

d. replace

e. count

f. find

g. remove_copy

Exercise P20.9. Like fill, the implementation of fill_n is a loop, but instead of an
iterator loop it uses a simple integer loop. Provide implementations for the follow-
ing algorithms:

a. fill_n

b. generate_n

Exercise P20.10. The predicate versions of the algorithms have a similar structure to
those you wrote in Exercise P20.8, but invoke a predicate function to test each ele-
ment. Show implementations for each of the following:

a. find_if

b. count_if

c. replace_if

d. remove_copy_if

Exercise P20.11. Show how to implement find using find_if. Can you do this with-
out writing any additional functions other than those provided by the standard
library?

Exercise P20.12. The standard library does not include the function copy_if, that
copies only those elements that satisfy a predicate. Provide an implementation of
this algorithm, and test your implementation with both vectors and lists.

Exercise P20.13. Show how copy_if can be implemented using a combination of
remove_copy_if and a negator.

Programming Exercises 801

Exercise P20.14. Write an implementation for reverse. You can assume the iterator
arguments are bidirectional iterators; that is, they recognize both the increment
operator ++ and the decrement operator --. Make certain your algorithm works for
both even and odd length collections. Test your algorithm with both lists and vectors.

Exercise P20.15. Write an implementation for unique_copy. Test your implementation
using both vectors and lists.

Exercise P20.16. Using the fact that iterators for vectors and deques support sub-
scripting and subtraction (that is, iterator - iterator returns the number of positions
between the two iterators), rewrite the binary_search function described in Section
11.7 to provide an implementation of the generic algorithms lower_bound,
upper_bound, and binary_search.

Exercise P20.17. Because the sort algorithm requires random-access iterators it can-
not be used with lists. This is normally not a problem, because list includes this
task as a member function. Assume, however, that lists did not have this member
function, and you needed to have the ability to sort a list. Show how a list can be
sorted:

1. Using only generic algorithms, inserters, binders, and a temporary vector.
2. Using only generic algorithms, inserters, binders, and a temporary set.

Exercise P20.18. Write a program that produces anagrams of sentences; that is, per-
mutations of the words in a sentence, rather than permutations of the letters in the
words.

Exercise P20.19. When generated using next_permutation, the last permutation is
always one in which values are listed in decreasing order. Using this observation,
show how to implement what must surely be one of the slowest sorting algorithms
ever devised.

Exercise P20.20. Write a program that that removes duplicate adjacent words from
from a text file. How would this program have fixed the previous sentence?

Exercise P20.21. The following is a simplified implementation of the algorithm
merge. This algorithm takes two sorted sequences, and produces a new sorted
sequence containing the combined elements of each. Notice how it uses only the
less than operator, and assumes that if two values are not less than each other, then
they are equal.

template<typename T1, typename T2, typename T3>
merge(T1 first, T1 endfirst, T2 second, T2 endsecond, T3 destination)
{
 while ((first != endfirst) && (second != endsecond))
 {
 if (*first < *second)
 {
 *destination = *first;
 ++destination;
 ++first;

802 CHAPTER 20 • The Standard Template Library

 }
 else if (*second < *first)
 {
 *destination = *second;
 ++destination;
 ++second;
 }
 else
 { // They are equal
 *destination = *first;
 ++destination;
 ++first;
 }
 }
 // Copy remaining values
 while (first != endfirst)
 {
 *destination = *first;
 ++destination;
 ++first;
 }
 while (second != endsecond)
 {
 *destination = *second;
 ++destination;
 ++second;
 }
}

Variations on this algorithm can be used to implement a set. The standard library
includes four algorithms that implement the classic set operations. A set is repre-
sented with an ordered sequence in which no element is repeated. A set_union
produces in the output a new set containing the combined elements from the two
collections (with duplicates, of course, removed). A set_intersection produces
only those values found in both sets. A set_difference produces those values that
are members of the first set but not the second. Finally, the subset test includes
returns true if every member of the first set is also found in the second. Each of
these can be written as a relatively simple variation on the merge algorithm. Show
the implementations of each. Test your algorithms using both vectors and lists.

Exercise P20.22. Two problems in the case study described in Section 20.10 are that
(a) words are defined by white space, so that punctuation is included as part of a
word (e.g., “lists.” and “lists” are treated as two different words), and (b) words are
case sensitive (e.g., “Lists” and “lists” are treated as two different words). Show
how both of these problems can be solved by expanding the definition of the opera-
tor() in the generator WordGen.

Exercise P20.23. There are several alternative techniques that could have been used in
the implementation of the case study described in Section 20.10. Investigate and
implement each of the following, and test the resulting program.

1. In phase1 we could have used a list to hold the collection of words, rather than
a vector. What statements would have been altered by this change?

Programming Exercises 803

2. In phase1 we could have used a set, rather than a vector of words. How would
this have simplified the function? What tasks could then be avoided?

3. In phase2 we could have used a set_union, rather than a merge. How would this
have simplified the function? What tasks could then be avoided?

4. Suppose we had used a deque, rather than a queue, for the file names. What
features of the program would have been changed? What if we had used a list?

Exercise P20.24. The application examined in Section 20.10 was described as a varia-
tion on a file merge sort. A true file merge sort produces a sorted representation of
the input, using each line as a separate value, and without bothering to remove
duplicates. Rewrite the program to produce this effect.

Exercise P20.25. A concordance is an index of a text file that indicates on which line
(or lines) each word appears. Write a program that produces a concordance using
the same ideas as in the application described in Section 20.10. You will find it use-
ful to read the input line by line, keeping track of the line numbers. A string input
stream can then be used to break the line into words, remembering the line number
with each word. In the second phase, instead of removing duplicated words, merge
the line numbers for duplicated words.

This page intentionally left blank

Chapter 21
Features of the

C++0x Standard

• To introduce features that will be part of the next revision of the
C++ language definition, currently scheduled for 2010

• To learn how automatic type inference, range-based for
statements, and lambda expressions will simplify common
programming situations

• To understand how new constructor features will aid in the
development of classes with multiple constructors

• To learn about new data structures, such as the unordered_map

CHAPTER GOALS

If you have ever attended a play written by William Shakespeare you know that the

English language has evolved over time, as many of the words and phrases common

in Shakespeare’s day are now unfamiliar. Computer languages experience a similar

process of evolution, but at a much faster rate. In this chapter, we will describe some

of the more notable changes that will be forthcoming in the new C++ standard.

806 CHAPTER 21 • Features of the C++0x Standard

CHAPTER CONTENTS

The C++ language has undergone many transformations since it was
first defined in 1984. For example, the original language did not have
streams (Chapter 9). The template feature (Chapter 16) appeared
around 1993, but the standard template library (Chapter 20) did not
become part of the language until 1998. The defining document for
the language was updated again in 2003. Now the language is once
more undergoing a major transformation.

The term C++0x is the informal name used to describe the new standard, as the
planned release date was to be 2008 or 2009. However, delays in the process now
seem to indicate that the new standard will not be ready before 2010, and it will
probably be a few years before all the new features become available in most
implementations.

 In developing the new standard, the committee applied some general guidelines:

• Maintain stability and compatibility with earlier definitions of the language, and
with the older C language, whenever possible.

• Introduce new features through the standard library, rather than by adding new
syntax to the base language.

• Where changes to the language are necessary, use them to facilitate systems and
library design, rather than introducing new features that are useful only for spe-
cific applications.

21.1 C++0x Des ign Object ives

C++0x will extend the
C++ language with new
features, but will not
eliminate any portion of
the existing language.

21.1 C++0x Design Objectives 806

21.2 Automatic Type Inference 807
SYNTAX 21.1: Auto Initialization 808
SYNTAX 21.2: Type Duplication 808

21.3 Range-based for Loop 808
SYNTAX 21.3: Range-based for Loop 809

21.4 New Constructor Features 810
SYNTAX 21.4: Constructor Chaining 811
SYNTAX 21.5: Array Initializer List

Construction 812

21.5 Regular Expressions 813

21.6 Lambda Functions 814
SYNTAX 21.6: Lambda Function 815

21.7 Controlling Default
Implementations 815

SYNTAX 21.7: Default/Deleted

Implementations 816

21.8 Hash Tables 817

21.9 Concepts 817
SYNTAX 21.8: Concept Definition 818
SYNTAX 21.9: Template Function Concept

Binding 818
SYNTAX 21.10: Template Class Concept

Binding 819

21.10 Other Minor Changes 820
RANDOM FACT 21.1: Programming Languages 820

21.2 • Automatic Type Inference 807

• Increase type safety by providing alternatives to current unsafe practices.
• Improve performance of programs that use multiple threads of execution.
• Provide libraries for common programming tasks.
• Support the “zero overhead” principle, which states that the cost (for example in

run-time execution) of a feature should be borne only if the feature is used.
• Make the C++ language easy to teach, learn, and understand, without removing

any features or utilities needed by expert programmers.

The following sections will describe only a few of the proposed changes. Further
details on other features can be found in [1] or [2].

The feature of the new standard likely to be used most is known as automatic type
inference, or type determination. If you examine any of the code samples from
Chapter 20, you will notice that type names can become exceedingly long and com-
plicated, particularly when using qualified names for iterators combined with tem-
plate classes. For example:

vector<int>::iterator current = a_container.begin();
map<string, int>::iterator current = database.begin();
multimap<string, DistanceToCity>::iterator p =
 cities.lower_bound(new_city.get_name());

The type names needed for these declarations can be difficult for the
programmer to determine, and they are unnecessary. When a variable
is being both declared and initialized, the compiler can easily determine
the type by examining the expression being used on the right-hand
side of the initialization. In the new language standard, the keyword

auto can be used in place of a type name when a variable is being both declared and
initialized; the type will be inferred automatically from the initializing expression:

auto current = a_container.begin();
auto current = database.begin()
auto p = cities.lower_bound(new_city.get_name());

The resulting statements are shorter, and typically easier to understand, particularly
when the variables are used only to create an iterator loop. Instead of writing:

for (vector<int>::const_iterator itr = my_vec.begin();
 itr != my_vec.end(); ++itr)
{
 ...
}

the programmer can use the shorter:
for (auto itr = my_vec.begin(); itr != my_vec.end(); ++itr)
{
 ...
}

21.2 Automat ic Type Inference

The auto keyword allows
a declaration statement to
infer the type from an
initializing expression.

808 CHAPTER 21 • Features of the C++0x Standard

A related new feature is a pseudo-function named decltype. This
function takes as argument a variable and returns the type associated
with the variable. It is used in creating a variable with the same type
as another:

map<string::int>::iterator start_point;
decltype(start_point) end_point;
 // Ensure end_point has same type as start_point

As you learned in Chapter 20, iterators are the preferred means of looping over the
values stored in a container. The statement used to create an iterator loop has a typ-
ical format:

for (vector<int>::const_iterator itr = my_vec.begin();
 itr != my_vec.end(); ++itr)
{

The decltype keyword
allows a declaration
statement to infer the
type of a new variable
from the type of an
existing variable.

SYNTAX 21.1 Auto Initialization

auto variable_name = initial_value;

Example:

auto current = a_container.begin();

Purpose:

Define a new variable with a particular initial value, avoiding having to explicitly declare
the type for the new variable. The type of the variable will be automatically inferred
from the type of the initial value.

SYNTAX 21.2 Type Duplication

decltype(variable_name) variable_name;
decltype(variable_name) variable_name = initial_value:

Example:

decltype(start_point) end_point;

Purpose:

To copy the type of an existing variable to create a second variable of the same type.

21.3 Range-based for Loop

21.3 • Range-based for Loop 809

 ... // Do something with the value *itr
}

A loop in this form requires the programmer to create a new variable to hold the
iterator, and then to dereference the iterator using the * operator to obtain the cur-
rent value. A new version of the for statement allows the programmer to specify the
value of the container directly, and avoid the declaration of the iterator variable
altogether:

for (int x : my_vec)
{
 ... // Do something with the value x
}

The first part of the new for statement declares a variable that will be
used to loop over the values in the collection. The second part of the
statement, after the colon, must represent a value that can be iterated
over, for example an instance of a container class. Behind the scenes,
the compiler will produce an iterator variable and do the same
actions as before, but the new version is much easier to read and
understand.

If the loop variable is declared as a reference, then the underlying container val-
ues can be modified as well as accessed. The following, for example, will modify an
array data by doubling each element.

int data[] = {3, 4, 6};

for (int& x : data)
{
 x = x * 2; // Double each value
}

A range-based for loop is
used to sequentially
examine the values from
an iterable expression,
such as a collection.

SYNTAX 21.3 Range-based for Loop

for (type_name variable_name : iterable_expression)
{

statements
}

Example:

for (int x : my_vec)
{
 sum = sum + x;
}

Purpose:

Create a new variable that will cycle through all the values of an iterable expression.
Each result produced by the iteration will be assigned to the variable in turn, and the
associated statement will be executed.

810 CHAPTER 21 • Features of the C++0x Standard

There are several new ways to use class constructors. The first allows constructors
in a class definition to invoke other constructors for the same class. This is termed a
forwarding constructor. The syntax is a simple extension of the syntax described in
Section 5.6. That example presented a class with both a default constructor and a
constructor that required explicit arguments:

class Employee
{
public:
 Employee();
 Employee(string employee_name, double initial_salary);
 ...
};

The implementation of the second constructor sets the appropriate fields:
Employee::Employee(string employee_name, double initial_salary)
{
 name = employee_name;
 salary = initial_salary;
}

With the new syntax, the default constructor can simply invoke the
more general constructor using default values:

Employee::Employee() : Employee("no name", 1.00) { }

The advantage of doing so is that the statements used to initialize the
newly-created object are written only once. The default constructor
then calls on the code of the second constructor to perform its task.
Among other advantages, if it is later necessary to modify the state-
ments used in doing initialization, there is only one function body to

change. Compare the syntax for forwarding constructors to the syntax shown for
base-class constructors in Section 8.2. The only difference is that the “base class”
can now be the current class, rather than a parent class.

The initializer list is a feature that can be used in several new ways in the new
standard. In some situations it will be able to replace the parentheses in a construc-
tor:

Employee alice{"Alice Smith", 25.5}; // Create and initialize new employee record

Initializer lists can also be used to create an array of object values. For example, the
following creates an array of Employee records, invoking the constructor for each
with the given values.

Employee staff[4] = {{"Fred", 12.5}, {"Sally", 32.5}, {"Sam", 19.2},
 {"Alice", 9.5}};

In other places, the initializer list can be used to create a new unnamed value. For
example, suppose we define a function that will look up the employee record for a
given name. If no employee of the given name is found, one possibility would be to
create and return a default Employee object:

21.4 New Constructor Features

Forwarding constructors
allow one constructor
to invoke a second
constructor, thereby
simplifying the coding
of classes that have
multiple constructors.

21.4 • New Constructor Features 811

Employee find_employee(string name)
{
 if (...)
 { // Look up and return the employee
 }
 return {"no name", 1.00};
}

Notice there is no type name or explicit constructor syntax appearing with the
return statement. Because the compiler knows that the return type must be an
Employee, it looks for a constructor of that type that matches the values found in the
initializer list.

Another, and probably more common, use of initializer lists occurs when a class
can take an arbitrary number of arguments, such as a container. It has always been
possible to initialize a simple array by listing the elements in the array:

double data[] = {2.5, 2.7, 9.1, 7.6};

The statement creates a new array named data, and initializes it with the four values
shown. A similar syntax can now be used to initialize standard collection objects,
such as a vector:

vector<double> data({2.5, 2.7. 9.1, 7.6});

The statement creates a new vector, then inserts the four values shown. In this
example, the values between the braces create a value of a new data type (termed
std::initializer_list), and that value is then passed to the constructor. The con-
structor uses the value to initialize the vector.

You can use the new initializer list data type with your own classes. It could be
used, for example, to add a new constructor to the class Matrix (Section 14.11) that
initializes the values in the 3 × 3 matrix:

class Matrix
{

SYNTAX 21.4 Constructor Chaining

ClassName::ClassName(expressions) : ClassName(expressions)
{

statements
}

Example:

Employee::Employee() : Employee("no name", 1.00) { }

Purpose:

A constructor for a class can invoke other constructors for the same class by supplying
appropriate arguments. This can simplify the definition of multiple constructors for the
same class.

812 CHAPTER 21 • Features of the C++0x Standard

public:
 Matrix();
 Matrix(std::initializer_list<double> data);
 ...
};

Matrix::Matrix(std::initializer_list<double> data)
{
 int i = 0;
 int j = 0;
 for (double d : data)
 {
 (*this)(i, j++) = d;
 if (j >= 3)
 {
 i++;
 j = 0;
 }
 }
}

Note the use of the new range-based for statement to cycle over the values in the
initializer list. Using this form, a new matrix can be both declared and initialized in
a single statement:

Matrix upper_left({1.0, 2.5, 3.7, 0.0, 5.2, 3.4, 0.0, 0.0, 1.7});

Because std::initializer_list is an actual type, it can be used in more places than
class constructors. Ordinary functions can, for example, take an initializer list as an
argument. The following simple function computes the sum of the elements in the
initializer list argument.

double sum_list(std::initializer_list<double> data)
{
 double sum = 0.0;
 for (double d : data)
 sum = sum + d;
 return sum;
}

The function would be invoked by passing the entire list as an argument, as follows:
cout << "The sum is " << sum_list({2.4, 7.6, 9.3, 1.7});

SYNTAX 21.5 Array Initializer List Construction

type_name variable_name[size] = { expressions };

Example:

Point box[4] = {{4, 5}, {6, 5}, {4, 2}, {6, 2}};

Purpose:

Provide constructor arguments to be used to initialize elements of an array of object types.

21.5 • Regular Expressions 813

Productivity Hints 4.2 and 4.3 introduced you to the idea of regular
expressions. Regular expressions are extremely valuable in searching
strings for substrings that match various patterns. Two proposed
new standard types, regex and match, and a pair of functions
regex_search and regex_match, can be used to perform regular
expression matching. The following illustrates their use:

regex pattern("i[sp]+i"); // Pattern is any number of s’s or p’s between i’s
match result;
if (regex_match("Mississippi", result, pattern))
{
 for (int i = 0; i < result.size(); i++)
 cout << "found " << result[i] << "\n";
}

A match is a type that records information about the matching values, such as their
starting location and size. It can be indexed just like an array. The outcome of this
expression would be

found issi
found issi
found ippi

Regular expressions can be used for all sorts of searching operations. The following
table lists some common patterns accepted by the regular expression library. For
more information on regular expressions, consult one of the many tutorials on the
Internet (such as [4]).

21.5 Regular Express ions

Regular expressions are
used in a number of
programming languages
and tools. They are a
concise yet powerful way
to describe patterns.

Text Matches Literal

^ Start of string

$ End of string

(...)* Zero or more occurrences

(...)+ One or more occurrences

(...)? Optional (zero or one)

[chars] One character from range

[^chars] One character not from range

Pat | pat Alternative (one or the other)

(...) Group

. Any character except newline

814 CHAPTER 21 • Features of the C++0x Standard

In Section 20.7.3 you learned about function objects. A function
object is an instance of a class that defines the function call operator.
Because the class defines this operator, instances of the class can be
invoked using the same syntax as an ordinary function.

The most common use for function call operators is to create
arguments for use with generic functions. For instance, Section
20.7.3 contained the following class definition:

class DivisibleBy
{
public:
 DivisibleBy(int n);
 bool operator()(int x);
private:
 int n;
};

DivisibleBy::DivisibleBy(int in) : n(in) {}

inline bool DivisibleBy::operator()(int x)
{
 return 0 == x % n;
}

The value of the divisor n can be used by the constructor when an instance of this
class is created. This instance can then be used as a function, one that will return
true when the argument is divisible by the given amount. For example, invoking the
function find_if we can discover the first element (if any), that is divisible by 17:

list<int> a_list;
...
auto itr = find_if(a_list.begin(), a_list.end(), DivisibleBy(17));
if (itr != a_list.end()) ... // Found it

The need to construct the class DivisibleBy solely for the purpose of creating one
simple function seems heavy-handed. A new alternative allows the programmer a
simpler way of creating functions as expressions. These are termed lambda func-
tions. The syntax for lambda functions is an empty pair of square brackets, followed
by an argument list and the function body. The function has no name, and so is typ-
ically used only as an argument. The equivalent of our divisor-finding example
would look something like the following:

auto itr =
 find_if(a_list.begin(), a_list.end(), [](int x) { return 0 == x % 17; });
if (itr != a_list.end()) ... // Found it

Through the use of the lambda function, there is no need to construct an explicit
class just for the purpose of creating a single instance.

Another example of a lambda function being used for a common operation is the
comparison function in a sort. The use of comparison functions was described in

21.6 Lambda Funct ions

A lambda function is an
unnamed function used as
an expression, typically
one passed as argument
to another function.

21.7 • Controlling Default Implementations 815

Section 16.6. For instance, suppose you want to sort a vector of Employee records
based on their salaries. You can do this as follows:

vector<Employee> data;
...
 // Sort using the given comparison
data.sort([](Employee& x, Employee& y)
 { return x.get_salary < y.get_salary; });

A lambda is allowed to access variables from the surrounding scope, but the names
of such variables must be explicitly listed inside the square brackets that begin the
lambda function. Variable names that begin with an ampersand are treated as refer-
ences. This means that the variable in the lambda function is the same as the variable
in the surrounding scope, so changes to one will alter both. For example, the fol-
lowing could be used to determine the sum of the salaries of the individuals in the
previously defined vector of Employee records:

double salary_sum = 0;
for_each(data.begin(), data.end(),
 [&salary_sum](Employee& x) { salary_sum = salary_sum + x.salary; });

The change to the variable salary_sum inside the lambda function changes the vari-
able of the same name, resulting in the sum of the salary fields being placed into the
variable.

In Quality Tip 15.2 we warned that the C++ compiler will automatically create a
copy constructor if the programmer fails to provide one. Default constructors,
assignment operators, and destructors will similarly be created automatically if an
explicit version is not provided. In the new language standard, the programmer can
indicate that they are aware of this possibility and approve of it using the default
keyword. To do this, the body of the new class is created using an assignment oper-
ator and the keyword:

template class Box<typename T>
{

SYNTAX 21.6 Lambda Function

[](parameter1, parameter2, ... , parametern) { statements }

Example:

[](int x) { return 0 == x % 17; }

Purpose:

Define a nameless function that can be used as an expression, most commonly as an
argument to another function.

21.7 Contro l l ing Defau l t Implementat ions

816 CHAPTER 21 • Features of the C++0x Standard

public:
 Box(T init) { value = init; }
 Box(const Box<T>& right) = default;
 void operator=(const Box<T>& right) = default;
private:
 T value;
};

In the example shown, the programmer has provided one implementation of the
constructor, and marked that the copy constructor and the assignment operator
should be given their default meanings. Since this would have happened in any case,
this use of the keyword is really just documenting the class, to make it easier to read
and understand.

An alternative is to explicitly disable certain features of a class. The keyword
delete indicates that the associated function cannot be invoked, not even using a
default implementation. For example, the following class definition creates a type of
object that cannot be copied using either an assignment statement or a copy con-
structor:

template class Box<typename T>
{
public:
 Box(T init) { value = init; }
 Box(const Box<T>& right) = delete;
 void operator=(const Box<T>& right) = delete;
private:
 T value;
};

Any attempt to copy an instance of this class will be flagged by the compiler as an
error.

SYNTAX 21.7 Default/Deleted Implementations

return_type ClassName::function_name(parameter1, parameter2, ...,
parametern) = default;

return_type ClassName::function_name(parameter1, parameter2, ...,
parametern) = delete;

Example:

void operator=(const Box<T>& right) = default;
void operator=(const Box<T>& right) = delete;

Purpose:

To indicate that the default implementation of a copy constructor, default constructor,
assignment operator, or destructor should be instantiated (if the default keyword is
used), or to indicate that the default implementations should not be created (if the
delete keyword is used).

21.8 • Hash Tables 817

Section 13.4 introduced the standard library data type termed the map. A map is an
indexed data structure, associating every value with a key used to access the value.
Strings are typically used as keys, as in this telephone database example:

map<string, string> telephone_numbers;
telephone_numbers["Fred Smith"] = "7347829";
cout << "Number for Fred Smith is " << telephone_numbers["Fred Smith"];

Up to now the map implementation used a data structure that
required keys be comparable to each other using the relational oper-
ator <. The new library will include a new implementation of the map
interface, termed an unordered_map, that will permit keys that are not
ordered. The unordered_map is based on a data structure termed a
hash table. Details concerning hash tables can be found in any data
structures textbook.

Quality Tip 16.1 warned that the error messages from the use of tem-
plates can be extremely confusing. This is due to the fact that errors
are only discovered after a template class has been instantiated with
given type arguments, and even then the error messages refer back to
the template definition, and not to the point at which the

specific instantiation was declared. To address this problem the new language defi-
nition includes a feature termed a concept. A concept is similar to a class definition,
but it is used to characterize the requirements that a template argument must satisfy.

To illustrate the use of concepts, suppose you have written a simple function to
sum the values of an array:

double sum(double array[], int n)
{
 double result = 0;
 for (int i = 0; i < n; i++)
 result = result + array[i];
 return result;
}

You decide you want to generalize the function, and so your first idea is to simply
replace the arguments that were declared as double with a template value:

template<typename T>
T sum(T array[], int n)
{
 T result = 0;
 for (int i = 0; i < n; i++)
 result = result + array[i];
 return result;
}

21.8 Hash Tables

Use an unordered_map,
which is implemented as a
hash table, if the keys in a
map cannot be compared
in magnitude. Otherwise
use a simple map.

21.9 Concepts

A concept identifies the
operations that must be
provided by a template
argument.

818 CHAPTER 21 • Features of the C++0x Standard

The problem is that if you try to instantiate this function with a type
that does not understand the addition operator, the compiler will
produce an error message, but that message will refer to the template
class and not to the declaration. Using concepts, we can ensure that
any arguments used to expand the template must know how to
invoke the addition operator.

First, we need to describe the functions we need, like this:
auto concept Addable<typename T>
{
 T operator+(T x, T y);
};

Using a concept allows the
compiler to send a clearer
error message when
invalid template
arguments are used.

SYNTAX 21.8 Concept Definition

auto concept ConceptName
{

function declarations
operator declarations

};

Example:

auto concept Addable<typename T>
{
 T operator+(T x, T y);
};

Purpose:

To define what operations a template argument must implement.

SYNTAX 21.9 Template Function Concept Binding

template <typename type_variable1, ..., typename type_variablen>
requires concept1, ..., conceptn
return_type function_name(parameters)
{

statements
}

Example:

template<typename T> requires Addable<T>
T sum(T array[], int n) { ... }

Purpose:

To indicate that template parameters to a template function definition must satisfy
certain properties.

21.9 • Concepts 819

Notice that the concept is similar to a class definition. The concept itself may take
template arguments. Any functions that we require our argument to understand
must be expressed as a concept.

Next, the declaration of our original class is modified to indicate that any value
used in the template parameter must satisfy the Addable property:

template<typename T> requires Addable<T>
T sum(T array[], int n)
{
 T result = 0;
 for (int i = 0; i < n; i++)
 result = result + array[i];
 return result;
}

The satisfaction of the Addable concept can be checked at the point the template
class is used, instead of during the process of expanding the template class.

Box[3] boxes;
...
Box sum = sum(boxes, 3)
error: Template argument Box does not satisfy the Addable concept

Once the programmer knows where the problem originates (that is, with the class
Box and not with the sum function) this problem can then be easily solved by pro-
viding an implementation for the required operation. The standard library will

SYNTAX 21.10 Template Class Concept Binding

template <typename type_variable1, ..., typename type_variablen>
 requires concept1, ... , conceptn
class ClassName
{

features
};

Example:

template<typename T> requires Addable<T>
class Box
{
public:
 Box(T int) { value = init; }
private:
 T value;
};

Purpose:

To indicate that template parameters to a template class definition must satisfy certain
properties.

820 CHAPTER 21 • Features of the C++0x Standard

include concepts that define the requirements for a variety of containers, iterators,
and algorithms. For example, the concept EqualityComparable ensures that class A
understands the equality testing operator, while the concept Addable ensures that
class A understands the addition operator.

The >> operator is used for right shifts and stream output. In the past, the inadvert-
ent use of this syntax as part of a complicated template definition would result in
confusing error messages:

vector<pair<int, real>> data; // Error
vector<pair<int, real> > data; // Ok

The new language standard allows the >> symbol to be used in this situation and the
complier will detect the use and do the correct thing.

The type long long int (representing an integer that is at least 64 bits) has for
many years been supported by most C compilers. It will now be part of the C++
language definition as well.

Programming Languages

Many hundreds of programming languages exist today, which is actually quite surprising.
The idea behind a high-level programming language is to provide a medium for program-
ming that is independent from the instruction set of a particular processor, so that one can
move programs from one computer to another without rewriting them. Moving a program
from one programming language to another is a difficult process, however, and it is rarely
done. Thus, it seems that there would be little use for so many programming languages.

Unlike human languages, programming languages are created with specific purposes.
Some programming languages make it particularly easy to express tasks from a particular
problem domain. Some languages specialize in database processing; others in “artificial intel-
ligence” programs that try to infer new facts from a given base of knowledge; others in mul-
timedia programming. The Pascal language was purposefully kept simple because it was
designed as a teaching language. The C language was developed to be translated efficiently
into fast machine code, with a minimum of housekeeping overhead. The C++ language
builds on C by adding features for object-oriented programming. The Java language was
designed for securely deploying programs across the Internet. The Ada language (named for
Ada Augusta, the Countess of Lovelace, a friend and student of Charles Babbage who was
discussed in Random Fact 11.1), was designed for use in embedded systems software.

The initial version of the C language was designed around 1972. Unlike Ada, C is a simple
language that lets you program “close to the machine”. It is also quite unsafe. Because differ-
ent compiler writers added different features, the language actually sprouted various dialects.
Some programming instructions were understood by one compiler but rejected by another.
Such divergence is an immense pain to a programmer who wants to move code from one
computer to another, and an effort got underway to iron out the differences and come up

21.10 Other Minor Changes

RANDOM FACT 21.1

Chapter Summary 821

with a standard version of C. The design process ended in 1989 with the completion of the
ANSI (American National Standards Institute) Standard. In the meantime, Bjarne Strous-
trup of AT&T added features of the language Simula (an object-oriented language designed
for carrying out simulations) to C. The resulting language was called C++. From 1985 until
today, C++ has grown by the addition of many features, and a standardization process was
completed in 1998. The new standard, when it is finally approved, will eventually supersede
and replace the 1998 standard.

C++ has been enormously popular because programmers can take their existing C code
and move it to C++ with only minimal changes. In order to keep compatibility with existing
code, every innovation in C++ had to work around the existing language constructs, yielding
a language that is powerful but still true to its roots.

Keep in mind that a programming language is only part of the technology for writing
programs. To be successful, a programming language needs feature-rich libraries, powerful
tools, and a community of knowledgeable and enthusiastic users. Several very well-designed
programming languages have withered on the vine, whereas other programming languages
whose design was merely “good enough” have thrived in the marketplace.

1. C++0x will extend the C++ language with new features, but will not eliminate
any portion of the existing language.

2. The auto keyword allows a declaration statement to infer the type from an ini-
tializing expression.

3. The decltype keyword allows a declaration statement to infer the type of a new
variable from the type of an existing variable.

4. A range-based for loop is used to sequentially examine the values from an iter-
able expression, such as a collection.

5. Forwarding constructors allow one constructor to invoke a second constructor,
thereby simplifying the coding of classes that have multiple constructors.

6. Regular expressions are used in a number of programming languages and tools.
They are a concise yet powerful way to describe patterns.

7. A lambda function is an unnamed function used as an expression, typically one
passed as argument to another function.

8. Use an unordered_map, which is implemented as a hash table, if the keys in a map
cannot be compared in magnitude. Otherwise use a simple map.

9. A concept identifies the operations that must be provided by a template
argument.

10. Using a concept allows the compiler to send a clearer error message when
invalid template arguments are used.

CHAPTER SUMMARY

822 CHAPTER 21 • Features of the C++0x Standard

1. www.research.att.com/~bs/rules.pdf An article about the design goals of the C++0x
standard.

2. www.open-std.org/jtc1/sc22/wg21/ The web site of the C++0x standards committee.
3. www.generic-programming.org/languages/conceptcpp/tutorial/

4. www.zvon.org/other/PerlTutorial/Output A dynamic tutorial for regular
expressions.

Exercise R21.1. What is the purpose of the auto keyword when used in a declaration?
How does it simplify the creation of declaration statements?

Exercise R21.2. What type of values can be used in a range-based for loop?

Exercise R21.3. In Section 7.6 you learned how to use the typedef keyword to avoid
long type names in declarations. Typedefs are often used to address the problem of
overly long type names discussed in Section 21.2, as in the following example:

// Define a name to represent an iterator over city map
typedef multimap<string, DistanceToCity>::iterator cityIterator;
...
// Now use previously defined type name to create an iterator
cityIterator p = cities.lower_bound(new_city.get_name());

Compare and contrast the use of the auto feature to the use of typedef. Which form
do you think is easier to read and understand?

Exercise R21.4. Compare the syntax for constructor chaining to the syntax used for
base class initialization described in Syntax 8.2. How are they similar? How are
they different?

Exercise R21.5. Describe a regular expression for the letter c followed by a vowel fol-
lowed by the letter t. What three letter words would this pattern match?

Exercise R21.6. What is a lambda function? How are they commonly used?

Exercise R21.7. Hash tables are used to implement a new data structure that has an
interface similar to that of the existing map container class. What feature of the new
container is different from that of the map?

FURTHER READING

REVIEW EXERCISES

www.research.att.com/~bs/rules.pdf
www.open-std.org/jtc1/sc22/wg21/
www.generic-programming.org/languages/conceptcpp/tutorial/
www.zvon.org/other/PerlTutorial/Output

Programming Exercises 823

Exercise P21.1. In Exercise P5.2 you implemented a class PEmployee that defined two
constructors, a default constructor and a constructor with explicit arguments.
Rewrite the class definition so that the default constructor uses constructor chain-
ing to invoke the second constructor.

Exercise P21.2. Rewrite the function sum described in Section 14.6.1 to use template
arguments and declare the iterator variables using the auto keyword.

Exercise P21.3. In Section 14.2 you investigated the implementation of a class for
fractional numbers. Rewrite the constructors for that class to use constructor chain-
ing, so that the constructors with zero or one argument simply call the constructor
with two arguments.

Exercise P21.4. In Section 6.2 you examined a simple program to manipulate vectors.
Rewrite the program salvect.cpp to use range-based for loops (rather than sub-
scripts) to examine vector elements.

Exercise P21.5. Rewrite the two-argument form of the RandomInt function in Section
14.10 as a lambda function.

Exercise P21.6. Rewrite the function max, described in Common Error 16.1, to use
concepts and in so doing, avoid the potential error described in that section.

PROGRAMMING EXERCISES

This page intentionally left blank

Chapter 22
Object-Oriented

Design

• To learn about the software life cycle

• To learn how to discover classes and member functions

• To understand the concepts of cohesion and coupling

• To learn the CRC card method

• To gain an understanding of UML class diagrams

• To learn how to use object-oriented design to build
complex programs

• To study examples of the object-oriented design process

CHAPTER GOALS

To implement a software system successfully, be it as simple as your next

homework project or as complex as the next air traffic monitoring system, some

amount of planning, design, and testing is required. In fact, for larger projects, the

amount of time spent on planning is much higher than the amount of time spent on

programming and testing.

If you find that most of your homework time is spent in front of the computer,

keying in code and fixing bugs, you are probably spending more time on your

homework than you should. You could cut down your total time by spending more

on the planning and design phase. This chapter tells you how to approach these

tasks in a systematic manner.

826 CHAPTER 22 • Object-Oriented Design

CHAPTER CONTENTS

In this section we will discuss the software life cycle: the activities
that take place between the time a software program is first con-
ceived and the time it is finally retired.

Many software engineers break the development process down
into the following five phases:

• analysis
• design
• implementation
• testing
• deployment

In the analysis phase, you decide what the project is supposed to accomplish; you
do not think about how the program will accomplish its tasks. The output of the
analysis phase is a requirements document, which describes in complete detail what
the program will be able to do once it is completed. Part of this requirements docu-
ment can be a user manual that tells how the user will operate the program to derive
the promised benefits. Another part sets performance criteria—how many inputs
the program must be able to handle in what time, or what its maximum memory
and disk storage requirements are.

In the design phase, you develop a plan for how you will implement the system.
You discover the structures that underlie the problem to be solved. When you use
object-oriented design, you decide what classes you need and what their most
important member functions are. The output of this phase is a description of the
classes and member functions, with diagrams that show the relationships among the
classes.

In the implementation phase, you write and compile program code to implement
the classes and member functions that were discovered in the design phase. The out-
put of this phase is the completed program.

22.1 The Sof tware L i fe Cyc le

The life cycle of software
encompasses all activities
from initial analysis until
obsolescence.

22.1 The Software Life Cycle 826
RANDOM FACT 22.1: Extreme Programming 830

22.2 CRC Cards 831

22.3 Cohesion 833

22.4 Coupling 835
QUALITY TIP 22.1: Consistency 836

22.5 Relationships Between Classes 837

22.6 Implementing Aggregations 838

22.7 Case Study: Printing an Invoice 839

22.8 Case Study: An Educational Game 851

22.1 • The Software Life Cycle 827

In the testing phase, you run tests to verify that the program works correctly.
The output of this phase is a report describing the tests that you carried out and
their results.

In the deployment phase, the users of the program install it and use it for its
intended purpose.

When managing a large software project, it is not obvious how to
organize these phases. A manager needs to know when to stop ana-
lyzing and start designing, when to stop coding and start testing, and
so on. Formal processes have been established to help in the manage-
ment of software projects. A formal process identifies the activities
and deliverables of different phases and gives guidelines how to carry
out the phases and when to move from one phase to the next.

When formal development processes were first established in the
early 1970s, software engineers had a very simple visual model of these phases.
They postulated that one phase would run to completion, its output would spill
over to the next phase, and the next phase would begin. This model is called the
waterfall model of software development (Figure 1).

 In an ideal world the waterfall model has a lot of appeal: You fig-
ure out what to do; then you figure out how to do it; then you do it;
then you verify that you did it right; then you hand the product to
the customer. When rigidly applied, though, the waterfall model sim-
ply did not work. It was very difficult to come up with a perfect
requirements specification. It was quite common to discover in the
design phase that the requirements were not consistent or that a
small change in the requirements would lead to a system that was

Figure 1 The Waterfall Model

A formal process for
software development
describes phases of the
development process and
gives guidelines for how
to carry out the phases.

The waterfall model of
software development
describes a sequential
process of analysis,
design, implementation,
testing, and deployment.

Analysis

Design

Implementation

Testing

Deployment

828 CHAPTER 22 • Object-Oriented Design

both easier to design and more useful for the customer, but the analysis phase was
over, so the designers had no choice—they had to take the existing requirements,
errors and all. This problem would repeat itself during implementation. The design-
ers may have thought they knew how to solve the problem as efficiently as possible,
but when the design was actually implemented, it turned out that the resulting pro-
gram was not as fast as the designers had thought. The next transition is one with
which you are surely familiar. When the program was handed to the quality assur-
ance department for testing, many bugs were found that would best be fixed by
reimplementing, or maybe even redesigning, the program, but the waterfall model
did not allow for this. Finally, when the customers received the finished product,
they were often not at all happy with it. Even though the customers typically were
very involved in the analysis phase, often they themselves were not sure exactly
what they needed. After all, it can be very difficult to describe how you want to use
a product that you have never seen before. But when the customers started using
the program, they began to realize what they would have liked. Of course, then it
was too late, and they had to live with what they got.

Having some level of iteration is clearly necessary. There simply
must be a mechanism to deal with errors from the preceding phase.
The spiral model, proposed by Barry Boehm in 1988, breaks down
the development process into multiple phases (Figure 2). Early phases
focus on the construction of prototypes. A prototype is a small system
that shows some aspects of the final system. Because prototypes
model only a part of a system and do not need to withstand customer
abuse, they can be implemented quickly. It is common to build a user

Figure 2 The Spiral Model

The spiral model of
software development
describes an iterative
process in which design
and implementation are
repeated.

Prototype #1

Prototype #2

Final
Product

Design

Analysis Implementation

Testing

Deployment

22.1 • The Software Life Cycle 829

interface prototype that shows the user interface in action. This gives customers an
early chance to become more familiar with the system and to suggest improvements
before the analysis is complete. Other prototypes can be built to validate interfaces
with external systems, to test performance, and so on. Lessons learned from the
development of one prototype can be applied to the next iteration of the spiral.

By building in repeated trials and feedback, a development process that follows
the spiral model has a greater chance of delivering a satisfactory system. However,
there is also a danger. If engineers believe that they don’t have to do a good job
because they can always do another iteration, then there will be many iterations,
and the process will take a very long time to complete.

Figure 3 (from [1]) shows activity levels in the “Rational Unified Process”, a
commonly used development process methodology for large projects. You can see
that this is a complex process involving multiple iterations.

In your first programming course, you will not develop systems that are so com-
plex that you need a full-fledged methodology to solve your homework problems.
This introduction to the development process should, however, show you that suc-
cessful software development involves more than just coding. In the remainder of
this chapter, we will have a closer look at the design phase of the software develop-
ment process.

Figure 3 Activity Levels in the Rational Unified Process Methodology

Process Workflows
Inception Elaboration Construction Transition

Business Modeling

Requirements

Analysis and Design

Implementation

Testing

Deployment

Supporting Workflows
Configuration and

Change Management

Project Management

Environment
preliminary
iteration(s)

iter
#1

iter
#2

iter
#n

iter
#m

iter
#m+1

iter
#n+1

iter
#n+2

830 CHAPTER 22 • Object-Oriented Design

Extreme Programming

Even complex development processes with many iterations have not always met with suc-
cess. In fact, there have been many reports of spectacular failures. Unsuccessful project teams
followed the guidelines of their chosen methodology. They produced reams of analysis and
design documentation. Unfortunately, it is very difficult for development managers to dis-
tinguish between good and bad designs. When a naive design turns out to be unimplement-
able, much time is wasted, often greatly surprising the managers who put their faith in the
formal process.

In 1999, Kent Beck published an influential book [2] on
extreme programming, a development methodology that
strives for simplicity by cutting out most of the formal trap-
pings of a traditional development methodology and instead
focusing on a set of practices:

• Pair programming: Put programmers together in pairs, and require each pair to write code
on a single computer. (You may want to try this out—many programmers have found that
it is surprisingly effective to have one pair of hands and two pairs of eyes on the computer .)

• Realistic planning: Customers are to make business decisions, programmers are to make
technical decisions. Update the plan when it conflicts with reality.

• Small releases: Release a useful system quickly, then release updates on a very short cycle.
• Metaphor: All programmers should have a simple shared story that explains the system

under development.
• Simplicity: Design everything to be as simple as possible instead of preparing for future

complexity.
• Testing: Both programmers and customers are to write test cases. The system is continu-

ously tested.
• Refactoring: Programmers are to restructure the system continuously to improve the

code and eliminate duplication.
• Collective ownership: All programmers are to have permission to change all code as it

becomes necessary.
• Continuous integration: Whenever a task is completed, build the entire system and test it.
• 40-hour week: Don’t cover up unrealistic schedules with bursts of heroic effort.
• On-site customer: An actual customer of the system is to be accessible to team members at

all times.
• Coding standards: Programmers are to follow standards that emphasize self-documenting

code.
Many of these practices are common sense. Beck claims that the value of the extreme pro-
gramming approach lies in the synergy of these practices—the sum is bigger than the parts.

Extreme programming is controversial—it is not at all proven that this set of practices by
itself will consistently produce good results. For many projects, the best management policy
may be to combine good practices with a development process that does not overwhelm
developers with unnecessary activities.

RANDOM FACT 22.1

Extreme programming
strives for simplicity by
removing formal structure
and focusing on best practices.

22.2 • CRC Cards 831

In the design phase of software development, your task is to discover
structures that make it possible to implement a set of tasks on a com-
puter. When you use the object-oriented design process, you carry
out the following tasks:

1. Discover classes.
2. Determine the responsibilities of each class.
3. Describe the relationships between the classes.

A class represents some useful concept. You have seen classes for concrete entities
such as products, circles, and clocks. Other classes represent abstract concepts such
as streams and strings. A simple rule for finding classes is to look for nouns in the
task description. For example, suppose your job is to print an invoice such as the
one in Figure 4. Obvious classes that come to mind are Invoice, LineItem, and Cus-
tomer. It is a good idea to keep a list of candidate classes on a whiteboard or a sheet
of paper. As you brainstorm, simply put all ideas for classes on the list. You can
always cross out the ones that weren’t useful.

22.2 CRC Cards

In object-oriented design,
you discover classes,
determine responsibilities
of classes, and describe
relationships between
classes.

Figure 4 An Invoice

I N V O I C E

Sam’s Small Appliances
100 Main Street
Anytown, CA 98765

Item Qty Price Total

Toaster 3 $29.95 $89.85

Hair Dryer 1 $24.95 $24.95

Car Vacuum 2 $19.99 $39.98

AMOUNT DUE: $154.78

832 CHAPTER 22 • Object-Oriented Design

Once a set of classes has been identified, you need to define the behavior for each
class. That is, you need to determine what member functions each object needs to
carry out to solve the programming problem. A simple rule for finding these func-
tions is to look for verbs in the task description, and then match the verbs to the
appropriate objects. For example, in the invoice program, some class needs to com-
pute the amount due. Now you need to figure out which class is responsible for this
function. Do customers compute what they owe? Do invoices total up the amount
due? Do the items total themselves up? The best choice is to make “compute
amount due” the responsibility of the Invoice class.

An excellent way to carry out this task is the so-called CRC card
method. “CRC” stands for “classes”, “responsibilities”, “collabora-
tors”. In its simplest form, the method works as follows. Use an
index card for each class (see Figure 5). As you think about verbs in
the task description that indicate member functions, you pick the
card of the class that you think should be responsible, and write that

responsibility on the card. For each responsibility, you record which other classes
are needed to fulfill it. Those classes are the collaborators.

For example, suppose you decide that an invoice should compute the amount
due. Then you write “compute amount due” on the left-hand side of an index card
with the title Invoice.

If a class can carry out that responsibility all by itself, you do nothing further.
But if the class needs the help of other classes, you write the names of those collab-
orators on the right-hand side of the card.

To compute the total, the invoice needs to ask each line item about its total price.
Therefore, the LineItem class is a collaborator.

This is a good time to look up the index card for the LineItem class. Does it have
a “get total price” member function? If not, add one.

How do you know that you are on the right track? For each responsibility, ask
yourself how it can actually be done, using just the responsibilities written on the

A CRC card describes a
class, its responsibilities,
and its collaborating
classes.

Figure 5 A CRC Card

compute amount due LineItem

Invoice

Class

Responsibilities Collaborators

22.3 • Cohesion 833

various cards. Many people find it helpful to group the cards on a table so that the
collaborators are close to each other, and to simulate tasks by moving a token (such
as a coin) from one card to the next to indicate which object is currently active.
Keep in mind that the responsibilities that you list on the CRC card are on a high
level. Sometimes a single responsibility may need two or more member functions
for carrying it out. Some researchers say that a CRC card should have no more than
three distinct responsibilities.

The CRC card method is informal on purpose, so that you can be creative and dis-
cover classes and their properties. Don’t be afraid to cross out, move, split, or merge
responsibilities. Rip up cards if they become too messy. This is an informal process.

You are done when you have walked through all major tasks and satisfied yourself
that they can all be solved with the classes and responsibilities that you discovered.

You have used a good number of classes in the preceding chapters and probably
designed a few classes yourself as part of your programming assignments. Design-
ing a class can be a challenge—it is not always easy to tell how to start or whether
the result is of good quality.

Students who have prior experience with programming in a non-object-oriented
style are used to programming functions. A function carries out an action. In object-
oriented programming, however, each function belongs to a class. Classes are col-
lections of objects, and objects are not actions—they are entities. So you have to
start the programming activity by identifying objects and the classes to which they
belong.

Remember the rule of thumb from Section 22.2: Class names should be nouns,
and member function names should be verbs.

What makes a good class? Most importantly, a class should repre-
sent a single concept. Some of the classes that you have seen represent
concepts from mathematics or physics:

• Point

• Circle

• Time

Other classes are abstractions of real-life entities.

• Product

• Employee

For these classes, the properties of a typical object are easy to understand. A Circle
object has a center and radius. Given an Employee object, you can raise the salary.
Generally, concepts from the part of the universe that our program concerns, such
as science, business, or a game, make good classes. The name for such a class should
be a noun that describes the concept.

22.3 Cohesion

A class should represent a
single concept from the
problem domain, such as
business, science, or
mathematics.

834 CHAPTER 22 • Object-Oriented Design

What might not be a good class? If you can’t tell from the class name what an
object of the class is supposed to do, then you are probably not on the right track.
For example, your homework assignment might ask you to write a program that
prints paychecks. Suppose you start by trying to design a class PaycheckProgram.
What would an object of this class do? An object of this class would have to do
everything that the homework needs to do. That doesn’t simplify anything. A bet-
ter class would be Paycheck. Then your program can manipulate one or more Pay-
check objects.

Another common mistake, particularly by students who are used to writing pro-
grams that consist of functions, is to turn an action into a class. For example, if your
homework assignment is to compute a paycheck, you may consider writing a class
ComputePaycheck. But can you visualize a “ComputePaycheck” object? The fact that
“ComputePaycheck” isn’t a noun tips you off that you are on the wrong track. On
the other hand, a Paycheck class makes intuitive sense. The word “paycheck” is a
noun. You can visualize a paycheck object. You can then think about useful mem-
ber functions of the Paycheck class, such as compute_net_pay, that help you solve the
assignment.

Let’s return to the observation that a class should represent a single
concept. The member functions and constants that the public inter-
face exposes should be cohesive. That is, all interface features should
be closely related to the single concept that the class represents.

If you find that the public interface of a class refers to multiple
concepts, then that is a good sign that it may be time to use separate
classes instead. Consider, for example, the public interface of a

CashRegister class:
class CashRegister
{
public:
 void add_nickels(int count);
 void add_dimes(int count);
 void add_quarters(int count);
 double get_total() const;
 ...
};

There are really two concepts here: a cash register that holds coins and computes
their total, and the individual coins, each with their own names and values. It would
make more sense to have a separate Coin class. Each coin should be responsible for
knowing its name and value.

class Coin
{
public:
 Coin(double v, string n);
 double get_value() const;
private:
 ...
};

The public interface of a
class is cohesive if all of
its features are related to
the concept that the class
represents.

22.4 • Coupling 835

Then the CashRegister class can be simplified:
class CashRegister
{
public:
 void add(Coin c);
 double get_total() const;
 ...
};

This is clearly a better solution, because it separates the concepts of the cash register
and the coins. Each of the resulting classes is more cohesive than the original
CashRegister class was.

Many classes need other classes to do their job. For example, the
restructured CashRegister class of the preceding section depends on
the Coin class. In general, a class depends on another if one of its
member functions uses an object of the other class in some way.

In particular, the “collaborators” column of the CRC cards tell
you which classes depend on another.

We will follow the notation of the Unified Modeling Language (UML) when
drawing class diagrams that show the relationships between classes. In a UML class
diagram, you denote dependency by a dashed line with an open arrow tip that
points to the dependent class. Figure 6 shows a class diagram that indicates that the
CashRegister class depends on the Coin class.

Note that the Coin class does not depend on the CashRegister class. Coins have
no idea that they are being collected in cash registers, and they can carry out their
work without ever calling any member function in the CashRegister class.

If many classes of a program depend on each other, then we say that the coupling
between classes is high. Conversely, if there are few dependencies between classes,
then we say that the coupling is low (Figure 7).

22.4 Coupl ing

The “uses” or dependency
relationship denotes that
a class uses objects of
another class.

Figure 6
Dependency Relationship Between
the CashRegister and Coin Classes

CashRegister

Coin

836 CHAPTER 22 • Object-Oriented Design

Why does coupling matter? If the Coin class changes in the next
release of the program, all the classes that depend on it may be affected.
If the change is drastic, the coupled classes must all be updated.
Furthermore, if you would like to use the class in another program,
you have to take with it all the classes on which it depends. Thus, in
general, you want to remove unnecessary coupling between classes.

Consistency

In the preceding sections, you learned two criteria that are used to analyze the quality of the
public interface of a class. You should maximize cohesion and remove unnecessary coupling.
There is another criterion that you should pay attention to—consistency. When you have a
set of member functions, follow a consistent scheme for their names and parameters. This is
simply a sign of good craftsmanship.

Sadly, you can find any number of inconsistencies in the standard library. Here is an
example. To set the precision of an output stream, you use the setprecision manipulator:

cout << setprecision(2);

To set the field width, you call

cout << setw(8);

Why not setwidth? And why does the setting for precision persist until you change it, while
the width keeps reverting to 0? Why the inconsistency? It would have been an easy matter to
supply a setwidth manipulator that exactly mirrors setprecision. There is probably no
good reason why the designers of the C++ library made these decisions. They just happened,
and then nobody bothered to clean them up.

Inconsistencies such as these are not a fatal flaw, but they are an annoyance, particularly
because they can be so easily avoided. When designing your own classes, you should make
an effort to periodically inspect them for consistency.

Figure 7 High and Low Coupling Between Classes

Low couplingHigh coupling

It is a good practice to
minimize the coupling
(i.e., dependency)
between classes.

QUAL ITY T IP 22.1

22.5 • Relationships Between Classes 837

When designing a program, it is useful to document the relationships between
classes. This helps you in a number of ways. For example, if you find classes with
common behavior, you can save effort by placing the common behavior into a base
class. If you know that some classes are not related to each other, you can assign dif-
ferent programmers to implement each of them, without worrying that one of them
has to wait for the other.

You have seen the inheritance relationship between classes in Chapter 8. Inherit-
ance is a very important relationship between classes, but, as it turns out, it is not
the only useful relationship, and it can be overused.

Inheritance is a relationship between a more general class (the base
class) and a more specialized class (the derived class). This relation-
ship is often described as the is-a relationship. Every car is a vehicle.
Every savings account is a bank account.

Another important relationship between classes is aggregation.
When the objects of one class contain objects of another, then we say
that the first class aggregates the other. For example, if a class Car stores
objects of class Tire, then we say that there is an aggregation rela-
tionship between the classes Car and Tire. This relationship is also
described as the has-a relationship. Every car has tires.

In the UML notation, aggregation is denoted by a solid line with a
diamond next to the aggregating class. Figure 8 shows a class diagram
with an inheritance and an aggregation relationship.

It is tempting to use inheritance even if it is not appropriate to do
so. For example, consider a Tire class that describes a car tire. Should
the class Tire inherit from the class Circle? It sounds convenient.
There are probably quite a few useful member functions in the Circle
class—for example, the Tire class may inherit member functions that
compute the radius, perimeter, and center point. All that should come

22.5 Relat ionships Between Classes

Figure 8 UML Notation for
Inheritance and Aggregation

Inheritance (the “is-a”
relationship) is a
relationship between a
more specialized class and
a more general class.

Aggregation (the “has-a”
relationship) denotes the
fact that objects of a class
contain objects of another
class.

Inheritance is sometimes
inappropriately used when
aggregation would be
more appropriate.

Vehicle

Car Tire

838 CHAPTER 22 • Object-Oriented Design

in handy when drawing tire shapes. Yet, though it may be convenient for the pro-
grammer, this arrangement makes no sense conceptually. Tires are not circles. Tires
are car parts, whereas circles are geometric objects.

It would be more appropriate to use aggregation: A tire has a circle as its boundary.
 The third key relationship between classes is the uses or depen-
dency relationship, which you saw in the preceding section. Recall
that a class depends on another if one of its member functions uses an
object of the other class in some way. Aggregation is a stronger form
of dependency. If a class aggregates another, it certainly uses the
other class.

However, the converse is not true. If a class depends on another, it comes in con-
tact with objects of the other class in some way, not necessarily through aggrega-
tion. Even though a physical cash register contains coins, the same need not be true
for a CashRegister object. It is entirely possible that the add member function sim-
ply adds the coin value to the total without storing any actual coin objects.

As you saw in the preceding section, the UML notation for
dependency is a dashed line with an open arrow that points to the
dependent class.

The arrows in the UML notation can get confusing. Table 1 shows
the three UML relationship symbols that we discussed in this section.

Aggregations between classes are usually implemented as data fields. For example,
if the Company class aggregates the Employee class, a company object needs to store
one or more Employee objects or pointers.

When implementing the aggregation, you need to make two important choices.
Should you store a single Employee or a vector of Employee objects? Should you store
objects or pointers? To answer these questions, ask yourself two questions.

Table 1 UML Relationship Symbols

Relation-
ship

Symbol Line Style Arrow Style

Inheritance Solid Closed triangle

Aggregation Solid Diamond
(at aggregating end)

Dependency Dotted Open arrow

“Is-a”, “has-a”, and
“uses” are the three
key dependencies
between classes.

You need to be able to
distinguish the UML
notations for inheritance,
aggregation, and
dependency.

22.6 Implement ing Aggregat ions

22.7 • Case Study: Printing an Invoice 839

First, what is the multiplicity of the aggregation? The three most common
choices are

• 1 : many (for example, every company has many employees)
• 1 : 1 (for example, every bank account has one owner)
• 1 : 0 or 1 (for example, every department has 0 or 1 receptionist)

For a “1 : many” relationship, you need to use a vector (or some other data struc-
ture—see Chapter 12).

Next, you need to ask whether you store objects or pointers. You must use
pointers in three circumstances:

• For a “1 : 0 or 1” relationship (see Chapter 7)
• For object sharing (see Chapter 7)
• For polymorphism, to refer to an object that may belong to a base class or a

derived class (see Chapter 8)

Consider a few examples. Consider a BankAccount class that needs to store a Person
object, the owner of the account. (In real life, there are accounts with multiple own-
ers, but for simplicity, we will assume that each account has only one owner.)
Should you store a Person object, or a pointer of type Person*? Since multiple bank
accounts can share the same owner, it makes sense to use a pointer:

class BankAccount
{
 ...
private:
 Person* owner;
};

On the other hand, consider a Car class that is associated with the Tire class. A car
has multiple tires, so you would use a vector to store them. Should you store
objects or pointers? A particular tire can only be a part of a single car, so you can
store objects.

class Car
{
 ...
private:
 vector<Tire> tires;
};

In this chapter, we discuss a five-part development process that is particularly well
suited for beginning programmers:

1. Gather requirements.
2. Use CRC cards to find classes, responsibilities, and collaborators.

22.7 Case Study: Pr int ing an Invoice

840 CHAPTER 22 • Object-Oriented Design

3. Use UML class diagrams to record class relationships.
4. Document classes and member functions.
5. Implement your program.

There isn’t a lot of notation to learn. The class diagrams are simple to draw. The
deliverables of the design phase are immediately useful for the implementation
phase. Of course, as your projects get more complex, you will want to learn more
about formal design methods. There are many techniques to describe object scenar-
ios, call sequencing, the large-scale structure of programs, and so on, that are very
beneficial even for relatively simple projects. The Unified Modeling Language User
Guide [1] gives a good overview of these techniques.

In this section, we will walk through the object-oriented design technique with a
very simple example. In this case, the methodology may feel overblown, but it is a
good introduction to the mechanics of each step. You will then be better prepared
for the more complex example that follows.

The task of this program is to print an invoice. An invoice describes the charges for
a set of products in certain quantities. (Complexities such as dates, taxes, and
invoice and customer numbers are omitted.) The program simply prints the billing
address, all line items, and the amount due. Each line item contains the description
and unit price of a product, the quantity ordered, and the total price.

 I N V O I C E

Sam's Small Appliances
100 Main Street
Anytown, CA 98765

Description Price Qty Total
Toaster 29.95 3 89.85
Hair dryer 24.95 1 24.95
Car vacuum 19.99 2 39.98

AMOUNT DUE: $154.78

Also, in the interest of simplicity, no user interface is required. Simply use a test
harness that adds items to the invoice and then prints it.

First, you need to discover classes. Classes correspond to nouns in the requirements
description. In this problem, it is pretty obvious what the nouns are:

Invoice
Address
LineItem
Product

22.7.1 Requirements

22.7.2 CRC Cards

22.7 • Case Study: Printing an Invoice 841

Description
Price
Quantity
Total
Amount Due

(Of course, Toaster doesn’t count—it is the description of a LineItem object and
therefore a data value, not the name of a class.)

Description and price are fields of the Product class. What about the quantity?
The quantity is not an attribute of a Product. Just as in the printed invoice, let’s have
a class LineItem that records the product and the quantity (such as “3 toasters”).

The total and amount due are computed—not stored anywhere. Thus, they don’t
lead to classes.

After this process of elimination, four candidates for classes are left:
Invoice
Address
LineItem
Product

Each of them represents a useful concept, so make them all into classes.
The purpose of the program is to print an invoice. Record that responsibility in a

CRC card:

How does an invoice print itself? It must print the billing address, print all items,
and then add the amount due. How can the invoice print an address? It seems best
to leave this responsibility to the Address class. This leads to a second CRC card:

print the invoice

Invoice

print the address

Address

842 CHAPTER 22 • Object-Oriented Design

Similarly, printing of an item is the responsibility of the LineItem class.
The print member function of the Invoice class calls the print member functions

of the Address and LineItem classes. Whenever a member function uses another
class, you list that other class as a collaborator. In other words, Address and
LineItem are collaborators of Invoice:

When formatting the invoice, the invoice also needs to compute the total amount
due. To obtain that amount, it must ask each line item about the total price of the
item.

How does a line item obtain that total? It must ask the product for the unit price,
and then multiply it by the quantity. That is, the Product class must reveal the unit
price, and it is a collaborator of the LineItem class.

print the invoice Address

LineItem

Invoice

get description
get unit price

Product

print the item Product

get total price

LineItem

22.7 • Case Study: Printing an Invoice 843

Finally, the invoice must be populated with products and quantities, so that it
makes sense to print the result. This too is a responsibility of the Invoice class. Sim-
ply list the responsibilities in the left column and the collaborators in the right col-
umn, and don’t worry about how they line up.

You now have a set of CRC cards that completes the CRC card process.
There are a few points to keep in mind when using CRC cards. It is not easy to

reason about objects and scenarios at a high level. It can be extremely difficult to
distinguish between operations that are easy to implement and those that sound
easy but actually pose significant implementation challenges. The only solution to
this problem is lots of practice.

Also, don’t be deceived by the seemingly logical progression of thoughts in this
section. Generally, when using CRC cards, there are quite a few false starts and
detours. Describing them in a book would be pretty boring, so the process descrip-
tions that you get in books tend to give you a false impression. One purpose of
CRC cards is to fail early, to fail often, and to fail inexpensively. It is a lot cheaper to
tear up a bunch of cards than to reorganize a large amount of source code.

The dependency relationships come from the collaboration column in the CRC
cards. Each class depends on the classes with which it collaborates. In our example,
the Invoice class collaborates with the Address, LineItem, and Product classes. The
LineItem class collaborates with the Product class.

Now ask yourself which of these dependencies are actually aggregations. How
does an invoice know about the address, line item, and product objects with which
it collaborates? An invoice object must hold the address and the items when it
prints the invoice. But an invoice object need not hold a product object when add-
ing a product. The product is turned into a line item, and then it is the line item’s
responsibility to hold it.

Therefore, the Invoice class aggregates the Address class and the LineItem class,
but not the Product class. An invoice doesn’t store products directly—they are
stored in the LineItem objects. The LineItem class aggregates the Product class.

print the invoice Address

LineItemadd a product and quantity
Product

Invoice

22.7.3 Class Diagrams

844 CHAPTER 22 • Object-Oriented Design

There is no inheritance in this example. Figure 9 shows the class relationships
between the invoice classes.

The final step of the design phase is to write the documentation of
the discovered classes and member functions. You could write this
documentation in a word processor or a Wiki, but there is an easier
alternative: Simply write C++ code with documentation comments
(but without implementing any functions).

You can then run a comment extraction program to obtain a pret-
tily formatted version of your documentation in HTML format (see
Figure 10). One such program is doxygen [3].

As you produce the documentation, you will need to fill in some details. The
CRC cards only contain the member functions in a high-level description. You
need to come up with reasonable parameters and return types.

Here is the documentation for the invoice classes.
/**

Describes an invoice for a set of purchased products.
*/
class Invoice
{
public:
 /**

Adds a charge for a product to this invoice.
 @param p the product that the customer ordered
 @param quantity the quantity of the product
 */
 void add(Product p, int quantity);

 /**
Prints the invoice.

 */
 void print() const;

Figure 9 The Relationships Between the Invoice Classes

Invoice Address

Product LineItem

22.7.4 Class and Function Comments

Use documentation
comments (with the
bodies of the functions
left blank) to record the
behavior of classes and
member functions.

22.7 • Case Study: Printing an Invoice 845

};

/**
Describes a quantity of an article to purchase and its price.

*/
class LineItem
{
public:
 /**

Computes the total cost of this line item.
 @return the total price
 */
 double get_total_price() const;

 /**
Prints this line item.

 */
 void print() const;
};

/**
Describes a product with a description and a price.

*/
class Product
{
public:
 /**

Gets the product description.
 @return the description
 */
 string get_description() const;

 /**
Gets the product price.

 @return the unit price
 */
 double get_price() const;
};

/**
Describes a mailing address.

*/
class Address
{
public:
 /**

Prints the address.
 */
 void print() const;
};

This approach for documenting your classes has a number of advantages. You can
share the documentation with others if you work in a team. You use a format that is
immediately useful—C++ files that you can carry into the implementation phase.

846 CHAPTER 22 • Object-Oriented Design

And, most importantly, you supply the comments for the key member functions—
a task that less prepared programmers leave for later, and then often neglect for lack
of time.

Finally, you are ready to implement the classes.
You already have the member function signatures and comments from the previ-

ous step. Now look at the aggregation relationships in the class diagram to add data
fields. Start with the Invoice class which aggregates Address and LineItem. Every
invoice has one billing address, but it can have many items. To store multiple
LineItem objects, you use a vector. Now you have the data fields of the Invoice class:

class Invoice
{

Figure 10 The Class Documentation in the HTML Format

22.7.5 Implementation

22.7 • Case Study: Printing an Invoice 847

 ...
private:
 Address billing_address;
 vector<LineItem> items;
};

As you can see from the class diagram, the LineItem class aggregates Product. Also,
you need to store the product quantity, which leads to the following data fields:

class LineItem
{
 ...
private:
 Product prod;
 int quantity;
};

The member functions themselves are now very easy. Here is a typical example.
You already know what the get_total_price member function of the LineItem class
needs to do—get the unit price of the product and multiply it with the quantity.

double LineItem::get_total_price()
{
 return prod.get_price() * quantity;
}

The other member functions are equally straightforward and won’t be discussed in
detail.

Finally, you need to supply constructors, another routine task.
Here is the entire program. It is a good practice to go through it in detail and

match up the classes and member functions against the CRC cards and class diagram.

ch22/invoice.cpp

1 #include <iostream>
2 #include <iomanip>
3 #include <string>
4 #include <vector>
5
6 using namespace std;
7
8 /**
9 Describes a product with a description and a price.
10 */
11 class Product
12 {
13 public:
14 Product();
15 Product(string d, double p);
16
17 /**
18 Gets the product description.
19 @return the description
20 */
21 string get_description() const;
22

848 CHAPTER 22 • Object-Oriented Design

23 /**
24 Gets the product price.
25 @return the unit price
26 */
27 double get_price() const;
28 private:
29 string description;
30 double price;
31 };
32
33 Product::Product()
34 {
35 price = 0;
36 }
37
38 Product::Product(string d, double p)
39 {
40 description = d;
41 price = p;
42 }
43
44 string Product::get_description() const
45 {
46 return description;
47 }
48
49 double Product::get_price() const
50 {
51 return price;
52 }
53
54 /**
55 Describes a quantity of an article to purchase and its price.
56 */
57 class LineItem
58 {
59 public:
60 LineItem();
61 LineItem(Product p, int q);
62
63 /**
64 Computes the total cost of this line item.
65 @return the total price
66 */
67 double get_total_price() const;
68
69 /**
70 Prints this line item.
71 */
72 void print() const;
73 private:
74 Product prod;
75 int quantity;
76 };

22.7 • Case Study: Printing an Invoice 849

77
78 LineItem::LineItem()
79 {
80 quantity = 0;
81 }
82
83 LineItem::LineItem(Product p, int q)
84 {
85 prod = p;
86 quantity = q;
87 }
88
89 double LineItem::get_total_price() const
90 {
91 return prod.get_price() * quantity;
92 }
93
94 void LineItem::print() const
95 {
96 cout << left << setw(28)
97 << prod.get_description()
98 << right << fixed << setprecision(2)
99 << setw(7) << prod.get_price()
100 << setw(5) << quantity
101 << setw(7) << get_total_price() << "\n";
102 }
103
104 /**
105 Describes a mailing address.
106 */
107 class Address
108 {
109 public:
110 Address();
111 Address(string n, string s, string c, string st, string z);
112
113 /**
114 Prints the address.
115 */
116 void print() const;
117 private:
118 string name;
119 string street;
120 string city;
121 string state;
122 string zip;
123 };
124
125 Address::Address() {}
126
127 Address::Address(string n, string s, string c, string st, string z)
128 {
129 name = n;
130 street = s;

850 CHAPTER 22 • Object-Oriented Design

131 city = c;
132 state = st;
133 zip = z;
134 }
135
136 void Address::print() const
137 {
138 cout << name << "\n" << street << "\n"
139 << city << ", " << state << " " << zip << "\n";
140 }
141
142 /**
143 Describes an invoice for a set of purchased products.
144 */
145 class Invoice
146 {
147 public:
148 Invoice(Address a);
149
150 /**
151 Adds a charge for a product to this invoice.
152 @param p the product that the customer ordered
153 @param quantity the quantity of the product
154 */
155 void add(Product p, int quantity);
156
157 /**
158 Prints the invoice.
159 */
160 void print() const;
161 private:
162 Address billing_address;
163 vector<LineItem> items;
164 };
165
166 Invoice::Invoice(Address a)
167 {
168 billing_address = a;
169 }
170
171 void Invoice::add(Product p, int q)
172 {
173 LineItem it(p, q);
174 items.push_back(it);
175 }
176
177 void Invoice::print() const
178 {
179 cout << " I N V O I C E\n\n";
180 billing_address.print();
181 cout <<
182 "\n\nDescription Price Qty Total\n";
183 for (int i = 0; i < items.size(); i++)
184 items[i].print();

22.8 • Case Study: An Educational Game 851

This example uses the optional graphics library that is described in Chapter 2.

Your task is to write a game program that teaches your baby sister how to read the
clock (see Figure 11). The game should do the following: randomly generate a time,
draw a clock face with that time, and ask the player to type in the time. The player

Figure 11
The Screen Display of
the Clock Program

185
186 double amount_due = 0;
187 for (int i = 0; i < items.size(); i++)
188 amount_due = amount_due + items[i].get_total_price();
189
190 cout << "\nAMOUNT DUE: $" << amount_due;
191 }
192
193 int main()
194 {
195 Address sams_address("Sam’s Small Appliances",
196 "100 Main Street", "Anytown", "CA", "98765");
197
198 Invoice sams_invoice(sams_address);
199 sams_invoice.add(Product("Toaster", 29.95), 3);
200 sams_invoice.add(Product("Hair dryer", 24.95), 1);
201 sams_invoice.add(Product("Car vacuum", 19.99), 2);
202
203 sams_invoice.print();
204 return 0;
205 }

22.8 Case Study: An Educat iona l Game

22.8.1 Requirements

852 CHAPTER 22 • Object-Oriented Design

gets two tries before the game displays the correct time. Whenever the player gets
the right answer, the score increases by one point. There are four levels of difficulty.
Level 1 teaches full hours, level 2 teaches 15-minute intervals, level 3 teaches 5-
minute intervals, and level 4 displays all times. When the player has reached a score
of five points on one level, the game advances to the next level.

At the beginning, the game asks for the player’s name and the desired starting
level. After every round, the player is asked whether he or she wants to play more.
The game ends when the player decides to quit.

What classes can you find? You need to look at nouns in the problem description;
here are several:

Player
Clock
Time
Level
Game
Round

Not all nouns that you find make useful objects. For example, the Level is just an
integer between 1 and 4; it doesn’t really do anything. At this time, the best course
of action is to leave it in the list of possible classes and to abandon it later if it turns
out not to have any useful actions.

Start with a simple class: the Clock class. The clock object has one important
responsibility: to draw the clock face.

When a clock draws itself, it must draw the hour and minute hands to show the cur-
rent times. To get the hours and minutes of the current time, it must collaborate
with the Time class.

22.8.2 CRC Cards

draw

Clock

22.8 • Case Study: An Educational Game 853

How does the clock know what time it is? You need to tell it:

Next, take up the Time class. You need to get the hours and minutes of a given time,
and be able to tell when two times are the same.

Now look at the player. A player has a name, a level, and a score. Every time the
player gets a correct answer, the score must be incremented.

draw
set time

Time

Clock

get hours and minutes
check if equal to another

Time object

Time

increment score

Player

854 CHAPTER 22 • Object-Oriented Design

After every five score increments, the level is incremented as well. Let the increment
score function take care of that. Of course, then you must find out what the current
level is.

Now you are in a fairly typical situation. You have a mess of classes, each of which
seems to do interesting things, but you don’t know how they will all work together.

A good plan is to introduce a class that represents the entire program—in our
case, the game:

Unlike the previously discovered functions, it is not at all obvious how the play
function works. You must use the process of stepwise refinement, which we dis-
cussed in Chapter 4. What does it mean to play the game? The game starts by asking
the player’s name and level. Then the player plays a round, the game asks whether
the player wants to play again, and so on.

Play the Game:

read player information
do
{

play a round
ask whether player wants to play again

}
while (player wants to play again);

increment score
get level

Player

play

Game

22.8 • Case Study: An Educational Game 855

A couple of new actions are required: to get player information and to play a round.
Add read player information to the Game class:

Now, how about play a round? Should the Game class or the Player class implement
this function? What is involved in playing a round? You must make a time, depend-
ing on the selected level. You must draw the clock, ask for input, check whether the
input is correct, play again if it is not, and increment the player’s score if it is.

The responsibility can be assigned either way. In this discussion, let the Game class
take care of playing the round. It informs the player about the game progress,
which makes the Player class a collaborator. Note that the game must draw a clock
face when playing a round, so Clock is a collaborator. Furthermore, the game gener-
ates Time objects, which makes Time another collaborator.

So far there is no need for the classes Round and Level that were tentatively noted in
the class discovery step, so do not implement them.

From the collaborator columns of the CRC cards, you can determine that the Game
class uses the Player, Clock, and Time classes, and the Clock class uses the Time class.

Next, ask yourself whether any of these dependencies are actually aggregations.
Does a Game object contain a Player object? Or do the Game member functions only

play
read player information

Game

play
read player information
play round

Player

Clock

Time

Game

22.8.3 Class Diagrams

856 CHAPTER 22 • Object-Oriented Design

use local or parameter variables of type Player? Since the same player object must
be manipulated during several rounds, one can’t just construct local player objects
in each round. That is, there must be a Player object that persists during the lifetime
of the game. Conceivably, that Player object might be passed as a parameter to the
play round function, but that seems far-fetched. It makes much more sense for the
Game object to have a data field of type Player, to initialize that object in the “read
player information” function, and to have the play round function modify its state.
Thus, you may conclude that the Player class is associated with the Game class.

On the other hand, there is no pressing need for the Clock and Time classes to be
aggregated with the Game class. The play round function can construct local Clock
and Time objects.

Since the Clock CRC card shows a set time function, you can conclude that the
Time class is aggregated with the Clock class.

Figure 12 shows the class diagram for the clock game classes.

Translating the responsibilities from the CRC cards to member functions is
straightforward. Following are the commented Clock, Player, and Game classes.

/**
A clock that can draw its face.

*/
class Clock
{
public:
 /**

Sets the current time.
 @param t the time to set
 */
 void set_time(Time t);

Figure 12 The Relationships Between the Clock Game Classes

Player

Clock Time

Game

22.8.4 Class and Function Comments

22.8 • Case Study: An Educational Game 857

 /**
Draws the clock face, with tick marks and hands.

 */
 void draw() const;
};

/**
The player of the clock game.

*/
class Player
{
public:
 /**

Increments the score. Moves to next level if current
level complete.

 */
 void increment_score();

 /**
Gets the current level.

 @return the level
 */
 int get_level() const;
};

/**
The clock game.

*/

class Game
{
public:
 /**

Plays the game while the player wants to continue.
 */
 void play();

 /**
Reads player name and level.

 */
 void read_player_information();

 /**
Plays a round, with up to two guesses.

 */
 void play_round();
};

Now turn to the Time class. You will need the following functionality:

• Get the hours and minutes of a Time object.
• Check whether two Time objects are identical.

This class seems to be similar to the Time class that is a part of the library of this
book (see Chapter 2). Rather than reinventing the wheel, determine whether you
can use this class. That class stores seconds in addition to hours and minutes. Of

858 CHAPTER 22 • Object-Oriented Design

course, you can set the seconds to zero. To see whether two times are identical,
check whether there are zero seconds from the first to the second time; that is, test
whether time1.seconds_from(time2) is 0. It is, so you can use the library class and
don’t need to write a new one.

Now you have a set of classes, with reasonably complete interfaces. Is the design
complete? In practice, that is not always an easy question to answer. It is quite com-
mon to find during the implementation phase that a particular task cannot be car-
ried out with the interface functions. Then one needs to go back and revise the
classes and interfaces.

Start with the Clock class. The clock must remember the time that is set with
set_time so that it can draw the clock face. It must also remember where to draw
the clock. Store the current time, the center point, and the radius of the clock face.

class Clock
{
 ...
private:
 Time current_time;
 Point center;
 double radius;
};

Here is the set_time function:
void Clock::set_time(Time t)
{
 current_time = t;
}

The draw function is more complex. Use the process of stepwise refinement to sim-
plify it.

Draw the Clock:

draw a circle
draw the hour “ticks”
draw the minute “ticks”
draw the hour hand
draw the minute hand

You need a function to draw a tick and a function to draw a hand. Each of these
functions takes two parameters: the angle of the line segment to draw and its length.
For convenience, the angle is measured clockwise, in multiples of six degrees (the
angle between two adjacent minute ticks), starting from the 12 o’clock position.

void Clock::draw_tick(double angle, double length) const
{

22.8.5 Implementation

22.8 • Case Study: An Educational Game 859

 double alpha = PI / 2 - 6 * angle * PI / 180;
 Point from(
 center.get_x() + cos(alpha) * radius * (1 - length),
 center.get_y() + sin(alpha) * radius * (1 - length));
 Point to(center.get_x() + cos(alpha) * radius,
 center.get_y() + sin(alpha) * radius);
 cwin << Line(from, to);
}

void Clock::draw_hand(double angle, double length) const
{
 double alpha = PI / 2 - 6 * angle * PI / 180;
 Point from = center;
 Point to(center.get_x() + cos(alpha) * radius * length,
 center.get_y() + sin(alpha) * radius * length);
 cwin << Line(from, to);
}

Then the function to draw the clock face is relatively simple:
void Clock::draw() const
{
 cwin << Circle(center, radius);
 const double HOUR_TICK_LENGTH = 0.2;
 const double MINUTE_TICK_LENGTH = 0.1;
 const double HOUR_HAND_LENGTH = 0.6;
 const double MINUTE_HAND_LENGTH = 0.75;
 for (int i = 0; i < 12; i++)
 {
 draw_tick(i * 5, HOUR_TICK_LENGTH);
 for (int j = 1; j <= 4; j++)
 draw_tick(i * 5 + j, MINUTE_TICK_LENGTH);
 }

 draw_hand(current_time.get_minutes(), MINUTE_HAND_LENGTH);
 draw_hand((current_time.get_hours() +
 current_time.get_minutes() / 60.0) * 5,
 HOUR_HAND_LENGTH);
}

The draw function illustrates an important point. Object-oriented design does not
replace the process of stepwise refinement. It is quite common to have member
functions that are complex and need to be refined further. Because the helper func-
tions draw_tick and draw_hand are only meant to be called by draw, they should be
placed in the private section of the class.

The Clock constructor constructs a clock from a given center and radius:
Clock::Clock(Point c, double r)
{
 center = c;
 radius = r;
}

Now we turn to the Player class. A player needs to store the current level and score:
class Player
{

860 CHAPTER 22 • Object-Oriented Design

 ...
private:
 int level;
 int score;
};

The constructor and the get_level function are straightforward—see the code at the
end of this section.

The increment_score function is more interesting. Of course, it increments the
score. When the score becomes a multiple of five, and the level is less than four, the
level is also incremented:

void Player::increment_score()
{
 score++;
 if (score % 5 == 0 and level < 4)
 level++;
}

The last class to consider is the Game class. What data fields does the game need? It
needs a player. How about the clock and the time? Each round generates a new ran-
dom time, and the time is not needed in the other functions. Therefore, do not make
the clock and time data fields of the Game class. They will just be local variables of
the play_round function.

You already saw the pseudocode for the play procedure. Here is the full C++
code:

void Game::play()
{
 rand_seed();
 read_player_information();
 string response;
 do
 {
 play_round();
 response = cwin.get_string(
 "Do you want to play again? (y/n)");
 }
 while (response == "y");
}

Here is the read_player_information function:
void Game::read_player_information()
{
 string name = cwin.get_string("What is your name?");
 int initial_level;
 do
 {
 initial_level = cwin.get_int(
 "At what level do you want to start? (1-4)");
 }
 while (initial_level < 1 || initial_level > 4);
 player = Player(name, initial_level);
}

22.8 • Case Study: An Educational Game 861

Not unexpectedly, the play_round function is the hardest. Here is a refinement:

Play a Round:

make a random time
show the time
get a guess
if (guess is not correct)

get a guess
if (guess is correct)
{

congratulate player
increment score

}
else

give correct answer

The random time depends on the level. If the level is 1, then the time must be a full
hour—that is, a multiple of 60. If the level is 2, then the number of minutes is a mul-
tiple of 15. If the level is 3, then the number of minutes is a multiple of 5. Otherwise,
it can be any number.

Time Game::random_time()
{
 int level = player.get_level();

 int minutes;
 if (level == 1) minutes = 0;
 else if (level == 2) minutes = 15 * rand_int(0, 3);
 else if (level == 3) minutes = 5 * rand_int(0, 11);
 else minutes = rand_int(0, 59);
 int hours = rand_int(1, 12);
 return Time(hours, minutes, 0);
}

Since get a guess occurs twice, make that into a separate function:
Time Game::get_guess()
{
 int hours;
 do
 {
 hours = cwin.get_int("Please enter hours: (1-12)");
 }
 while (hours < 1 || hours > 12);
 int minutes;
 do
 {
 minutes = cwin.get_int("Please enter minutes: (0-59)");
 }
 while (minutes < 0 || minutes > 59);

 return Time(hours, minutes, 0);
}

You are now ready to implement the play_round function.

862 CHAPTER 22 • Object-Oriented Design

void Game::play_round()
{
 cwin.clear();
 Time t = random_time();
 const double CLOCK_RADIUS = 5;
 Clock clock(Point(0, 0), CLOCK_RADIUS);
 clock.set_time(t);
 clock.draw();

 Time guess = get_guess();
 if (t.seconds_from(guess) != 0)
 guess = get_guess();

 string text;
 if (t.seconds_from(guess) == 0)
 {
 text = "Congratulations, " + player.get_name()
 + "! That is correct.";
 player.increment_score();
 }
 else
 text = "Sorry, " + player.get_name()
 + "! That is not correct.";

 cwin <<
 Message(Point(-CLOCK_RADIUS, CLOCK_RADIUS + 1), text);
}

There is, however, a slight problem. We want to be friendly and congratulate the
player by name:

Congratulations, Susan! That is correct.

However, if you look at the Player class, you won’t find a get_name function. This
was an oversight; it is easy to remedy:

class Player
{
public:
 ...
 /**

Gets the player’s name.
 @return the name
 */
 string get_name() const;
 ...
};

string Player::get_name() const
{
 return name;
}

When designing a collection of collaborating classes, as you are doing to implement
this game, it is quite common to discover imperfections in some of the classes. This
is not a problem. Revisiting a class to add more member functions is perfectly
acceptable.

22.8 • Case Study: An Educational Game 863

The main program is now quite short. You need to make a Game object and call
play:

int ccc_win_main()
{
 Game clock_game;
 clock_game.play();

 return 0;
}

This is actually quite anticlimactic after the complicated development of the classes
and member functions. As a consistency check, here is a call tree that shows how
the program unfolds. (We do not list constructors or very simple accessor functions
such as get_minutes.)

This example shows the power of the methods of finding objects and stepwise
refinement. It also shows that designing and implementing even a moderately com-
plex program is a lot of work.

Here is the entire program—the longest program we have developed in this
book:

ch22/clock.cpp

main

 Game::play

 Game::get_player_information

 Game::play_round

 Game::random_time

 Clock::set_time

 Clock::draw

 Game::get_guess

 Player::increment_score

1 #include <cstdlib>
2 #include <cmath>
3 #include <ctime>
4
5 using namespace std;
6
7 #include "ccc_win.h"
8 #include "ccc_time.h"
9
10 const double PI = 3.141592653589793;
11
12 /**
13 A clock that can draw its face.
14 */
15 class Clock
16 {
17 public:

864 CHAPTER 22 • Object-Oriented Design

18 /**
19 Constructs a clock with a given center and radius.
20 @param c the center of the clock
21 @param r the radius of the clock
22 */
23 Clock(Point c, double r);
24
25 /**
26 Sets the current time.
27 @param t the time to set
28 */
29 void set_time(Time t);
30
31 /**
32 Draws the clock face, with tick marks and hands.
33 */
34 void draw() const;
35 private:
36 /**
37 Draw a tick mark (hour or minute mark).
38 @param angle the angle in minutes (0 ... 59, 0 = top)
39 @param length the length of the tick mark
40 */
41 void draw_tick(double angle, double length) const;
42
43 /**
44 Draw a hand, starting from the center.
45 @param angle the angle in minutes (0 ... 59, 0 = top)
46 @param length the length of the hand
47 */
48 void draw_hand(double angle, double length) const;
49
50 Time current_time;
51 Point center;
52 double radius;
53 };
54
55 /**
56 The player of the clock game.
57 */
58 class Player
59 {
60 public:
61 /**
62 Constructs a player with no name, level 1, and score 0.
63 */
64 Player();
65
66 /**
67 Constructs a player with given name and level.
68 @param player_name the player name
69 @param initial_level the player’s level (1 ... 4)
70 */
71 Player(string player_name, int initial_level);

22.8 • Case Study: An Educational Game 865

72
73 /**
74 Increments the score. Moves to next level if current
75 level complete.
76 */
77 void increment_score();
78
79 /**
80 Gets the current level.
81 @return the level
82 */
83 int get_level() const;
84
85 /**
86 Gets the player’s name.
87 @return the name
88 */
89 string get_name() const;
90 private:
91 string name;
92 int score;
93 int level;
94 };
95
96 /**
97 The clock game.
98 */
99 class Game
100 {
101 public:
102 /**
103 Constructs the game with a default player.
104 */
105 Game();
106
107 /**
108 Plays the game while the player wants to continue.
109 */
110 void play();
111
112 /**
113 Reads player name and level.
114 */
115 void read_player_information();
116
117 /**
118 Plays a round, with up to two guesses.
119 */
120 void play_round();
121 private:
122 /**
123 Makes a random time, depending on the level.
124 @return the random time
125 */
126 Time random_time();

866 CHAPTER 22 • Object-Oriented Design

127
128 /**
129 Gets a time input from the user.
130 @return the time guessed by the user
131 */
132 Time get_guess();
133
134 Player player;
135 };
136
137 /**
138 Sets the seed of the random number generator.
139 */
140 void rand_seed()
141 {
142 int seed = static_cast<int>(time(0));
143 srand(seed);
144 }
145
146 /**
147 Returns a random integer in a range.
148 @param a the bottom of the range
149 @param b the top of the range
150 @return a random number x, a <= x and x <= b
151 */
152 int rand_int(int a, int b)
153 {
154 return a + rand() % (b - a + 1);
155 }
156
157 Clock::Clock(Point c, double r)
158 {
159 center = c;
160 radius = r;
161 }
162
163 void Clock::set_time(Time t)
164 {
165 current_time = t;
166 }
167
168 void Clock::draw_tick(double angle, double length) const
169 {
170 double alpha = PI / 2 - 6 * angle * PI / 180;
171 Point from(
172 center.get_x() + cos(alpha) * radius * (1 - length),
173 center.get_y() + sin(alpha) * radius * (1 - length));
174 Point to(center.get_x() + cos(alpha) * radius,
175 center.get_y() + sin(alpha) * radius);
176 cwin << Line(from, to);
177 }
178
179 void Clock::draw_hand(double angle, double length) const
180 {
181 double alpha = PI / 2 - 6 * angle * PI / 180;

22.8 • Case Study: An Educational Game 867

182 Point from = center;
183 Point to(center.get_x() + cos(alpha) * radius * length,
184 center.get_y() + sin(alpha) * radius * length);
185 cwin << Line(from, to);
186 }
187
188 void Clock::draw() const
189 {
190 cwin << Circle(center, radius);
191 const double HOUR_TICK_LENGTH = 0.2;
192 const double MINUTE_TICK_LENGTH = 0.1;
193 const double HOUR_HAND_LENGTH = 0.6;
194 const double MINUTE_HAND_LENGTH = 0.75;
195 for (int i = 0; i < 12; i++)
196 {
197 draw_tick(i * 5, HOUR_TICK_LENGTH);
198 int j;
199 for (j = 1; j <= 4; j++)
200 draw_tick(i * 5 + j, MINUTE_TICK_LENGTH);
201 }
202 draw_hand(current_time.get_minutes(), MINUTE_HAND_LENGTH);
203 draw_hand((current_time.get_hours() +
204 current_time.get_minutes() / 60.0) * 5, HOUR_HAND_LENGTH);
205 }
206
207 Player::Player()
208 {
209 level = 1;
210 score = 0;
211 }
212
213 Player::Player(string player_name, int initial_level)
214 {
215 name = player_name;
216 level = initial_level;
217 score = 0;
218 }
219
220 int Player::get_level() const
221 {
222 return level;
223 }
224
225 string Player::get_name() const
226 {
227 return name;
228 }
229
230 void Player::increment_score()
231 {
232 score++;
233 if (score % 5 == 0 && level < 4)
234 level++;
235 }

868 CHAPTER 22 • Object-Oriented Design

236
237 Game::Game()
238 {
239 }
240
241 void Game::play()
242 {
243 rand_seed();
244 read_player_information();
245 string response;
246 do
247 {
248 play_round();
249 response = cwin.get_string(
250 "Do you want to play again? (y/n)");
251 }
252 while (response == "y");
253 }
254
255 void Game::read_player_information()
256 {
257 string name = cwin.get_string("What is your name?");
258 int initial_level;
259 do
260 {
261 initial_level = cwin.get_int(
262 "At what level do you want to start? (1-4)");
263 }
264 while (initial_level < 1 || initial_level > 4);
265 player = Player(name, initial_level);
266 }
267
268 Time Game::random_time()
269 {
270 int level = player.get_level();
271 int minutes;
272 if (level == 1) minutes = 0;
273 else if (level == 2) minutes = 15 * rand_int(0, 3);
274 else if (level == 3) minutes = 5 * rand_int(0, 11);
275 else minutes = rand_int(0, 59);
276 int hours = rand_int(1, 12);
277 return Time(hours, minutes, 0);
278 }
279
280 Time Game::get_guess()
281 {
282 int hours;
283 do
284 {
285 hours = cwin.get_int("Please enter hours: (1-12)");
286 }
287 while (hours < 1 || hours > 12);
288 int minutes;

Chapter Summary 869

1. The life cycle of software encompasses all activities from initial analysis until
obsolescence.

2. A formal process for software development describes phases of the develop-
ment process and gives guidelines for how to carry out the phases.

289 do
290 {
291 minutes = cwin.get_int("Please enter minutes: (0-59)");
292 }
293 while (minutes < 0 || minutes > 59);
294
295 return Time(hours, minutes, 0);
296 }
297
298 void Game::play_round()
299 {
300 cwin.clear();
301 Time t = random_time();
302 const double CLOCK_RADIUS = 5;
303 Clock clock(Point(0, 0), CLOCK_RADIUS);
304 clock.set_time(t);
305 clock.draw();
306
307 Time guess = get_guess();
308 if (t.seconds_from(guess) != 0)
309 guess = get_guess();
310
311 string text;
312 if (t.seconds_from(guess) == 0)
313 {
314 text = "Congratulations, " + player.get_name()
315 + "! That is correct.";
316 player.increment_score();
317 }
318 else
319 text = "Sorry, " + player.get_name()
320 + "! That is not correct.";
321 cwin << Message(Point(-CLOCK_RADIUS, CLOCK_RADIUS + 1), text);
322 }
323
324 int ccc_win_main()
325 {
326 Game clock_game;
327 clock_game.play();
328
329 return 0;
330 }

CHAPTER SUMMARY

870 CHAPTER 22 • Object-Oriented Design

3. The waterfall model of software development describes a sequential process of
analysis, design, implementation, testing, and deployment.

4. The spiral model of software development describes an iterative process in
which design and implementation are repeated.

5. Extreme programming strives for simplicity by removing formal structure and
focusing on best practices.

6. In object-oriented design, you discover classes, determine responsibilities of
classes, and describe relationships between classes.

7. A CRC card describes a class, its responsibilities, and its collaborating classes.

8. A class should represent a single concept from the problem domain, such as
business, science, or mathematics.

9. The public interface of a class is cohesive if all of its features are related to the
concept that the class represents.

10. The “uses” or dependency relationship denotes that a class uses objects of
another class.

11. It is a good practice to minimize the coupling (i.e., dependency) between
classes.

12. Inheritance (the “is-a” relationship) is a relationship between a more specialized
class and a more general class.

13. Aggregation (the “has-a” relationship) denotes the fact that objects of a class
contain objects of another class.

14. Inheritance is sometimes inappropriately used when aggregation would be
more appropriate.

15. “Is-a”, “has-a”, and “uses” are the three key dependencies between classes.

16. You need to be able to distinguish the UML notations for inheritance, aggrega-
tion, and dependency.

17. Use documentation comments (with the bodies of the functions left blank) to
record the behavior of classes and member functions.

1. Grady Booch, James Rumbaugh, and Ivar Jacobson, The Unified Modeling Language
User Guide, 2nd ed. Addison-Wesley, 2005.

2. Kent Beck, Extreme Programming Explained, Addison-Wesley, 1999.

3. www.stack.nl/~dimitri/doxygen/ Web site for comment extraction program.

FURTHER READING

www.stack.nl/~dimitri/doxygen/

Review Exercises 871

Exercise R22.1. What is the software life cycle?

Exercise R22.2. Explain the process of object-oriented design.

Exercise R22.3. Give a rule of thumb for how to find classes when designing a
program.

Exercise R22.4. Give a rule of thumb for how to find member functions when
designing a program.

Exercise R22.5. After discovering a function, why is it important to identify the
object that is responsible for carrying out the action?

Exercise R22.6. Consider the following problem description:

Users place coins in a vending machine and select a product by pushing a button. If
the inserted coins are sufficient to cover the purchase price of the product, the
product is dispensed and change is given. Otherwise, the inserted coins are returned
to the user.

What classes should you use to implement it?

Exercise R22.7. Consider the following problem description:

Employees receive their biweekly paycheck. They are paid their hourly wage for
each hour worked; however, if they worked more than 40 hours per week, they are
paid overtime at 150 percent of their regular wage.

What classes should you use to implement it?

Exercise R22.8. Consider the following problem description:

Customers order products from a store. Invoices are generated to list the items and
quantities ordered, payments received, and amounts still due. Products are shipped to
the shipping address of the customer, and invoices are sent to the billing address.

What classes should you use to implement the problem?

Exercise R22.9. Suppose a vending machine contains products, and users insert coins
into the vending machine to purchase products. Draw a class diagram showing the
dependencies between the classes VendingMachine, Coin, and Product.

Exercise R22.10. What relationship is appropriate between the following classes:
aggregation, inheritance, or neither?

a. University—Student

b. Student—TeachingAssistant

c. Student—Freshman

d. Student—Professor

e. Car—Door

f. Truck—Vehicle

REVIEW EXERCISES

872 CHAPTER 22 • Object-Oriented Design

g. Traffic—TrafficSign

h. TrafficSign—Color

Exercise R22.11. Suppose every Volkswagen is a car. Should a class Volkswagen inherit
from the class Car? Volkswagen is a car manufacturer. Does that mean that the class
Volkswagen should inherit from the class CarManufacturer?

Exercise R22.12. Some books on object-oriented programming recommend deriving
the class Circle from the class Point. Then the Circle class inherits the set_location
function from the Point base class. Explain why the set_location function need not
be redefined in the derived class. Why is it nevertheless not a good idea to have
Circle inherit from Point? Conversely, would deriving Point from Circle fulfill the
“is-a” rule? Would it be a good idea?

Exercise P22.1. Write a program that implements a different game, to teach arith-
metic to your baby brother. The program tests addition and subtraction. In level 1 it
tests only addition of numbers less than 10 whose sum is less than 10. In level 2 it
tests addition of arbitrary one-digit numbers. In level 3 it tests subtraction of one-
digit numbers with a nonnegative difference. Generate random problems and get
the player input. The player gets up to two tries per problem. As in the clock game,
advance from one level to the next when the player has achieved a score of five
points.

Exercise P22.2. In the clock game program, we assigned the play_round function to
the Game class. That choice was somewhat arbitrary. Modify the clock program so
that the Player class is responsible for play_round.

Exercise P22.3. Design a simple e-mail messaging system. A message has a recipient,
a sender, and a message text. A mailbox can store messages. Supply a number of
mailboxes for different users and a user interface for users to log in, send messages
to other users, read their own messages, and log out. Follow the design process
described in this chapter.

Exercise P22.4. Write a program that allows an instructor to keep a grade book. Each
student has scores for exams, homework assignments, and quizzes. Grading scales
convert the total scores in each category into letter grades (e.g., 100–94 = A,
93–91 = A–, 90–88 = B+, etc.) To determine the final grade, the category grades are
converted to numeric values (A = 4.0, A− = 3.7, B+ = 3.3, etc.). Those scores are
weighted according to a set of weights (e.g., exams 40%, homework 35%, quizzes
25%), and the resulting numeric value is again converted into a letter grade. Design
a user interface that firms up the requirements, use CRC cards to discover classes
and methods, provide class diagrams, and implement your program.

PROGRAMMING EXERCISES

Programming Exercises 873

Exercise P22.5. Write a program that simulates a vending machine. Products can be
purchased by inserting the correct number of coins into the machine. A user selects
a product from a list of available products, adds coins, and either gets the product or
gets the coins returned if insufficient money was supplied or if the product is sold
out. Products can be restocked and money removed by an operator. Follow the
design process that was described in this chapter.

Exercise P22.6. Write a program to design an appointment calendar. An appointment
includes the appointment day, starting time, ending time, and a description; for
example,

2010/10/1 17:30 18:30 Dentist
2010/10/2 08:30 10:00 CS1 class

Supply a user interface to add appointments, remove canceled appointments, and
print out a list of appointments for a particular day. Follow the design process that
was described in this chapter.

Exercise P22.7. Airline seating. Write a program that assigns seats on an airplane.
Assume the airplane has 20 seats in first class (5 rows of 4 seats each, separated by an
aisle) and 180 seats in economy class (30 rows of 6 seats each, separated by an aisle).
Your program should take three commands: add passengers, show seating, and quit.
When passengers are added, ask for the class (first or economy), the number of pas-
sengers traveling together (1 or 2 in first class; 1 to 3 in economy), and the seating
preference (aisle or window in first class; aisle, center, or window in economy).
Then try to find a match and assign the seats. If no match exists, print a message.
Your user interface can be text-based or graphical. Follow the design process that
was described in this chapter.

Exercise P22.8. Write a tic-tac-toe game that lets a human player play against the
computer. Your program will play many turns against a human opponent, and it
will learn. When it is the computer’s turn, the computer randomly selects an empty
field, except that it won’t ever choose a losing combination. For that purpose, your
program must keep an array of losing combinations. Whenever the human wins, the
immediately preceding combination is stored as losing. For example, suppose that x
= computer and o = human. Suppose the current combination is

Now it is the human’s turn, who will of course choose

X

O

XO

X

O

XO

O

874 CHAPTER 22 • Object-Oriented Design

The computer should then remember the preceding combination

as a losing combination. As a result, the computer will never again choose that com-
bination from

or

Discover classes and supply a class diagram before you begin to program.

Exercise P22.9. Write a bumper car game with the following rules. Bumper cars are
located in grid points (x, y), where x and y are integers between –10 and 10. A
bumper car starts moving in a random direction, either left, right, up, or down. If it
reaches the boundary of its track (that is, x or y is 10 or –10), then it reverses direc-
tion. If it is about to bump into another bumper car, it reverses direction. Model a
track with two bumper cars. Make each of them move 100 times, alternating
between the two cars. Display the movement on the graphics screen. Use at least
two classes in your program. There should be no global variables.

Exercise P22.10. Write a program that can be used to design a suburban scene, with
houses, streets, and cars. Users can add houses and cars of various sizes to a street.
Design a user interface that firms up the requirements, use CRC cards to discover
classes and methods, provide class diagrams, and implement your program.

X

O

XO

X

O

O

O

XO

G

G

Chapter 23
The Unified Modeling

Language

• To continue the exploration of the Unified Modeling
Language (UML)

• To understand the creation and application of use cases

• To learn how to create and use the various diagram types
in the UML

• To understand how sequence diagrams help document the
dynamic relationships between classes

CHAPTER GOALS

In Chapter 22 you were introduced to a small portion of a powerful design

methodology called the Unified Modeling Language, or UML. In this chapter we

will continue to explore this technique, learning about more advanced diagrams in

the UML, such as state diagrams, and more advanced analysis techniques, such as

use cases. By the end of the chapter you will see how these techniques are combined

in the development of a small, but realistic, case study of a voice mail system.

876 CHAPTER 23 • The Unified Modeling Language

CHAPTER CONTENTS

Graphical notations are very useful for conveying design informa-
tion. It is easier to extract relationship information by looking at a
diagram than by reading documentation. In the first several chapters
you were introduced to flowcharts. While useful for describing the
behavior in very small examples, flowcharts do not scale well to large

problems. When object-oriented design was first developed, a number of researchers
proposed their own design notations. Unfortunately, these diagramming conven-
tions differed greatly in their visual appearance. That problem was resolved when
three well-known researchers, Booch, Rumbaugh, and Jacobson, got together to
unify their disparate notations. The result was the Unified Modeling Language or
UML [1].

In Chapter 22, you encountered class diagrams, one of the diagram types stan-
dardized in the UML. In the remainder of this section, you will learn about some of
the advanced features of class diagrams. In subsequent sections, we introduce sev-
eral additional diagram types.

Sometimes it is useful to indicate class attributes and member functions in a class
diagram. An attribute is an externally observable property that objects of a class
have. For example, name and price would be attributes of the Product class. Usually,
attributes correspond to data fields. But they don’t have to—a class may have a dif-
ferent way of organizing its data. Consider the Time class from the library for this

23.1 The Unified Model ing Language

The UML notation is the
unification of several
notations for object-
oriented design diagrams.

Figure 1 Attributes and Member Functions in a Class Diagram

23.1.1 Attributes and Member Functions in UML Class Diagrams

Message Mailbox

greeting

add_message()
get_current_message()

Class name

Attributes

Member functionsNo attributes
or member functions

shown

23.1 The Unified Modeling Language 876

23.2 Use Cases 879

23.3 Sequence Diagrams 881

23.4 State Diagrams 883

23.5 Case Study: A Voice
Mail System 884

23.1 • The Unified Modeling Language 877

book. Conceptually, it has attributes seconds, minutes, and hours, but it doesn’t
actually store the minutes and hours in separate data members. Instead, it stores the
number of seconds since midnight and computes the minutes and hours from it.

You can indicate attributes and member functions in a class diagram by dividing
a class rectangle into three compartments, with the class name in the top, attributes
in the middle, and member functions in the bottom (see Figure 1). You need not list
all attributes and member functions in a particular diagram. Just list the ones that
are helpful for understanding the point you are making with a particular diagram.

Also, don’t list as an attribute what you also draw as an aggregation. If you
denote by aggregation the fact that a Mailbox has Message objects, don’t add an
attribute messages.

To distinguish the attributes from the member functions, it is common to add
parentheses after function names, as we did in Figure 1.

Sometimes it is useful to indicate the types of attributes and member functions.
Unlike in C++, where the type precedes a variable, the official UML format is
attribute : type_name, for example, greeting : string. After all, UML is a lan-
guage-neutral notation that describes designs, not implementations in a particular
language. While most UML tools use this formal notation, programmers who draw
diagrams by hand will often use the familiar C++ notation string greeting.

Similarly, in the formal notation for specifying parameter and return types of a
member function, you put the parameter type after each parameter, and the return
type after the name of the function. For example,

add_message(msg : Message) : void

Keep in mind that you should only include the type information when it is helpful.
Too much irrelevant information makes a UML diagram hard to read.

It is very useful to indicate multiplicities of relationships between classes. You sim-
ply write the multiplicities at the ends of the edge that indicates the relationship.
For example, Figure 2 denotes that a mailbox can hold any number of messages, and
a message is in exactly one mailbox.

The most common choices for multiplicity are:

• any number (zero or more): *
• one or more: 1..*
• zero or one: 0..1
• exactly one: 1

Figure 2 Multiplicities of an Aggregation Relationship

23.1.2 Multiplicities

Mailbox Message
1 *

878 CHAPTER 23 • The Unified Modeling Language

Classes are joined by various kinds of connections (see Figure 3). Some designers
differentiate between aggregation and composition. Composition is a stronger form
of aggregation where the contained objects do not have an existence independent of
their containers. The UML notation for composition is a line with a solid diamond
at the end corresponding to the class doing the aggregation (see Figure 4).

Consider our voice mail system. As you will see later in this chapter, a mailbox
contains two message queues, one for new messages and one for saved messages.
These queues are permanently contained in the mailboxes—a message queue never
exists outside a mailbox. On the other hand, messages get moved from one queue to
another. Thus, message queues are contained in mailboxes, and messages are merely
aggregated in message queues. We will not make a distinction between aggregation
and composition in this book, but you may encounter it elsewhere.

Some designers do not like the aggregation and composition/containment rela-
tionships because they consider them too implementation-specific. UML defines a
more general association between classes. An association is drawn as a solid line
without a diamond. You can write roles at the ends of the lines (see Figure 5).

Here we model the fact that students register for courses and courses have stu-
dents as participants. Early in a design, this general relationship makes a lot of sense.
As you move closer to implementation, you will want to resolve whether a Course
object manages a collection of students, a Student object manages a collection of
courses, or both courses and students manage collections of each other.

The relationship between courses and students is bidirectional—Course objects
will need to know about the students in the course, and Student objects need to
know about the courses for which they are registered. Quite often, an association is
directed, that is, it can only be navigated in one way. For example, a message queue
needs to be able to locate the messages inside, but a message need not know in
which queue it is. A directed association is drawn with an open arrow tip (see
Figure 6). It is easy to confuse that connector with inheritance—you have to pay
close attention to the shapes of the arrow tips when drawing UML diagrams.

Figure 3 UML Connectors

23.1.3 Aggregation, Composition, and Association

Dependency

Aggregation

Inheritance

Composition

Association

Directed
Association

23.2 • Use Cases 879

Frankly, the differences between association, aggregation, and composition are
subtle and can be confusing, even to experienced designers. If you find the distinc-
tions helpful, by all means use them. But don’t lose sleep pondering the differences
between these concepts.

Use cases are an analysis technique used to describe in a formal way
how a computer system should work. Each use case focuses on a spe-
cific scenario, a description of a hypothetical use of the intended
application. Each scenario describes the steps that are necessary to
bring it to successful completion. Each step in a use case represents
an interaction with people or entities outside the computer system

(the actors) and the system itself. For example, in our voice mail system the use case
“Leave a message” describes the steps that a caller must take to dial an extension
and leave a message. The use case “Retrieve messages” describes the steps needed to
listen to the messages in the mailbox. In the first case, the actor is the caller leaving a
message. In the second case, the actor is the mailbox owner.

An essential aspect of a use case is that it must describe a scenario that completes
to a point that is of some value to one of the actors. In the case of “Leave a mes-
sage”, the value to the caller is the fact that the message is deposited in the appropri-
ate mailbox. In contrast, merely dialing a telephone number and listening to a menu
would not be considered a valid use case because it does not by itself have value to
anyone.

Of course, most scenarios that potentially deliver a valuable outcome can also fail
for one reason or another. Perhaps the message queue is full, or a mailbox owner

Figure 4 Composition

Figure 5 An Association with Roles

Figure 6 A Directed Association

Message
Queue

Mailbox

has as participant
StudentCourse

registers for

Message
Queue

Message*

23.2 Use Cases

Use cases assist problem
analysis by providing
concrete scenarios from
which general action can
be abstracted.

880 CHAPTER 23 • The Unified Modeling Language

entered the wrong password. A use case should include variations that describe
these situations.

It is common for one use case to include another. For example, consider a caller
who wants to leave a message. The caller first needs to reach the recipient’s extension.
But there are other reasons to reach the extension, for example, to talk to someone,
or to retrieve your own messages. Therefore, it makes sense to factor out the com-
mon action of reaching an extension into a separate use case. The use cases “Leave a
message” and “Retrieve messages” include the use case “Reach an extension”.

Minimally, a use case should have a name that describes it concisely, a main
sequence of actions, and, if appropriate, variants to the main sequence. Some analysts
prefer a more formal write-up that numbers the use cases, calls out the actors, refers
to related use cases, and so on. In this book we’ll keep use cases as simple as possible.

Here are two sample use cases for the voice mail system.

Reach an Extension

1. The caller dials the main number of the voice mail system.
2. The voice mail system speaks a prompt.

Enter mailbox number followed by #.

3. The caller types in the extension number of the message recipient.
4. The voice mail system speaks.

You have reached mailbox xxxx. Please leave a message now.

Variation #1

1.1. In Step 3, the user enters an invalid extension number.
1.2. The voice mail system speaks.

You have typed an invalid mailbox number.

1.3. Continue with Step 2.

Leave a Message

1. The caller carries out Reach an Extension.
2. The caller speaks the message.
3. The caller hangs up.
4. The voice mail system places the recorded message in the recipient’s mailbox.

Variation #1

1.1. After Step 1, the caller hangs up instead of speaking a message.
1.2. The voice mail system discards the empty message.

The “meat” of a use case lies in its textual description. As an adjunct to that descrip-
tion, the UML defines a notation for use case diagrams (see Figure 7).

23.3 • Sequence Diagrams 881

The diagrams denote the following:

• Actors (drawn as stick figures) for the human users of a system
• Use cases (drawn as ovals)
• Relationships between use cases, in particular, the “includes” relationship
• System boundaries (drawn as rectangles)

Figure 7 only has one actor, the person leaving a message, and one system—the
voice mail system. There are two use cases, one included in the other.

Keep in mind that use case diagrams can never replace the textual description of a
use case. If you have many use cases, the use case diagrams can give you a “bird’s
eye” overview.

Class diagrams are static—they display the relationships among the
classes that exist throughout the lifetime of the system. In contrast, a
sequence diagram shows the dynamics of a particular scenario. You
use sequence diagrams to describe communication relationships among

objects. Figure 8 shows the key elements of a sequence diagram—a function call
from one object to another.

Figure 7
A UML Use Case Diagram

«include»

Leave a
message

Reach an
extension

voice mail system

Caller

23.3 Sequence Diagrams

Sequence diagrams record
the dynamic interaction
between objects.

Figure 8 A Sequence Diagram

a_mailbox
new_messages
: MessageQueue

add

882 CHAPTER 23 • The Unified Modeling Language

Sequence diagrams describe interactions between objects. In UML, you use an
underline to distinguish object rectangles from class rectangles. The text inside an
object rectangle has one of the following three formats:

• object_name : ClassName (full description)
• object_name (class not specified)
• : ClassName (object not specified)

The dashed vertical line that emanates from the object is called the lifeline. The life-
line indicates the lifetime of the object. For local variables the lifetime is the time the
surrounding function is active. Heap-allocated variables will have a lifetime that
begins when the object is created until the point the memory is recovered.

The rectangles along the lifeline are called activation bars. They show when the
object has control, executing a member function or waiting for a function to return.
When you call a function, start an activation bar at the end of the call arrow. The
activation bar ends when the function returns. (Note that the activation bar of a
called function should always be smaller than that of the calling function.)

In the most common form, a sequence diagram illustrates the behavior of a single
member function. Then the leftmost object has one long activation bar, from which
one or more call arrows emanate. For example, the diagram in Figure 8 illustrates
the add function of the Mailbox class. A message is added to the message queue that
holds the new messages. The diagram corresponds to the statement

new_messages.add(...)

You cannot tell from the diagram what parameter was passed to the function.
A function can call another member function on the same object. In such a self-

call, draw the activation bar of the called function over that of the calling function,
as in Figure 9.

If a function dynamically allocates a new object, you can use the notation
‹‹create›› to indicate the timing of the creation. Arrange the object rectangle of the
created object as in Figure 10.

When drawing a sequence diagram, you omit a large amount of detail. Generally,
you do not indicate branches or loops. (The UML defines a notation for that pur-
pose, but it is a bit cumbersome and rarely used.) The principal purpose of a
sequence diagram is to show the objects that are involved in carrying out a particu-
lar scenario and the order of the function calls that are executed.

Figure 9
Self-Call

: MailSystem

locate_mailbox

23.4 • State Diagrams 883

Sequence diagrams are valuable for documenting complex interactions between
objects. These interactions are common in object-oriented programs where any one
object tends to have limited responsibilities and requires the collaboration of several
other objects. You will see examples in the case study at the end of this chapter.

Some objects have a discrete set of states that affect their behavior.
For example, a voice mail system is in a “connected” state when a
caller first connects to it. After the caller enters an extension number,
the system enters the “recording” state where it records whatever the
caller speaks. When the caller enters a passcode, the system is in the
“mailbox menu” state. The state diagram in Figure 11 shows these
states and the transitions between them.

The system object’s state has a noticeable impact on its behavior. If the caller
speaks while the system is in the “mailbox menu” state, the spoken words are simply
ignored. Voice input is recorded only when the system is in the “recording” state.

Figure 10
Creating an Object

: MailSystem

: Mailbox«create»

23.4 State Diagrams

State diagrams are useful
for documenting objects
that change their behavior
according to their current
state during the course of
execution.

Figure 11 A State Diagram

CONNECTED

RECORDING

MAILBOX_
MENU

extension dialed

passcode entered

884 CHAPTER 23 • The Unified Modeling Language

States are particularly common with objects that interact with the program user.
For example, suppose a user wants to retrieve recent voice mail messages. The user
must

• Enter the mailbox number.
• Enter the passcode.
• Enter a menu command to start playing messages.

The telephone touchpad has no concept of these steps—it keeps no state. Whenever
the user presses a key, that key might be a part of the mailbox number, passcode, or
menu command. Some part of the voice mail system must keep track of the current
state so that it can process the key correctly. We will discuss this issue further in the
case study.

In this section we will continue with the voice mail application to show how the dia-
grams and use case techniques introduced in previous sections lead to a final com-
pleted application.

In a voice mail system, a person dials an extension number and, provided the
other party does not pick up the telephone, leaves a message. The other party can
later retrieve the messages, keep them, or delete them. Real-world systems have a
multitude of fancy features: Messages can be forwarded to one or more mailboxes;
distribution lists can be defined, retained, and edited; and authorized persons can
send broadcast messages to all users.

We will design and implement a program that simulates a voice mail system,
without creating a completely realistic working phone system. We will simply rep-
resent voice mail by text that is entered through the keyboard. We need to simulate
the three distinct input events that occur in a real telephone system: speaking, push-
ing a button on the telephone touchpad, and hanging up the telephone. We use the
following convention for input: An input line consisting of a single character 1 … 9
or # denotes a pressed button on the telephone touchpad. For example, to dial
extension 13, you enter

1
3
#

The # symbol is used as a sentinel, a marker to indicate the end of a sequence of
digit values. An input line consisting of the single letter H denotes hanging up the
telephone. Any other text denotes voice input.

The first formal step in the process that leads us toward the final product (the
voice mail system) is the analysis phase. Its role is to crisply define the behavior of the
system. In this example, we will define the behavior through a set of use cases. Note
that the use cases by themselves are not a full specification of a system. The functional
specification also needs to define system limitations, performance, and so on.

23.5 Case Study: A Voice Mai l System

23.5 • Case Study: A Voice Mail System 885

Reach an Extension

1. The caller dials the main number of the voice mail system.
2. The voice mail system speaks a prompt.

Enter mailbox number followed by #.

3. The caller types in the extension number of the message recipient.
4. The voice mail system speaks.

You have reached mailbox xxxx. Please leave a message now.

Leave a Message

1. The caller carries out Reach an Extension.
2. The caller speaks the message.
3. The caller hangs up.
4. The voice mail system places the recorded message in the recipient’s mailbox.

Log in

1. The mailbox owner carries out Reach an Extension.
2. The mailbox owner types the passcode, followed by the # key. (The default

passcode is the same as the mailbox number. The mailbox owner can change
it—see Change the Passcode.)

3. The voice mail system plays the mailbox menu:
Enter 1 to listen to your messages.

Enter 2 to change your passcode.

Enter 3 to change your greeting.

Retrieve Messages

1. The mailbox owner carries out Log in.
2. The mailbox owner selects the “listen to your messages” menu option.
3. The voice mail system plays the message menu:

Enter 1 to listen to the current message.

Enter 2 to save the current message.

Enter 3 to delete the current message.

Enter 4 to return to the main menu.

4. The mailbox owner selects the “listen to the current message” menu option.
5. The voice mail system plays the current new message, or, if there are no new

messages, the current old message. Note that the message is played, not
removed from the queue.

23.5.1 Use Cases for the Voice Mail System

886 CHAPTER 23 • The Unified Modeling Language

6. The voice mail system plays the message menu.
7. The mailbox owner selects “delete the current message”. The message is per-

manently removed.
8. Go back to Step 3.

Variation #1. Saving a message

1.1. Start at Step 6.
1.2. The mailbox owner selects “save the current message”. The message is

removed from its queue and appended to the queue of old messages.
1.3. Go back to Step 3.

Change the Greeting

1. The mailbox owner carries out Log in.
2. The mailbox owner selects the “change your greeting” menu option.
3. The mailbox owner speaks the greeting.
4. The mailbox owner presses the # key.
5. The voice mail system sets the new greeting.

Variation #1. Hang up before confirmation

1.1. Start at Step 3.
1.2. The mailbox owner hangs up the telephone.
1.3. The voice mail system keeps the old greeting.

Figure 12 Use Case Diagram for the Voice Mail System

«include»

Leave a
message

Reach an
extension

voice mail system

Caller

Mailbox
Owner

Log in

Retrieve
messages

«include»

«include»

23.5 • Case Study: A Voice Mail System 887

Change the Passcode

1. The mailbox owner carries out Log in.
2. The mailbox owner selects the “change your passcode” menu option.
3. The mailbox owner types the new passcode.
4. The mailbox owner presses the # key.
5. The voice mail system sets the new passcode.

Variation #1. Hang up before confirmation

1.1. Start at Step 3.
1.2. The mailbox owner hangs up the telephone.
1.3. The voice mail system keeps the old passcode.

Figure 12 shows the relationships among the first four use cases. The last two use
cases are so simple that a use case diagram would not add meaningful information.

Let us walk through the process of discovering classes for the voice mail system.
Some obvious classes, whose nouns appear in the functional specification, are

• Mailbox

• Message

• MailSystem

Let’s start with Mailbox because it is both important and easy to understand. The
principal job of the mailbox is to keep messages. The mailbox should keep track of
which messages are new and which are saved. New messages may be deposited into
the mailbox, and users should be able to retrieve, save, and delete their messages.

The messages need to be kept somewhere. Because we retrieve messages in a
first-in, first-out (FIFO) fashion, a queue is an appropriate data structure. Because
we need to differentiate between new and saved messages, we’ll use two queues, one
for the new messages and one for the saved messages.

So far, the CRC cards look like this:

23.5.2 CRC Cards for the Voice Mail System

keep new and saved messages MessageQueue

Mailbox

888 CHAPTER 23 • The Unified Modeling Language

Where are the mailboxes kept? There needs to be a class that contains them all.
We’ll call it MailSystem. The responsibility of the mail system is to manage the mail-
boxes.

We can’t go much further until we resolve how input and output are processed.
Because we have been simulating telephone equipment, let’s start with a class Tele-
phone. A telephone has two responsibilities: to take user input (button presses, voice
input, and hangup actions), and to play voice output on the speaker.

When the telephone gets user input, it must communicate it to some object. Could
it tell the mail system? Superficially, that sounds like a good idea. But it turns out
that there is a problem. In a real voice mail system, it is possible for multiple tele-
phones to be connected to the voice mail system. Each connection needs to keep

add and remove messages in

 FIFO order

MessageQueue

manage mailboxes Mailbox

MailSystem

take user input from touchpad,

 microphone, hangup

speak output

Telephone

23.5 • Case Study: A Voice Mail System 889

track of the current state (recording, retrieving messages, and so on). It is possible
that one connection is currently recording a message while another is retrieving
messages. It seems a tall order for the mail system to keep multiple states, one for
each connection. Instead, let’s have a separate Connection class. A connection com-
municates with a telephone, carries out the user commands, and keeps track of the
state of the session.

The creation of the Telephone, the MailSystem, and the Connection between them is
the responsibility of the main driver program.

Now that we have some idea of the components of the system, it is time for a
simple scenario walkthrough. Let’s start with the Leave a Message use case.

1. The user types an extension. The Telephone sends the extension number to the
Connection. (Add Connection as a collaborator of Telephone. Place the two
cards next to each other.)

2. The Connection asks the MailSystem to find the Mailbox object with the given
extension number. (This is vaguely included in the “manage mailboxes”
responsibility. Arrange the MailSystem and Mailbox cards close to the
Connection card.)

3. The Connection asks the Mailbox for its greeting. (Add “manage greeting” to
the Mailbox responsibilities, and add Mailbox as a collaborator of Connection.)

4. The Connection asks the Telephone to play the greeting on the speaker.

5. The user speaks the message. The Telephone asks the Connection to record it.
(Add “record voice input” to the responsibilities of Connection.)

6. The user hangs up. The Telephone notifies the Connection.

7. The Connection constructs a Message object that contains the recorded mes-
sage. (Add Message as a collaborator of Connection. Make a Message card with a
responsibility “manage message contents”.)

8. The Connection adds the Message object to the Mailbox.

As a result of this walkthrough, the Telephone, Connection, and Mailbox cards have
been updated, and a Message card has been added.

get input from telephone

carry out user commands

keep track of state

Telephone

MailSystem

Connection

890 CHAPTER 23 • The Unified Modeling Language

Now let’s consider the use case Retrieve Messages. The first steps of the scenario
are the same as that of the preceding scenario. Let’s start at the point where the user
types in the passcode.

1. The user types in the passcode. The Telephone notifies the Connection.
2. The Connection asks the Mailbox to check the passcode. (Add “manage pass-

code” to the responsibilities of the Mailbox class.)
3. Assuming the passcode was correct, the Connection sets the Mailbox as the cur-

rent mailbox and asks the Telephone to speak the mailbox menu.
4. The user types in the “retrieve messages” menu option. The Telephone passes

it on to the Connection.
5. The Connection asks the Telephone to speak the message menu.
6. The user types in the “listen to current message” option. The Telephone passes

it on to the Connection.
7. The Connection gets the first Message from the current Mailbox and sends its

contents to the Telephone. (Add “retrieve messages” to the responsibilities of
Mailbox.)

8. The Connection asks the Telephone to speak the message menu.
9. The user types in the “save current message” menu option. The Telephone

passes it on to the Connection.
10. The Connection tells the Mailbox to save the current message. (Modify the

responsibilities of Mailbox to “retrieve, save, delete messages”.)

take user input from touchpad,

 microphone, hangup

speak output

Connection

Telephone

get input from telephone

carry out user commands

keep track of state

record voice input

Telephone

MailSystem

Mailbox

Message

Connection

keep new and saved messages

manage greeting
MessageQueue

Mailbox

manage message contents

Message

23.5 • Case Study: A Voice Mail System 891

11. The Connection asks the Telephone to speak the message menu.

This finishes the scenario. As a result, the Mailbox CRC card has been updated.

The remaining use cases do not add any new information, so we omit the scenarios.

The “collaboration” parts of the CRC cards show the following dependency
relationships (shown in Figure 13):

• Mailbox depends on MessageQueue
• MailSystem depends on Mailbox
• Connection depends on Telephone, MailSystem, Message, and Mailbox
• Telephone depends on Connection

keep new and saved messages

manage greeting

manage passcode

retrieve, save, delete messages

MessageQueue

Mailbox

23.5.3 UML Class Diagrams for the Voice Mail System

Figure 13 The Voice Mail System Dependencies from the CRC Cards

Telephone

Connection

Message

Mailbox Message
Queue

MailSystem

892 CHAPTER 23 • The Unified Modeling Language

 Next, consider the aggregation relationships. From the previous discussion, we
know the following:

• A mail system has mailboxes.
• A mailbox has two message queues.
• A message queue has some number of messages.
• A Connection has a current mailbox. It also has references to the MailSystem and

Telephone objects that it connects.

There is no inheritance relationship between the classes. Figure 14 shows the com-
pleted UML diagram. Note that an aggregation relationship subsumes a dependency
relationship. If a class aggregates another, it clearly uses it, and you don’t need to
record the latter.

The purpose of a sequence diagram is to understand a complex control flow that
involves multiple objects, and to assure oneself at design time that there will be no
surprises during the implementation.

In our case, the interactions between the Telephone, Connection, MailSystem, and
Mailbox classes are not easy to understand. Let us draw a sequence diagram for the
use case Leave a Message (see Figure 15).

The Telephone class reads user input one line at a time and passes it on to the
Connection class.

Figure 14 The UML Class Diagram for the Voice Mail System

Telephone

Connection

Message

Mailbox Message
Queue

MailSystem

2

1

1

1

*

*

23.5.4 UML Sequence and State Diagrams

23.5 • Case Study: A Voice Mail System 893

Let’s postulate three functions for the Connection class:

• dial passes on a button press
• record passes on speech
• hangup tells the connection that the telephone has hung up

First, the caller keys in the extension number, resulting in several calls to dial. We
show only one of them—there is no advantage in modeling the repetition.

Once the Connection has the complete mailbox number, it needs to play the
greeting. How does it know what greeting to play? It needs to get the mailbox and
ask it for the greeting. How does it get the mailbox? It asks the mail system, calling
a function that we call find_mailbox.

The find_mailbox function returns a Mailbox object. You don’t see parameters
and return values in the sequence diagram. You have to keep track of the objects
yourself and realize that the Mailbox object to the right of the figure is meant to be
the object returned by the find_mailbox call.

Now that the connection has access to the mailbox, it needs the greeting. Thus, it
invokes the get_greeting function on the mailbox and gets the greeting, which it
then plays on the telephone speaker. Note that the greeting does not show up at all in
the sequence diagram because it is entirely passive—no functions are invoked on it.

Figure 15 Sequence Diagram for Leaving a Message

: Telephone : Connection : MailSystem

dial
find_mailbox

get_greeting

speak

hangup

«create»

record

add_message

: Mailbox

: Message

User enters
extension

User speaks
message

User hangs
up

894 CHAPTER 23 • The Unified Modeling Language

Next, the telephone reads the message text from the user and passes it on to the
connection. Then the telephone reads the hangup signal and calls the hangup func-
tion; that’s the signal for the connection to construct a message object and to add it
to the mailbox.

Which mailbox? The same one that was previously obtained by calling
find_mailbox. How does the connection remember that mailbox? After all, it had
called find_mailbox in another member function call. This is an indication that the
Connection class holds on to the current mailbox.

Figure 16 shows the sequence diagram for the use case Retrieve Messages. It is a
good exercise for you to analyze the sequence calls one by one. Ask yourself exactly
where the objects in the diagram come from and how the calling functions have
access to them.

One complexity of the voice mail system is that it is not in control of the input.
The user may provide touchpad or spoken input in any order, or simply hang up
the phone. The telephone notifies the connection when such an event occurs. For

Figure 16 Sequence Diagram for Retrieving a Message

: Telephone : Connection : Mailbox : Message

User enters
passcode

User enters 1
(retrieve messages)

User enters 1
(listen to current
message)

User enters 2
(save current
message)

dial
check_passcode

speak

dial

speak

dial

speak

get_current_message

get_text

dial

save_current_message

23.5 • Case Study: A Voice Mail System 895

example, notice that the connection is called at least three times in the Leave a Mes-
sage scenario. (As already mentioned, the dial function is called for each separate
key. The connection needs to aggregate keys until the user hits the # key. We didn’t
show that detail in the sequence diagrams.) The connection needs to keep track of
the various states so that it can pick up at the right place when it receives the next
user input. Figure 17 shows the state diagram.

Now we are ready to implement the system in C++. The files below give the
implementation, which at this point is quite straightforward. You can download,
compile, and run the program to see the voice mail system in action. When you run
the program, type Q to terminate.

After running the program, have a look at each of the classes. Read the documen-
tation comments and compare them with the CRC cards and the UML class dia-
grams. Look again at the UML sequence diagrams and trace the function calls in the
actual code. Find the state transitions of the Connection class.

Figure 17 State Diagram for the Connection States

CONNECTED

RECORDING

MAILBOX_
MENU

MESSAGE_
MENU

CHANGE_
PASSCODE

CHANGE_
GREETING

extension dialed

passcode entered

1#4#

2#

passcode entered

3#

greeting entered

hang up

hang up

1#,2#,3#

23.5.5 Implementation

896 CHAPTER 23 • The Unified Modeling Language

In this simulation, all input and output is done through a console window. A
more realistic simulation would use a graphical user interface with telephone but-
tons and a display for showing the voice output. Adding a graphical interface to our
application would require modification of the Telephone class only.

ch23/mailsystem/message.h

ch23/mailsystem/mailbox.h

1 #ifndef MESSAGE_H
2 #define MESSAGE_H
3
4 #include <string>
5
6 using namespace std;
7
8 /**
9 A message left by a caller.
10 */
11 class Message
12 {
13 public:
14 /**
15 Constructs a message object.
16 @param message_text the message text
17 */
18 Message(string message_text);
19
20 /**
21 Gets the message text.
22 @return message text
23 */
24 string get_text() const;
25 private:
26 string text;
27 };
28
29 inline Message::Message(string message_text)
30 : text(message_text) {}
31
32 inline string Message::get_text() const
33 {
34 return text;
35 }
36
37 #endif

1 #ifndef MAILBOX_H
2 #define MAILBOX_H
3
4 #include <string>
5 #include <queue>
6
7 using namespace std;

23.5 • Case Study: A Voice Mail System 897

8
9 class Message;
10
11 /**
12 A mailbox contains messages that can be listed, kept, or discarded.
13 */
14 class Mailbox
15 {
16 public:
17 /**
18 Creates a mailbox object.
19 @param a_passcode passcode number
20 @param a_greeting greeting string
21 */
22 Mailbox(string a_passcode, string a_greeting);
23
24 /**
25 Checks if the passcode is correct.
26 @param a_passcode a passcode to check
27 */
28 bool check_passcode(string a_passcode) const;
29
30 /**
31 Adds a message to the mailbox.
32 @param a_message the message to be added
33 */
34 void add_message(Message* a_message);
35
36 /**
37 Gets the current message.
38 @return the current message
39 */
40 Message* get_current_message() const;
41
42 /**
43 Removes the current message from the mailbox.
44 */
45 void remove_current_message();
46
47 /**
48 Saves the current message.
49 */
50 void save_current_message();
51
52 /**
53 Changes the mailbox’s greeting.
54 @param new_greeting the new greeting string
55 */
56 void set_greeting(string new_greeting);
57
58 /**
59 Changes mailbox’s passcode.
60 @param new_passcode the new passcode
61 */
62 void set_passcode(string new_passcode);

898 CHAPTER 23 • The Unified Modeling Language

ch23/mailsystem/mailbox.cpp

63
64 /**
65 Gets the mailbox’s greeting.
66 @return the greeting
67 */
68 string get_greeting() const;
69 private:
70 queue<Message*> new_messages;
71 queue<Message*> kept_messages;
72 string greeting;
73 string passcode;
74 };
75
76 inline Mailbox::Mailbox(string a_passcode, string a_greeting)
77 : passcode(a_passcode), greeting(a_greeting)
78 {
79 }
80
81 inline bool Mailbox::check_passcode(string a_passcode) const
82 {
83 return passcode == a_passcode;
84 }
85
86 inline void Mailbox::add_message(Message* a_message)
87 {
88 new_messages.push(a_message);
89 }
90
91 inline void Mailbox::set_greeting(string new_greeting)
92 {
93 greeting = new_greeting;
94 }
95
96 inline void Mailbox::set_passcode(string new_passcode)
97 {
98 passcode = new_passcode;
99 }
100
101 inline string Mailbox::get_greeting() const
102 {
103 return greeting;
104 }
105
106 #endif

1 #include "message.h"
2 #include "mailbox.h"
3
4 Message* Mailbox::get_current_message() const
5 {
6 if (new_messages.size() > 0)
7 return new_messages.front();

23.5 • Case Study: A Voice Mail System 899

ch23/mailsystem/mailsystem.h

8 if (kept_messages.size() > 0)
9 return kept_messages.front();
10 return NULL;
11 }
12
13 void Mailbox::remove_current_message()
14 {
15 if (new_messages.size() > 0)
16 {
17 Message* m = get_current_message();
18 new_messages.pop();
19 delete m;
20 }
21 else if (kept_messages.size() > 0)
22 {
23 Message* m = get_current_message();
24 kept_messages.pop();
25 delete m;
26 }
27 }
28
29 void Mailbox::save_current_message()
30 {
31 Message* m = get_current_message();
32 if (m != NULL)
33 {
34 kept_messages.push(new Message(*m));
35 remove_current_message();
36 }
37 }

1 #ifndef MAILSYSTEM_H
2 #define MAILSYSTEM_H
3
4 #include <vector>
5 #include <string>
6
7 using namespace std;
8
9 class Mailbox;
10
11 /**
12 A system of voice mail mailboxes.
13 */
14 class MailSystem
15 {
16 public:
17 /**
18 Constructs a voice mail system with a given number of
19 mailboxes.
20 @param mailbox_count the number of mailboxes
21 */
22 MailSystem(int mailbox_count);

900 CHAPTER 23 • The Unified Modeling Language

ch23/mailsystem/mailsystem.cpp

ch23/mailsystem/telephone.h

23
24 /**
25 Locates a mailbox.
26 @param ext the extension number
27 @return the mailbox, or NULL if not found
28 */
29 Mailbox* find_mailbox(string ext) const;
30 private:
31 vector<Mailbox*> mailboxes;
32 };
33
34 #endif

1 #include <sstream>
2 #include "mailbox.h"
3 #include "mailsystem.h"
4
5 using namespace std;
6
7 MailSystem::MailSystem(int mailbox_count)
8 {
9 for (int i = 0; i < mailbox_count; i++)
10 {
11 ostringstream passcode;
12 passcode << i;
13 ostringstream greeting;
14 greeting << "You have reached mailbox " << i
15 << ". \nPlease leave a message now.";
16 mailboxes.push_back(new Mailbox(passcode.str(), greeting.str()));
17 }
18 }
19
20 int string_to_int(string s)
21 {
22 istringstream instr(s);
23 int n;
24 instr >> n;
25 return n;
26 }
27
28 Mailbox* MailSystem::find_mailbox(string ext) const
29 {
30 int i = string_to_int(ext);
31 if (1 <= i && i <= mailboxes.size())
32 return mailboxes[i];
33 return NULL;
34 }

1 #ifndef TELEPHONE_H
2 #define TELEPHONE_H

23.5 • Case Study: A Voice Mail System 901

ch23/mailsystem/telephone.cpp

3
4 #include <iostream>
5 #include <string>
6
7 using namespace std;
8
9 class Connection;
10
11 /**
12 A telephone that takes simulated keystrokes and voice input
13 from the user and simulates spoken text.
14 */
15 class Telephone
16 {
17 public:
18 /**
19 Speaks a message to standard output.
20 @param output the text that will be spoken
21 */
22 void speak(string output);
23
24 /**
25 Loops reading user input and passes the input
26 to the Connection object’s functions dial, record,
27 or hangup.
28 @param c the connection that connects this phone
29 to the voice mail system
30 */
31 void run(Connection& c);
32 };
33
34 inline void Telephone::speak(string output)
35 {
36 cout << output;
37 }
38
39 #endif

1 #include "telephone.h"
2 #include "connection.h"
3
4 void Telephone::run(Connection& c)
5 {
6 bool more = true;
7 while (more)
8 {
9 string input;
10 getline(cin, input);
11 if (input == "H")
12 c.hangup();
13 else if (input == "Q")
14 more = false;

902 CHAPTER 23 • The Unified Modeling Language

ch23/mailsystem/connection.h

15 else if ((input.length() == 1) &&
16 (isdigit(input[0]) || input[0] == '#'))
17 c.dial(input);
18 else
19 c.record(input);
20 }
21 }

1 #ifndef CONNECTION_H
2 #define CONNECTION_H
3
4 #include "mailsystem.h"
5 #include "telephone.h"
6 #include "mailbox.h"
7
8 using namespace std;
9
10 /**
11 Connects a phone to the voice mail system.
12 The purpose of this class is to keep track
13 of the state of a connection, because the phone
14 itself is only the source of individual key presses.
15 */
16 class Connection
17 {
18 public:
19 /**
20 Constructs a Connection object.
21 @param s a MailSystem object
22 @param p a Telephone object
23 */
24 Connection(MailSystem& s, Telephone& p);
25
26 /**
27 Responds to the user’s pressing a key
28 on the phone touchpad.
29 @param key the phone key pressed by the user
30 */
31 void dial(string key);
32
33 /**
34 Records voice.
35 @param voice voice spoken by the user
36 */
37 void record(string voice);
38
39 /**
40 The user hangs up the phone.
41 */
42 void hangup();
43

23.5 • Case Study: A Voice Mail System 903

44 private:
45 /**
46 Resets the connection to the initial state
47 and prompts for mailbox number.
48 */
49 void reset_connection();
50
51 /**
52 Tries to connect the user with the specified mailbox.
53 @param key the phone key pressed by the user
54 */
55 void connect(string key);
56
57 /**
58 Tries to log in the user.
59 @param key the phone key pressed by the user
60 */
61 void login(string key);
62
63 /**
64 Changes the passcode.
65 @param key the phone key pressed by the user
66 */
67 void change_passcode(string key);
68
69 /**
70 Changes the greeting.
71 @param key the phone key pressed by the user
72 */
73 void change_greeting(string key);
74
75 /**
76 Responds to the user’s selection from mailbox menu.
77 @param key the phone key pressed by the user
78 */
79 void mailbox_menu(string key);
80
81 /**
82 Responds to the user’s selection from message menu.
83 @param key the phone key pressed by the user
84 */
85 void message_menu(string key);
86
87 MailSystem& system;
88 Mailbox* current_mailbox;
89 string current_recording;
90 string accumulated_keys;
91 Telephone& phone;
92
93 enum states {DISCONNECTED, CONNECTED, RECORDING,
94 MAILBOX_MENU, MESSAGE_MENU,
95 CHANGE_PASSCODE, CHANGE_GREETING};
96 enum states state;
97

904 CHAPTER 23 • The Unified Modeling Language

ch23/mailsystem/connection.cpp

98 const string INITIAL_PROMPT;
99 const string MAILBOX_MENU_TEXT;
100 const string MESSAGE_MENU_TEXT;
101 };
102
103 #endif

1 #include "message.h"
2 #include "mailbox.h"
3 #include "mailsystem.h"
4 #include "connection.h"
5 #include "telephone.h"
6
7 Connection::Connection(MailSystem& s, Telephone& p)
8 : system(s), phone(p),
9 INITIAL_PROMPT("Enter mailbox number followed by #\n"),
10 MAILBOX_MENU_TEXT("Enter 1 to listen to your messages\n"
11 "Enter 2 to change your passcode\n"
12 "Enter 3 to change your greeting\n"),
13 MESSAGE_MENU_TEXT("Enter 1 to listen to the current message\n"
14 "Enter 2 to save the current message\n"
15 "Enter 3 to delete the current message\n"
16 "Enter 4 to return to the main menu\n")
17 {
18 reset_connection();
19 }
20
21 void Connection::dial(string key)
22 {
23 if (state == CONNECTED)
24 connect(key);
25 else if (state == RECORDING)
26 login(key);
27 else if (state == CHANGE_PASSCODE)
28 change_passcode(key);
29 else if (state == CHANGE_GREETING)
30 change_greeting(key);
31 else if (state == MAILBOX_MENU)
32 mailbox_menu(key);
33 else if (state == MESSAGE_MENU)
34 message_menu(key);
35 }
36
37 void Connection::record(string voice)
38 {
39 if (state == RECORDING || state == CHANGE_GREETING)
40 current_recording += voice;
41 }
42
43 void Connection::hangup()
44 {
45 if (state == RECORDING)
46 current_mailbox->add_message(new Message(current_recording));

23.5 • Case Study: A Voice Mail System 905

47 reset_connection();
48 }
49
50 void Connection::reset_connection()
51 {
52 current_recording = "";
53 accumulated_keys = "";
54 state = CONNECTED;
55 phone.speak(INITIAL_PROMPT);
56 }
57
58 void Connection::connect(string key)
59 {
60 if (key == "#")
61 {
62 current_mailbox = system.find_mailbox(accumulated_keys);
63 if (current_mailbox != NULL)
64 {
65 state = RECORDING;
66 phone.speak(current_mailbox->get_greeting());
67 }
68 else
69 phone.speak("Incorrect mailbox number. Try again!");
70 accumulated_keys = "";
71 }
72 else
73 accumulated_keys += key;
74 }
75
76 void Connection::login(string key)
77 {
78 if (key == "#")
79 {
80 if (current_mailbox->check_passcode(accumulated_keys))
81 {
82 state = MAILBOX_MENU;
83 phone.speak(MAILBOX_MENU_TEXT);
84 }
85 else
86 phone.speak("Incorrect passcode. Try again!");
87 accumulated_keys = "";
88 }
89 else
90 accumulated_keys += key;
91 }
92
93 void Connection::change_passcode(string key)
94 {
95 if (key == "#")
96 {
97 current_mailbox->set_passcode(accumulated_keys);
98 state = MAILBOX_MENU;
99 phone.speak(MAILBOX_MENU_TEXT);
100 accumulated_keys = "";

906 CHAPTER 23 • The Unified Modeling Language

101 }
102 else
103 accumulated_keys += key;
104 }
105
106 void Connection::change_greeting(string key)
107 {
108 if (key == "#")
109 {
110 current_mailbox->set_greeting(current_recording);
111 current_recording = "";
112 state = MAILBOX_MENU;
113 phone.speak(MAILBOX_MENU_TEXT);
114 }
115 }
116
117 void Connection::mailbox_menu(string key)
118 {
119 if (key == "1")
120 {
121 state = MESSAGE_MENU;
122 phone.speak(MESSAGE_MENU_TEXT);
123 }
124 else if (key == "2")
125 {
126 state = CHANGE_PASSCODE;
127 phone.speak("Enter new passcode followed by the # key");
128 }
129 else if (key == "3")
130 {
131 state = CHANGE_GREETING;
132 phone.speak("Record your greeting, then press the # key");
133 }
134 }
135
136 void Connection::message_menu(string key)
137 {
138 if (key == "1")
139 {
140 string output = "";
141 Message* m = current_mailbox->get_current_message();
142 if (m == NULL) output += "No messages.\n";
143 else output += m->get_text() + "\n";
144 output += MESSAGE_MENU_TEXT;
145 phone.speak(output);
146 }
147 else if (key == "2")
148 {
149 current_mailbox->save_current_message();
150 phone.speak(MESSAGE_MENU_TEXT);
151 }
152 else if (key == "3")
153 {

Further Reading 907

ch23/mailsystem/mailsystemtest.cpp

1. The UML notation is the unification of several notations for object-oriented
design diagrams.

2. Use cases assist problem analysis by providing concrete scenarios from which
general action can be abstracted.

3. Sequence diagrams record the dynamic interaction between objects.

4. State diagrams are useful for documenting objects that change their behavior
according to their current state during the course of execution.

1. Ivar Jacobson, Grady Booch, and James Rumbaugh, The Unified Software Development
Process, Addison-Wesley, 1999.

154 current_mailbox->remove_current_message();
155 phone.speak(MESSAGE_MENU_TEXT);
156 }
157 else if (key == "4")
158 {
159 state = MAILBOX_MENU;
160 phone.speak(MAILBOX_MENU_TEXT);
161 }
162 }

1 #include "mailsystem.h"
2 #include "telephone.h"
3 #include "connection.h"
4
5 int main()
6 {
7 const int MAILBOX_COUNT = 20;
8 MailSystem system(MAILBOX_COUNT);
9 Telephone p;
10 Connection c(system, p);
11 p.run(c);
12 return 0;
13 }

CHAPTER SUMMARY

FURTHER READING

908 CHAPTER 23 • The Unified Modeling Language

Exercise R23.1. Draw a UML diagram that describes the relationships between
the classes List, Node, and Iterator for the linked list abstraction developed in
Chapter 12.

Exercise R23.2. Describe a scenario, with variations, for one round of the clock game
described in Chapter 22.

Exercise R23.3. Consider the task of modeling checkout times at a supermarket with
multiple cashiers. Customers line up at the cashier with the shortest queue. Identify
suitable classes. Draw a sequence diagram that shows the actions taken by a cus-
tomer when lining up. Draw another sequence diagram that shows the actions taken
when a customer has completed checkout and the next waiting customer is served.

Exercise R23.4. Consider the development of an online course registration system
that allows students to add and drop classes at a university. Describe the activities
that will take place during the analysis, design, and implementation phases. Give
specific examples of activities that relate to the registration system.

Exercise R23.5. List at least eight classes that can be used in an online course registra-
tion system that allows students to add and drop classes at a university.

Exercise R23.6. What relationship is appropriate between the following classes:
aggregation, inheritance, or neither?

a. University–Student

b. Student–TeachingAssistant

c. Student–Freshman

d. Student–Professor

e. Car–Door

f. Truck–Vehicle

g. Traffic–TrafficSign

h. TrafficSign–Color

Exercise R23.7. Consider an online course registration system that allows students to
add and drop classes at a university. Give the multiplicities of the associations
between these class pairs.

a. Student–Course

b. Course–Section

c. Section–Instructor

d. Section–Room

Exercise R23.8. Consider an airline reservation system with classes Passenger,
Itinerary, Flight, and Seat. Consider a scenario in which a passenger adds a flight
to an itinerary and selects a seat. What responsibilities and collaborators will you
record on the CRC cards as a result?

REVIEW EXERCISES

Programming Exercises 909

Exercise R23.9. How does the design of Exercise R23.8 change if you have a group of
passengers that fly together?

Exercise R23.10. Consider an online store that enables customers to order items from
a catalog and pay for them with a credit card. Draw a UML diagram that shows the
relationships between these classes:

Customer
Order
RushOrder
Product
Address
CreditCard

Exercise R23.11. Consider a program that plays tic-tac-toe with a human user. A class
TicTacToeBoard stores the game board. A random number generator is used to
choose who begins and to generate random legal moves when it’s the computer’s
turn. When it’s the human’s turn, the program prompts for the next move and
checks that it is legal. After every move, the program checks whether the game is
over. Draw a sequence diagram that shows a scenario in which the game starts, the
computer gets the first turn, and the human gets the second turn. Stop the diagram
after the second turn.

Exercise R23.12. Consider the scenario “A user changes the mailbox passcode” in the
voice mail system. Carry out a walkthrough with the mail system’s CRC cards.
What steps do you list in your walkthrough? What collaborations and responsibili-
ties do you record as a result of the walkthrough?

Exercise P23.1. Design and implement a program that simulates a vending machine.
Products can be purchased by inserting the correct number of coins into the
machine. A user selects a product from a list of available products, adds coins, and
either gets the product or gets the coins returned if insufficient money was supplied
or if the product is sold out. Products can be restocked and money removed by an
operator. Follow the design process that was described in this chapter.

Exercise P23.2. Design and implement a program that manages an appointment cal-
endar. An appointment includes the description, date, starting time, and ending
time; for example,

Dentist 2010/10/1 17:30 18:30
CS1 class 2010/10/2 08:30 10:00

Supply a user interface to add appointments, remove canceled appointments, and
print out a list of appointments for a particular day. Follow the design process that
was described in this chapter.

Exercise P23.3. Airline seating. Design and implement a program that assigns seats
on an airplane. Assume the airplane has 20 seats in first class (5 rows of 4 seats each,

PROGRAMMING EXERCISES

910 CHAPTER 23 • The Unified Modeling Language

separated by an aisle) and 180 seats in economy class (30 rows of 6 seats each, sepa-
rated by an aisle). Your program should take three commands: add passengers,
show seating, and quit. When passengers are added, ask for the class (first or econ-
omy), the number of passengers traveling together (1 or 2 in first class; 1 to 3 in
economy), and the seating preference (aisle or window in first class; aisle, center, or
window in economy). Then try to find a match and assign the seats. If no match
exists, print a message. Follow the design process that was described in this chapter.

Exercise P23.4. In the voice mail system, when a message is saved, the instance of
class Message is duplicated using a copy constructor. This allows the function
remove_current_message to simply delete the message found in the message queue.
Replace this simple memory management technique with a reference counting sys-
tem similar to the one described in Chapter 15.

Exercise P23.5. Add a class EncryptedMessage that derives from Message. An
EncryptedMessage is stored in encrypted form, and decrypted when it is retrieved.
For simplicity, you can use the Caesar cipher (Section 9.4) for performing the
encryption and decryption.

Exercise P23.6. In a real voice mail system, users can have arbitrary extension num-
bers, such as extension 4753. Reimplement the voice mail system, and rather than
storing the mailboxes in a vector indexed by the extension number, use a
map<string, Mailbox*>. The key for the map should be the extension number, while
the value is the mailbox associated with the extension.

Exercise P23.7. Improve the solution of Exercise P23.6 by adding an administration
interface to the voice mail system. Administration commands allow addition and
removal of mailboxes with arbitrary extension numbers. To do this, design a class
AdminConnection that extends the Connection class and understands the additional
commands.

Chapter 24
An Introduction to

Design Patterns

• To review the advantages of iterators

• To learn about the pattern concept

• To study several common design patterns: ITERATOR, ADAPTER,
TEMPLATE METHOD, STRATEGY, and COMPOSITE

• To learn where patterns are used in the standard C++ library

• To put patterns to work in a complex program

CHAPTER GOALS

In this chapter, we introduce the concept of patterns. A pattern is a description of a

problem and its solution that you can apply to many programming situations.

Whereas an algorithm tells you how to implement a particular computation, a

pattern gives you a solution to a design problem. In recent years, a number of useful

patterns have been formulated and standardized. They now have become a part of

the everyday vocabulary of many software developers.

A large number of design patterns have been proposed. In this chapter, we

introduce five design patterns that are both commonly used and easy to

comprehend. We show how the chosen patterns relate to familiar programming

situations and to constructs from the C++ standard library.

912 CHAPTER 24 • An Introduction to Design Patterns

CHAPTER CONTENTS

In order to motivate our first design pattern, let us have another look
at the list iterators of the standard C++ library. Here is how you visit
all items in a linked list:

list<string>::iterator pos;
for (pos = list.begin(); pos != list.end(); ++pos)
{
 string item = *pos;
 ...
}

The begin and end functions yield iterators to the beginning position and the posi-
tion past the end of the list. The ++ operator advances the iterator to the next posi-
tion. The * operator returns the current element.

Why does the C++ library use iterators to traverse a linked list? The library
designers chose iterators because they had learned from past mistakes. If you look
at a traditional data structures book, you will find traversal code that manipulates
the nodes directly:

Node* current = list.head;
while (current != NULL)
{
 string item = current->data;
 current = current->next;
 ...
}

This approach has two disadvantages. From a high-level point of view, it is not sat-
isfactory because it exposes the nodes to the user of the list. But the nodes are just
an artifact of the implementation that should be hidden from the user. As you may
know, there are several variations of list implementations, such as circular lists or

24.1 Iterators

Iterators are preferred
over cursors because you
can attach more than one
iterator to a collection.

24.1 Iterators 912

24.2 The Pattern Concept 914
DESIGN PATTERN 24.1: SHORT PASSAGES 915
DESIGN PATTERN 24.2: ITERATOR 916
ADVANCED TOPIC 24.1: Generic Programming with

Inheritance and Templates 918

24.3 The ADAPTER Pattern 919
DESIGN PATTERN 24.3: ADAPTER 919

24.4 The TEMPLATE METHOD Pattern 922
DESIGN PATTERN 24.4: TEMPLATE METHOD 924

24.5 Function Objects and the
STRATEGY Pattern 925

COMMON ERROR 24.1: Confusing Function Objects

and Classes 927
DESIGN PATTERN 24.5: STRATEGY 927

24.6 The COMPOSITE Pattern 928
DESIGN PATTERN 24.6: COMPOSITE 929
COMMON ERROR 24.2: Pattern Recognition 930

24.7 Case Study: Putting Patterns
to Work 931

24.1 • Iterators 913

lists with a dummy header node. List users certainly should not have to worry
about those implementation details.

Furthermore, as anyone who has ever implemented a linked list knows, it is very
easy to mess up nodes and corrupt the link structure of a linked list. Thus, survival
instinct dictates that list users should be shielded from the raw nodes and links.

Let us return to the high-level point of view. In Chapter 12, we used a stack class
and had no problem defining the operations that make up a stack (see Figure 1):

void push(const T& t)
T pop()
T top() const

Similarly, it is an easy matter to define the operations that make up an array struc-
ture with random access (see Figure 2):

T& operator[](int i)
void push_back(const T& t)
int size() const

But the interface for a linked list is not so simple. We want to be able to add and
remove elements in the middle of the linked list, but it would be very inefficient to
specify a position in a linked list with an integer index.

One implementation that you sometimes see is a list with a cursor (see Figure 3).
It has the following interface:

T get() const // Get element at cursor
void set(const T& t) // Set element at cursor to t
T remove() // Remove element at cursor
void insert(const T& t) // Insert t before cursor
void reset() // Reset cursor to head
void next() // Advance cursor
bool is_done() // Check if cursor can be advanced

Figure 1 The Stack Interface Figure 2 The Array Interface

Figure 3 List with a Cursor

Add to top Remove from top

.

.

.

0 1 2 3

operator[] accesses all positions

. . .

. . .

get/set/insert/remove access cursor position

Cursor

914 CHAPTER 24 • An Introduction to Design Patterns

Unlike an iterator, which is external to the list object, the cursor is a part of the list
itself. The state of a list with a cursor consists of

• the sequence of the stored elements
• the cursor position

The reset function resets the cursor to the beginning. The next function advances it
to the next element. The get, set, insert, and remove functions are relative to the
cursor position. For example, here is how you traverse such a list.

for (list.reset(); !list.is_done(); list.next())
{
 T item = list.get();
 ...
}

At first glance, a list with a cursor seems like a good idea. The links are not exposed
to the list user. No separate iterator class is required.

However, that design has severe limitations. Since there is only one cursor, you
can’t implement algorithms that compare different list elements. You can’t even
print the contents of the list for debugging purposes. Printing the list would have
the side effect of moving the cursor to the end!

Thus, the iterator is a superior concept. A list can have any number of iterators
attached to it. That means that you should supply iterators, and not a cursor, when-
ever you implement a collection class.

Furthermore, the iterator concept is useful outside the domain of linked lists.
Here are a couple of examples. Conceptually, an istream object is an iterator that
yields a sequence of bytes from an input source. If you need to visit the rows of a
database table, an iterator can do the job, and it is a better solution than a cursor or
low-level pointer. Thus, list iterators are just one instance of a common pattern. We
will explore the concept of patterns in the next section.

The architect Christopher Alexander formulated more than 250 pat-
terns for architectural design. (See [1].) Alexander’s patterns lay
down rules for building houses and cities. Alexander uses a very dis-
tinctive format for these rules. Every pattern has

• A short name
• A brief description of the context
• A lengthy description of the problem
• A prescription for a solution

Here is a typical example, showing the context and solution exactly as they appear
in Alexander’s book. The problem description is long; it is summarized here.

24.2 The Pat tern Concept

A design pattern uses a
standard format to give
advice about a problem in
software design.

24.2 • The Pattern Concept 915

SHORT PASSAGES

Context

1. “… long, sterile corridors set the scene for everything bad about modern architecture.”

Problem

This section contains a lengthy description of the problem of long corridors, with a depress-
ing picture of a long, straight, narrow corridor with closed doors, similar to the one below.

Alexander discusses issues of light and furniture. He cites research results about patient
anxiety in hospital corridors. According to the research, corridors that are longer than 50
feet are perceived as uncomfortable.

Solution

Keep passages short. Make them as much like rooms as possible, with carpets or wood on
the floor, furniture, bookshelves, beautiful windows. Make them generous in shape and
always give them plenty of light; the best corridors and passages of all are those that have
windows along an entire wall.

DESIGN PATTERN 24.1

Light

Not too long

Like a room
Furniture

916 CHAPTER 24 • An Introduction to Design Patterns

As you can see, this pattern distills a design rule into a simple format. If you have a
design problem, you first check whether the pattern is useful to you. If you decide
that the pattern applies to your situation, then you follow the recipe for a solution.
Because that solution has been successful in the past, there is a good chance that you
will benefit from it as well.

Alexander was interested in patterns that solve problems in architecture. Of
course, our interest lies in software development. In this chapter, you will see pat-
terns that give you guidance on object-oriented design.

Let’s start by presenting the ITERATOR pattern. As you saw in the
preceding section, iterators are useful for traversing the elements of a
linked list, but they occur in many programming situations. Input
streams are another example of the ITERATOR pattern.

ITERATOR

Context

1. An object (which we’ll call the aggregate) contains other objects (which we’ll call
elements).

2. Clients (that is, functions that use the aggregate) need access to the elements.
3. The aggregate should not expose its internal structure.
4. There may be multiple clients that need simultaneous access.

Solution

1. Define an iterator class that fetches one element at a time.
2. Each iterator object needs to keep track of the position of the next element to fetch.

The ITERATOR pattern
teaches how to access
the elements of an
aggregate object.

DESIGN PATTERN 24.2

Aggregate

Iterator

Client

create_iterator()

next()
is_done()
current_item()

24.2 • The Pattern Concept 917

Note that the names of the classes and functions (such as Aggregate, Iterator,
create_iterator, is_done) are examples. In an actual realization of the pattern, the
names may be quite different.

For example, in the case of linked list iterators, we have:

The actual names are quite different when considering input streams as a manifesta-
tion of the iterator pattern.

As you can see, a pattern is more abstract than an algorithm. An algorithm gives
you specific instructions how to implement a computation. A pattern gives you
advice on solving a design problem. The influential book, Design Patterns by
Gamma, Helm, Johnson, and Vlissides, contains a description of many patterns for
software design, including the ITERATOR pattern. (See [2].) Because the book has
four authors, it is sometimes referred to as the “Gang of Four” book. (The original
Gang of Four were radical Chinese communists who were advocates of the Cul-
tural Revolution. There is no apparent connection between the two “gangs” beyond
the fact that they each have four members.)

In this chapter, we cover five of the patterns in the Design Patterns book: ITERA-
TOR, ADAPTER, TEMPLATE METHOD, STRATEGY, and COMPOSITE. We selected

Name in Design Pattern Actual Name (List Iterators)

Aggregate list<T>

Iterator list<T>::iterator

create_iterator() begin(), end()

next() ++ operator

is_done() Test for equality with end()

current_item() * operator

Name in Design Pattern Actual Name (Input Streams)

Aggregate A source of bytes such as a file

Iterator istream

create_iterator() open()

next() get()

is_done() !fail()

current_item() Return value of get()

918 CHAPTER 24 • An Introduction to Design Patterns

these patterns because they are are useful and can be motivated with familiar exam-
ples. There are many other important patterns—see Table 1, “Other Common
Design Patterns,” on page 946 for a brief summary.

Generic Programming with Inheritance and Templates

If you read the description of the ITERATOR pattern in [2], you will find another recommen-
dation that we omitted from our pattern. The authors suggest using abstract base classes for
the iterator and aggregate, so that the client doesn’t have to know about the exact types of
the iterator and aggregate. A client can then write generic code such as the following:

void print_all(AbstractAggregate* items)
{
 AbstractIterator* iter = items->create_iterator();
 while (!iter->is_done())
 {
 cout << iter->current_item() << "\n";
 iter->next();
 }
}

This function can be used to print items of any derived class of AbstractAggregate. For
example, if there are list and array classes that both inherit from AbstractAggregate, then the
virtual create_iterator function returns an appropriate iterator that belongs to some
derived class of AbstractIterator. The implementations for list iterators and array iterators
will be very different, but the client won’t know or care. The virtual functions is_done,
current_item, and next automatically invoke the appropriate functionality of the iterator
objects.

In some programming languages—in particular Java and Smalltalk—this style of iteration
is very common. There are also C++ libraries whose aggregate and iterator classes derive
from common base classes. However, the standard C++ library uses templates, not inherit-
ance, to achieve genericity. Using templates is more efficient because it avoids the cost of vir-
tual function calls.

With the standard C++ library, we implement print_all as a function template. A tem-
plate parameter denotes an arbitrary container.

template<typename T>
void print_all(const T& items)
{
 T::iterator iter = items.begin();
 while (iter != items.end())
 {
 cout << *iter << "\n";
 iter++;
 }
}

There is no inheritance at work. For the template to compile, T must be a type that has
begin() and end() functions and a nested type called iterator. That iterator type must have

ADVANCED TOPIC 24.1

24.3 • The ADAPTER Pattern 919

operators !=, *, and ++. If the function is called with an inappropriate type, then the compiler
reports an error.

If you have ever tried to hook up a laptop computer in a foreign
country, you are probably familiar with the concept of an adapter.
The power plug of your computer may not fit into the wall outlet,
and the foreign telephone plug may not fit into your computer
modem. To solve these problems, travelers often carry a set of
adapter plugs that convert one kind of plug into another.

In object-oriented programming, you often have similar problems. For example,
suppose you want to convert a string containing digits (such as "235") into an inte-
ger (such as 235). Unfortunately, the string class has no function to carry out this
conversion. If the digits were stored in a stream, the task would be solved easily:
You would just use the >> operator of the istream class. What we need is an inter-
mediary that adapts a string object to an istream object.

As you saw in Chapter 9, the istringstream class provides just such an adapter.
Convert a string to a stream and you can easily extract the integer value:

string s = "235";
istringstream istr(s);
int n;
s >> n; // Now n is the integer 235

Stream adapters are just one example of a general design pattern. You use the
ADAPTER pattern whenever you would like to use an existing class but its interface
doesn’t match the one you need.

How does the istringstream class work? The >> operator of the istream base
class repeatedly calls the get function to fetch digits, and assembles an integer from
their numerical values. The istringstream class defines the get function to obtain
characters from the string, by calling the [] operator of the string class. The
istringstream class is one instance of the ADAPTER pattern.

ADAPTER

Context

1. You want to use an existing class without modifying it. We’ll call this class the adaptee.
2. The context in which you want to use the class requires conformance to a target inter-

face that is different from that of the adaptee.
3. The target interface and the adaptee interface are conceptually related.

24.3 The ADAPTER Pat tern

The ADAPTER pattern
teaches how to use a class
in a context that requires a
different interface.

DESIGN PATTERN 24.3

920 CHAPTER 24 • An Introduction to Design Patterns

Solution

1. Define an adapter class that conforms to the target interface.
2. The adapter class aggregates the adaptee class. It translates target functions to adaptee

functions.
3. The client wraps the adaptee into an adapter class object.

For example, in the case of the string stream adapter, we have:

You find another use of the ADAPTER pattern in the standard C++ library. Consider
the standard copy algorithm:

template <typename SI, typename TI>
void copy(SI from, SI end, TI to>
{

Client

Target

Adapter

target_function()

target_function()

Adaptee

adaptee_function()

1

Name in Design Pattern Actual Name (String Streams)

Adaptee string

Target istream

Adapter istringstream

Client The code that wants to use the >>
operator to read data from a string

target_function() get()

adaptee_function() The [] operator

24.3 • The ADAPTER Pattern 921

 while (from != end)
 {
 *to = *from; from++; to++;
 }
}

Here SI is an iterator type for a source of objects, and TI an iterator for the target.
You use the copy algorithm whenever you want to copy a source range into a target,
for example:

vector<string> source(10);
vector<string> target(10);
...
copy(source.begin(), source.end(), target.begin());

Recall that the copy algorithm was provided in the standard library because the
function call is easier to read than the explicit loop.

Now suppose you want to print the values in the vector. Of course, you could
program an explicit loop. Or perhaps the standard library could provide a print
function. However, the standard library has taken a different approach. As you
have seen in Chapter 20, there is an adapter that turns a stream into an iterator. You
can print the contents of the vector with the following command:

ostream_iterator<string> to(cout, "\n");
copy(source.begin(), source.end(), to);

or, more concisely:
copy(source.begin(), source.end(), ostream_iterator<string>(cout, "\n"));

The ostream_iterator class turns an ostream (such as cout in our example) into an
iterator. Whenever a value is “assigned” to the iterator through a statement of the
form

*to = value;

then the value is actually printed to the output stream. This is achieved by cleverly
overloading the * and = operators. (The ++ operator is defined as a dummy opera-
tion that does nothing.)

The second parameter of the ostream_iterator constructor is a string that is
printed after each value, so that the values are separated from each other. In our
example, we use a newline character to place the values on separate lines.

Similarly, there is an istream_iterator that adapts an istream to an iterator. You
can use it to insert items from an input stream into a container:

copy(istream_iterator<string>(cin), istream_iterator<string>(),
 target.begin());

The default constructor istream_iterator<string>() constructs an iterator object
that signifies the end of the input stream. This adapter overloads the * and != opera-
tors to read values and to test for the end of input.

Perhaps you don’t find these stream adapters very natural—many programmers
have argued that they are a solution in search of a problem. Nevertheless, the stream
adapters are a good illustration of the ADAPTER pattern. The stream adapters
translate the interface of iterators (that is, the operators such as * and ++) into the

922 CHAPTER 24 • An Introduction to Design Patterns

interface of streams (that is, << and >> operations). Thus, they let programmers use
streams in algorithms that expect iterator parameters.

In this section, you will learn about an ingenious design pattern that
allows a programmer to implement an algorithm in a base class, even
though some of the details of the algorithm are not known. These
details are supplied in virtual functions of a derived class. The tem-
plate method in the base class tells how to fit the details into the
desired algorithm.

Let us first look at an example, again from the C++ stream library. Each stream
has a buffer associated with it. When a character is written to the stream, it is first
placed in the buffer. Once the buffer is full, the entire buffer contents is sent to its
target, for example, a file. Buffering is useful for efficiency. It is much faster to write
a chunk of characters to a file than to write each character separately. (Reading from
a stream is also buffered, but for simplicity, we will focus on writing.)

The only difference between an ofstream and an ostringstream is the buffer that
is attached to the stream. An ofstream class has a filebuf object that saves characters
to a file, whereas an ostringstream has a stringbuf object that inserts characters into
a string. Similarly, you can define a stream that sends its output to a window in a
graphics system, simply by attaching a buffer that draws characters on the window
(see Exercise P24.16).

Consider an output operation such as
cout << "Hello, World!";

Name in Design Pattern Actual Name (String Streams)

Adaptee istream, ostream

Target iterator

Adapter istream_iterator, ostream_iterator

Client The code that wants to use a stream
in a standard algorithm function

target_function() <<, >>, fail()

adaptee_function() The *, =, ++, != operators

24.4 The TEMPLATE METHOD Pat tern

The TEMPLATE METHOD
pattern teaches how to
supply varying behavior
patterns to an algorithm.

24.4 • The TEMPLATE METHOD Pattern 923

The appropriate operator<< function converts each value into a sequence of individ-
ual characters. It then inserts each character into the stream buffer. Here is one pos-
sible implementation:

ostream& ostream::operator<<(const char s[])
{
 int i = 0;
 while (s[i] != '\0')
 {
 rdbuf()->sputc(s[i]);
 i++;
 }
 return *this;
}

The rdbuf function returns a pointer to the stream buffer. The sputc function inserts
a character into the buffer. Here is the outline of that function:

int streambuf::sputc(char c)
{
 if (buffer full)
 return overflow(c);
 else
 {

add c to the buffer
 return c;
 }
}

The overflow function writes the buffer content and the character c to its destina-
tion. Remarkably, the streambuf class has no idea where that function places charac-
ters. The overflow function is a virtual function. The streambuf class merely supplies
a dummy implementation that discards c and returns an “end of file” indicator.
Derived classes such as filebuf and streambuf redefine the overflow function to do
real work.

Note that the derived classes do not redefine the sputc function. That function is
defined in the streambuf base class, even though a streambuf does not know where
to send characters! It merely knows that the derived classes will supply a function
for this purpose.

The sputc function is an example of the TEMPLATE METHOD pattern. In this pat-
tern, a base class defines an algorithm that calls primitive operations. These primi-
tive operations are not supplied by the base class. Instead, each derived class
supplies the primitive operation that is most appropriate for it. The template
method contains the knowledge of how to combine the primitive operations into a
more complex algorithm. For example, the sputc function calls the primitive opera-
tion overflow at the appropriate moment. The contribution of the template method
is to know when to call the primitive operations.

The term “template method” has no connection with the C++ templates that you
saw in Chapter 16. Instead, you should view the base class algorithm as a template
that defines a method for producing operations for the various derived classes.

924 CHAPTER 24 • An Introduction to Design Patterns

TEMPLATE METHOD

Context

1. An algorithm is applicable for multiple types.
2. The algorithm can be broken down into primitive operations. The primitive operations

can be different for each type.
3. The order in which the primitive operations are executed in the algorithm doesn’t

depend on the type.

Solution

1. Define a base class that has a function for the algorithm and virtual functions for the
primitive operations.

2. Implement the algorithm to call the primitive operations in the appropriate order.
3. In the base class, define the primitive operations to have appropriate default behavior,

or leave them undefined if there is no suitable default.
4. Each derived class defines the primitive operations but not the algorithm.

Here is the mapping of the pattern concepts to the integer input algorithm:

DESIGN PATTERN 24.4

Calls primitive_op1(),
primitive_op2()

AbstractClass

ConcreteClass

template_method()
primitive_op1()
primitive_op2()

primitive_op1()
primitive_op2()

Name in Design Pattern Actual Name (Stream Buffers)

AbstractClass streambuf

ConcreteClass filebuf, stringbuf

template_method() sputc

primitive_op1() overflow

24.5 • Function Objects and the STRATEGY Pattern 925

The STRATEGY pattern shows how to supply a variety of algorithms
to a computation. To motivate this design pattern, let us first review
the sort algorithm in the standard C++ library. For example, con-
sider the following function call to sort a vector of strings:

vector<string> names;
...
sort(names.begin(), names.end());

The sort algorithm can sort vectors holding elements of any type, provided there is
a < operator that compares the elements. Recall that the < operator is defined for
string objects and that it compares strings in dictionary order.

Now suppose we want to sort a vector of Employee objects.
vector<Employee> staff;
sort(staff.begin(), staff.end());

This call will only compile if the < operator has been overloaded for Employee
objects. Of course, we can define such an operator:

bool operator<(const Employee& a, const Employee& b)
{
 return a.get_name() < b.get_name();
}

Now the employees will be sorted by name.
However, suppose we want to sort the employees by salary instead of by name.

We can’t redefine the operator< function every time we want to change the sort
order. Instead, there is a second sort function that is more flexible. That function
lets you supply any sort order. You specify a sort order as a class that overloads the
function call operator.

Let’s define such a class:
class SalaryComparator
{
public:
 bool operator()(const Employee& a, const Employee& b)
 {
 return a.get_salary() < b.get_salary();
 }
};

To sort the staff vector, you construct an object of this class and pass it to the sort
function:

SalaryComparator comp;
sort(staff.begin(), staff.end(), comp);

24.5 Funct ion Objects and the STRATEGY Pat tern

24.5.1 Function Objects

The STRATEGY pattern
teaches how to supply
variants of an algorithm
to a client.

926 CHAPTER 24 • An Introduction to Design Patterns

As a shorthand, you can pass an anonymous object, constructed with the default
constructor:

sort(staff.begin(), staff.end(), SalaryComparator());

What goes on behind the scenes? We don’t have to know exactly which sorting
algorithm the C++ standard library uses. Every sorting algorithm compares objects
in various locations in the collection and rearranges them if they are out of order.
The code for the sort function contains statements such as the following:

if (!comp(x, y))
rearrange x and y;

Here comp is the comparator object that was passed to the sort function. The call
comp(x, y) invokes the operator() function. That function is defined in the Salary-
Comparator class to compare the objects by their salaries.

Clearly, you can carry out any desired comparison by supplying a class with an
appropriate operator() function.

An object such as comp is often called a function object because its sole purpose is
to execute the comparator function.

The SalaryComparator object has no state—all objects of this class behave in
exactly the same way. Indeed, many simple function objects are stateless. However,
you can achieve more sophisticated behavior by adding data fields to function
objects. Here is an enhancement of the comparator class that can sort in either
ascending or descending order.

class SalaryComparator
{
public:
 SalaryComparator(bool a)
 {
 ascending = a;
 }
 bool operator()(const Employee& a, const Employee& b)
 {
 if (ascending)
 return a.get_salary() < b.get_salary();
 else
 return a.get_salary() > b.get_salary();
 }
private:
 bool ascending;
};

Then an object
SalaryComparator reverse_comp(false);

can be used to sort Employee objects in decreasing salary order.

24.5 • Function Objects and the STRATEGY Pattern 927

Confusing Function Objects and Classes

Look carefully at the call

sort(staff.begin(), staff.end(), SalaryComparator());

Note that there is a pair of parentheses after the class name SalaryComparator. These paren-
theses denote a call to the default constructor of the SalaryComparator class. It would be an
error to omit the parentheses.

sort(staff.begin(), staff.end(), SalaryComparator); // Error

After all, the parameters of the staff function must be values, not types.

You have seen how the comparator concept gives programmers a great deal of flexi-
bility. If the default ordering is not appropriate, you can change the sort order to any
ordering. To produce a particular order, you simply define a class with an overloaded
function call operator, make an object of that class, and give it to the sort function.
When the sort function needs to compare two values, it calls the operator() function
of the comparator object. This is an example of the STRATEGY pattern.

The STRATEGY pattern applies whenever you want to allow a client to supply an
algorithm. The pattern tells us to place the essential steps of the algorithm in a strat-
egy interface. (Note that in the case of the sort function, the algorithm in question
is not the sorting algorithm, but the algorithm used for comparing objects.)

By supplying objects of different classes that implement the strategy interface
functions, the algorithm can be varied.

STRATEGY

Context

1. A class (which we’ll call the context class) can benefit from different variants of an
algorithm.

2. Clients of the context class sometimes want to supply custom versions of the
algorithm.

Solution

1. Define an interface that is an abstraction for the algorithm. We’ll call this the strategy
interface.

2. Concrete strategy classes supply the functions of the strategy interface. Each strategy
class implements a version of the algorithm.

COMMON ERROR 24.1

24.5.2 The STRATEGY Pattern

DES IGN PATTERN 24.5

928 CHAPTER 24 • An Introduction to Design Patterns

3. The client supplies a concrete strategy object to the context class.
4. Whenever the algorithm needs to be executed, the context class calls the appropriate

functions of the strategy object.

Here is the relationship between the names in the STRATEGY design pattern and the
sorting manifestation.

In Chapter 22, we developed a program to print an invoice. The
invoice bills a customer for a set of items. A typical invoice item is a
charge for three toasters at $29.95 each.

Now let’s consider a more complex situation. Sometimes, stores
will sell bundles of related items. A bundle might be a stereo system
consisting of a tuner, amplifier, CD player, and speakers, or a hammer
with 100 nails. It should be possible to add a bundle to an invoice.

Concrete
Strategy

Context

Strategy

do_work()

do_work()

Name in Design Pattern Actual Name (Sorting)

Context The sort function

Strategy The interface that the sort algorithm
expects the comparator object to have,

i.e., operator()

ConcreteStrategy The comparator class

do_work() The operator() comparator function

24.6 The COMPOS ITE Pat tern

The COMPOSITE pattern
teaches how to combine
several objects into an
object that has the same
behavior as its parts.

24.6 • The COMPOSITE Pattern 929

There is just one technical issue. You can only add items to an invoice. Can a
bundle of items itself be an item?

The solution is to make a Bundle class that contains a collection of items, and that
inherits from the Item class.

class Bundle : public Item
{
 ...
private:
 vector<Item*> items;
};

This is an example of the COMPOSITE pattern. This pattern addresses situations
where primitive objects can be grouped into composite objects, and the composites
themselves are considered primitive objects. For example, in an HTML editor, ele-
ments can be grouped into a table, and the table is again considered an element.

One characteristic of the COMPOSITE design pattern is how a function of the
composite class does its work. It must apply the function to all of its primitive
objects and then combine the results.

For example, to compute the price of a bundle, the bundle class computes the
prices of each of its items and returns the sum of these values. (A useful enhance-
ment would be to give a discount for the bundle—see Exercise P24.8.)

double Bundle::get_unit_price() const
{
 double price = 0;
 for (int i = 0; i < items.size(); i++)
 {
 price = price
 + items[i]->get_unit_price() * items[i]->get_quantity();
 }
 return price;
}

Similarly, consider the task of drawing a table in an HTML editor. The table carries
out the drawing operation by drawing the elements in all of its cells.

COMPOSITE

Context

1. Primitive objects can be combined into composite objects.
2. Clients treat a composite object as a primitive object.

Solution

1. Define a class that is an abstraction for the primitive objects.
2. Both primitive classes and composite classes inherit from that class.
3. A composite object contains a collection of primitive objects.

DESIGN PATTERN 24.6

930 CHAPTER 24 • An Introduction to Design Patterns

4. When implementing an operation in the composite class, apply the operation to the
primitive objects and combine the results.

As with the previous patterns, we show how the names in the design pattern map to
an example, in this case, a bundle of invoice items.

Pattern Recognition

Students of object-oriented design often have trouble recognizing patterns. The patterns
have such intuitive names that it is tempting to suspect their usage in many situations where
they don’t actually apply. Just because something appears to be strategic does not mean that
the STRATEGY pattern is at work. Patterns are not vague concepts. They are very specific.
The STRATEGY pattern only applies when a specific set of circumstances is fulfilled, as
described by the pattern context and solution.

Composite

Primitive

op()

op()

Calls op() for each
primitive object and
combines the results

*

Name in Design Pattern Actual Name (Bundle of Items)

Primitive Item

Composite Bundle

op() get_unit_price

COMMON ERROR 24.2

24.7 • Case Study: Putting Patterns to Work 931

For example, a list iterator might be a good strategy for accessing list elements, but it has
nothing to do with the STRATEGY pattern. The first context condition of the STRATEGY pat-
tern doesn’t even apply: The user of a list isn’t interested in different variants of iteration.

Consider a more subtle scenario. The sort function sorts elements by repeatedly calling a
comparison function:

while (...)
{
 if (!comp(x, y))

rearrange x and y;
}

Is this an example of the TEMPLATE METHOD pattern? The context seems to match per-
fectly. We have an algorithm (sorting) that is applicable for multiple types and can be broken
down into primitive operations (comparing).

However, the solution of the TEMPLATE METHOD pattern is very different. The pattern
suggests defining a base class with a virtual function for the primitive operation:

template <typename T>
class Sorter
{
public:
 void sort(vector<T>& v);
 virtual bool compare(const T& a, const T& b);
};

To sort employees by salary, form a derived class:

class SalarySorter : public Sorter<Employee>
{
 virtual bool compare(const Employee& a, const Employee& b)
 {
 return a.get_salary() < b.get_salary();
 }
};

This approach has nothing in common with the approach taken by the sort function in the
C++ standard library. Thus, the sort function does not use the TEMPLATE METHOD pattern.

As you can see, you must carefully inspect both the context and the solution of a pattern
to see whether it applies to a given situation.

In this section, we will put several patterns to work in a simple appli-
cation. We will refine the invoice printing program of Chapter 22.
Specifically, we will include the Bundle class of the preceding section
and make other changes that show various patterns at work.

An invoice contains a collection of items. Unlike the implementa-
tion of Chapter 22, we define a general Item class with pure virtual
functions get_unit_price, get_quantity, and get_description.

class Item
{

24.7 Case Study: Put t ing Pat terns to Work

Design patterns apply in
specific situations that
are described by the
context and solution parts
of the pattern.

932 CHAPTER 24 • An Introduction to Design Patterns

public:
 virtual double get_unit_price() const = 0;
 virtual int get_quantity() const = 0;
 virtual string get_description() const = 0;
 double get_total_price() const;
 ...
};

It is up to derived classes to implement these three functions. For example, the Bun-
dle class computes the unit price of the bundle from the unit prices of the collected
items. However, the get_total_price function is defined in the Item class:

double Item::get_total_price() const
{
 return get_quantity() * get_unit_price();
}

A generic item does not know how to compute the quantity and the unit price, but
it knows that their product is the total price. This is the TEMPLATE METHOD pat-
tern at work.

You have seen in the preceding section how the Bundle class extends the Item
class. It produces the unit price and description of a bundle, by combining the unit
prices and descriptions of the individual items.

However, we also want to be able to add simple products to the invoice, not just
bundles. We now have a problem. The invoice stores items, not products. To solve
this problem, we use the ADAPTER pattern and define a class ProductItem that turns
a product into an item (see Figure 4).

class ProductItem : public Item
{
public:
 ProductItem(Product p);
 virtual double get_unit_price() const;
 virtual string get_description() const;
private:
 Product prod;
};

Figure 4 The ProductItem Adapter

ProductItem Product

ItemInvoice

1

*

24.7 • Case Study: Putting Patterns to Work 933

The adapter methods call the appropriate methods of the Product class, for example:
double ProductItem::get_unit_price() const
{
 return prod.get_price();
}

Now let’s look at the Invoice class. An invoice holds a collection of items.
class Invoice
{
public:
 void add(Item* item)
 {
 items.push_back(item);
 }
 ...
private:
 vector<Item*> items;
};

Clients of the Invoice class may need to know the line items inside an invoice.
However, we do not want to reveal the structure of the Invoice class. For example,
it would be unwise to return the items vector or even a vector<Item*>::iterator.
This simple-minded approach causes problems if we later change the internal
implementation, storing the items in another data structure or in a relational data-
base table. Instead, we will follow the ITERATOR pattern and design an iterator
class.

class ItemIterator
{
public:
 ...
 bool is_done() const;
 void next();
 Item* get() const;
private:
 vector<Item*>& items;
 int pos;
};

These functions access a reference to the original vector. The member function
definitons show how the iterator object traverses the vector elements.

Item* ItemIterator::get() const
{
 if (pos < items.size())
 return items[pos];
 else
 return NULL;
}

inline void ItemIterator::next()
{
 pos++;
}

934 CHAPTER 24 • An Introduction to Design Patterns

bool ItemIterator::is_done() const
{
 return pos >= items.size();
}

Finally, let’s take a closer look at the task of formatting an invoice. Our sample pro-
gram formats an invoice very simply (see below). As you can see, we have a string
“INVOICE” on top, followed by the descriptions and prices of the line items, and
the amount due at the bottom.

However, that simple format may not be good enough for all applications. Perhaps
we want to show the invoice on a Web page. Then the format should contain
HTML tags, and the line items should be rows of a table. Thus, it is apparent that
there is a need for multiple algorithms for formatting an invoice.

The STRATEGY pattern addresses this issue. This pattern teaches us to design an
interface to abstract the essential steps of the algorithm. The essential steps are:

• Print the header
• Print the footer
• Print a column entry (a string or a number)

Here is the class definition:
class InvoicePrinter
{
public:
 virtual void print_header(string s) = 0;
 virtual void print_string(string value, bool pad_right) = 0;
 virtual void print_number(double value, int precision) = 0;
 virtual void print_footer(string s, double total) = 0;
};

Then we can design classes such as SimpleInvoicePrinter and HTMLInvoicePrinter
that format the invoice in various ways.

We make a strategy object available to the print function of the Invoice class:
void Invoice::print(InvoicePrinter& formatter)
{
 print_header("I N V O I C E");
 print_string("Description", true);
 print_string("Unit Price", false);
 print_string("Qty", false);
 print_string("Total Price", false);

 double amount_due = 0;

Description Unit Price Qty Total Price
Toaster 29.99 3 89.97
Hammer, Nails 20.95 1 20.95

AMOUNT DUE: 110.92

INVOICE

24.7 • Case Study: Putting Patterns to Work 935

 for (ItemIterator iter = inv.create_iterator();
 !iter.is_done(); iter.next())
 {
 Item* it = iter.get();
 print_string(it->get_description(), true);
 print_number(it->get_unit_price(), 2);
 print_number(it->get_quantity(), 0);
 print_number(it->get_total_price(), 2);
 amount_due = amount_due + it->get_total_price();
 }

 print_footer("AMOUNT DUE:", amount_due);
}

Figure 5 shows the relationships between the classes used for formatting.

This particular version provides a very simple formatting algorithm. Exercise
P24.12 asks you to supply an invoice printer that produces HTML output.

This concludes the design of the invoice program. We have made use of five sep-
arate patterns during the design. Here is the code for the complete application.

ch24/invoice/product.h

Figure 5
Printing an Invoice

Simple
Invoice
Printer

Invoice
Printer

Invoice

1 #ifndef PRODUCT_H
2 #define PRODUCT_H
3
4 #include <string>
5
6 using namespace std;
7
8 /**
9 Describes a product with a description and a price.
10 */
11 class Product
12 {
13 public:
14 /**
15 Constructs a product with a given description and price.
16 @param d the description
17 @param p the price
18 */

936 CHAPTER 24 • An Introduction to Design Patterns

ch24/invoice/item.h

19 Product(string d, double p);
20
21 /**
22 Gets the product description.
23 @return the description
24 */
25 string get_description() const;
26
27 /**
28 Gets the product price.
29 @return the price
30 */
31 double get_price() const;
32 private:
33 string description;
34 double price;
35 };
36
37 inline string Product::get_description() const
38 {
39 return description;
40 }
41
42 inline double Product::get_price() const
43 {
44 return price;
45 }
46
47 #endif

1 #ifndef ITEM_H
2 #define ITEM_H
3
4 #include <string>
5
6 using namespace std;
7
8 /**
9 Describes an item in an invoice.
10 */
11 class Item
12 {
13 public:
14 /**
15 Gets the unit price of this item.
16 @return the unit price
17 */
18 virtual double get_unit_price() const = 0;
19
20 /**
21 Gets the description of this item.
22 @return the description

24.7 • Case Study: Putting Patterns to Work 937

ch24/invoice/productitem.h

23 */
24 virtual string get_description() const = 0;
25
26 /**
27 Gets the quantity of this item.
28 @return the quantity
29 */
30 virtual int get_quantity() const = 0;
31
32 /**
33 Gets the total price of this item.
34 @return the total price
35 */
36 double get_total_price() const;
37
38 virtual ~Item();
39 };
40
41 #endif

1 #ifndef PRODUCTITEM_H
2 #define PRODUCTITEM_H
3
4 #include "product.h"
5 #include "item.h"
6
7 /**
8 An item that results from selling a quantity of a product.
9 */
10 class ProductItem : public Item
11 {
12 public:
13 /**
14 Constructs this item.
15 @param p the product that is being sold
16 @param q the quantity
17 */
18 ProductItem(const Product& p, int q);
19 virtual double get_unit_price() const;
20 virtual string get_description() const;
21 virtual int get_quantity() const;
22 private:
23 Product prod;
24 int quantity;
25 };
26
27 inline int ProductItem::get_quantity() const
28 {
29 return quantity;
30 }
31
32 #endif

938 CHAPTER 24 • An Introduction to Design Patterns

ch24/invoice/bundle.h

ch24/invoice/itemiterator.h

1 #ifndef BUNDLE_H
2 #define BUNDLE_H
3
4 #include <vector>
5 #include "item.h"
6
7 /**
8 A bundle of items that is again an item.
9 */
10 class Bundle : public Item
11 {
12 public:
13 /**
14 Adds an item to this bundle.
15 @param it the item to add
16 */
17 void add(Item* it);
18 virtual double get_unit_price() const;
19 virtual string get_description() const;
20 virtual int get_quantity() const;
21 private:
22 vector<Item*> items;
23 };
24
25 #endif

1 #ifndef ITEMITERATOR_H
2 #define ITEMITERATOR_H
3
4 #include <vector>
5 #include "item.h"
6
7 /**
8 An iterator through a collection of items.
9 */
10 class ItemIterator
11 {
12 public:
13 /**
14 Constructs the iterator from a vector.
15 @param its a reference to a vector of Item pointers
16 */
17 ItemIterator(vector<Item*>& its);
18
19 /**
20 Gets the current item.
21 @return the current item pointer
22 */
23 Item* get() const;
24
25 /**

24.7 • Case Study: Putting Patterns to Work 939

ch24/invoice/invoiceprinter.h

26 Advances to the next item.
27 */
28 void next();
29
30 /**
31 Tests whether there are more items.
32 @return true if no more items are available
33 */
34 bool is_done() const;
35 private:
36 const vector<Item*>& items;
37 int pos;
38 };
39
40 inline void ItemIterator::next()
41 {
42 pos++;
43 }
44
45 #endif

1 #ifndef INVOICEPRINTER_H
2 #define INVOICEPRINTER_H
3
4 #include <string>
5
6 using namespace std;
7
8 /**
9 Formats an invoice.
10 */
11 class InvoicePrinter
12 {
13 public:
14 /**
15 Prints the invoice header.
16 @param s the header string
17 */
18 virtual void print_header(string s) = 0;
19
20 /**
21 Prints a string in the next table cell.
22 @param value the value to print
23 @param pad_right true if the cell is padded on the right
24 with spaces
25 */
26 virtual void print_string(string value, bool pad_right) = 0;
27
28 /**
29 Prints a number in the next table cell.
30 @param value the value to print
31 @param precision the number of digits after the decimal point

940 CHAPTER 24 • An Introduction to Design Patterns

ch24/invoice/simpleinvoiceprinter.h

ch24/invoice/invoice.h

32 */
33 virtual void print_number(double value, int precision) = 0;
34
35 /**
36 Prints the invoice footer.
37 @param s the footer string
38 @param total the total amount due
39 */
40 virtual void print_footer(string s, double total) = 0;
41 };
42
43 #endif

1 #ifndef SIMPLEINVOICEPRINTER_H
2 #define SIMPLEINVOICEPRINTER_H
3
4 #include <string>
5 #include <vector>
6
7 using namespace std;
8
9 #include "invoiceprinter.h"
10
11 /**
12 Prints an invoice in a monospaced font, using spaces to
13 align the columns.
14 */
15 class SimpleInvoicePrinter : public InvoicePrinter
16 {
17 public:
18 /**
19 Constructs a simple invoice printer and sets the column widths.
20 @param widths an array of column widths
21 */
22 SimpleInvoicePrinter(vector<int> widths);
23 virtual void print_header(string s);
24 virtual void print_string(string value, bool pad_right);
25 virtual void print_number(double value, int precision);
26 virtual void print_footer(string s, double total);
27 private:
28 void next_column();
29 int column;
30 vector<int> column_widths;
31 };
32
33 #endif

1 #ifndef INVOICE_H
2 #define INVOICE_H
3
4 #include <vector>

24.7 • Case Study: Putting Patterns to Work 941

ch24/invoice/product.cpp

ch24/invoice/item.cpp

5
6 #include "item.h"
7 #include "invoiceprinter.h"
8 #include "itemiterator.h"
9
10 using namespace std;
11
12 /**
13 Describes an invoice that bills for a sequence of items.
14 */
15 class Invoice
16 {
17 public:
18 /**
19 Adds an item to this invoice.
20 @param it the item that the customer ordered
21 */
22 void add(Item* it);
23
24 /**
25 Prints the invoice.
26 */
27 void print(InvoicePrinter& printer);
28
29 /**
30 Creates an iterator through the items of this invoice.
31 @return the iterator
32 */
33 ItemIterator create_iterator();
34 private:
35 vector<Item*> items;
36 };
37
38 #endif

1 #include "product.h"
2
3 Product::Product(string d, double p)
4 {
5 description = d;
6 price = p;
7 }

1 #include "item.h"
2
3 double Item::get_total_price() const
4 {
5 return get_quantity() * get_unit_price();
6 }
7
8 Item::~Item() {}

942 CHAPTER 24 • An Introduction to Design Patterns

ch24/invoice/productitem.cpp

ch24/invoice/bundle.cpp

1 #include "productitem.h"
2
3 ProductItem::ProductItem(const Product& p, int q)
4 : prod(p)
5 {
6 quantity = q;
7 }
8
9 double ProductItem::get_unit_price() const
10 {
11 return prod.get_price();
12 }
13
14 string ProductItem::get_description() const
15 {
16 return prod.get_description();
17 }

1 #include "bundle.h"
2
3 void Bundle::add(Item* it)
4 {
5 items.push_back(it);
6 }
7
8 double Bundle::get_unit_price() const
9 {
10 double price = 0;
11 for (int i = 0; i < items.size(); i++)
12 {
13 price = price
14 + items[i]->get_unit_price() * items[i]->get_quantity();
15 }
16 return price;
17 }
18
19 string Bundle::get_description() const
20 {
21 string description = "";
22 for (int i = 0; i < items.size(); i++)
23 {
24 if (i > 0) description = description + ", ";
25 description = description + items[i]->get_description();
26 }
27 return description;
28 }
29
30 int Bundle::get_quantity() const
31 {
32 return 1;
33 }

24.7 • Case Study: Putting Patterns to Work 943

ch24/invoice/itemiterator.cpp

ch24/invoice/simpleinvoiceprinter.cpp

1 #include "itemiterator.h"
2
3 ItemIterator::ItemIterator(vector<Item*>& its)
4 : items(its)
5 {
6 pos = 0;
7 }
8
9 Item* ItemIterator::get() const
10 {
11 if (pos < items.size())
12 return items[pos];
13 else
14 return NULL;
15 }
16
17 bool ItemIterator::is_done() const
18 {
19 return pos >= items.size();
20 }

1 #include <iostream>
2 #include <iomanip>
3
4 #include "simpleinvoiceprinter.h"
5
6 using namespace std;
7
8 SimpleInvoicePrinter::SimpleInvoicePrinter(vector<int> widths)
9 {
10 column_widths = widths;
11 column = 0;
12 }
13
14 void SimpleInvoicePrinter::print_header(string s)
15 {
16 int width = 0;
17 for (int i = 0; i < column_widths.size(); i++)
18 width = width + column_widths[i];
19 for (int j = 0; j < (width - s.length()) / 2; j++)
20 cout << " ";
21 cout << s << "\n\n";
22 }
23
24 void SimpleInvoicePrinter::next_column()
25 {
26 column++;
27 if (column == column_widths.size())
28 {
29 cout << "\n";
30 column = 0;

944 CHAPTER 24 • An Introduction to Design Patterns

ch24/invoice/invoice.cpp

31 }
32 }
33
34 void SimpleInvoicePrinter::print_string(string value, bool pad_right)
35 {
36 if (pad_right) cout << value;
37 // print padding
38 for (int i = value.length(); i < column_widths[column]; i++)
39 cout << " ";
40 if (!pad_right) cout << value;
41 next_column();
42 }
43
44 void SimpleInvoicePrinter::print_number(double value, int precision)
45 {
46 cout << setw(column_widths[column])
47 << fixed << setprecision(precision)
48 << value;
49 next_column();
50 }
51
52 void SimpleInvoicePrinter::print_footer(string s, double total)
53 {
54 cout << "\n" << s << " " << total << "\n";
55 }

1 #include "invoice.h"
2 #include "itemiterator.h"
3 #include "invoiceprinter.h"
4
5 void Invoice::add(Item* it)
6 {
7 items.push_back(it);
8 }
9
10 ItemIterator Invoice::create_iterator()
11 {
12 return ItemIterator(items);
13 }
14
15 void Invoice::print(InvoicePrinter& printer)
16 {
17 printer.print_header("I N V O I C E");
18 printer.print_string("Description", true);
19 printer.print_string("Unit Price", false);
20 printer.print_string("Qty", false);
21 printer.print_string("Total Price", false);
22
23 double amount_due = 0;
24 for (ItemIterator iter = create_iterator();
25 !iter.is_done(); iter.next())
26 {

24.7 • Case Study: Putting Patterns to Work 945

ch24/invoice/invoicetest.cpp

You have seen a number of common design patterns, how they arise in the C++
standard library, and simple code examples that put them to work. Table 1 on pages
946–947 shows the remaining design patterns of the “Gang of Four” book, with
brief explanations of their purpose.

27 Item* it = iter.get();
28 printer.print_string(it->get_description(), true);
29 printer.print_number(it->get_unit_price(), 2);
30 printer.print_number(it->get_quantity(), 0);
31 printer.print_number(it->get_total_price(), 2);
32 amount_due = amount_due + it->get_total_price();
33 }
34
35 printer.print_footer("AMOUNT DUE:", amount_due);
36 }

1 #include <vector>
2
3 #include "bundle.h"
4 #include "invoice.h"
5 #include "productitem.h"
6 #include "simpleinvoiceprinter.h"
7
8 using namespace std;
9
10 int main()
11 {
12 Invoice sample_invoice;
13 vector<int> widths;
14 widths.push_back(30);
15 widths.push_back(12);
16 widths.push_back(4);
17 widths.push_back(12);
18 SimpleInvoicePrinter printer(widths);
19 sample_invoice.add(new ProductItem(Product("Toaster", 29.99), 3));
20 Bundle* combo = new Bundle();
21 combo->add(new ProductItem(Product("Hammer", 19.95), 1));
22 combo->add(new ProductItem(Product("Nails", 0.01), 100));
23 sample_invoice.add(combo);
24
25 sample_invoice.print(printer);
26 return 0;
27 }

946 CHAPTER 24 • An Introduction to Design Patterns

Table 1 Other Common Design Patterns

Pattern Name Description Example

ABSTRACT
FACTORY

An abstract class defines methods
that construct related products.
Concrete factories create these
product sets.

An abstract class specifies methods for
constructing buttons, methods, and so on.
Each user interface “look and feel”
supplies a concrete subclass.

BRIDGE An abstraction and its
implementation have separate
inheritance hierarchies.

A hierarchy of window types has separate
implementations in various operating
systems.

BUILDER A builder class has methods to build
parts of a complex product, and to
retrieve the completed product.

A document builder has methods to build
paragraphs, tables, and so on.

CHAIN OF
RESPONSIBILITY

A request is passed to the first
handler in a chain. Each handler acts
on the request (or chooses not to act),
and passes the request on to the
next handler.

An event-handling mechanism passes a
mouse or key event to a component, which
then passes it to the parent component.

COMMAND Commands are implemented
as objects.

A word processor stores recently issued
commands so that they can be undone.

DECORATOR The behavior of a class is enhanced,
keeping its interface.

A user interface component is decorated
with scroll bars or borders.

FAÇADE A complex subsystem is accessed
through a single class.

A driver class provides access to the
functionality of a database system.

FACTORY
METHOD

A “virtual constructor” can be
redefined by derived classes.

Collection classes that derive from a
common base class redefine the
create_iterator function.

FLYWEIGHT Uses shared objects instead of large
numbers of separate objects with
identical state.

A word processor uses shared objects for
styled characters rather than a separate
object for each character.

INTERPRETER A class hierarchy represents grammar
rules. The interpreter recursively
evaluates a parse tree of rule objects.

A program interactively evaluates
mathematical expressions by building and
evaluating a parse tree.

MEDIATOR An object encapsulates the
interaction of other objects.

All components in a dialog box notify a
mediator of state changes. The mediator
updates affected components.

MEMENTO An object yields an opaque snapshot
of a part of its state, and can later
return its state from that snapshot.

An “undo” mechanism requests a memento
from an object before mutating it. If the
operation is undone, the memento is used
to roll the object back to its old state.

Chapter Summary 947

1. Iterators are preferred over cursors because you can attach more than one
iterator to a collection.

2. A design pattern uses a standard format to give advice about a problem in
software design.

3. The ITERATOR pattern teaches how to access the elements of an aggregate object.

4. The ADAPTER pattern teaches how to use a class in a context that requires a
different interface.

5. The TEMPLATE METHOD pattern teaches how to supply varying behavior
patterns to an algorithm.

6. The STRATEGY pattern teaches how to supply variants of an algorithm to a client.

7. The COMPOSITE pattern teaches how to combine several objects into an object
that has the same behavior as its parts.

8. Design patterns apply in specific situations that are described by the context and
solution parts of the pattern.

Table 1 Other Common Design Patterns (continued)

Pattern Name Description Example

OBSERVER An object wants to be notified when
another object generates an event.

User interface components generate events,
such as button clicks and text changes. A
dialog box observes the events and repaints
its contents.

PROXY A service needs to be made more
versatile without affecting the service
provider or client.

A proxy class sends client requests to a
server object on a different computer.

SINGLETON All clients need access to a single
shared object of a class.

A random number singleton gives all
clients access to the same generator.

STATE A separate object is used for each
state. State-dependent code is
distributed over the various
state classes.

An image editor has different drawing
states. Each state is handled by a separate
“tool” object.

VISITOR A structure with a fixed set of
element classes needs an extensible set
of operations.

An XML visitor visits a tree of XML
elements, applying arbitrary operations to
each node.

CHAPTER SUMMARY

948 CHAPTER 24 • An Introduction to Design Patterns

1. Christopher Alexander et al., A Pattern Language: Towns, Buildings, Construction,
Oxford University Press, 1977.

2. Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, Design Patterns,
Addison-Wesley, 1995.

Exercise R24.1. The ITERATOR pattern suggests that iterators have an operation
is_done. However, the iterators in the standard C++ library do not have such an
operation. Explain how you can test whether such an iterator has reached the end of
its collection. Explain the advantages and disadvantages of the approach chosen by
C++ designers, compared to the one advocated in the design pattern.

Exercise R24.2. Calling copy to insert elements into a vector has a drawback: The vec-
tor must already have a size that is sufficient to hold the copied elements. The stan-
dard library provides a back_inserter class to remedy this problem. Consider the
code

vector<string> to;
copy(source.begin(), source.end(), back_inserter<string>(to));

The back_inserter is an iterator that calls push_back on the underlying container
when storing an element. Discuss whether this is a manifestation of the ADAPTER
pattern.

Exercise R24.3. Both the STRATEGY and the TEMPLATE METHOD patterns are con-
cerned with variations in algorithms. Explain the essential difference between these
patterns.

Exercise R24.4. Look up the documentation of the transform function in the stan-
dard C++ library. What design pattern is at work to supply the transformer?

Exercise R24.5. Find a description of the PROXY pattern and discuss whether the
SharedString class that was discussed in Chapter 15 is an example of this pattern.

Exercise R24.6. Find a description of the DECORATOR pattern and describe the
design of a DiscountedItem decorator of the Item class.

Exercise R24.7. A vector is composed of individual elements. Is this an example of
the COMPOSITE pattern? Why or why not?

Exercise R24.8. Make tables for the five patterns of the invoice program that show
how the names used in the pattern descriptions map to the actual names in the
implementations.

FURTHER READING

REVIEW EXERCISES

Programming Exercises 949

Exercise R24.9. Suppose the responsibility of printing an invoice was shifted from
the Invoice class to the InvoicePrinter class. Consider the implementation of

void InvoicePrinter::print(Invoice& inv)

and show how it is an example of the TEMPLATE METHOD pattern.

Exercise R24.10. Write a new pattern from your own programming experience.
Think of a problem that you ended up solving more than once, and describe the
problem and solution in the pattern format.

Exercise R24.11. Consider the wxSizer class of the wxWidgets library that is described
in Chapter 25. A sizer can hold user interface components, such as buttons and
nested sizers. What design pattern is at work?

Exercise P24.1. Implement an iterator that traverses the fields of a tic-tac-toe board.
Sample usage:

char board[3][3];
...
BoardIterator iter(board);
while (!iter.is_done())
{
 cout << iter.get();
 iter.next();
}

Exercise P24.2. Supply an iterator that enumerates all items of a product bundle. If a
bundle contains another bundle, the iterator should traverse it as well.

Exercise P24.3. Provide your own implementations of the ostream_iterator and
istream_iterator adapters. You need to define functions for the various operators.

Exercise P24.4. Implement the game of Nim that is described in Exercise P3.22.
A player should have one of three strategies: the smart strategy described in this
exercise, choosing moves at random, or asking a human for the next move. Use the
STRATEGY pattern.

Exercise P24.5. Write a program that uses the standard sort function to sort a vector
of Product objects, first by description and then by price (starting with the most
expensive one). Supply objects of two comparator classes.

Exercise P24.6. Section 9.5 contains a program that encrypts and decrypts a file.
Using a design pattern from this chapter, reorganize the program so that several
encryption and decryption algorithms can be plugged in easily. Validate your
approach by producing sample programs that use the Caesar cipher and the Playfair
cipher (described in Exercise P9.5).

G

PROGRAMMING EXERCISES

950 CHAPTER 24 • An Introduction to Design Patterns

Exercise P24.7. Common Error 24.2 on page 930 outlines a sorter whose comparison
operation is specified in a derived class, following the TEMPLATE METHOD pattern.
Complete the implementation, using the merge sort algorithm. Provide a test pro-
gram that sorts a vector of employees by decreasing salary.

Exercise P24.8. Enhance the Bundle class to give a discount for the bundle. The
get_unit_price function should compute the price of the bundle items and then
apply the discount.

Exercise P24.9. The get_quantity function of the Bundle class always returns 1.
Reimplement the class so that bundles can have arbitrary quantities.

Exercise P24.10. Improve the invoice program by computing sales tax. Iterate
through the items in the invoice and add a TaxItem that charges sales tax.

Exercise P24.11. Provide a class that derives from the InvoicePrinter class, which
saves the invoice in a file.

Exercise P24.12. Provide a class that derives from the InvoicePrinter class, using
HTML to format the output prettily.

Exercise P24.13. The program in Section 24.7 prints the invoice to cout. It would be
better to format the invoice as a string, which can then be sent to any destination.
Define a class InvoiceFormatter and a subclass SimpleInvoiceFormatter whose mem-
ber functions return the formatted strings instead of printing them to cout.

Exercise P24.14. Design a base class Shape with virtual functions
void draw(GraphicWindow& win) const;
void move(double dx, double dy);

The Circle, Line, and Message classes of Chapter 2 are not derived from the Shape
class. Supply three adapter classes CircleShape, LineShape, and MessageShape. Supply
a test program that populates a vector<Shape*> with adapted objects, and demon-
states the draw and move functions.

Exercise P24.15. Continue Exercise P24.14 by providing a class CompoundShape. A
compound shape consists of multiple individual shapes, and can be drawn or moved
as a unit. What design pattern is at work here?

Exercise P24.16. Implement a class WinStream that writes output to cwin, the graphics
object of Chapter 2. For example,

WinStream out;
out << setw(10) << setprecision(2) << 10.0 / 3;

First, define a class WinBuffer that derives from streambuf. Override the overflow
method to send a character to the next available position on the screen. Then define
WinStream as a subclass of ostream.

G

G

G

Appendix A
C++ Language

Coding Guidelines

This coding style guide is a simplified version of one that has been used with good
success both in industrial practice and for college courses. It lays down rules that
you must follow for your programming assignments.

A style guide is a set of mandatory requirements for layout and formatting. Uni-
form style makes it easier for you to read code from your instructor and classmates.
You will really appreciate the consistency if you do a team project. It is also easier
for your instructor and your grader to grasp the essence of your programs quickly.

A style guide makes you a more productive programmer because it reduces gra-
tuitous choice. If you don’t have to make choices about trivial matters, you can
spend your energy on the solution of real problems.

In these guidelines a number of constructs are plainly outlawed. That doesn’t
mean that programmers using them are evil or incompetent. It does mean that the
constructs are of marginal utility and can be expressed just as well or even better
with other language constructs.

If you have already programmed in C or C++, you may be initially uncomfort-
able about giving up some fond habits. However, it is a sign of professionalism to
set aside personal preferences in minor matters and to compromise for the benefit
of your group.

In t roduct ion

952 APPENDIX A • C++ Language Coding Guidelines

These guidelines are necessarily somewhat long and dull. They also mention
features that you may not yet have seen in class. Here are the most important
highlights:

• Tabs are set every three spaces.
• Variable and function names are lowercase.
• Constant names are uppercase. Class names start with an uppercase letter.
• There are spaces after keywords and between binary operators.
• Braces must line up.
• No magic numbers may be used.
• Every function must have a comment.
• At most 30 lines of code may be used per function.
• No goto, continue, or break is allowed.
• At most two global variables may be used per file.

A note to the instructor: Of course, many programmers and organizations have
strong feelings about coding style. If this style guide is incompatible with your own
preferences or with local custom, please feel free to modify it. For that purpose, this
coding style guide is available in electronic form in the WileyPLUS course for this
book.

Each program is a collection of one or more files or modules. The executable pro-
gram is obtained by compiling and linking these files. Organize the material in each
file as follows:

• Header comments
• #include statements
• Constants
• Classes
• Global variables
• Functions

It is common to start each file with a comment block. Here is a typical format:
/**
 @file invoice.cpp
 @author Jenny Koo
 @date 2010-01-24
 @version 3.14
*/

You may also want to include a copyright notice, such as
/* Copyright 2010 Jenny Koo */

Source F i les

APPENDIX A • C++ Language Coding Guidelines 953

A valid copyright notice consists of

• the copyright symbol © or the word “Copyright” or the abbreviation “Copr.”
• the year of first publication of the work
• the name of the owner of the copyright

(Note: To save space, this header comment has been omitted from the programs in
this book as well as the programs on disk so that the actual line numbers match
those that are printed in the book.)

Next, list all included header files.
#include <iostream>
#include "ccc_empl.h"

Do not embed absolute path names, such as
#include "c:\me\my_homework\widgets.h" // Don’t !!!

After the header files, list constants that are needed throughout the program file.
const int GRID_SIZE = 20;
const double CLOCK_RADIUS = 5;

Then supply the definitions of all classes.
class Product
{
 ...
};

Order the class definitions so that a class is defined before it is used in another class.
Very occasionally, you may have mutually dependent classes. To break cycles, you
can declare a class, then use it in another class, then define it:

class Link; // Class declaration

class List
{
 ...
 Link* first;
};

class Link // Class definition
{
 ...
};

Continue with the definitions of global variables.
ofstream out; // The stream for the program output

Every global variable must have a comment explaining its purpose. Avoid global vari-
ables whenever possible. You may use at most two global variables in any one file.

Finally, list all functions, including member functions of classes and nonmember
functions. Order the nonmember functions so that a function is defined before it is
called. As a consequence, the main function will be the last function in your file.

954 APPENDIX A • C++ Language Coding Guidelines

Supply a comment of the following form for every function.
/**

Explanation.
 @param argument1 explanation
 @param argument2 explanation
 ...
 @return explanation
*/

The introductory explanation is required for all functions except main. It should
start with an uppercase letter and end with a period. Some documentation tools
extract the first sentence of the explanation into a summary table. Thus, if you pro-
vide an explanation that consists of multiple sentences, formulate the explanation
such that the first sentence is a concise explanation of the function’s purpose.

Omit the @param comment if the function takes no parameters. Omit the @return
comment for void functions. Here is a typical example.

/**
Converts calendar date into Julian day. This algorithm is from Press
et al., Numerical Recipes in C, 2nd ed., Cambridge University Press, 1992.

 @param year the year of the date to be converted
 @param month the month of the date to be converted
 @param day the day of the date to be converted
 @return the Julian day number that begins at noon of the given

calendar date
*/
long dat2jul(int year, int month, int day)
{
 ...
}

Parameter names must be explicit, especially if they are integers or Boolean.
Employee remove(int d, double s); // Huh?
Employee remove(int department, double severance_pay); // OK

Of course, for very generic functions, short names may be very appropriate.
Do not write void functions that return exactly one answer through a reference.

Instead, make the result into a return value.
void find(vector<Employee> c, bool& found); // Don’t!
bool find(vector<Employee> c); // OK

Of course, if the function computes more than one value, some or all results can be
returned through reference parameters.

Functions must have at most 30 lines of code. (Comments, blank lines, and lines
containing only braces are not included in this count.) Functions that consist of one
long if/else/else statement sequence may be longer, provided each branch is 10
lines or less. This rule forces you to break up complex computations into separate
functions.

Funct ions

APPENDIX A • C++ Language Coding Guidelines 955

Do not define all local variables at the beginning of a block. Define each variable
just before it is used for the first time.

Every variable must be either explicitly initialized when defined or set in the
immediately following statement (for example, through a >> instruction).

int pennies = 0;

or
int pennies;
cin >> pennies;

Move variables to the innermost block in which they are needed.
while (...)
{
 double xnew = (xold + a / xold) / 2;
 ...
}

Do not define two variables in one statement:
int dimes = 0, nickels = 0; // Don’t

When defining a pointer variable, place the * with the type, not the variable:
Link* p; // OK

not
Link *p; // Don’t

In C++, do not use #define to define constants:
#define CLOCK_RADIUS 5 // Don’t

Use const instead:
const double CLOCK_RADIUS = 5; // The radius of the clock face

You may not use magic numbers in your code. (A magic number is an integer con-
stant embedded in code without a constant definition.) Any number except 0, 1, or
2 is considered magic:

if (p.get_x() < 10) // Don’t

Use a const variable instead:
const double WINDOW_XMAX = 10;
if (p.get_x() < WINDOW_XMAX) // OK

Even the most reasonable cosmic constant is going to change one day. You think
there are 365 days per year? Your customers on Mars are going to be pretty
unhappy about your silly prejudice.

Loca l Var iab les

Const ants

956 APPENDIX A • C++ Language Coding Guidelines

Make a constant
const int DAYS_PER_YEAR = 365;

so that you can easily produce a Martian version without trying to find all the 365’s,
364’s, 366’s, 367’s, and so on in your code.

Lay out the items of a class as follows:
class ClassName
{
public:

constructors
mutators
accessors

private:
data

};

All data fields of classes must be private. Do not use friend, except for classes that
have no public member functions.

The if Statement
Avoid the “if...if...else” trap. The code

if (...)
 if (...) ...;
else
{
 ...;
 ...;
}

will not do what the indentation level suggests, and it can take hours to find such a
bug. Always use an extra pair of {...} when dealing with “if...if...else”:

if (...)
{
 if (...) ...;
} // {...} are necessary
else ...;

if (...)
{
 if (...) ...;
 else (...) ...;
} // {...} not necessary, but they keep you out of trouble

Classes

Contro l F low

APPENDIX A • C++ Language Coding Guidelines 957

The for Statement
Use for loops only when a variable runs from somewhere to somewhere else with
some constant increment/decrement.

for (int i = 0; i < a.size(); i++)
 print(a[i]);

Do not use the for loop for weird constructs such as
for (xnew = a / 2; count < ITERATIONS; cout << xnew) // Don’t
{
 xold = xnew;
 xnew = xold + a / xold;
 count++;
}

Make such a loop into a while loop, so the sequence of instructions is much clearer.
xnew = a / 2;
while (count < ITERATIONS) // OK
{
 xold = xnew;
 xnew = xold + a / xold;
 count++;
 cout << xnew;
}

A for loop traversing a linked list can be neat and intuitive:
for (p = a.begin(); p != a.end(); p++)
 cout << *p << "\n";

Nonlinear Control Flow
Don’t use the switch statement. Use if/else instead.

Do not use the break, continue, or goto statement. Use a bool variable to control
the execution flow.

Naming Conventions
The following rules specify when to use upper- and lowercase letters in identifier
names.

1. All variable and function names and all data fields of classes are in lowercase,
sometimes with an underscore in the middle. For example, first_player.

2. All constants are in uppercase, with an occasional underscore. For example,
CLOCK_RADIUS.

3. All class names start with uppercase and are followed by lowercase letters,
with an occasional uppercase letter in the middle. For example, BankTeller.

4. Template type parameters are in uppercase, usually a single letter.

Lex ica l Issues

958 APPENDIX A • C++ Language Coding Guidelines

Names must be reasonably long and descriptive. Use first_player instead of fp.
No drppng f vwls. Local variables that are fairly routine can be short (ch, i) as long
as they are really just boring holders for an input character, a loop counter, and so
on. Also, do not use ctr, c, cntr, cnt, c2 for five counter variables in your function.
Surely each of these variables has a specific purpose and can be named to remind the
reader of it (for example, ccurrent, cnext, cprevious, cnew, cresult). However, it is
customary to use single-letter names such as T for template type parameters.

Indentation and White Space
Use tab stops every three columns. Save your file so that it contains no tabs at all.
That means you will need to change the tab stop setting in your editor! In the edi-
tor, make sure to select “3 spaces per tab stop” and “save all tabs as spaces”. Every
programming editor has these settings. If yours doesn’t, don’t use tabs at all but
type the correct number of spaces to achieve indentation.

Use blank lines freely to separate logically distinct parts of a function.
Use a blank space around every binary operator:
x1 = (-b - sqrt(b * b - 4 * a * c)) / (2 * a); // Good
x1=(-b-sqrt(b*b-4*a*c))/(2*a); // Bad

Leave a blank space after (and not before) each comma, semicolon, and keyword,
but not after a function name.

if (x == 0) ...
f(a, b[i]);

Every line must fit in 80 columns. If you must break a statement, add an indentation
level for the continuation:

a[n] = ...
 +;

Start the indented line with an operator (if possible).
If a line break happens in an if or while condition, be sure to brace the body in,

even if it consists of only one statement:
if (..
 &&
 ||)
{
 ...
}

If it weren’t for the braces, it would be hard to distinguish the continuation of the
condition visually from the statement to be executed.

Braces
Opening and closing braces must line up, either horizontally or vertically.

while (i < n) { print(a[i]); i++; } // OK

APPENDIX A • C++ Language Coding Guidelines 959

while (i < n)
{
 print(a[i]);
 i++;
} // OK

Some programmers don’t line up vertical braces but place the { behind the while:
while (i < n) { // Don’t
 print(a[i]);
 i++;
}

This style saves a line, but it is difficult to match the braces.

Unstable Layout
Some programmers take great pride in lining up certain columns in their code:

class Employee
{
 ...
private:
 string name;
 int age;
 double hourly_wage;
 Time start_time;
};

This is undeniably neat, and we recommend it if your editor does it for you, but
don’t do it manually. The layout is not stable under change. A data type that is
longer than the preallotted number of columns requires that you move all entries
around.

Some programmers like to format multiline comments so that every line starts
with **:

/* This is a comment
** that extends over
** three source lines
*/

Again, this is neat if your editor has a command to add and remove the asterisks,
and if you know that all programmers who will maintain your code also have such
an editor. Otherwise, it can be a powerful method of discouraging programmers
from editing the comment. If you have to choose between pretty comments and
comments that reflect the current facts of the program, facts win over beauty.

Appendix B
Keyword Summary

Keyword Description Reference Location

asm Insert assembly instructions Not covered

auto Define a local variable (optional) Not covered

bool The Boolean type Section 3.5

break Break out of a loop or switch Advanced Topic 3.4

case A label in a switch statement Advanced Topic 3.2

catch A handler of an exception Section 17.3

char The character type Section 6.5.3

class Definition of a class Section 5.2

const Definition of a constant value, reference, member
function, or pointer

Section 2.4, Advanced
Topic 4.2, Section 5.4,
Section 7.4

const_cast Cast away const-ness Not covered

continue Jump to the next iteration of a loop Not covered

default The default case of a switch statement Advanced Topic 3.2

delete Return a memory block to the heap Section 7.2

APPENDIX B • Keyword Summary 961

Keyword Description Reference Location

do A loop that is executed at least once Section 3.8

double The double-precision, floating-point type Section 2.1

dynamic_cast A cast to a derived class that is checked at run time Section 19.3

else The alternative clause in an if statement Section 3.1

enum Definition of an enumerated type Advanced Topic 2.5

explicit A constructor that is not a type converter Advanced Topic 14.4

export Export a template to other modules Not covered

extern A global variable or function defined in
another module

Section 5.9

false The false Boolean value Section 3.5

float The single-precision, floating-point type Advanced Topic 2.1

for A loop that is intended to initialize, test, and update
a variable

Section 3.7

friend Allows another class or function to access the
private features of this class

Section 18.4

goto Jump to another location in a function Not covered

if The conditional branch statement Section 3.1

inline A function whose body is inserted into the
calling code

Advanced Topic 14.6

int The integer type Section 2.1

long A modifier for the int and double types that
indicates that the type may have more bytes

Advanced Topic 2.1,
Appendix F

mutable A data field that may be modified by a constant
member function

Not covered

namespace A name space for disambiguating names, or a
declaration of an alias

Section 18.7

new Allocate a memory block from the heap Section 7.1

operator An overloaded operator Section 14.1

private Features of a class that can only be accessed by this
class and its friends

Section 5.2

962 APPENDIX B • Keyword Summary

Keyword Description Reference Location

protected Features that can only be accessed by this class and
its friends and subclasses

Advanced Topic 8.1,
Section 18.3

public Features of a class that can be accessed by
all functions

Section 5.2

register A recommendation to place a local variable in a
processor register

Not covered

reinterpret_cast A cast that reinterprets a value in a nonportable way Not covered

return Returns a value from a function Section 4.4

short A modifier for the int type that indicates that the
type may have fewer bytes

Appendix F

signed A modifier for the int and char types that indicates
that values of the type can be negative

Appendix F

sizeof The size of a value or type, in bytes Not covered

static A global variable that is private to a module, or a
local variable that persists between function calls, or
a class feature that does not vary among instances

Section 18.2

static_cast Convert from one type to another Advanced Topic 2.2,
Section 19.3

struct Defines a class type whose features are public
by default

Not covered

switch A statement that selects among multiple branches,
depending upon the value of an expression

Advanced Topic 3.2

template Defines a parameterized type or function Chapter 16

this The pointer to the implicit parameter of a member
function

Advanced Topic 7.1

throw Throw an exception Section 17.3

true The true value of the Boolean type Section 3.5

try Execute a block and catch exceptions Section 17.3

typedef Defines a type synonym Section 7.6

typeid Gets the type_info object of a value or type Section 19.3

typename A type parameter in a template Section 16.1

APPENDIX B • Keyword Summary 963

Keyword Description Reference Location

union Multiple fields that share the same memory region Not covered

unsigned A modifier for the int and char types that indicates
that values of the type cannot be negative

Appendix F

using Importing a name space into a module Section 18.7

virtual A member function with dynamic dispatch, or a
shared base class

Section 8.4, Section 19.4

void The empty type of a function or pointer Section 4.8

volatile A variable whose value can change through actions
that are not defined in a function

Not covered

wchar_t The 16-bit wide character type Not covered

while A loop statement that is controlled by a condition Section 3.6

Appendix C
Operator
Summary

The operators are listed in groups of decreasing precedence in the table on the
following pages. The horizontal lines in the table indicate a change in operator pre-
cedence. For example,

z = x - y;

means
z = (x - y);

because = has a lower precedence than -.
The prefix unary operators and the assignment operators associate right-to-left.

All other operators associate left-to-right. For example,
x - y - z

means
(x - y) - z

because - associates left-to-right, but
x = y = z

means
x = (y = z)

because = associates right-to-left.

APPENDIX C • Operator Summary 965

Operator Description Reference Location

:: Scope resolution Section 5.4

. Access member Section 2.6

-> Dereference and access member Section 7.1

[] Vector or array subscript Section 6.1,
Section 14.9

() Function call Section 2.5,
Section 14.10

++ Increment Section 2.3

-- Decrement Section 2.3

! Boolean NOT Section 3.5

~ Bitwise NOT Appendix G

+ (unary) Positive Section 14.3

- (unary) Negative Section 2.5,
Section 14.3

* (unary) Pointer dereferencing Section 7.1

& (unary) Address of variable Advanced Topic 7.2,
Section 14.3

new Heap allocation Section 7.1

delete Heap recycling Section 7.2

sizeof Size of variable or type Not covered

(type) Cast Advanced Topic 2.2

.* Access pointer to member Advanced Topic 14.4

->* Dereference and access pointer to member Advanced Topic 14.4

* Multiplication Section 2.5

/ Division or integer division Section 2.5

% Integer remainder Section 2.5

966 APPENDIX C • Operator Summary

Operator Description Reference Location

+ Addition Section 2.5

- Subtraction Section 2.5

<< Output (or bitwise shift) Section 2.2,
Appendix G

>> Input (or bitwise shift) Section 2.2,
Appendix G

< Less than Section 3.2

<= Less than or equal Section 3.2

> Greater than Section 3.2

>= Greater than or equal Section 3.2

== Equal Section 3.2

!= Not equal Section 3.2

& Bitwise AND Appendix G

^ Bitwise XOR Appendix G

| Bitwise OR Appendix G

&& Boolean AND Section 3.5,
Appendix G

|| Boolean OR Section 3.5,
Appendix G

? : Selection Advanced Topic 3.1

= Assignment Section 2.3

+= -= *=
/= %= &=
|= ̂ = >>=

<<=

Combined operator and assignment Advanced Topic 2.3,
Section 14.7

, Sequencing of expressions Advanced Topic 14.4

Appendix D
Character Codes

These escape sequences can occur in strings (for example, "\n") and characters for
example, '\'').

Escape Sequence Description

\n Newline

\r Carriage return

\t Tab

\v Vertical tab

\b Backspace

\f Form feed

\a Alert

\\ Backslash

\" Double quote

\' Single quote

\? Question mark

\xh1h2 Code specified in hexadecimal

\o1o2o3 Code specified in octal

968 APPENDIX D • Character Codes

ASCII Code Table

Dec.
Code

Hex
Code

Char-
acter

Dec.
Code

Hex
Code

Char-
acter

Dec.
Code

Hex
Code

Char-
acter

Dec.
Code

Hex
Code

Char-
acter

0 00 32 20 Space 64 40 @ 96 60 ‘

1 01 33 21 ! 65 41 A 97 61 a

2 02 34 22 " 66 42 B 98 62 b

3 03 35 23 # 67 43 C 99 63 c

4 04 36 24 $ 68 44 D 100 64 d

5 05 37 25 % 69 45 E 101 65 e

6 06 38 26 & 70 46 F 102 66 f

7 07 \a 39 27 ' 71 47 G 103 67 g

8 08 \b 40 28 (72 48 H 104 68 h

9 09 \t 41 29) 73 49 I 105 69 i

10 0A \n 42 2A * 74 4A J 106 6A j

11 0B \v 43 2B + 75 4B K 107 6B k

12 0C \f 44 2C , 76 4C L 108 6C l

13 0D \r 45 2D - 77 4D M 109 6D m

14 0E 46 2E . 78 4E N 110 6E n

15 0F 47 2F / 79 4F O 111 6F o

16 10 48 30 0 80 50 P 112 70 p

17 11 49 31 1 81 51 Q 113 71 q

18 12 50 32 2 82 52 R 114 72 r

19 13 51 33 3 83 53 S 115 73 s

20 14 52 34 4 84 54 T 116 74 t

21 15 53 35 5 85 55 U 117 75 u

22 16 54 36 6 86 56 V 118 76 v

23 17 55 37 7 87 57 W 119 77 w

24 18 56 38 8 88 58 X 120 78 x

25 19 57 39 9 89 59 Y 121 79 y

26 1A 58 3A : 90 5A Z 122 7A z

27 1B 59 3B ; 91 5B [123 7B {

28 1C 60 3C < 92 5C \ 124 7C |

29 1D 61 3D = 93 5D] 125 7D }

30 1E 62 3E > 94 5E ^ 126 7E ~

31 1F 63 3F ? 95 5F _ 127 7F

Appendix E
C++ Library

Summary

<cmath>

• double sqrt(double x)

Function: Square root,
• double pow(double x, double y)

Function: Power, xy. If x > 0, y can be any value. If x is 0, y must be > 0.
If x < 0, y must be an integer.

• double sin(double x)

Function: Sine, sin x (x in radians)
• double cos(double x)

Function: Cosine, cos x (x in radians)
• double tan(double x)

Function: Tangent, tan x (x in radians)
• double asin(double x)

Function:
• double acos(double x)

Function:
• double atan(double x)

Function:
• double atan2(double y, double x)

Function:
• double exp(double x)

Function: Exponential, ex

• double log(double x)

Function: Natural log, ln (x), x > 0

Standard Code L ibrar ies

S
ta

n
d

a
rd

 C
o
d

e
 L

ib
ra

rie
s

x

Arc sine, sin , , ,− ∈ −⎡⎣ ⎤⎦ ∈ −⎡⎣ ⎤⎦
1 2 2 1 1x xπ π

Arc cosine, cos , , ,− ∈ ⎡⎣ ⎤⎦ ∈ −⎡⎣ ⎤⎦
1 0 1 1x xπ

Arc tangent, tan ,− ∈ −()1 2 2x π π

Arc tangent may b, tan , ,− () ∈ −⎡⎣ ⎤⎦
1 2 2y x xπ π ee 0

970 APPENDIX E • C++ Library Summary

• double log10(double x)

Function: Decimal log, log10 (x), x > 0
• double sinh(double x)

Function: Hyperbolic sine, sinh x
• double cosh(double x)

Function: Hyperbolic cosine, cosh x
• double tanh(double x)

Function: Hyperbolic tangent, tanh x
• double ceil(double x)

Function: Smallest integer ≥ x
• double floor(double x)

Function: Largest integer ≤ x
• double fabs(double x)

Function: Absolute value, |x |

<cstdlib>

• int abs(int x)

Function: Absolute value, |x |
• int rand()

Function: Random integer
• void srand(int n)

Function: Sets the seed of the random number generator to n.
• void exit(int n)

Function: Exits the program with status code n.

<cctype>

• bool isalpha(char c)

Function: Tests whether c is a letter.
• char isalnum(char c)

Function: Test whether c is a letter or a number.
• bool isdigit(char c)

Function: Tests whether c is a digit.
• bool isspace(char c)

Function: Tests whether c is white space.
• bool islower(char c)

Function: Tests whether c is lowercase.
• bool isupper(char c)

Function: Tests whether c is uppercase.
• char tolower(char c)

Function: Returns the lowercase of c.
• char toupper(char c)

Function: Returns the uppercase of c.

S
ta

n
d

a
rd

 C
o
d

e
 L

ib
ra

ri
e
s

APPENDIX E • C++ Library Summary 971

<ctime>

• time_t time(time_t* p)

Function: Returns the number of seconds since January 1, 1970, 00:00:00 GMT. If p is not
NULL, the return value is also stored in the location to which p points.

<string>

• istream& getline(istream& in, string s)

Function: Gets the next input line from the input stream in and stores it in the string s.

Class string
• int string::length() const

Member function: The length of the string.
• string string::substr(int i, int n) const

Member function: The substring of length n starting at index i.
• string string::substr(int i) const

Member function: The substring from index i to the end of the string.
• const char* string::c_str() const

Member function: A char array with the characters in this string.

<iostream>

Class istream
• bool istream::fail() const

Function: True if input has failed.
• istream& istream::get(char& c)

Function: Gets the next character and places it into c.
• istream& istream::unget()

Function: Puts the last character read back into the stream, to be read again in the next
input operation; only one character can be put back at a time.

• istream& istream::seekg(long p)

Function: Moves the get position to position p.
• istream& istream::seekg(long n, int f)

Function: Moves the get position by n. f is one of ios::beg, ios::cur, ios::end.
• long istream::tellg()

Function: Returns the get position.

Class ostream
• ostream& ostream::seekp(long p)

Function: Moves the put position to position p.
• ostream& ostream::seekp(long n, int f)

Function: Moves the put position by n. f is one of ios::beg, ios::cur, ios::end.
• long ostream::tellp()

Function: Returns the put position.

S
ta

n
d

a
rd

 C
o
d

e
 L

ib
ra

rie
s

972 APPENDIX E • C++ Library Summary

Class ios
• ios::left

Flag: Left alignment.
• ios::right

Flag: Right alignment.
• ios::internal

Flag: Sign left, remainder right.
• ios::dec

Flag: Decimal base.
• ios::hex

Flag: Hexadecimal base.
• ios::oct

Flag: Octal base.
• ios::showbase

Flag: Show base (as 0x or 0 prefix).
• ios::uppercase

Flag: Uppercase E, X, and hex digits A...F.
• ios::fixed

Flag: Fixed floating-point format.
• ios::scientific

Flag: Scientific floating-point format.
• ios::showpoint

Flag: Show trailing decimal point and zeroes.
• ios::beg

Flag: Seek relative to the beginning of the file.
• ios::cur

Flag: Seek relative to the current position.
• ios::end

Flag: Seek relative to the end of the file.

Note: • Use setfill('0') in combination with setw to show leading zeroes.

<iomanip>

• setw(int n)

Manipulator: Sets the width of the next field.
• setprecision(int n)

Manipulator: Sets the precision of floating-point values to n digits after the decimal point.
• fixed

Manipulator: Selects fixed floating-point format, with trailing zeroes.
• scientific

Manipulator: Selects scientific floating-point format, with exponential notation.
• setiosflags(int flags)

Manipulator: Sets one or more flags. Flags are listed below.

S
ta

n
d

a
rd

 C
o
d

e
 L

ib
ra

ri
e
s

APPENDIX E • C++ Library Summary 973

• resetiosflags(int flags)

Manipulator: Resets one or more flags. Flags are listed below.
• setfill(char c)

Manipulator: Sets the fill character to the character c.
• setbase(int n)

Manipulator: Sets the number base for integers to base n.
• hex

Manipulator: Sets hexadecimal integer format.
• oct

Manipulator: Sets octal integer format.
• dec

Manipulator: Sets decimal integer format.

<fstream>

Class ifstream
• void ifstream::open(const char n[])

Function: Opens a file with name n for reading.

Class ofstream
• void ofstream::open(const char n[])

Function: Opens a file with name n for writing.

Class fstream
• void fstream::open(const char n[])

Function: Opens a file with name n for reading and writing.

Class fstreambase
• void fstreambase::close()

Function: Closes the file stream.

Note: • fstreambase is the common base class of ifstream, ofstream, and fstream.
• To open a binary file both for input and output, use f.open(n, ios::in |

ios::out ios::binary)

<sstream>

Class istringstream
• istringstream::istringstream(string s)

Constructs a string stream that reads from the string s.

Class ostringstream
• string ostringstream::str() const

Function: Returns the string that was collected by the string stream.

Note: • Call istringstream(s.c_str()) to construct an istringstream.
• Call s = string(out.str()) to get a string object that contains the characters

collected by the ostringstream out.

S
ta

n
d

a
rd

 C
o
d

e
 L

ib
ra

rie
s

974 APPENDIX E • C++ Library Summary

All STL Containers, C
Note: • C is any STL container such as vector<T>, list<T>, set<T>, multiset<T>, or

map<T>.
• int C::size() const

Function: The number of elements in the container.
• C::iterator C::begin()

Function: Gets an iterator that points to the first element in the container.
• C::iterator C::end()

Function: Gets an iterator that points past the last element in the container.
• bool C::empty() const

Function: Tests if the container has any elements.

<vector>

Class vector<T>
• vector<T>::vector(int n)

Function: Constructs a vector with n elements.
• void vector<T>::push_back(const T& x)

Function: Inserts x after the last element.
• void vector<T>::pop_back()

Function: Removes (but does not return) the last element.
• T& vector<T>::operator[](int n)

Function: Accesses the element at index n.
• T& vector<T>::at(int n)

Function: Accesses the element at index n, checking that the index is in range.
• vector<T>::iterator vector<T>::insert(vector<T>::iterator p, const T& x)

Function: Inserts x before p. Returns an iterator that points to the inserted value.
• vector<T>::iterator vector<T>::erase(vector<T>::iterator p)

Function: Erases the element to which p points. Returns an iterator that points to the next
element.

• vector<T>::iterator vector<T>::erase(
 vector<T>::iterator begin, vector<T>::iterator end)

Function: Erases all the elements between the start and the stop iterator. Returns an itera-
tor that points to the next element.

<deque>

Class deque<T>
• void deque<T>::push_back(const T& x)

Function: Inserts x after the last element.

Conta iners

C
o
n

ta
in

e
rs

APPENDIX E • C++ Library Summary 975

• void deque<T>::pop_back()

Function: Removes (but does not return) the last element.
• void deque<T>::push_front(const T& x)

Function: Inserts x before the first element.
• void deque<T>::pop_front()

Function: Removes (but does not return) the first element.
• T& deque<T>::front()

Function: The first element of the container.
• T& deque<T>::back()

Function: The last element of the container.
• T& deque<T>::operator[](int n)

Function: Access the element at index n.
• T& deque<T>::at(int n)

Function: Access the element at index n, checking index.
• deque<T>::iterator deque<T>::erase(deque<T>::iterator p)

Function: Erases the element to which p points. Returns an iterator that points to the
next element.

• deque<T>::iterator deque<T>::erase(
 deque<T>::iterator begin, deque<T>::iterator end)

Function: Erases all the elements between the start and the stop iterator. Returns
an iterator that points to the next element.

<list>

Class list<T>
• void list<T>::push_back(const T& x)

Function: Inserts x after the last element.
• void list<T>::pop_back()

Function: Removes (but does not return) the last element.
• void list<T>::push_front(const T& x)

Function: Inserts x before the first element.
• void list<T>::pop_front()

Function: Removes (but does not return) the first element.
• T& list<T>::front()

Function: The first element of the container.
• T& list<T>::back()

Function: The last element of the container.
• list<T>::iterator list<T>::insert(list<T>::iterator p, const T& x)

Function: Inserts x before p. Returns an iterator that points to the inserted value.
• list<T>::iterator list<T>::erase(list<T>::iterator p)

Function: Erases the element to which p points. Returns an iterator that points to the next
element.

C
o
n

ta
in

e
rs

976 APPENDIX E • C++ Library Summary

• list<T>::iterator list<T>::erase(list<T>::iterator begin, list<T>::iterator end)

Function: Erases all the elements between the start and the stop iterator. Returns an itera-
tor that points to the next element.

• void sort()

Function: Sorts the list into ascending order.
• void merge(list<T>& x)

Function: Merges elements with the sorted list x.

<set>

Class set<T>
• pair< set<T>::iterator, bool > set<T>::insert(const T& x)

Function: If x is not present in the list, inserts it and returns an iterator that points to the
newly inserted element and the Boolean value true. If x is present, returns an iterator
pointing to the existing set element and the Boolean value false.

• int set<T>::erase(const T& x)

Function: Removes x and returns 1 if it occurs in the set; returns 0 otherwise.
• void set<T>::erase(set<T>::iterator p)

Function: Erases the element at the given position.
• int set<T>::count(const T& x) const

Function: Returns 1 if x occurs in the set; returns 0 otherwise.
• set<T>::iterator set<T>::find(const T& x)

Returns an iterator to the element equal to x in the set, or end() if no such element exists.

Note: • The type T must be totally ordered by a < comparison operator.

<multiset>

Class multiset<T>
• multiset<T>::iterator multiset<T>::insert(const T& x)

Function: Inserts x into the container. Returns an iterator that points to the inserted value.
• int multiset<T>::erase(const T& x)

Function: Removes all occurrences of x. Returns the number of removed elements.
• void multiset<T>::erase(multiset<T>::iterator p)

Function: Erases the element at the given position.
• int multiset<T>::count(const T& x) const

Function: Counts the elements equal to x.
• multiset<T>::iterator multiset<T>::find(const T& x)

Function: Returns an iterator to an element equal to x, or end() if no such element exists.

Note: • The type T must be totally ordered by a < comparison operator.

C
o
n

ta
in

e
rs

APPENDIX E • C++ Library Summary 977

<map>

Class map<K, V>
• V& map<K, V>::operator[](const K& k)

Function: Accesses the value with key k.
• int map<K, V>::erase(const K& k)

Function: Removes all occurrences of elements with key k. Returns the number of
removed elements.

• void map<K, V>::erase(map<K, V>::iterator p)

Function: Erases the element at the given position.
• int map<K, V>::count(const K& k) const

Function: Counts the elements with key k.
• map<K, V>::iterator map<K, V>::find(const K& k)

Function: Returns an iterator to an element with key k, or end() if no such element exists.

Note: • The key type K must be totally ordered by a < comparison operator.
• A map iterator points to pair<K, V> entries.

Class multimap<K, V>
• multimap<K, V>::iterator multimap<K, V>::insert(const pair<K, V>& kvpair)

Function: Inserts a key/value pair and returns an iterator pointing to the inserted pair.
• void multimap<K, V>::erase(multimap<K, V>::iterator pos)

Function: Erases the key/value pair at the position pos.
• multimap<K, V>::iterator multimap<K, V>::lower-bound(const K& k)

• multimap<K, V>::iterator multimap<K, V>::upper-bound(const K& k)

Function: Returns the position of the first and after the last key/value pair with key k.

<stack>

Class stack<T>
• T& stack<T>::top()

Function: The value at the top of the stack.
• void stack<T>::push(const T& x)

Function: Adds x to the top of the stack.
• void stack<T>::pop()

Function: Removes (but does not return) the top value of the stack.

<queue>

Class queue<T>
• T& queue<T>::front()

Function: The value at the front of the queue.
• T& queue<T>::back()

Function: The value at the back of the queue.
• void queue<T>::push(const T& x)

Function: Adds x to the back of the queue.

C
o
n

ta
in

e
rs

978 APPENDIX E • C++ Library Summary

• void queue<T>::pop()

Function: Removes (but does not return) the front value of the queue.
• T& priority_queue<T>::top()

Function: The largest value in the container.
• void priority_queue<T>::push(const T& x)

Function: Adds x to the container.
• void priority_queue<T>::pop()

Function: Removes (but does not return) the largest value in the container.

<utility>

Class pair
• pair<F, S>::pair(const F& f, const F& s)

Constructs a pair from a first and second value.
• F pair<F, S>::first

The public field holding the first value of the pair.
• S pair<F, S>::second

The public field holding the second value of the pair.

<algorithm>

• T min(T x, T y)

Function: The minimum of x and y.
• T max(T x, T y)

Function: The maximum of x and y.
• void swap(T& a, T& b)

Function: Swaps the contents of a and b.
• I min_element(I begin, I end)

Function: Returns an iterator pointing to the minimum element in the iterator range
[begin, end).

• I max_element(I begin, I end)

Function: Returns an iterator pointing to the maximum element in the iterator range
[begin, end).

• F for_each(I begin, I end, F f)

Function: Applies the function f to all elements in the iterator range [begin, end).
Returns f.

• I find(I begin, I end, T x)

Function: Returns the iterator pointing to the first occurrence of x in the iterator range
[begin, end), or end if there is no match.

C
o
n

ta
in

e
rs

Algor i thms

A
lg

o
ri

th
m

s

APPENDIX E • C++ Library Summary 979

• I find_if(I begin, I end, F f)

Function: Returns the iterator pointing to the first element x in the iterator range [begin,
end) for which f(x) is true, or end if there is no match.

• int count(I begin, I end, T x)

Function: Counts how many values in the iterator range [begin, end) are equal to x.
• int count_if(I begin, I end, F f)

Function: Counts for how many values x in the iterator range [begin, end) f(x) is true.
• bool equal(I1 begin1, I1 end1, I2 begin2)

Function: Tests whether the range [begin1, end1) equals the range of the same size start-
ing at begin2.

• I2 copy(I1 begin1, I1 end1, I2 begin2)

Function: Copies the range [begin1, end1) to the range of the same size starting at
begin2. Returns the iterator past the end of the destination of the copy.

• void replace(I begin, I end, T xold, T xnew)

Function: Replaces all occurrences of xold in the range [begin, end) with xnew.
• void replace_if(I begin, I end, F f, T xnew)

Function: Replaces all values x in the range [begin, end) for which f(x) is true with xnew.
• void fill(I begin, I end, T x)

Function: Fills the range [begin, end) with x.
• void fill(I begin, int n, T x)

Function: Fills n copies of x into the range that starts at begin.
• I remove(I begin, I end, T x)

Function: Removes all occurrences of x in the range [begin, end). Returns the end of the
resulting range.

• I remove_if(I begin, I end, F f)

Function: Removes all values x in the range [begin, end) for which f(x) is true. Returns
the end of the resulting range.

• I unique(I begin, I end)

Function: Removes adjacent identical values from the range [begin, end). Returns the
end of the resulting range.

• void random_shuffle(I begin, I end)

Function: Randomly rearranges the elements in the range [begin, end).
• void next_permutation(I begin, I end)

Function: Rearranges the elements in the range [begin, end). Calling it n! times iterates
through all permutations.

• void sort(I begin, I end)

Function: Sorts the elements in the range [begin, end).
• I nth_element(I begin, I end, int n)

Function: Returns an iterator that points to the value that would be the nth element if the
range [begin, end) was sorted.

• bool binary_search(I begin, I end, T x)

Function: Checks whether the value x is contained in the sorted range [begin, end).

A
lg

o
rith

m
s

980 APPENDIX E • C++ Library Summary

<stdexcept>

Class exception
Base class for all standard exceptions.

Class logic_error
An error that logically results from conditions in the program.

Class domain_error
A value is not in the domain of a function.

Class invalid_argument
A parameter value is invalid.

Class out_of_range
A value is outside the valid range.

Class length_error
A value exceeds the maximum length.

Class runtime_error
An error that occurs as a consequence of conditions beyond the control of the program.

Class range_error
An operation computes a value that is outside the range of a function.

Class overflow_error
An operation yields an arithmetic overflow.

Class underflow_error
An operation yields an arithmetic underflow.

Note: • All standard exception classes have a constructor:
ExceptionClass::ExceptionClass(string reason)

• The exception class has a member function to retrieve the reason for the
exception: const char* exception::what() const

"ccc_time.h"

Class Time
• Time::Time()

Constructs the current time.
• Time::Time(int h, int m, int s)

Constructs the time with hours h, minutes m, and seconds s.
• int Time::get_seconds() const

Function: Returns the seconds value of this time.

Except ions

E
xc

e
p

ti
o
n

s

Book L ibrary

B
o
o
k
 L

ib
ra

ry

APPENDIX E • C++ Library Summary 981

• int Time::get_minutes() const

Function: Returns the minutes value of this time.
• int Time::get_hours() const

Function: Returns the hours value of this time.
• void Time::add_seconds(int n)

Function: Changes this time to move by n seconds.
• int Time::seconds_from(t) const

Function: Computes the number of seconds between this time and t.

"ccc_empl.h"

Class Employee
• Employee::Employee(string n, double s)

Function: Constructs an employee with name n and salary s.
• string Employee::get_name() const

Function: Returns the name of this employee.
• double Employee::get_salary() const

Function: Returns the salary of this employee.
• void Employee::set_salary(double s)

Function: Sets the salary of this employee to s.

"ccc_win.h"

Class GraphicWindow
• void GraphicWindow::coord(double x1, double y1, double x2, double y2)

Function: Sets the coordinate system for subsequent drawing; (x1, y1) is the top-left
corner, (x2, y2) is the bottom-right corner.

• void GraphicWindow::clear()

Function: Clears the window (that is, erases its contents).
• string GraphicWindow::get_string(string p)

Function: Displays prompt p and returns the entered string.
• int GraphicWindow::get_int(string p)

Function: Displays prompt p and returns the entered integer.
• double GraphicWindow::get_double(string p)

Function: Displays prompt p and returns the entered value.
• Point GraphicWindow::get_mouse(string p)

Function: Displays prompt p and returns the mouse-click point.

Class Point
• Point::Point(double x, double y)

Constructs a point at location (x, y).
• double Point::get_x() const

Function: Returns the x-coordinate of the point.

B
o
o
k
 L

ib
ra

ry

982 APPENDIX E • C++ Library Summary

• double Point::get_y() const

Function: Returns the y-coordinate of the point.
• void Point::move(double dx, double dy)

Function: Moves the point by (dx, dy).

Class Circle
• Circle::Circle(Point p, double r)

Constructs a circle with center p and radius r.
• Point Circle::get_center() const

Function: Returns the center point of the circle.
• double Circle::get_radius() const

Function: Returns the radius of the circle.
• void Circle::move(double dx, double dy)

Function: Moves the circle by (dx, dy).

Class Line
• Line::Line(Point p, Point q)

Constructs a line joining the points p and q.
• Point Line::get_start() const

Function: Returns the starting point of the line.
• Point Line::get_end() const

Function: Returns the ending point of the line.
• void Line::move(double dx, double dy)

Function: Moves the line by (dx, dy).

Class Message
• Message::Message(Point p, string s)

Constructs a message with starting point p and text string s.
• Message::Message(Point p, double x)

Constructs a message with starting point p and label equal to the number x.
• Point Message::get_start() const

Function: Returns the starting point of the message.
• string Message::get_text() const

Function: Gets the text string of the message.
• void Message::move(double dx, double dy)

Function: Moves the message by (dx, dy).

B
o
o
k
 L

ib
ra

ry

APPENDIX E • C++ Library Summary 983

<wx/wx.h>

Class wxApp
• bool wxApp::OnInit()

Function: Overrides this function to initialize the application. Returns true to continue,
false to terminate.

Class wxFrame
• wxFrame::wxFrame(wxWindow* parent,wxWindowID id, const wxString& title)

Constructs a frame. Use NULL if the frame has no parent and –1 for a default ID.
• void wxFrame::SetMenuBar(wxMenuBar* menu_bar)

Function: Sets the menu bar.

Class wxWindow
• void wxWindow::Show(bool b)

Function: If b is true, shows the window. Otherwise, hides the window.
• wxSize wxWindow::GetSize() const

Function: Gets the size of the window in pixels.
• void wxWindow::Refresh()

Function: Causes the window to be repainted.
• void wxWindow::SetAutoLayout(bool b)

Function: If b is true, the window is automatically laid out whenever it is resized.
• void wxWindow::setSizer(wxSizer* sizer)

Function: Sets a sizer to lay out the controls in this window.
• bool wxWindow::Destroy()

Function: Deletes this window and its children. Returns true if the window is destroyed
immediately, false if the window will be destroyed later.

Note: • wxWindow is the common base class of wxFrame, wxPanel, and wxDialog.

Class wxTextCtrl
• wxTextCtrl::wxTextCtrl(wxWindow* parent, int id)

Constructs a single-line text control with the given parent and ID. Use –1 for a
default ID.

• wxTextCtrl::wxTextCtrl(wxWindow* parent, int id, const wxString& value,
 const wxPoint& pos, const wxSize& size, long style)

Constructs a text control. Use –1 for a default ID, wxDefaultPosition and wxDefaultSize
for default position and size, and a style of wxTE_MULTILINE to display multiple lines
of text.

• void wxTextCtrl::AppendText(const wxString& text)

Function: Appends text to this text control.

wxWidgets L ibrary

w
x
W
i
d
g
e
t
s
 L

ib
ra

ry

984 APPENDIX E • C++ Library Summary

Class wxStaticText
• wxStaticText::wxStaticText(wxWindow* parent, int id, const wxString& text)

Constructs a static text control. Use –1 for a default ID.

Class wxMenu
• wxMenu::wxMenu()

Constructs an empty menu.
• void wxMenu::Append(int id, const wxString& item)

Function: Appends a menu item with the given ID.
• void wxMenu::Append(int id, const wxString& name, wxMenu* sub_menu)

Function: Appends a submenu with the given name. You can use –1 for the ID.

Class wxMenuBar
• wxMenuBar::wxMenuBar()

Constructs an empty menu bar.
• void wxMenu::Append(wxMenu* menu, const wxString& name)

Function: Appends a menu with the given name.

Class wxButton
• wxButton::wxButton(wxWindow* parent, int id, const wxString& name)

Constructs a button.

Class wxBoxSizer
• wxBoxSizer::wxBoxSizer(int orientation)

Constructs a box sizer that lays out components in one direction. orientation is
wxHORIZONTAL or wxVERTICAL.

Class wxFlexGridSizer
• wxFlexGridSizer::wxFlexGridSizer(int columns)

Constructs a sizer that arranges its children into rows and columns.

Class wxSizer
• void wxSizer::Add(wxWindow* window)

Function: Adds the given window to this sizer.
• void wxSizer::Add(wxSizer* item, int option, int flag)

Function: Adds a control or child sizer to a sizer. The option parameter is relevant for
wxBoxSizer only; it is a weight that indicates the growth relative to the other item weights.
The flag should be wxGROW, wxALIGN_CENTER, wxALIGN_LEFT, wxALIGN_TOP, wxALIGN_RIGHT,
or wxALIGN_BOTTOM.

• void wxSizer::Fit(wxWindow* window)

Function: Fits the window to match the sizer’s minimum size.

Class wxPaintDC
• wxPaintDC::wxPaintDC(wxWindow* window)

Constructs a paint device context for the given window.

w
x
W
i
d
g
e
t
s
 L

ib
ra

ry

APPENDIX E • C++ Library Summary 985

Class wxDC
• void wxDC::SetBrush(const wxBrush& brush)

Function: Sets the brush that is used for filling areas. Use *wxTRANSPARENT_BRUSH to turn
off filling.

• void wxDC::DrawLine(int x1, int x2, int y1, int y2)

Function: Draws a line from (x1, y1) to (x2, y2).
• void wxDC::DrawEllipse(int x, int y, int width, int height)

Function: Draws an ellipse whose bounding box has top-left corner (x, y) and the given
width and height.

• void wxDC::DrawText(int x, int y, const wxString& text)

Function: Draws text whose top-left corner is at (x, y).

Class wxMouseEvent
• wxPoint wxMouseEvent::GetPosition() const

Function: Gets the mouse position of this event.
• bool wxMouseEvent::ButtonDown()

Function: Returns true if this is a button down event.
• bool wxMouseEvent::ButtonUp()

Function: Returns true if this is a button up event.
• bool wxMouseEvent::Moving()

Function: Returns true if this is a motion event (no button down).
• bool wxMouseEvent::Dragging()

Function: Returns true if this is a drag event (moving with button down).

Class wxMessageDialog
• wxMessageDialog::wxMessageDialog(wxWindow* parent, const wxString& message)

Constructs a dialog that displays a message.

Class wxTextEntryDialog
• wxTextEntryDialog::wxTextEntryDialog(wxWindow* parent, const wxString& prompt)

Constructs a dialog that prompts the user to enter a text string.
• wxString wxTextEntryDialog::GetValue() const

Function: Gets the value that the user supplied.

Class wxDialog
• wxDialog::wxDialog(wxWindow* parent, int id, const wxString& title)

Constructs a dialog. Use –1 for a default ID.
• bool wxDialog::ShowModal()

Function: Shows the dialog and waits until the user accepts or cancels it. Returns true if
the user accepts the dialog.

Class wxString
• wxString::wxString(const char* s)

Constructs a wxString from a character array.
• const char* wxString::c_str() const

Function: Returns the character array contained in this wxString.

w
x
W
i
d
g
e
t
s
 L

ib
ra

ry

986 APPENDIX E • C++ Library Summary

Class wxSize
• int wxSize::GetWidth() const

Function: Gets the width of this size.
• int wxSize::GetHeight() const

Function: Gets the height of this size.

Class wxPoint
• int wxPoint::x

The public field containing the x-value.
• int wxPoint::y

The public field containing the y-value.
• DECLARE_APP(AppClass)

Macro: Place in header file of AppClass. The class must inherit from wxApp.
• IMPLEMENT_APP(AppClass)

Macro: Place in source file of AppClass.
• DECLARE_EVENT_TABLE()

Macro: Place in class that contains event handler functions.
• BEGIN_EVENT_TABLE(Class, BaseClass)

Macro: Begins defining event handlers.
• END_EVENT_TABLE()

Macro: Ends defining event handlers.
• EVT_MENU(id, Class::function)

Macro: Declares a menu event handler. The function must have the form
void Class::function(wxCommandEvent& event).

• EVT_BUTTON(id, Class::function)
Macro: Declares a button event handler. The function must have the form
void Class::function(wxCommandEvent& event).

• EVT_PAINT(Class::function)
Macro: Declares a paint event handler. The function must have the form
void Class::function(wxPaintEvent& event).

• EVT_MOUSE_EVENTS(Class::function)
Macro: Declares a mouse event handler. The function must have the form
void Class::function(wxMouseEvent& event).

w
x
W
i
d
g
e
t
s
 L

ib
ra

ry

APPENDIX E • C++ Library Summary 987

<mysql.h>

• MYSQL* mysql_init(MYSQL* conn)

Function: Initializes a connection object. If conn is NULL, the object is allocated.
• MYSQL* mysql_real_connect(MYSQL* conn, const char host[], const char user[],

 const char passwd[], const char database[], unsigned int port,
 const char unix_socket[], unsigned long client_flag)

Function: Connects to a database. To connect to a local server, the host, user,
passwd, and unix_socket parameters can be NULL. The port and client_flag
parameters can be 0.

• void mysql_close(MYSQL* conn)

Function: Closes the connection and deallocates the connection object.
• int mysql_query(MYSQL* conn, const char query[])

Function: Executes a query. Returns 0 on success.
• MYSQL_RES* mysql_store_result(MYSQL * conn)

Function: Stores the result of the last query and returns a pointer to the result set.
• long mysql_num_rows(MYSQL_RES* result)

Function: Returns the number of rows in the result set.
• int mysql_num_fields(MYSQL_RES* result)

Function: Returns the number of fields in the result set.
• MYSQL_ROW mysql_fetch_row(MYSQL_RES* result)

Function: Fetches the next row from the result set. Returns an array of C strings,
or NULL at the end of the result set. Use the expression string(row[i]) to get the
ith field as a C++ string.

• void mysql_free_result(MYSQL_RES* result)

Function: Deallocates the memory for a result set.

MySQL L ibrary

M
y
S
Q

L
 L

ib
ra

ry

Appendix F
Number
Systems

Decimal notation represents numbers as powers of 10, for example

There is no particular reason for the choice of 10, except that several historical num-
ber systems were derived from people’s counting with their fingers. Other number
systems, using a base of 12, 20, or 60, have been used by various cultures through-
out human history. However, computers use a number system with base 2 because
it is far easier to build electronic components that work with two values, which can
be represented by a current being either off or on, than it would be to represent 10
different values of electrical signals. A number written in base 2 is also called a
binary number.

For example,

Binary Numbers

1729 1 10 7 10 2 10 9 103 2 1 0
decimal = × + × + × + ×

1101 1 2 1 2 0 2 1 2 8 4 1 133 2 1 0
binary = × + × + × + × = + + =

APPENDIX F • Number Systems 989

For digits after the “decimal” point, use negative powers of 2.

In general, to convert a binary number into its decimal equivalent, simply evaluate
the powers of 2 corresponding to digits with value 1, and add them up. Table 1
shows the first powers of 2.

1 101 1 2 1 2 0 2 1 2

1
1
2

1
8

0 1 2 3. binary = × + × + × + ×

= + +

=

− − −

11 0 5 0 125 1 625+ + =. . .

Table 1 Powers of Two

Power Decimal Value

20 1

21 2

22 4

23 8

24 16

25 32

26 64

27 128

28 256

29 512

210 1,024

211 2,048

212 4,096

213 8,192

214 16,384

215 32,768

216 65,536

990 APPENDIX F • Number Systems

To convert a decimal integer into its binary equivalent, keep dividing the integer by
2, keeping track of the remainders. Stop when the number is 0. Then write the
remainders as a binary number, starting with the last one. For example,

Therefore, .
Conversely, to convert a fractional number less than 1 to its binary format, keep

multiplying by 2. If the result is greater than 1, subtract 1. Stop when the number is
0. Then use the digits before the decimal points as the binary digits of the fractional
part, starting with the first one. For example,

Here the pattern repeats. That is, the binary representation of 0.35 is 0.01 0110
0110 0110 . . .

To convert any floating-point number into binary, convert the whole part and
the fractional part separately.

There are two important properties that characterize integer values in computers.
These are the number of bits used in the representation, and whether the integers
are considered to be signed or unsigned.

Most computers you are likely to encounter use a 32-bit integer. However, the
C++ language does not require this, and there have been machines that used 16-,
20-, 36-, or even 64-bit integers. There are times when it is useful to have integers of
different sizes. The C++ language provides two modifiers that are used to declare
such integers. A short int (or simply a short) is an integer that, on most

100 2 50
50 2 25
25 2

0
0

÷ =
÷ =
÷

remainder
remainder

==
÷ =
÷ =

12
12 2 6
6 2 3

1
0

remainder
remainder
remaainder
remainder
remainder 1

0
13 2 1

1 2 0
÷ =
÷ =

100 1100100decimal binary=

0 35 2 7
0 7 2 4
0 4 2 8
0 8 2 6
0 6 2

0
1
0
1

. .
. .
. .
. .
.

⋅ =
⋅ =
⋅ =
⋅ =
⋅ = 11

0
2

0 2 2 4
.

. .⋅ =

Long, Short , S igned, and Uns igned Integers

APPENDIX F • Number Systems 991

implementations, has fewer bits than an int. (The phrase “on most implementa-
tions” is necessary because the language definition only requires that a short integer
have no more bits than a standard integer.) On most platforms that use a 32-bit inte-
ger, a short is 16 bits. At the other extreme are long integers. As you might expect, a
long int (or simply a long) contains no fewer bits than a standard integer. At the
present time most personal computers still use a 32-bit long, but processors that
provide 64-bit longs have started to appear and will likely be more common in the
future. A character (or char) is sometimes used as a very short (8-bit) integer. The
C++ programmer therefore has the following hierarchy of integer sizes:

The sizeof operator can be used to tell how many bits your compiler assigns to
each type. This operator takes a type as argument and returns the number of bytes
each type requires. Multiplying the number of bytes by 8 will tell you the number
of bits:

cout << "Number of bytes for char " << sizeof(char)
 << " number of bits " << 8 * sizeof(char) << "\n";
cout << "Number of bytes for short " << sizeof(short)
 << " number of bits " << 8 * sizeof(short) << "\n";
cout << "Number of bytes for int " << sizeof(int)
 << " number of bits " << 8 * sizeof(int) << "\n";
cout << "Number of bytes for long " << sizeof(long)
 << " number of bits " << 8 * sizeof(long) << "\n";

If the only numbers you needed were positive, then the preceding discussion would
be everything you needed to know. However, in most applications it is more useful
to allow both positive and negative values, and so a more complicated encoding is
necessary. This characteristic of an integer is declared using the modifiers signed
and unsigned.

An unsigned integer holds only positive values. An unsigned short int that is
represented using 16 bits can maintain the values between 0 and 65,535 (that is,
between zero and 216–1). A 32-bit unsigned int can represent values between 0 and
4,294,967,295. If no modifier is provided, an integer is assumed to be signed.

Allowing both positive and negative values requires changing the representation
of an integer value. The details of this representation are described in the next sec-
tion. However, an important feature is that allowing both positive and negative
numbers requires setting aside one bit (the so-called sign bit) to indicate whether
the number is positive or negative. This reduces the largest value that can be

Type Typical Size

char 8-bit

short 16-bit

int 32-bit

long 32- or 64-bit

992 APPENDIX F • Number Systems

represented. The following table shows the range of values that can be represented
using signed and unsigned integers of 8, 16, 32, and 64 bits.

To represent negative integers, there are two common representations, called
“signed magnitude” and “two’s complement”. Signed magnitude notation is simple:
use the leftmost bit for the sign (0 = positive, 1 = negative). For example, when
using 8-bit numbers,

However, building circuitry for adding numbers gets a bit more complicated when
one has to take a sign bit into account. The two’s complement representation solves
this problem. To form the two’s complement of a number,

• Flip all bits.
• Then add 1.

For example, to compute –13 as an 8-bit value, first flip all bits of 00001101 to get
11110010. Then add 1:

Now no special circuitry is required for adding two numbers. Just follow the nor-
mal rule for addition, with a carry to the next position if the sum of the digits and
the prior carry is 2 or 3.

Integer Type Range of Values

8-bit signed –128 to 127

8-bit unsigned 0 to 255

16-bit signed –32,768 to 32,767

16-bit unsigned 0 to 65,535

32-bit signed –2,147,483,648 to 2,147,483,647

32-bit unsigned 0 to 4,294,967,295

64-bit signed –9,223,372,036,854,775,808 to 9,223,372,036,854,775,807

64-bit unsigned 0 to 18,446,744,073,709,551,615

Two’s Complement Integers

− =13 10001101signed magnitude

− =13 11110011two s complement’

APPENDIX F • Number Systems 993

For example,

But only the last 8 bits count, so +13 and –13 add up to 0, as they should.
In particular, –1 has two’s complement representation 1111 . . . 1111, with all bits

set.
The leftmost bit of a two’s complement number is 0 if the number is positive or

zero, 1 if it is negative.
Two’s complement notation with a given number of bits can represent one more

negative number than positive numbers. For example, the 8-bit two’s complement
numbers range from –128 to +127.

This phenomenon is an occasional cause for a programming error. For example,
consider the following code:

short b = ...;
if (b < 0) b = -b;

This code does not guarantee that b is nonnegative afterwards. If short values are 16
bits and b happens to be –32,768, then computing its negative again yields –32,768.
(Try it out—take 100 . . . 00 (15 zeros), flip all bits, and add 1.)

The Institute for Electrical and Electronics Engineering (IEEE) defines standards
for floating-point representations in the IEEE-754 standard. Figure 1 shows how
single-precision (float) and double-precision (double) values are decomposed into

• A sign bit
• An exponent
• A mantissa

+13 0000 1101
-13 1111 0011

 1 0000 0000

1 1 1 1 1 1 1 1

I E E E F loat ing-Point Numbers

Figure 1 IEEE Floating-Point Representation

1 bit

1 bit

sign

sign

biased exponent
e + 127

8 bit 23 bit

Single Precision

11 bit 52 bit

biased exponent
e + 1023

mantissa
(without leading 1)

mantissa
(without leading 1)

Double Precision

994 APPENDIX F • Number Systems

Floating-point numbers use scientific notation, in which a number is represented as

In this representation, e is the exponent, and the digits form the
mantissa. The normalized representation is the one where . For example,

Because in the binary number system the first bit of a normalized representation
must be 1, it is not actually stored in the mantissa. Therefore, you always need to
add it on to represent the actual value. For example, the mantissa 1.100100 is stored
as 100100.

The exponent part of the IEEE representation uses neither signed magnitude nor
two’s complement representation. Instead, a bias is added to the actual exponent.
The bias is 127 for single-precision numbers and 1023 for double-precision num-
bers. For example, the exponent e = 6 would be stored as 133 in a single-precision
number.

Thus,

100decimal = single-precision IEEE

In addition, there are several special values. Among them are:

• Zero: biased exponent = 0, mantissa = 0.
• Infinity: biased exponent = 11. . .1, mantissa = ±0.
• NaN (not a number): biased exponent = 11. . .1, mantissa ≠ ±0.

b b b b e
0 1 2 3 2. … ×

b b b b0 1 2 3. …
b0 0≠

100 1100100 1 100100 26
decimal binary binary

= = ×.

0 10000101 10010000000000000000000

APPENDIX F • Number Systems 995

Because binary numbers can be hard to read for humans, programmers often use
the hexadecimal number system, with base 16. The digits are denoted as 0, 1, …, 9,
A, B, C, D, E, F. (See Table 2.)

Four binary digits correspond to one hexadecimal digit. That makes it easy to
convert between binary and hexadecimal values. For example,

11|1011|0001binary = 3B1hexadecimal

In C++, hexadecimal integers are denoted with a 0x prefix, such as 0x3B1.

Hexadecimal Numbers

Table 2 Hexadecimal Digits

Hexadecimal Decimal Binary

0 0 0000

1 1 0001

2 2 0010

3 3 0011

4 4 0100

5 5 0101

6 6 0110

7 7 0111

8 8 1000

9 9 1001

A 10 1010

B 11 1011

C 12 1100

D 13 1101

E 14 1110

F 15 1111

Appendix G
Bit and Shift
Operations

There are four bit operations in C++: the unary negation (~) and the binary and (&),
or (|), and exclusive or (^), often called xor.

Tables 1 and Table 2 show the truth tables for the bit operations in C++. When a
bit operation is applied to integer values, the operation is carried out on corre-
sponding bits.

Table 1 The Unary Negation Operation

a ~a

0 1

1 0

Table 2 The Binary And, Or, and Xor Operations

a b a & b a | b a ^ b

0 0 0 0 0

0 1 0 1 1

1 0 0 1 1

1 1 1 1 0

APPENDIX G • Bit and Shift Operations 997

For example, suppose you want to compute 46 & 13. First convert both values to
binary. 46decimal = 101110binary (actually 00000000000000000000000000101110 as a
32-bit integer), and 13decimal = 1101binary. Now combine corresponding bits:

The answer is 1100binary = 12decimal.

You sometimes see the | operator being used to combine two bit patterns. For
example, the symbolic constant BOLD is the value 1, and the symbolic constant
ITALIC is 2. The binary or combination BOLD | ITALIC has both the bold and the
italic bit set:

Don’t confuse the & and | bit operators with the && and || operators. The latter
should be thought of as operating only on bool values, not on bits of numbers.
However, through the accident of history (C++ did not originally have Boolean
values), these operators also work with integer values. To see the difference your-
self, try assigning the value of 1 & 2 to an integer variable and printing the result.
Then try the same with 1 && 2. Whether they are working with integers or Bool-
eans, another important difference is that the && and || operators evaluate their
result using lazy evaluation. This means that if the result can be determined using
the left operand by itself, then the right operand is not even considered.

In addition to the operators that work on individual bits, there are shift operators
that take the bit pattern of a number and shift it to the left or right by a given num-
ber of positions.

The left shift (<<) moves all bits to the left, filling in zeroes in the least significant
bits (see Figure 1). Shifting to the left by n bits yields the same result as multiplica-
tion by 2n. The expression

1 << n

yields a bit pattern in which the nth bit is set (where the 0 bit is the least significant
bit).

To set the nth bit of a number, carry out the operation
x = x | 1 << n

To check whether the nth bit is set, execute the test
if ((x & 1 << n) != 0) . . .

Note that the parentheses around the & are required—the & operator has a lower
precedence than the relational operators.

0.....0101110
& 0.....0001101

 0.....0001100

0.....0000001
| 0.....0000010

 0.....0000011

998 APPENDIX G • Bit and Shift Operations

The right shift (>>) moves bits to the right. An important question for right shifts
is the bit value that is assigned to the high-order positions as the bits are shifted. For
unsigned integers (see Appendix F) zero bits are used. Therefore, the result is the
same as integer division by 2n. For signed integers the language specification does
not specify which bit values should be used. Many platforms will duplicate the sign
bit, however this behavior is not guaranteed, and so right shifts using anything
other than unsigned integers should not be used. Figure 1 shows both variations of
the right shift operator.

Figure 1 The Shift Operations

Left shift (<<)

Arithmetic right shift (>>)

Bitwise right shift (>>>)

0 0

00

Appendix H
UML

Summary

In this book, we use a very restricted subset of the UML notation. This appendix
lists the components of the subset. For a complete discussion of the UML notation,
see [1].

CRC cards are used to describe in an informal fashion the responsibilities and col-
laborators for a class. Figure 1 shows a typical CRC card.

Figure 1 Typical CRC Card

CRC Cards

compute amount due LineItem

Invoice

Class

Responsibilities Collaborators

1000 APPENDIX H • UML Summary

Use cases describe how a computer system should work by describing a scenario
from a typical application. Here is a sample use case for the voice mail system
described in Chapter 23.

Leave a Message

1. The caller dials the main number of the voice mail system.
2. The voice mail system speaks a prompt.

Enter mailbox number followed by #.

3. The user types in the extension number of the message recipient.
4. The voice mail system speaks.

You have reached mailbox xxxx. Please leave a message now.

5. The caller speaks the message.
6. The caller hangs up.
7. The voice mail system places the recorded message in the recipient’s mailbox.

Variation #1

1.1. In Step 3, the user enters an invalid extension number.
1.2. The voice mail system speaks.

You have typed an invalid mailbox number.

1.3. Continue with Step 2.

Variation #2

2.1. After Step 4, the caller hangs up instead of speaking a message.
2.2. The voice mail system discards the empty message.

Figure 2 shows the UML notation for use case diagrams. Actors are drawn as stick
figures, use cases as ellipses, and system boundaries as rectangles.

Figure 2 Use Case Diagram

Use Cases

«include»

Leave a
message

Reach an
extension

voice mail system

Caller

APPENDIX H • UML Summary 1001

Figure 3 shows the UML notation for class diagrams. Table 1 shows the arrows that
indicate relationships between them.

Multiplicity can be indicated in a diagram, as in Figure 4, using the symbols
described in Table 2. Dependencies between objects are described by a dependency
diagram. Figure 5 is a typical example.

U M L Diagrams

Table 1 UML Symbols for Relationships Between Classes

Relationship Symbol Line Style Arrow Tip

Dependency Dotted Open

Aggregation Solid Open, Diamond

Inheritance Solid Closed

Composition Solid Solid, Diamond

Association Solid None

Directed Association Solid Open

Figure 3 UML Symbols for Classes

Figure 4
Multiplicities of an Aggregation Relationship

Message Mailbox

greeting

add_message()
get_current_message()

Class name

Attributes

Member functionsNo attributes
or member functions

shown

Table 2 Multiplicity

* any number (zero or more)

1..* one or more

0..1 zero or one

1 exactly one

Mailbox Message
1 *

1002 APPENDIX H • UML Summary

Sequence diagrams describe the relationships among the classes as they interact at
run time during the execution of the application. Sequence diagrams are frequently
tied to use cases. Figure 6 shows a typical sequence diagram.

Figure 5 The UML Class Diagram for the Voice Mail System

Telephone

Connection

Message

Mailbox Message
Queue

MailSystem

2

1

1

1

*

*

Figure 6 UML Sequence Diagram for Leaving a Message

: Telephone : Connection : MailSystem

dial
find_mailbox

get_greeting

speak

hangup

«create»

record

add_message

: Mailbox

: Message

User enters
extension

User speaks
message

User hangs
up

APPENDIX H • UML Summary 1003

State diagrams are used when an object goes through a discrete set of states that
affects their behavior (see Figure 7).

1. Grady Booch, James Rumbaugh, and Ivar Jacobson, The Unified Modeling Language
User Guide, Addison-Wesley, 2005, 1999.

Figure 7 UML Sequence Diagram for Leaving a Message

CONNECTED

RECORDING

MAILBOX_
MENU

MESSAGE_
MENU

CHANGE_
PASSCODE

CHANGE_
GREETING

extension dialed

passcode entered

1#4#

2#

passcode entered

3#

greeting entered

hang up

hang up

1#,2#,3#

FURTHER READING

Appendix I
A C++/Java

Comparison

Learning to move from one language to another is a fact of life for today’s software
professionals. Whether or not C++ is your first programming language, it will
undoubtedly not be your last. It is not uncommon for a software professional to be
fluent in at least a half dozen or more programming languages of various types. Cat-
egories of languages include general purpose languages (C++, Java, C#, Smalltalk),
scripting languages (Perl, Python), Web-based languages (Javascript, PHP, Curl),
functional languages (ML, Haskell), AI languages (Common Lisp, Prolog), and
many others.

Java and C++ are currently the two most commonly used general purpose pro-
gramming languages. For this reason many programmers find it useful to have at
least a passing familiarity with both languages. Fortunately, Java was inspired by
C++ and many features, such as the control flow statements if, while, and for, were
adopted almost without change.

In this appendix we will describe the most basic differences between the two lan-
guages. Further information on the Java language can be found in [1]. Information
on moving to C++ if Java is your first programming language can be found in [2].

In C++ the number of bits used by an integer is implementation dependent. While
many compilers use 32-bit integers, there are some machines that use 16-, 20-, 36-,

New Languages

Data Types and Var iab les

APPENDIX I • A C++/Java Comparison 1005

or even 64-bit integers. In Java the language specifies that an integer must be exactly
32 bits.

The Boolean type is called boolean in Java, not bool as in C++.
The Java string type is called String. It is similar to the C++ string type, but note

the following differences.

• Java strings cannot be modified (they are implicitly const, in C++ terms).
• Java strings store 16-bit Unicode characters, not 8-bit ASCII characters.
• You can concatenate strings with any type of object in Java, while in C++ strings

can only be combined with strings.
• To compare strings in Java, use the member functions equals or compareTo. Both

take an argument string. The function equals returns a Boolean, while compareTo
returns an integer value that is less than zero if the first string is smaller than the
second, zero if they are equal, and greater than zero if the first is larger than the
second.
String p = "abc";
String q = "pqr";
if (p.compareTo(q) < 0) . . .

• Many member functions in the Java string class have functionality (substrings,
indexing) similar to, but names different from their C++ counterparts.

Java does not have explicit pointer values or references, although internally pointers
are used extensively (see the section on Objects, below).

The Java compiler is obligated to check that local variables and data fields are initial-
ized before they are used. This eliminates a common error in C++ programs.

It is not possible to create global variables or functions in Java that are not associ-
ated with a class. That is, the only functions in Java are member functions. Member
functions in Java are often called methods.

Java does not have the const reserved word. An analogous reserved word, final,
means that a value can not be reassigned. While not exactly the same (a final value
can change its internal state, while a const in C++ cannot change in any way), the
two are frequently used in the same fashion.

Although classes in C++ and Java are similar in intent, there are a number of super-
ficial differences between them:

Var iab les , Const ants , and Funct ions

Classes

1006 APPENDIX I • A C++/Java Comparison

• In Java inheritance is signaled by the reserved word extends, rather than a colon.
• In Java the visibility modifiers public, protected, and private are attached to

each data field and member function independently, rather than dividing the class
definition into sections.

• All classes inherit from a base class in Java. If no explicit base class is specified,
the class Object is used as a base class. Therefore, all classes ultimately inherit
from a single base class named Object.

• The member function bodies are placed directly in the class definition, rather
than being written separately.

• There is no semicolon at the end of a class.
• There is no virtual reserved word. All member functions are implicitly virtual

(and thereby potentially subject to being overridden).
• There is no field initializer list. Data fields are initialized by an assignment state-

ment in the body of a constructor. To pass data values to the constructor for a
base class, the reserved word super is used.

• The reserved word super is also used to refer to a base class when a derived class
wishes to invoke an overridden member function. This replaces the use of quali-
fied names in C++ programs. The member function changeSalary in the example
below illustrates this use.

The following is an example Java class definition:
public class Manager extends Employee
{
 public Manager(String name, int salary, double bp)
 {
 super(name, salary); // Invoke constructor for Employee base class
 bonus_percent = bp;
 bonus = bp * salary;
 }

 void changeBonus(double new_bp)
 {
 bonus_percent = new_bp;
 bonus = bonus_percent * salary;
 }

 void changeSalary(int new_salary)
 {
 super.changeSalary(new_salary); // Invoke function from base class
 bonus = bonus_percent * new_salary;
 }

 private int bonus;
 private double bonus_percent;
}

APPENDIX I • A C++/Java Comparison 1007

Java supports a concept called an interface. An interface looks superficially like a
class, but uses the reserved word interface rather than class. An interface cannot
include variable data fields (although it can include constants—that is, data fields
declared using the modifier final), and does not provide implementations for mem-
ber functions. In C++ terms, it is as if each member function were a pure virtual. An
interface is therefore a description of a set of desired behaviors, with no implemen-
tation. The following illustrates the syntax:

/**
Interface for collections that can be searched.

*/
interface LookUp
{
 /**
 @param name the name being examined
 @return true if the name is part of the collection
 */
 public boolean contains(String name);

 /**
 @param name the name of the value desired
 @return object associated with a given name
 */
 public Object find(String name);
}

A class indicates that it supports the interface with the implements reserved word. It
must then provide an implementation of each method defined by the interface.

class SearchableContainer implements LookUp
{
 . . .
 public boolean contains(String name)
 {

 Implementation here
 }
}

Java does not support multiple inheritance of classes. However, it does allow a class
to implement multiple interfaces.

The most notable difference between Java and C++ is the treatment of objects. In
Java object variables are treated internally as pointers. The Java literature refers to
object variables as references, although they are not exactly the same as C++ refer-
ences. (For example, Java object variables can be reassigned, whereas C++ refer-
ences cannot. Java object variables can be null, but C++ references can never be

In ter faces

Objects

1008 APPENDIX I • A C++/Java Comparison

NULL.) This means that all Java objects must be created using the new reserved word,
as in the following:

Employee sarah = new Employee("Sarah Smith", 67000);

Parentheses are required even if there are no arguments being passed to the con-
structor. Note carefully that the variable is declared as a simple name, not as a
pointer. Java does not have the pointer/non-pointer distinction. Even arrays must
be created using the new operator. The size is not included as part of the declaration,
but instead as part of the new operation:

Employee[] department = new Employee[10]; // Create 10 new Employee values

The number of elements in an array can be determined using a data field named
length, as in department.length. Assignment in Java is equivalent to the assignment
of pointers in C++. That is, assignment establishes the two values as referring to the
same object, instead of making a true copy as in C++:

Manager fred = new Manager("Fred Smith", 47000, 120);
Manager james = fred; // Now they refer to the same object.
james.changeBonus(200); // Now fred’s bonus is also changed.

To make a true copy in Java you must explicitly define a member function that
returns a clone.

In Java every function is associated with a class. There are no global variables, nor
ordinary (that is, nonmember) functions. To execute a Java program you specify the
starting class, and the function named main in that class is invoked. The function
main does not return a value in Java.

Function invocations pass object references by value. There is no equivalent to
the C++ pass by value or pass by reference. This is illustrated by the following:

class RewardSystem
{
 // Functions can only be found in classes
 public void yearEndUpdate(Manager man)
 {
 man.changeBonus(0.35); // Update bonus to 35%
 man = new Manager("Sally Jones", 47000, 23);
 // Unlike C++ pass by reference, will NOT change the value of the
 // actual argument.
 }
}

RewardSystem man_class = new RewardSystem();
Manager fred = new Manager("Fred Smith", 47000, 120);
man_class.yearEndUpdate(fred); // Will have the effect of changing

// the value fred.bonus

Funct ions

APPENDIX I • A C++/Java Comparison 1009

All Java arrays are allocated on the heap:
String[] names = new String[100];

Note that the [] is placed with the type, not the variable name.
The analog to the C++ vector is the ArrayList. You use the get and set methods,

not the [] operator, to access the elements:
ArrayList<String> names;
names.add("Harry"); // The analog of push_back
names.add("Lisa");
for (int i = 0; i < names.size(); i++)
{
 String name = names.get(i);
 names.set(i, "***");
}

In C++ the programmer is explicitly required to manage dynamic memory using
the new and delete operators. Java includes a garbage collection system as part of its
run-time library. The garbage collector monitors a running program and automati-
cally recovers memory when it can no longer be used. This eliminates many mem-
ory leaks that can plague C++ programs.

Exception handling is much more tightly integrated in Java than it is in C++. There
are two categories of exceptions: checked exceptions (similar to runtime_error in
C++), and unchecked exceptions (similar to logic_error in C++). Member func-
tions that potentially can throw a checked exception must declare this using the
throws reserved word. The compiler ensures that an invocation of such a function
occurs in the context of a try/catch statement that will handle the exception. Values
thrown must be objects from a class that is derived from a system class named
Throwable. There are other small differences in the various forms the catch state-
ment; these are described in [2].

public class Employee
{
 . . .
 void initializeFromFile(File f) throws IOException
 {
 . . .
 if (. . .)
 throw new IOException("Cannot Initialize");
 }

Arrays and Array L is ts

Memory Management

Except ion Handl ing

1010 APPENDIX I • A C++/Java Comparison

}

Employee fred = new Employee();
File fin = new File("fred.data");
try
{
 fred.initializeFromFile(fin);
}
catch (IOException e)
{
 System.out.println("Received I/O Exception " + e);
}
catch (Exception e) // Catch any other type of exception
{
 System.out.println("Received other exception " + e);
}

While the Java language is arguably smaller and simpler than C++, the same cannot
be said for the standard library. The Java standard library is enormous, covering
such features as internationalization, networking, mathematics, sound, Web appli-
cations and services, databases, and much more. Because the library is continually
being added to, no reference can be entirely comprehensive. Most programmers are
familiar with only a tiny fraction of this library. The most up-to-date information
can be found at Sun’s official Java Web site, http://java.sun.com.

1. Cay Horstmann, Big Java, 3rd ed., John Wiley & Sons, Inc., 2008.

2. Timothy Budd, C++ for Java Programmers, Addison-Wesley, 1999.

Standard L ibrary

FURTHER READING

http://java.sun.com

Glossary

Abstract class A class that cannot be instantiated, because it contains at least one pure virtual
member function.

Abstraction The process of finding the essential feature set for a building block of a program
such as a class.

Accessor function A function that accesses an object but does not change it.

Actual parameter The expression supplied by the caller for a formal parameter of a function.

Activation bars The bars in a sequence diagram that indicate when a function is called.

Activation record The section of memory set aside when a function in invoked and used to
hold local variables, parameters, and the return address to the calling function.

Address A value that specifies the location of a variable in memory.

ADAPTER pattern A design pattern that allows you to use an existing class even when its inter-
face doesn’t match the one you need.

ADT (Abstract data type) A specification of the fundamental operations that characterize a data
type, without supplying an implementation.

Aggregation relationship The “has-a” relationship between classes.

Algorithm An unambiguous, executable, and terminating specification to solve a problem.

Analysis phase The phase of a software project that concerns itself solely with an understand-
ing of the problem domain and the problem to be solved, not with any design or implemen-
tation strategy.

ANSI/ISO C++ Standard The standard for the C++ language that was developed by the Ameri-
can National Standards Institute and the International Standards Organization.

Application framework A framework for building application programs.

Argument A parameter value in a function call, or one of the values combined by an operator.

Array A collection of values of the same type, each of which can be accessed by an integer
index.

Arrow operator The -> operator. p->m is the same as (*p).m.

1012 Glossary

ASCII code The American Standard Code for Information Interchange, which associates code
values between 0 and 127 to letters, digits, punctuation marks, and control characters.

Assertion A claim that a certain condition holds in a particular program location; often tested
with the assert macro.

Assignment Placing a new value into a variable.

Association A relationship between classes in which one can navigate from objects of one
class to objects of the other class, usually by following object references.

Attribute A named property that an object is responsible for maintaining.

Balanced tree A tree in which each subtree has the property that the number of descendants
to the left is approximately the same as the number of descendants to the right.

Base class A class from which another class is derived.

Big-Oh notation The notation g(n) = O(f(n)), which denotes that the function g grows at a
rate that is bounded by the growth rate of the function f with respect to n. For example,
10n2 + 100n – 1000 = O(n2).

“Big three” management functions The three management functions that are essential for
classes that manage heap memory or other resources: copy constructor, destructor, and
assignment operator.

Binary file A file in which values are stored in their binary representation and cannot be read
as text.

Binary operator An operator that takes two arguments, for example, + in x + y.

Binary search A fast algorithm to find a value in a sorted array. It narrows the search down to
half of the array in every step.

Binary search tree A binary tree in which each subtree has the property that all left descen-
dants are smaller than the value stored in the root, and all right descendants are larger.

Binary tree A tree in which each node has at most two child nodes.

Bit Binary digit; the smallest unit of information, having two possible values, 0 and 1. A data
element consisting of n bits has 2n possible values.

Black-box testing Testing functions without knowing their implementation.

Block A group of statements bracketed by {}.

Boolean operator See Logical operator.

Boolean type A type with two values, true and false.

Boundary test case A test case involving values that are at the outer boundary of the set of
legal values. For example, if a function is expected to work for all nonnegative integers, then
0 is a boundary test case.

Bounds error Trying to access an array element that is outside the legal range.

break statement A statement that terminates a loop or switch statement.

Breakpoint A point in a program, specified in a debugger, at which the debugger stops execut-
ing the program and lets the user inspect the program state.

Glossary 1013

Buffer A temporary storage location for holding values that have been produced (for exam-
ple, characters typed by the user) and are waiting to be consumed (for example, read a line at
a time).

Buffered input Input that is gathered in batches, for example, one line at a time.

Byte A number between 0 and 255 (eight bits). Essentially all currently manufactured com-
puters use a byte as the smallest unit of storage in memory.

Call stack The set of all functions that currently have been called but not terminated, starting
with the current function and ending with main.

Capacity The number of values that a data structure such as a vector or deque can potentially
hold, in contrast to the size (the number of elements it currently holds).

Case-sensitive Distinguishing upper- and lowercase characters.

Cast Converting a value from one type to a different type. For example, the cast from a float-
ing-point number x to an integer is expressed in C++ by the static cast notation,
static_cast<int>(x). See also Dynamic cast.

Catch clause The part of a try block that is executed when a matching exception is thrown by
any statement in the try block.

Child class A synonym for derived class. The term derived class is preferred in C++; the term
child class is common in other object-oriented languages.

Class A programmer-defined data type.

Class diagram A diagram that depicts classes and their relationships.

Class template A specification describing how a class will be constructed once template
parameters are provided.

Coercion A conversion from one type to another.

Cohesion The quality a class has if its features support a single abstraction.

Collaborator A class on which another class depends.

Command line The line you type when you start a program in a command window. It consists
of the program name and the command line arguments.

Comment An explanation to make the human reader understand a section of a program;
ignored by the compiler.

Compiler A program that translates code in a high-level language such as C++ to machine
instructions.

Compile-time error See Syntax error.

COMPOSITE pattern A design pattern that teaches how to combine several objects into an object
that has the same behavior as its parts.

Composition A stronger form of aggregation in which the contained objects do not have an
existence independent of their container.

Compound statement A statement such as if or for that is made up of several parts (for exam-
ple, condition, body).

Concatenation Placing one string after another.

1014 Glossary

Constant A value that cannot be changed by the program. In C++ constants are marked with
the keyword const.

Construction Setting a newly allocated object to an initial value.

Constructor A function that initializes a newly allocated object.

Container A data structure, such as a list, that can hold a collection of objects and present
them individually to a program.

Conversion operator A member function operator used to convert from one type to another.

Copy constructor A function that initializes an object as a copy of another.

Coupling The degree to which classes are related to each other by dependency.

CPU (Central Processing Unit) The part of a computer that executes the machine instructions.

CRC card An index card representing a class, listing its responsibilities and its collaborating
classes.

Curry A function constructed from another function by binding one or more arguments to a
constant. For example, changing the plus function by binding an argument to 2, creating a
one-argument “add two” function.

Dangling pointer A pointer that does not point to a valid location.

Database A collection of data that is organized for efficient retrieval and update.

Database Management System (DBMS) A software system for the management of databases.

Database query A request for retrieving or updating database information.

Data field A variable that is present in every object of a class.

Debugger A program that lets a user run another program one or a few steps at a time, stop
execution, and inspect the variables in order to analyze it for bugs.

Declaration A statement that announces the existence of a variable, function, or class but does
not define it.

Default constructor A constructor that can be invoked with no parameters.

#define directive A directive that defines constant values and macros for the preprocessor.
Values can be queried during the preprocessing phase with the #if and #ifndef directives.
Macros are replaced by the preprocessor when they are encountered in the program file.

Definition A statement or series of statements that fully describes a variable, a function and its
implementation, a type, or a class and its properties.

delete operator The operator that recycles memory to the heap.

Dependency The “uses” relationship between classes, in which one class needs services pro-
vided by another class.

Deque A sequential container that permits efficient insertion and removal of elements from
either end. Contrast with Stack and Queue.

Dereferencing Locating an object when a pointer to the object is given.

Derived class A class that modifies a base class by adding data fields or member functions or
by redefining member functions.

Glossary 1015

Design pattern A description of a design problem and a proven solution.

Design phase The phase of a software project that concerns itself with the discovery of the
structural components of the software system to be built, not with implementation details.

Destructor A function that is executed whenever an object goes out of scope.

Directory A structure on a disk that can hold files or other directories; also called a folder.

Dot notation The notation object.function(parameters) used to invoke a member function on
an object.

Doubly-linked list A linked list in which each node has a pointer to both its predecessor and
successor nodes.

Downcast A cast of a polymorphic variable that converts from a base class type to a derived
class type.

Dynamic binding Selecting a particular function to be called, depending on the exact type of
the object invoking the function when the program executes.

Dynamic cast A cast operator that performs a downcast, checking that the run-time types are
appropriate before completing the operation.

Dynamic memory allocation Allocating memory as a program runs as required by the pro-
gram’s needs.

Dynamic type The type associated with the value an object pointer currently references. Con-
trast to Static type.

Encapsulation The hiding of implementation details.

End of file Condition that is true when all characters of a file have been read. Note that there
is no special “end-of-file character”. When composing a file on the keyboard, you may need
to type a special character to tell the operating system to end the file, but that character is not
part of the file.

Enumerated type A type with a finite number of values, each of which has its own symbolic
name.

Escape character A character in text that is not taken literally but has a special meaning when
combined with the character or characters that follow it. The \ character is an escape charac-
ter in C++ strings.

Exception A class that signals a condition that prevents the program from continuing nor-
mally. When such a condition occurs, an exception object is thrown.

Exception handler A sequence of statements that is given control when an exception of a par-
ticular type has been thrown and caught.

Executable file The file that contains a program’s machine instructions.

Explicit parameter A parameter of a member function other than the object on which the
function in invoked.

Expression A syntactical construct that is made up of constants, variables, and/or function
calls, and the operators combining them.

Extension The last part of a file name, which specifies the file type. For example, the exten-
sion .cpp denotes a C++ file.

1016 Glossary

Failed stream state The state of a stream after an invalid operation has been attempted, such as
reading a number when the next stream position yielded a nondigit, or reading after the end
of file was reached.

Fibonacci numbers The sequence of numbers 1, 1, 2, 3, 5, 8, 13, . . ., in which every term is the
sum of its two predecessors.

File A sequence of bytes that is stored on disk.

File pointer The position within a file of the next byte to be read or written. It can be moved
so as to access any byte in the file.

Floating-point number A number with a fractional part.

Folder Directory.

Forward reference The introduction of a name for a class or a function before the complete
definition has been given.

Foreign key A reference to a primary key in a linked list.

Formal parameter A variable in a function definition; it is initialized with an actual parameter
value when the function is called.

Framework A collection of classes that provides mechanisms for a particular problem
domain.

Function A sequence of statements that can be invoked multiple times, with different values
for its parameters.

Function call operator An operator that is invoked using the same syntax as a function call.
Defining this operator in a class produces a function object.

Function object An instance of a class that includes a definition for the function call operator.
Such an object can be invoked using the same syntax as a function call.

Function signature The name of a function and the types of its parameters.

Functional specification A detailed specification of the externally observable behavior of a soft-
ware system.

Function template A definition for a set of functions, formed using the template keyword.

Garbage collection Automatic reclamation of heap memory that is no longer needed; C++
does not have garbage collection.

Generator A function that potentially produces a different value each time it is invoked.
Generally used to initialize each element in a collection, such as a vector or list.

Global variable A variable whose scope is not restricted to a single function.

goto statement A statement that transfers control to a different statement that is tagged with
a label.

Grammar A set of rules that specifies which sequences of tokens are legal for a particular
language.

grep The “global regular expression print” search program, useful for finding all strings
matching a pattern in a set of files.

Glossary 1017

GUI (Graphical User Interface) A user interface in which the user supplies inputs through
graphical components such as buttons, menus, and text fields.

Header file A file that informs the compiler of features that are available in another module or
library.

Heap A reservoir of storage from which memory can be allocated when a program runs.

Heap Manager The part of the run-time system that responds to dynamic requests for heap
memory.

Heterogeneous Having different types. A heterogeneous collection consists of elements that
are not all the same type. Compare to Homogeneous.

Higher-order function A function that takes another function as argument, or that returns a
function as a result.

Homogeneous Having the same type. A homogeneous collection consists of elements that all
have the same type. Compare to Heterogeneous.

IDE (Integrated Development Environment) A programming environment that includes an edi-
tor, compiler, and debugger.

#if directive A directive to the preprocessor to include the code contained between the #if
and the matching #endif if a condition is true.

Implementation phase The phase of software development that concerns itself with realizing
the design in a programming environment.

Implicit parameter The object on which a member function is called. For example, in the call
x.f(y), the object x is the implicit parameter of f.

#include directive An instruction to the preprocessor to include a header file.

Inheritance The “is-a” relationship between a general base class and a specialized derived
class.

Initialization Setting a variable to a well-defined value when it is created.

Inserter An object that inserts a value into a container each time it is assigned. Inserters are
used to change certain generic algorithms that assign elements so that they can be used to
insert new elements into a container.

Instantiation of a class Constructing an object of that class.

Integer A number without a fractional part.

Integer division Taking the quotient of two integers and discarding the remainder. In C++, the
/ symbol denotes integer division if both arguments are integers. For example, 11 / 4 is 2,
not 2.75.

Interface The set of functions that can be applied to objects of a given type.

Iterator An object that can inspect all elements in a container such as a linked list.

ITERATOR pattern A design pattern that teaches how to access the elements of an aggregate
object.

Join A database query that involves multiple tables.

1018 Glossary

Late binding Choosing at run time among several member functions with the same name
invoked on objects belonging to derived classes of the same base class.

Lexicographic ordering Ordering strings in the same order as in a dictionary, by skipping all
matching characters and comparing the first nonmatching characters of both strings. For
example, “orbit” comes before “orchid” in the lexicographic ordering. Note that in C++,
unlike a dictionary, the ordering is case-sensitive: Z comes before a.

Library A set of precompiled functions that can be included in programs.

Lifeline The vertical line below an object in a sequence diagram that indicates the time during
which the object is alive.

Lifetime The portion of execution during which a variable is potentially active.

Linear search Searching a container (such as an array, list, or vector) for an object by inspect-
ing each element in turn.

Linked list A data structure that can hold an arbitrary number of objects, each of which is
stored in a node object that contains a pointer to the next node.

Linker The program that combines object and library files into an executable file.

Liskov substitution principle The rule that states that you can use a derived-class object when-
ever a base-class object is expected.

Local variable A variable whose scope is a single block.

Logic error An error in a syntactically correct program that causes it to act differently from
its specification.

Logical operator An operator that can be applied to Boolean values. C++ has three logical
operators: &&, ||, and !.

Loop A sequence of instructions that is executed repeatedly.

Loop and a half A loop whose termination decision is neither at the beginning nor at the end.

Loop invariant A statement about the program state that is preserved when the statements in
the loop are executed once.

Machine code Instructions that can be executed directly by the CPU.

Macro A mechanism to replace a command with a predefined sequence of other commands.

Magic number A number that appears in a program without explanation.

main function The function that is called first when a program executes.

make file A file that contains directives for how to build a program by compiling and linking
the constituent files. When the make program is run, only those source files that are newer
than their corresponding object files are rebuilt.

Map A data structure that keeps associations between key and value objects.

Member function A function that is defined by a class and operates on objects of that class.

Memberwise copy A copy of an object that is formed by recursively copying each data member.

Memory allocator An object used as a template parameter in a container class whose primary
purpose is to allocate blocks of memory.

Glossary 1019

Memory leak Memory that is dynamically allocated but never returned to the heap manager.
A succession of memory leaks can cause the heap manager to run out of memory.

Merge sort A sorting algorithm that first sorts two halves of an array and then merges the
sorted subarrays together.

Method A synonym for member function. The term member function is preferred in C++,
while the term method is common in other object-oriented languages.

Module A program unit that contains related classes and functions. C++ has no explicit sup-
port for modules. By convention, each module is stored in a separate source file.

Modulus operator The % operator that yields the remainder of an integer division.
Multiple inheritance Inheriting from two or more base classes.

Mutator function A member function that changes the state of an object.

Name clash Accidentally using the same name to denote two program features in a way that
cannot be resolved by the compiler.

Name collision The process of creating a name clash.

Name spaces A way of organizing classes and functions so as to avoid name clashes.

Negative test case A test case that is expected to fail. For example, when testing a root-finding
program, an attempt to compute the fourth root of 1 is a negative test case.

Nested block A block that is contained inside another block.

Nested class A class that is contained inside another class.

new operator The operator that allocates new memory from the heap.

Newline The '\n' character, which indicates the end of a line.

NULL pointer The value that indicates that a pointer does not point to any object.

Object A value of a user-defined type.

Object file A file that contains machine instructions from a module. Object files must be
combined with library files by the linker to form an executable file.

Object-oriented design Designing a program by discovering objects, their properties, and their
relationships.

Object-oriented programming A programming style in which tasks are solved by collaborating
objects.

Off-by-one error A common programming error in which a value is one larger or smaller than
it should be.

Opening a file Preparing a file for reading or writing.

Operating system The software that launches application programs and provides services
(such as a file system) for those programs.

Operator A symbol denoting a mathematical or logical operation, such as + or &&.

Operator associativity The rule that governs in which order operators of the same precedence
are executed. For example, in C++ the - operator is left-associative, since a - b - c is

1020 Glossary

interpreted as (a - b) - c, and = is right-associative, since a = b = c is interpreted as
a = (b = c).

Operator overloading Assigning a new function to an operator that will be selected if the oper-
ator has arguments of a specific type.

Operator precedence The rule that governs which operator is evaluated first. For example, in
C++ the && operator has a higher precedence than the || operator. Hence a || b && c is
interpreted as a || (b && c).

Oracle A program that predicts how another program should behave.

Overloading Giving more than one meaning to a function name or operator.

Overriding Redefining a function from a base class in a derived class.

Parallel vectors Vectors of the same length, in which corresponding elements are logically
related.

Parameter A value in the execution of a function that is set when the function is called. For
example, in the function double root(int n, float x), n and x are parameters.

Parameter passing Using expressions to initialize the parameter variables of a function when
it is called.

Parameter value The expression supplied for a parameter by the caller of a function.

Parameter variable A variable in a function that is initialized with the parameter value when
the function is called.

Parent class A synonym for base class. The term base class is preferred in C++, the term par-
ent class is common in other object-oriented programming languages.

Pattern See Design pattern.

Pointer A value that denotes the memory location of an object.

Polymorphic variable An object pointer or reference that is declared as a base class type (the
static type) but that can potentially hold values from derived classes (the dynamic type).

Polymorphism Selecting a function among several functions with the same name, by compar-
ing the actual types of the parameters.

Popping a value Removing a value from the top of a stack.

Positive test case A test case that a function is expected to handle correctly.

Postfix operator A unary operator that is written behind its argument.

Precondition A condition that must be true when a function is called.

Predicate function A function that returns a Boolean value.

Prefix operator A unary operator that is written before its argument.

Preprocessor A program that processes a source file before the compiler. The preprocessor
includes files, conditionally includes code sections, and performs macro replacement.

Primary key A column (or combination of columns) whose value uniquely specifies a table
record.

Glossary 1021

Principle of least astonishment The principle that functions should be defined in a fashion that
is consistent with prior use in order to avoid confusing the programmer.

Priority queue An abstract data type that enables efficient insertion of elements and efficient
removal of the smallest element.

Private feature A feature that is accessible only by functions of the same class, its friends, and
its nested classes.

Private inheritance Inheritance in which only the member functions can use the base-class
functions.

Procedure A function that does not return a value.

Project A collection of source files and their dependencies.

Prompt A string that prompts the program user to provide input.

Prototype See Declaration.

Pseudocode A mixture of English and C++ that is used when developing the code for a
program.

Pure virtual member function A member function with a name, parameter types, and a return
type but without an implementation.

Pushing a value Adding a value to the top of a stack.

Query See Database query.

Queue A container that supports “first in, first out” retrieval.

RAM (random-access memory) The computer memory that stores code and data of running
programs.

Random access The ability to access any value directly without having to read the values pre-
ceding it.

Recursive function A function that can call itself with simpler values. It must handle the sim-
plest values without calling itself.

Redirection Linking input or output of a program to a file instead of the keyboard or display.

Reference counting A memory management technique that involves keeping track of the
number of references (pointers) to a block of memory. When the reference count reaches
zero, the memory can be recovered.

Reference parameter A parameter that is bound to a variable supplied in the call. Changes
made to the parameter within the function affect the variable outside the function.

Referential transparency The principle that asserts that a function should produce the same
result every time it is invoked with the same arguments. Functions that support this principle
are said to be referentially transparent.

Regression testing Keeping old test cases and testing every revision of a program against
them.

Regular expression An expression denoting a set of strings. A regular expression can consist
of individual characters, sets of characters such as abc; ranges such as a-z; sets of all charac-
ters outside a range, such as 94 0-9; repetitions of other expressions, such as 0-9*; alternative
choices such as +-; and concatenations of other expressions.

1022 Glossary

Relational database A data repository that stores information in tables and retrieves data as
the result of queries that are formulated in terms of table relationships.

Reverse Polish notation A style of writing expressions in which the operators are written fol-
lowing the operands, such as 2 3 4 * + for 2 + 3 * 4.

Reserved word A word that has a special meaning in a programming language and therefore
cannot be used as a name by the programmer.

Responsibility A high level task that a class is expected to carry out.

Return value The value returned by a function through a return statement.

Roundoff error An error introduced by the fact that the computer can store only a finite num-
ber of digits of a floating-point number.

Run-time error See Logic error.

Run-time stack The data structure that stores the local variables and return addresses of func-
tions when a program runs.

Scope The part of a program in which a variable is defined.

Sequence diagram A diagram that depicts a sequence of function calls between objects in a
program.

Selection sort A sorting algorithm in which the smallest element is repeatedly found and
removed until no elements remain.

Sentinel A value in input that is not to be used as an actual input value but to signal the end
of input.

Separate compilation Compiling each source file separately and combining the object files
later into an executable program.

Sequential access Accessing values one after another without skipping over any of them.

Sequential containers Containers in which values are generally accessed one after another. The
sequential containers in the STL are the vector, list, and deque.

Set An unordered collection that allows efficient addition, location, and removal of
elements.

Shadowing Hiding a variable by defining another one with the same name in a nested block.

Shell A part of an operating system in which the user types commands to execute programs
and manipulate files.

Shell script A file that contains commands for running programs and manipulating files.
Typing the name of the shell script file on the command line causes those commands to be
executed.

Side effect An effect of a function other than returning a value.

Simple statement A statement consisting of a single expression.

Single-stepping Executing a program in the debugger one statement at a time.

Size The number of elements a container currently holds. For the vector and deque classes
this can be contrasted to the capacity, which is the number of elements it can potentially
maintain.

Glossary 1023

Slicing an object Copying an object of a derived class into a variable of the base class, thereby
losing the derived-class data.

Smart pointers Objects that are instances of a class that defines pointer operations as member
functions.

Software life cycle All activities related to the creation and maintenance of the software from
initial analysis until obsolescence.

Software reuse The reuse of software components across many different applications.

Source file A file containing instructions in a programming language.

Specialization The process of refining a general purpose software component by inheritance
or the use of template arguments to make it applicable to a specific problem.

Stack A data structure in which elements can only be added and removed at one location,
called the top of the stack. A stack supports “last in, first out” retrieval.

Statement A syntactical unit in a program. In C++ a statement is either a simple statement, a
compound statement, or a block.

Static binding Selecting at compile time which function is to be called, based on the type of
the object on which it is invoked.

static keyword A C++ keyword with several unrelated meanings: It denotes local variables
that are not allocated on the stack; global variables or functions that are private to a module;
class variables that are shared among all objects of a class; and member functions that do not
have an implicit parameter.

Static type The type associated with the declaration of an object pointer. May differ from the
type it holds (see Dynamic type).

STRATEGY pattern A design pattern that teaches how to supply variants of an algorithm.

Stepwise refinement Solving a problem by breaking it into smaller problems and then further
decomposing those smaller problems.

Stream An abstraction for a sequence of bytes from which data can be read or to which data
can be written.

String A sequence of characters.

Structured Query Language (SQL) A command language for interacting with a database.

Stub A function with no or minimal functionality.

Subclass A synonym for derived class. The term derived class is preferred in C++; the term
subclass is common in other object-oriented programming languages.

Subscript operator The operator that mimics element access in an array. Typically used to pro-
vide access to individual elements in a container.

Substitution principle See Liskov substitution principle.

Superclass A synonym for base class. The term base class is preferred in C++; the term super-
class is common in other object-oriented programming languages.

Syntax Rules that define how to form instructions in a particular programming language.

1024 Glossary

Syntax error An instruction that does not follow the programming language rules and is
rejected by the compiler.

Tab character The '\t' character, which advances the next character on the line to the next
one of a set of fixed screen positions known as tab stops.

Template A definition for a set of classes. For example, the vector template defines a class
vector<T> (a vector of T objects) for any type T.

Template arguments Arguments used in the creation of a function template or a class template.
Template arguments are usually types.

Template class A class formed by instantiating a class template by providing specific values
for the template arguments.

Template function A function formed by instantiating a function template by providing spe-
cific values for the template arguments.

TEMPLATE METHOD pattern A design pattern that teaches how to supply an algorithm for multi-
ple types, provided that the sequence of steps does not depend on the type.

Ternary operator An operator with three arguments. C++ has one ternary operator,
a ? b : c.

Test coverage The instructions of a program that are executed when a set of test cases are run.

Test harness A program that calls a function that needs to be tested, supplying parameters
and analyzing the function’s return value.

Test suite A set of test cases for a program.

Text file A file in which values are stored in their text representation.

Throwing an exception Indicating an abnormal condition by terminating the normal control
flow of a program and transferring control to a matching catch clause.

Trace message A message that is printed during a program run for debugging purposes.

Transaction A set of database operations that should either succeed in their entirety, or not
happen at all.

Transformation The process of systematically changing each element in a container.

Turing machine A very simple model of computation that is used in theoretical computer
science to explore the computability of problems.

Type parameters Parameters used with a template to create a specific instance from a set of
classes.

UML (Unified Modeling Language) A notation for specify, visualizing, constructing, and docu-
menting the artifacts of software systems.

Unary operator An operator with one argument.

Unicode A standard code that assigns values consisting of two bytes to characters used in
scripts around the world.

Uninitialized variable A variable that has not been set to a particular value. It is filled with
whatever “random” bytes happen to be present in the memory location that the variable
occupies.

Glossary 1025

Unit test A test of a function by itself, isolated from the remainder of the program.

Upcast A cast that changes the type of a value from a derived type to a base type. Generally
upcasts do not require any special notation. Contrast with downcast.

Use case A sequence of actions that yields a result that is of value to an actor.

Value parameter A function parameter whose value is copied into a parameter variable of a
function. If a variable is passed as a value parameter, changes made to the parameter inside
the function do not affect the original variable outside the program.

Variable A storage location that can hold different values.

Vector The standard C++ template for a dynamically-growing array.

Virtual base class A class whose fields are not replicated when they are repeatedly inherited.

Virtual function A function that can be redefined in a derived class. The actual function being
called depends on the type of the object on which it is invoked at run time.

Visual programming Programming by arranging graphical elements on a form, setting pro-
gram behavior by selecting properties for these elements, and writing only a small amount of
“glue” code linking them.

void keyword A keyword indicating no type or an unknown type.

vtable An internal table constructed by the compiler in order to help determine which over-
ridden member function to execute in an expression involving an object pointer.

vtable function A member function pointer stored in a vtable.

Walkthrough Simulating a program or a part of a program by hand to test for correct behavior.

Watch window A window in a debugger that shows the current values of selected variables.

Waterfall model A sequential model of the software development process, consisting of a
sequence of analysis, design, implementation, testing, and deployment.

White-box testing Testing functions taking their implementation into account; for example, by
selecting boundary test cases and ensuring that all branches of the code are covered by some
test case.

White space A sequence consisting of space, tab, and/or newline characters.

Index

Symbols
%= (combined operator and

assignment), 966t
overloadable, 547t

&= (combined operator and
assignment), 966t

overloadable, 547t
*= (combined operator and

assignment), 966t
overloadable, 547t
overloading, 568

+= (combined operator and
assignment), 966t

overloadable, 547t
overloading, 568

-= (combined operator and
assignment), 966t

overloadable, 547t
/= (combined operator and

assignment), 966t
overloadable, 547t

<<= (combined operator and
assignment), 966t

overloadable, 547t
>>= (combined operator and

assignment), 966t
overloadable, 547t

^= (combined operator and
assignment), 966t

overloadable, 547t
|= (combined operator and

assignment), 966t
overloadable, 547t

. operator (access member), 965t
:: operator (scope resolution),

965t
, operator (sequencing of

expressions), 966t
overloadable, 547t

? : (selection operator), 966t
using, 104–105

* multiplication, 33, 965t
overloadable, 547t
overloading binary, 558
overloading unary, 560
using, 54

+ addition, 966t
concatenating strings, 65
overloadable, 547t
overloading binary, 558
overloading unary, 560
using, 55

– subtraction, 966t
overloadable, 547t
overloading binary, 558
overloading unary, 560
using, 55

/ division, 965t
overloadable, 547t
overloading binary, 558
overloading unary, 560
using, 54, 55

= (assignment operator), 966t
confusing with == operator,

107

++ operator contrasted,
105–106

overloadable, 547t
% operator, 965t

using, 55
* operator

with iterators, 912
overloadable, 547t
with pointers, 307

-> operator
overloadable, 547t
overloading, 576
pointers, 308, 315

<< operator, 966t
overloading output, 562–563
as “send to” command, 18
and stream classes, 379

>> operator, 966t
mixing with getline input,

230–231
overloading input, 562, 564
reading from input stream, 40
and stream classes, 379
use in template definition

allowed in C++0x
standard, 820

.* operator (access pointer to
member), 965t

& operator (address), 313–314
&& operator (AND), 966t

confusing conditions, 118
for control flow, 115–117
and De Morgan’s Law, 119

Page numbers followed by t indicate material in tables.

Index 1027

&& operator (AND), continued
don’t confuse bit operators

with, 997
lazy evaluation, 115
overloadable, 547t
overloading, 561, 576

^ operator (bitwise XOR), 966t
overloadable, 547t
overloading, 576

& operator (bitwise AND), 966t
overloadable, 547t
overloading, 576

~ operator (bitwise NOT), 965t
| operator (bitwise OR), 966t

don’t confuse with binary
operators, 977

overloadable, 547t
overloading, 576

-- operator (decrement
operator), 965t

moving backwards in linked
lists, 474, 479

overloadable, 547t
* operator (dereference), 566
-> operator (dereference and

access member), 965t
->* operator (dereference and

access pointer to member),
965t

overloadable, 547t
() operator (function call), 965t

overloadable, 547t
++ operator (increment

operator), 965t
with iterators, 912
iterators and STL, 755, 757
moving iterator to next

position in linked list, 474,
478

overloadable, 547t
using, 48

! operator (NOT), 965t
for control flow, 117
overloadable, 547t
overloading, 561

|| operator (OR), 966t
confusing conditions, 118
for control flow, 115–117
and De Morgan’s Law, 119
lazy evaluation, 115
overloadable, 547t

overloading, 561, 576
[] operator (vector or array

subscript), 965t
to associate keys and values

in maps, 522
dynamically allocated arrays,

326–327
overloadable, 547t
for placing data into vectors,

267, 274
== relational operator (equal),

966t
confusing with = operator,

107
for control flow, 105t
for equality testing, 105–106
iterators and STL, 755, 757
with linked lists, 479, 480
overloadable, 547t
overloading, 561

> relational operator (greater
than), 966t

for control flow, 105t
overloadable, 547t

>= relational operator (greater
than or equal), 966t

for control flow, 105t
overloadable, 547t

< relational operator (less than),
966t

for control flow, 105t
overloadable, 547t

<= relational operator (less
than or equal), 966t

for control flow, 105t
overloadable, 547t

!= relational operator (not
equal), 966t

for control flow, 105t
iterators and STL, 755
overloadable, 547t

& (unary) operator, 965t
* (unary) operator, 965t

using with linked lists, 474,
480

+ (unary) operator, 965t
– (unary) operator, 965t
~ (negation operator), 996t

overloadable, 547t
overloading, 576

A
abs function, 60, 970
abstract classes, 730–731
ABSTRACT FACTORY pattern,

946t
accessor functions, 232, 252

for protected access to data,
708

use const keyword with, 232,
236–237, 240, 252

accumulate function, 790
acos function, 58t, 969
activation bars, in sequence

diagrams, 882
activation record, 592
actors, in use cases, 879
actual parameter, 171
Ada, 460, 820
ADAPTER pattern, 917,

919–922, 932
Addable concept, 819
Add function, 984
adding, elements, See insertion
address operator (&), 313–314
add_seconds function, 981
adjacent_find function, 787
aggregation, 837, 838, 1001

implementing, 838–839
multiplicities in UML class

diagrams, 877, 1001
UML class diagrams,

878–879, 1001
UML connector, 878

alert escape sequence \a,
summary, 967t

algorithm class, 978–979
<algorithm> library, 978–979
algorithms, 24–26. See also

generic algorithms
encryption algorithms,

392–394
first algorithm, 557–558
initialization algorithms,

782–783
removal and replacement

algorithms, 787–789
and STRATEGY pattern, 925
summary, 978–979

almost complete tree, 529

1028 Index

Altair 8800, 181
American National Standards

Institute (ANSI), 11, 12,
821

amortized O(1) time, 493
anagrams, 785
analysis, in software life cycle,

826, 827, 828, 829
Analytical Engine, 459–460
AND Boolean operator, See &&

operator (AND)
anomalous situations, 666
ANSI (American National

Standards Institute)
standard, 11, 12, 821

append.cpp (ch06), 287,
Append function

class wxMenu, 984
class wxMenuBar, 984

append function, string class,
547

AppendText function, 983
Apple II, 182
Apple Macintosh, 183
Arabic script, 293
argument, of parameter, 171
Ariane rocket incident, 688–689
arithmetic, 54–58

combining assignment with,
50

pointer arithmetic, 322
arithmetic operators

overloadable, 547t
overloading simple, 558–560
overloading unary, 560

array bounds errors, 596–597
array interface, for iterators, 913
array lists, C++/Java

comparison, 1009
array parameters, 282–285
array/pointer duality law, 322
arrays, 280. See also vectors

array parameters passed by
reference, 283

character, 285–288
C++/Java comparison, 1009
confusing array and pointer

declarations, 325

confusing character pointers
and arrays, 329

to conveniently manage
collections of objects, 265

defining and using, 281–282
dynamically allocated,

326–327
name array size and capacity

consistently, 291
omitting column size of

two-dimensional array
parameter, 292

and overloading of subscript
operator, 573

parameters, 282–285
and pointers, 322–327
returning pointers to local

array, 325–326
storing heap in, 534
two-dimensional, 288–294
using pointers to step

through, 323–324
array variables

definition, 282
as pointers to starting

element of array, 322
artificial intelligence, 120–121
artificial intelligence (AI)

languages, 820, 1004
ASCII (American Standard

Code for Information
Interchange), 106, 292–293

summary of codes, 968t
asin function, 58t, 969
asm keyword, 960t
assembler, 9–10
assertion, 201

halting execution with, 673
assert macro, 666

and function preconditions,
200–201

halting execution with, 673
assignment, 45–50

combining with arithmetic,
50, 966t

assignment operators, 47, 964,
966t

controlling implementation
(C++0x standard),
815–817

if destructor, then copy
constructor and
assignment, 619–620

memory management,
611–613

overloadable, 547t
overloading, 550, 568–569

association
UML class diagrams,

878–879
UML connector, 878, 879

associative containers, 758,
767–768

asymmetric bounds, for loops,
130

atan function, 58t, 969
atan2 function, 58t, 969
at function

deque class, 975
using, 759t, 760
vector class, 974

atoi function, uses errno flag,
672

attributes, in UML class
diagrams, 876–877

Augusta, Ada, Countess of
Lovelace, 460, 820

autoindent feature, 104
auto keyword, 960t

and automatic type inference
(C++0x standard), 807

autonomous vehicles, DARPA
“grand challenges,”
120–121

auto_ptr class, and memory
management, 620–622

average.cpp (ch03), 133–134

B
Babbage, Charles, 459–460
back, of a queue, 493
back function

deque class, 975
list class, 975
queue class, 977
using, 759t, 760

back_inserter function, 791
backslash escape sequence \\,

17, 18
summary, 967t

Index 1029

backspace escape sequence \b,
summary, 967t

backup copies, 14–15
bad_alloc class, 678, 681
bad_cast class, 678, 681
bag (multiset), 507–508
balanced binary search trees, 515

execution time for operations
compared to other
container operations, 516t

baltable.cpp (ch03), 127
Band-Aid solutions, try to

avoid, 204, 213
base class, 342–343

attempting to access private
fields, 356

C++/Java comparison, 1006
class inheritance hierarchies,

729
explicitly calling functions,

352
forgetting name, 355
multiple, 736–738
name ambiguities, 739
and object slicing, 363
and private inheritance,

714–715
and protected name scopes,

706
replicated, 739–742

base-class constructor
calling, 349
new constructor features in

C++0x standard, 810
BaseClass::function notation,

352
base-class pointer, 358
BASIC, 181
beg flag, 972
BEGIN_EVENT_TABLE macro, 986
begin function, 974

with iterators, 912
with linked lists, 474, 478
and STL (maps), 770t
and STL (sets), 767t
using, 759t, 760

bestval.cpp (ch05), 228–229
bidirectional iterators, 758t
big-Oh notation, 450
binary AND operator, 996t

binary Exclusive OR (XOR)
operator, 996t

binary files, 398–399
binary numbers, 988–990
binary OR operator, 996t, 997
binary search, 462–463

library function for, 463–464
random access required, 473

binary_search function,
463–464, 979

binary_search generic
algorithm, 787

binary search trees, 509–516
heaps contrasted, 529, 530,

534
traversal, 516–521

binary tree, 509, 510
max-heap, 529

binders, 780–781
bindlst, 780
bind2nd, 780
bintree.cpp (ch13), 518–521
BIOS (Basic Input/Output

System), 182
bit operations, 996t, 996–997
black-box testing, 203
block scope, 700
block statement, 101, 202
body, if statement, 100–101
book library summary, 980–982
Boolean operations, control

flow, 115–117
Boolean operators, 115–117
boolean type (Java), 1005
bool keyword, 960t
bool type, 116
boundary cases, unit testing, 204
bounds error, 268, 272
braces

to avoid dangling else, 112
block statement enclosed in,

101, 103
in C++ programs, 17, 234
for functions, 162, 165
layout, 103
style guide, 952, 958–959

break, not allowed, 952
break keyword, 960t

breakpoints, in code, 211–212
BRIDGE pattern, 946t
buffer, 490, 491
buffered input, 42–44
buffer overflow errors, 597
buffer overrun attack, 275
buffon.cpp (ch03), 142–143
Buffon needle experiment, 139,

142
bugs, 20. See also debugger;

debugging
effect on programmer

productivity, 244
cycling, 204
first bug: found in Mark II,

205–206
Pentium floating-point bug,

39–40
reproducing, 213

BUILDER pattern, 946t
bundle.cpp (ch24), 942
bundle.h (ch24), 938
bundles, of related items,

 928–929
bus, 6
ButtonDown function, 985
buttons, 744
ButtonUp function, 985

C
C, 11

history of development,
820–821

keeping C++ compatible
with, 806

strings in, 66
used for embedded systems,

333
C#, 1004
C++. See also arrays; classes;

control flow; exception
handling; functions; linked
lists; loops; memory
management; object-
oriented design; operator
overloading; pointers;
streams; templates; vectors

algorithm summary,
978–979

1030 Index

C++, continued
bit and shift operations

summary, 996t, 996–998
book library summary,

980–982
character codes summary,

967–968t
C++/Java comparison,

1004–1010
class inheritance hierarchies,

730
coding guidelines, 951–959
containers summary, 974–978
C++0x standard (See C++0x

standard)
escape sequences summary,

967t
evolution of, 11–12, 806
exceptions summary, 980
functional programming,

745–747
history of development,

820–821
input/output library, 375
keyword summary, 960–963t
lexical issues style guide,

957–958
library summary, 969–987
MySQL library summary,

987
number systems summary,

988–995
operator summary, 964–966
popularity of, 821
shift operations, 997–998
standard code libraries,

969–973
standard library

inconsistencies, 836
as strongly typed language,

173
used for embedded systems,

333
wxWidgets library summary,

983–986
C++0x standard

automatic type inference,
807–808

concepts, 817–820
controlling default

implementations, 815–816
design objectives, 806–807

hash tables, 817
lambda function, 814–815
new constructor features,

810–812
other minor changes, 820
range-based for loop,

808–809, 812
regular expressions, 813

C++ compiler, 10, 11
compilation process, 21–24
edit-compile-debug loop,

23–24
errors, 19–21
locating, 13
move from concrete to

abstract, 646
separate compilation,

253–257
virtual function tables, 735

C++ development environment,
21

C++ library, summary, 969–987
Caesar cipher, 389–392, 403
caesar.cpp (ch09), 390–392
calc.cpp (ch12), 495–496
call, See function call
call stack, 420
call tree, in stepwise refinement

process, 187
capacity, 490
capacity function, using, 759t
carriage return, 396
carriage return escape sequence

\r, summary, 967t
case keyword, 960t
case-sensitivity,

C++ programs, 15
and misspelled words, 21
variable names, 35

case studies
Dijkstra’s shortest algorithm,

771–775
educational game, 856-858
file merge sort, 792–796
fractional numbers, 551–557
invoice printing, 839–851
matrices, 577–585, 627–630,

659–662, 689–692,
720–723

from pseudocode to code,
188–195

putting design patterns to
work, 931–945

voice mail system, 884–907
casts, 49–50, 965t

conversion, coercion, and
casts, 570–571

catch (...) clause, 681, 684
with try statement, 675, 676
order is important, 679–680

catch keyword, 960t
ccc_empl.h, 981
ccc_time.h, 72, 980–981
ccc_win.h, 76, 981–982
ccc_win_main, 76
.cc file extension, 13
<cctype> standard library,

summary, 970
CD-ROM drive, 7
ceil function, 58t, 970
central processing unit (CPU), 4,

5, 6, 7
.C file extension, 13
chads, 320
CHAIN OF RESPONSIBILITY

pattern, 946t
character, 991
character arrays, 285–288
character codes summary,

967–968t
character pointers, 327–328

confusing with arrays, 329
copying, 329–330
failing to allocate memory,

328–329
char keyword, 960t
char* pointers, 327–328
checked exceptions, 1009
child nodes, binary search trees,

509
Chinese script, 293–294
cin, 76
cin >>, 41, 134, 135

not well suited for human
input, 44

for stream input, 44

Index 1031

ciphers
Caesar, 389–392, 403
Playfair, 405
random monoalphabet, 403
Vigenère, 404–405

Circle class, 79, 982
Circle constructor, 982
circles, 76–77, 79t
circular list, 502
class comments

educational game case study,
856–858

invoice printing case study,
844–846

class definition, 231–232, 234
C++/Java comparison, 1006
style guide for, 953

class diagrams, 343. See also
UML class diagrams

classes. See also base class;
constructors; default
constructor; derived class;
member functions; nested
classes; nonmember
functions; private
implementation; template
functions

accessing data fields, 249–250
can have multiple

constructors, 244
C++/Java comparison,

1005–1006
cohesion, 833–835
comparing member functions

with nonmember, 250–253
as concept, 228
confusing function objects

with, 927
consistency, 836
containers represented by,

752
coupling, 835–836
definitions in header files, 253
discovering, 228–231
discovering in CRC cards,

831–833
encapsulation, 235–237
file layout, 252–253
friends, 708–710
interfaces, 231–235

to minimize global variables,
185

in name spaces, 716
nested, 711–714
private inheritance, 714–716
protected inheritance, 716
public interfaces, 231–232
relationships between,

837–838
separate compilation,

253–257
style guide, 956
turning into template,

652–655
class hierarchies

abstract classes, 730–731
dynamic casts, 731–732, 733
failing to preserve is-a

relationship, 738
inheritance hierarchies,

728–730
multiple base classes, 736–738
multiple inheritance, 736–743
name ambiguities, 739
replicated base classes,

739–742
run-time type information,

731–736
taking type of pointer, not

object, 734
typeid operator, 731, 733
using type tests instead of

polymorphism, 734–735
virtual function tables,

735–736
class keyword, 960t

early versions of C++ used
for templates, 644

class names. see also name scope
management; name scopes

declaring using forward
reference, 705–706

name ambiguities, 739
naming conventions, 957

class scope, 700
class template, 647, 650
clear function, 981

using, 759t
click.cpp (ch02), 85–86
clipboard, 366
clock.cpp (ch22), 863–869

clocks1.cpp (ch08), 343–345
clocks2.cpp (ch08), 352–355
clocks3.cpp (ch08), 361–364
clone, of IBM computer, 182
clones, creation with copy

constructors, 608
close function, 973
<cmath> standard library, 56, 60

summary, 969–970
code. See also source code

commenting out a section,
198–199

factor out common, 61–62
machine code, 9–10, 22
pseudocode, 190–191
from pseudocode to code,

188–195
stubs, 199–200
walkthroughs, 195–200

code memory, 590–591
code specified in hexadecimal

escape sequence,
summary, 967t

code specified in octal escape
sequence, summary, 967t

coding guidelines, 951–959
coercion, and casts, 570–571
cohesion, classes, 833–835
coins1.cpp (ch02), 32–33
coins2.cpp (ch02), 40–41
coins3.cpp (ch02), 45–46
coins4.cpp (ch02), 55–56
cold fusion, 257
collaborators, discovering in

CRC cards, 831–833, 835
Collatz (“3n +1”) problem, 219
command line arguments,

388–392
COMMAND pattern, 946t
comments, 34, 35, 952
Common Lisp, 1004
Compaq, 183
compareTo function, Java, 1005
comparison

C++/Java, 1004–1010
floating-point numbers, 108
lexicographic, 106

1032 Index

comparison functions, lambda
functions used with
(C++0x standard),
814–815

comparison operators
define comparisons in terms

of each other, 560–561
overloadable, 547t
overloading, 560–561
symmetry and conversion,

561
compilers, 10. See also C++

compilers
compile with zero warnings,

107–108
errors, 19–21

compile-time error, 19
compile-time polymorphism,

647–649
complexity

encapsulation for managing,
698

name scope management for
controlling, 697

component failure, 666
COMPOSITE pattern, 917,

928–931
composition

in UML class diagrams,
878–879

UML connector, 878, 879
compound assignment operators

overloadable, 547t
overloading, 568

computation, limits of, 434–437
computer chips, 4, 5
computer games, 3
computer graphics, 80–81
computer programming, See

programming
computer programs, 2–3

algorithms, 24–26
compiling simple, 15–19
errors, 19–21

computers, 2–3
anatomy of, 4–7
becoming familiar with,

12–14
embedded systems, 332–333

ENIAC and the dawn of
computing, 8

limits of computation,
434–437

machine code, 9–10
programming languages,

10–11
schematic diagram, 7

computer science, 257–258
computer viruses, 274–275
computing, 8
concatenation, 65–66
concepts (C++0x standard),

817–820
concordance, 803
conditional breakpoints, in code,

212
conditions

if statement, 100–101
preconditions, 200–201
while loop, 122

connection.cpp (ch23), 904–907
connection.h (ch23), 902–904
consistency, 836
console applications, 76
constant iterators, 525
constant names, 952, 957
constant references, 180–181
constants, 51–53

C++/Java comparison, 1005
declaring in header files, 253
don’t use magic numbers,

952, 955
file layout, 253
style guide, 955–956

const_cast keyword, 960t
const_iterator, 758
const keyword, 960t

use instead of #define, 955
using with accessors, 232,

236, 237–238, 252
using with arrays, 283

construction, time objects, 68
construction parameters

making object with, 68
making object without, 69

constructor chaining (C++0x
standard), 811

constructors. See also default
constructor

are always extensions, 611
with arguments, 604–606
calling from another

constructor, 247–248
for classes, 232
confusing construction and

deletion, 615
C++0x standard new

features, 810–812
and exceptions, 685–686
and field initializer lists, 610
forgetting to initialize all

fields in, 246
global qualifier, 702
and global variables, 686
and memory management,

602–613
and overloading of

conversion operators, 569
observing in memory

management, 612–613
with parameters, 244–249
private class implementation,

235, 236
reduces initialization errors,

595
single argument constructors

have dual use, 605–606
tracing execution, 616–617
trying to reset objects by

calling, 247
container adapters, 758, 765–766
container classes, in STL, 752,

760t
containers. See also heaps; maps;

multimaps; multisets;
queues; sets

experimentally evaluate
execution times, 761

fundamental in standard
template library, 758–765

memory allocation traits, 765
and STL, 752–753
summary, 974–978

continue, not allowed, 952
continue keyword, 960t
control flow. See also for loop;

if statement; loops; while
loop

Index 1033

Boolean operations, 115–117
C++/Java comparison, 1004
clearing failure state of

stream, 137–138
comparison of floating-point

numbers, 108
compile with zero warnings,

107–108
do loop, 131–132
don’t use != to test the end of

numeric range, 128–129
end-of-file detection, 136
forgetting a semicolon, 129
if statement, 100–105
infinite loops, 123–124
input processing, 133–135
loop-and-a-half problem,

135–136
for loops, 125–127
multiple alternatives, 109–110
nested branches, 112–115
nested loops, 132–133
nonlinear, 957
and off-by-one errors,

124–125
relational operators, 105–108
selection operator, 104–105
and simulations, 139–143
style guide, 956–957
switch statement, 110–111
symmetric and asymmetric

bounds, 130
while loop, 121–123

conversion
ambiguous, 571–572
cast as, 50
conversion, coercion, and

casts, 570–571
only one level of, 571
symmetry and, 561

conversion operators
conversion, coercion, and

casts, 570–571
overloadable, 547t
overloading, 569–572
stream loops and, 570

coord function, 981
copy constructors

if destructor, then copy
constructor and
assignment, 619–620

memory management,
608–609

when to use system defined,
609

copy function, 979
copy generic algorithm, 782, 791

and ADAPTER pattern,
920–921

with stream iterators, 792
cos function, 58t, 969
cosh function, 58t, 970
count function, 979

functionality, 752–753
map class, 977
multiset class, 976
set class, 976
and STL (maps), 770t
and STL sets, 767t
using with sets, 507

count generic algorithm, 790
count_if function, 979
count_if generic algorithm, 790
cout, 18
cout <<, 18
.cpp file extension, 13
CRC cards, 831–833

educational game case study,
852–855

fail early, fail often, fail
inexpensively, 843

invoice printing case study,
840–843

summary, 999
CRC cards (UML), voice

mail system case study,
887–891

<cstdlib> standard library,
summary, 970

c_str function
with arrays, 288
with char* pointers, 328
streams, 377
string class, 971
wxString class, 971

<ctime> standard library,
summary, 971

cur flag, 972
Curl, 1004
currency conversion, 153
cut and paste, 366

cwin object, 76
cycling, of bugs, 204
CYC project, 120

D
dangling else, 112
dangling pointers, 312–313, 596
data, 2
database.cpp (ch09), 396–398
database privacy, 399–401
database processing

programming languages,
820

data fields. See also field
initializer lists

accessing class, 249–250
class encapsulation, 235–236
classes, 228
constructors for initializing,

241
constructors with parameters,

244–249
encapsulation and name

scope management,
698–699

protected name scope, 706
use accessors for protected

access, 708
data members

all data members should be
private, 957

class scope, 700
inheritance, 342
protected access, 356–357

data types, C++/Java
comparison, 1004–1005

debugger, 20
functions, 205–206
inspecting objects, 212
inspecting vectors in,

272–273
sample session, 207–211
stepping through program,

207–211
using, 206–207

debugging, 206–207
error message printing, 670
functions, 205–206
nontemplate function version

sometimes easier than
template, 646

1034 Index

debugging, continued
recursive functions, 419–420
sample session, 207–211
and standard template library,

752
strategies, 213
vectors, 273

dec flag, 972
decisions, 99
decisions, programming, See

control flow
DECLARE_APP macro, 986
DECLARE_EVENT_TABLE macro, 986
decltype keyword, 808
dec flag, 972
dec manipulator, 383t, 384, 973
DECORATOR pattern, 946t
decrement operator (--), 965t.

See also at beginning of
index under -- operator

overloadable, 547t
overloading, 564–567

default construction, time
objects, 69, 70

default constructor
for classes, 232, 241–243, 247
controlling implementation

(C++0x standard),
815–817

has no parameters, 241
memory management,

606–607
new constructor features in

C++0x standard, 810
with parentheses, 607
trying to reset objects by

calling, 247
default keyword, 960t

(C++0x standard), 815–816
Defense Advanced Research

Projects Agency
(DARPA), autonomous
vehicle “grand
challenges,” 120–121

defensive programming, 20
#define, don’t use to define

constants, 955
degenerate inputs, 422
delete keyword, 960t

and deleted implementations
(C++0x standard), 816

delete operator, 965t
confusing construction and

deletion, 615
deleting value never

allocated, 602
deleting values more than

once, 601
for dynamic memory

deallocation, 311
overloadable, 547t
overloading and memory

management, 621, 622
for recycling erased list

nodes, 484
returning dynamically

allocated memory, 593
should always have matching

call to new operator, 313
delete[] operator

overloadable, 547t
using to deallocate memory,

327
deletion, confusing with

destruction, 615
De Morgan’s Law, 119
Denver Airport luggage

handling system, 138
department.cpp (ch07), 317–319
dependency

UML connector, 878
relationship, 835, 838

deployment, in software life
cycle, 826, 827, 828, 829

deque class, summary, 974–975
<deque> container library,

974–975
deques

as sequential containers, 758,
759

and STL, 763–765
dereferencing, 308, 309
derived class, 342–348

C++/Java comparison, 1006
class hierarchies, 729
and object slicing, 363
and private inheritance,

714–715
and protected name scopes,

706

slicing away data, 357
derived-class constructor,

348–349
derived-class pointer, 358
design

and CRC cards, 831–833
in software life cycle, 826,

827, 828, 829
design patterns

ADAPTER pattern, 917,
919–922, 932

case study: Putting Patterns
to Work, 931–945

COMPOSITE pattern, 917,
928–931

concept, 914–919
ITERATOR pattern,

916–917, 918, 933
other common patterns,

946–947t
pattern recognition, 930–931
SHORT PASSAGES pattern

(Alexander), 915
STRATEGY pattern, 917,

925–928, 930–931, 934
TEMPLATE METHOD pattern,

917, 922–924, 931, 932
Design Patterns (Gamma, Helm,

Johnson, and Vlissides)
(Gang of Four book), 917

Destroy function, wxWidgets, 983
destruction, confusing with

deletion, 615
destructors

controlling implementation
(C++0x standard),
815–817

don’t throw exceptions in,
686

and exceptions, 683–686
if destructor, then copy

constructor and
assignment, 619

include virtual, 618
memory management, 602,

613–622
not declaring virtual, 617–618

device errors, 666
diagrams, 80
dialog boxes, 744
dice.cpp (ch03), 141–142

Index 1035

dictionary order, 106
Difference Engine, 459
dijkstra.cpp (ch20), 772–775
Dijkstra’s shortest algorithm,

771–775
directed acyclic graph (DAG),

737
directed association, UML

connector, 878, 879
directed graph, 771–772
directories, 13
directory hierarchy, 13
discrete event simulations,

priority queues for,
528–529

disk controller, 7
disk files, 13–14
divide and conquer debugging

strategy, 213
do keyword, 961t
do loop, 131–132
domain_error class, 678

summary, 980
DOS (Disk Operating System),

183
do statement, 132
dot notation, 63, 71–72
double-ended queue, 763
double keyword, 961t
double quote escape sequence

\", summary, 967t
double-s character (German),

292
double type, 33

precision, 38
doublinv.cpp (ch3), 123
doubly-linked lists, 473
downcast, 732
Dragging function, 985
DrawEllipse function, 985
DrawLine function, 985
DrawText function, 985
dummy node, 502
dynamically allocated arrays,

326–327
dynamically allocated memory

and constructors, 602–613
destructors, 602

initialization errors, 595
memory leaks, 599–600
and reference counting, 622

dynamic binding, 360
dynamic_cast keyword, 961t

for obtaining run-time type
information, 731

dynamic casts, 731–732, 733
dynamic memory allocation,

593–594
and class auto_ptr, 620–622
deallocating dynamic

memory, 311–314
failing to allocate pointers,

328–329
memory leaks, 313
pointers, 306–311
reference counting, 622–627

E
edit-compile-debug loop, 23–24
EDOM condition, 672
electronic voting machines,

320–321
Elements, The (Euclid), 557
else keyword, 961t
else portion, if/else

statements, 101
embedded system controller, 333
embedded systems, 12, 332–333
Employee class, 981
employee.cpp (ch02), 74
employee objects, 74–76
empty function, 974

and STL (maps), 770t
and STL (sets), 767t
using, 759t, 760

empty strings, 63
encapsulation, 235–237

and friendship, 710
management, 713–714
and name scope management,

698–699
encryption, 389. See also ciphers

and limits of computation,
437

encryption algorithms, 392–394
encryption key, 389
END_EVENT_TABLE macro, 986

end flag, 972
end function, 974

with iterators, 912
with list iterators, 478
and STL (maps), 770t
and STL (sets), 767t
using, 759t

end position, linked lists, 475
English alphabet, 292
English units, 51t
ENIAC, 8
enumerated types, 54
enum keyword, 961t
equal function, 787, 979
EqualityComparable concept,

820
equals function

Java, 1005
with list iterators, 478, 480

ERANGE condition, 672
erase function

deque class, 975
list class, 975–976
map class, 977
multimap class, 977
multimaps, 522
multiset class, 976
removing linked list

elements, 474, 483–484
set class, 976
and STL (maps), 770t
and STL (sets), 767t
using, 759t, 760
using with sets, 507, 508
vector class, 974

errno flag, 672
error handlers, 673–674
error messages, 107, 670
errors, 107. See also exception

handling
assuming errors won’t occur,

668–670
commonly encountered, 666
compilers, 19–21
and debugging strategy, 213
off-by-one, 124–125

escape character, 17, 378
escape sequences, summary, 967t
eval.cpp (ch10), 428–429
EVT_BUTTON macro, 986

1036 Index

EVT_MENU macro, 986
EVT_MOUSE_EVENTS macro, 986
EVT_PAINT macro, 986
exceptional situations, 666
exception class, 681–682

hierarchy of derived classes,
678

summary, 980
exception handling, 666–668

alternate mechanisms,
668–674

Ariane rocket incident,
688–689

assuming errors won’t occur,
668–670

case study: Matrices,
continued, 689–692

C++/Java comparison,
1009–1010

error handlers, 673–674
external flags, 671–672
halting execution with

assertions, 673
nobody cares how fast you

get the wrong answer,
669–670

printing error messages, 670
special return values, 670–671

exceptions, 674–675
catching, 675–676
and constructors/destructors,

685–686
hierarchy of classes, 678
stack unwinding, 682–684
summary, 980
use for exceptional cases, 687

exception specifications,
686–688

exception throwing, 674, 675
not a sign of shame to throw

an exception, 688
rethrowing, 681, 684
throwing objects versus

pointers, 682
values thrown and caught,

677–681
executable file, 23
exit function, 970

terminating execution and set
status value, 671, 673

expert systems, 120

exp function, 58t, 969
explicit keyword, 961t

and operator overloading,
572

explicit parameter, 238
properties compared to other

parameters, 252
exponential notation, 33
export keyword, 961t
extension, computer files, 13
external flags, 671–672
extern keyword, 961t

and file scope, 701
extreme programming, 830

F
fabs function, 58t, 970
FAÇADE pattern, 946t
FACTORY METHOD pattern,

946t
failed input, 44–45
fail function, 170, 971

streams, 377
using, 134

fail predicate, 666
falls through, execution, 111
false keyword, 961t
fibloop.cpp (ch10), 433
Fibonacci numbers, 154
Fibonacci sequence, 430–434
fibtest.cpp (ch10), 430–431
fibtrace.cpp (ch10), 431–432
field initializer lists

C++/Java comparison, 1006
memory management,

610–612
FIFO (first in, first out), 493,

765
Fifth-Generation Project, 120
file extension, 13
file management, 365
file merge sort, 792–796
files, 13–14
file scope, 701
filesort.cpp (ch20), 794–796
fill function, 979
fill generic algorithm, 782, 791
fill_n generic algorithm, 782

find function, 978
map class, 977
multiset class, 976
set class, 976
and STL (maps), 770t
and STL (sets), 767t

find generic algorithm, 782, 786
find_if function, 979
find_if generic algorithm, 782,

786
finding, See searching
finger (UNIX), 274–275
first field, of pair class, 978
Fit function, 984
fixed flag, 972
fixed format, 67
fixed manipulator, 383t, 384,

972
string formatting, 67

fixing the heap, 533
Flesch Readability Index,

154–156
floating-point numbers, 33

comparison, 108
general format, 384
precision, 38–39
random, 142
roundoff errors, 38–39, 49

float keyword, 961t
float type, precision, 39
floor function, 58t, 970
FLYWEIGHT pattern, 946t
folders, 13–14
fonts, 366
for classes, constructors, 232
for_each function, 978
for_each generic algorithm, 781
for keyword, 961t
for loops, 125–127

count iterations, 130–131
describing linked list

traversal, 475
don’t use != to test the end of

numeric range, 128–129
iterators and STL, 755
nested loops, 132–133
range-based (C++0x

standard), 808–809, 812
style guide, 957

Index 1037

symmetric and asymmetric
bounds, 130

use for intended purpose
only, 128

variables have block scope,
700

for statement, C++/Java
comparison, 1004

formal parameter, 171
formal processes, 827
formatted output, 66–68
form feed escape sequence \f,

summary, 967t
forwarding constructor, 810
forward iterators, 758t
forward references, 705–706
fractional numbers, operator

overloading case study,
551–557

fraction.cpp (ch14), 553–556
fraction.h (ch14), 551–553
fractiontest.cpp (ch14),

556–557
free-form layout, 15–16
free store, 590, 593
friend keyword, 961tt

declaring classes friends, 708,
710

using with linked lists, 477
friends, 708–710
front, of a queue, 493
front function

deque class, 975
list class, 975
queue class, 977
using, 759t, 760
using with queues, 494

front_inserter function, 791
fstreambase class, summary, 973
fstream class, 380

summary, 973
<fstream> standard library,

summary, 973
fstream variables, 376
functional languages, 649, 1004
functional programming,

745–747
function call, 57, 64, 161–162

execution flow during, 161
and reference parameters, 178
return statement terminates,

169
side effects, 175–176

function call operator, 547, 572
overloadable, 547t

function comments, 166–167
educational game case study,

856–858
invoice printing case study,

844–846
style guide for, 952

function declarations, 173–175
function names, style guide, 952,

957–958. See also name
scope management

function objects
confusing with classes, 927
and lambda functions

(C++0x standard), 814
overloading function call

operator, 575
and STL, 777–781
and STRATEGY pattern,

925–927
as template parameters, 657

function parameters
preconditions, 200–201
types compared, 253t
vector, 275

function pointer, 331–332, 591
functions. See also member

functions; parameter
value; return value; return
values; template functions

as black boxes, 160–162, 167
case study: from pseudocode

to code, 188–195
C++/Java comparison, 1005,

1008
commenting out a section of

code, 198–199
constant references, 180–181
debugger, 205–206
debugging, 205–206
debugging strategies, 213
defined, 17
dynamic and static binding,

359
global search and replace, 168

higher order, 747
implementing, 162–165
inline functions, 576–577
inspecting objects, 212
keep short, 188
and lifetime memory errors,

595–596
minimize global variables,

185
modifying vector, 276
pointers to, 330–332
preconditions, 200–201
reference parameters,

178–180
regression testing, 204
regular expressions, 168–169
side effects, 175–176
stepping through, 211–212
stepwise refinement

application, 186–188
stubs, 199–200
style guide, 955
unit testing, 203–205
variable scope and global

variables, 183–185
virtual, 359–360, 364
virtual function tables,

735–736
and void type, 176
walkthroughs, 195–200
write functions with reuse in

mind, 165–166
futval.cpp (ch04), 164

G
game of Nim, 156
Gang of Four book (Design

Patterns), by Gamma,
Helm, Johnson, and
Vlissides, 917

gcd function, 557
general format, for floating-

point numbers, 384
general protection fault, 312
general purpose languages, 1004
generate generic algorithm, 778,

782, 791
generate_n generic algorithm,

782
generators, and STL, 778

1038 Index

generic algorithms, 775, 781–790
removal and replacement

algorithms, 787–789
searching algorithms, 786–

787
and STL, 752, 753
transformations, 783–786
using generators, 777
using predicates, 776

generic programming, 918–919
German alphabet, 292
get_center function, 982

using for Circle, 78
get_double function, 981
get_end function, 982

using for Circle, 77
using for Line, 78–79

get function, 971
reading and writing text files,

376
stream classes, 379
with iterators, 914
with list iterators, 478, 480

GetHeight function, 986
get_hours function, 981
get_int function, 981
getline function, 160, 971

mixing >> operator and
getline input, 230–231

stream classes, 379
with string variables, 63, 64
using with string streams, 386

get_minutes function, 981
get_mouse function, 981
get_name function, 981
get position, streams, 394–395
get_radius function, 982

using for Circle, 78
get_salary function, 981
get_seconds function, 980
GetSize function, 983
get_start function, 982

using for Circle, 77
using for Line, 78–79
using for Message, 79

get_string function, 981
using, 84, 85t

get_text function, 982
GetValue function, 985

GetWidth function, 986
get_x function, 981

using for Point, 78
get_y function, 982

using for Point, 78
global.cpp (ch4), 184–185
global data memory, 591
global functions, in name spaces,

716
global qualifier, 702
global scope, 700–701

don’t pollute, 703–704
global search and replace, 168
global variables, 700–701

declaring in header files, 253
and exceptions, 686
file layout, 253
functions, 184–185
minimize, 185
in name spaces, 716
source files have definitions,

253
and static data memory, 591
style guide, 953

GNU Project, 394
goodprime.cpp (ch04), 210–211
goto, not allowed, 952
goto keyword, 961t
graphical shapes

choosing coordinate system,
81–84

computer graphics, 80–81
displaying, 76–86
graphics objects, 76–81

graphical user interface (GUI),
743–744

graphics applications, 76
graphics card, 7
graphics objects, 76–81
graphics window

displaying graphics objects
in, 76–81

getting input from, 84–86
GraphicWindow class, 85t, 981
gratuitous choice, 951
Greek script, 293
Gregorian correction, 221
grep program, 168

H
half-open interval, 756
halt checker, 426
halting problem, 435–436
hard disk, 5, 6, 7
hard-wired, into function code,

164
has-a relationship, 837, 838
hash tables (C++0x standard),

817
Haskell, 747, 1004
header, in programs, 18
header files

classes, 253
file layout, 253
forgetting, 60
online documentation, 60
style guide for, 952–953

heap, 529–539, 593–594
allocating list nodes on, 480
C++/Java comparison, 1009
fixing the heap, 533
memory leaks, 313
pointers and dynamic

memory allocation,
306–308

recycling erased list nodes,
484

sorting in arrays, 534
heap.cpp (ch13), 535–539
heap manager, 600–601
heap memory, 590, 593–594
heap property, 529
Hebrew script, 293
hello.cpp (ch01), 15
helper functions, 173
hexadecimal numbers, 995
hex manipulator, 383t, 384, 973
high coupling, between classes,

835, 836
higher-level programming

languages, 10, 820
higher order function, 747
HP 35 calculator, 497
HTML documentation,

function, 166

Index 1039

I
IBM PC-compatible computers,

183
IBM personal computer, 182
ideographic characters, 293–294
idiom, 128
IEEE floating-pointing

numbers, 993–994
if/else sequence, use for

nonlinear control flow,
957

if/else/else statement, 109
and switch statement,

110–111
if/else/else test, 109
if/else statement, 101

dangling else problem, 112
multiple alternatives, 109–110
nested branches, 112–115
not necessary strictly

speaking, 102
if keyword, 961t
if statement, 100–105

C++/Java comparison, 1004
style guide, 956
dangling else problem, 112

ifstream class, 380
summary, 973

ifstream parameter, 378
ifstream variables, 376
imperative programming, 745
IMPLEMENT_APP macro, 986
implementation

educational game case study,
858–869

invoice printing case study,
846–851

in software life cycle, 826,
827, 828, 829

voice mail system case study,
895-907

implicit parameter, 238
properties compared to other

parameters, 252
#include directives, 16, 18

style guide for, 952, 953
increment operator (++), 965t.

See also at beginning of
index under ++ operator

increment operators
avoid dependencies on order

of evaluation, 565
overloadable, 547t
overloading, 564–567

indentation, style guide, 958
index, vectors, 267, 268

don’t combine vector access
and index increment, 273

infinite loops, 123–124
infinite recursion, 415
inheritance, 837, 838. See also

polymorphism
attempting to access private

base-class fields, 354
C++/Java comparison, 1006
class inheritance hierarchies,

728–730
defined, 342
derived classes, 342–348
forgetting base-class name,

355
and generic programming,

918–919
and hierarchy of exception

classes, 678
multiple, 736–743
private, 347–348, 714–716
protected access, 355–356,

716
public, 348
and run-time polymorphism,

647
templates don’t preserve, 654
UML connector, 878
virtual functions, 359–360,

364
virtual self-calls, 364

initialization, memory errors
related to, 594–595

initialization algorithms,
782–783

initialization value, 35
initialize variables when you

define, 36–37
initializer lists, 248

new uses in C++0x standard,
810–812

initials.cpp (ch02), 65
inline functions, 576–577

inline keyword, 961t
creating inline function with,

577
inorder traversal, binary search

trees, 517
input, 40–45

>> operator overloading, 562,
564

buffered, 42–44
failed, 44–45
functions, 160–162
getting input from graphics

window, 84–86
operator overloading of

stream output, 563
processing, 44–45
processing in control flow,

133–135
reading and writing text files,

376–379
input iterators, 758t
input redirection, 136
input streams, 375
inserters, 791–792
insert function

binary search trees, 512–513
inserting linked list elements,

474, 480–483
with iterators, 914
list class, 975
multimap class, 977
multimaps, 522
multiset class, 976
set class, 976
and STL (maps), 770t
and STL (sets), 767t
using, 759t
using with sets, 507
vector class, 974

insertion
into binary search trees,

511–513
elements in sets, 506, 507
elements into heaps, 530–532,

534
linked list elements, 472,

473, 474–475, 480–484,
490–491

queue and stack elements,
493–494

vector elements, 277–280

1040 Index

inspect variable debugging
command, 206

integer division, 58–59
integers, 33

long, short, signed, and
unsigned, 990–992

remainder of negative
integers, 58–59

two’s complement, 992–993
integrated circuits, 4
integrated environment, 13, 22
interface keyword, C++/Java

comparison, 1007
interfaces

C++/Java comparison, 1007
class consisting entirely of

pure virtual member
functions, 731

classes, 231–235
internal flag, 972
international alphabets, 292–294
International Organization for

Standardization (ISO), 12
Internet, 7
Internet bubble, 464
Internet worm, 274–275
INTERPRETER pattern, 946t
interprocess communication,

366
int keyword, 961t
intname.cpp (ch04), 193–195
int type, 33

precision, 38
invalid_argument class, 678

summary, 980
invoice.cpp (ch22), 847–851
invoice.cpp (ch24), 944–945
invoice.h (ch24), 940–941
invoiceprinter.h (ch24),

939–940
invoicetest.cpp (ch24), 945
invoked member function, 63
<iomanip> standard library,

summary, 972–973
ios class, summary, 972
iostream class, 380
<iostream> standard library,

summary, 971–972

isalnum function, 970
isalpha function, 970
is-a relationship, 837, 838

and class inheritance
hierarchies, 729

failing to preserve in class
hierarchies, 738

and substitution principle,
714

isdigit function, 970
islower function, 970
isspace function, 970
istream class, 378, 380

overloading stream output,
562–563

stream loops and conversion
operators, 570

summary, 971
istream_iterator class, and

ADAPTER pattern, 921
istringstream class, 380, 384

and ADAPTER pattern, 919
summary, 973

istringstream constructor, 973
isupper function, 970
item.cpp (ch24), 941
item.h (ch24), 936–937
itemiterator.cpp (ch24), 943
itemiterator.h (ch24), 938–939
iterator adapters, and STL,

791–792
iterator pairs, 754
ITERATOR pattern, 916–917,

918, 933
iterators, 912–914. See also list

iterators
assuming ending iterator is

included in range, 756–757
categories of, 758t
constant for maps, 525
and generic algorithms, 753,

781
mismatched and STL, 756
for nested classes, 711
and overloaded operators,

566–567
for sets, 507
and STL, 753–758

J
Japanese script, 293, 294
Java, 820

C++/Java comparison,
 1004–1010

class inheritance hierarchies,
730

generic programming, 918
javadoc style, 166–167
Javascript, 1004
Java web site, 1010
Julian dates, 221
junk mail, 405–406

K
keyboard, 7
keys, maps, 521–522
keywords. See also specific

keywords
lower case only, 21
summary, 960–963t

Kitab al-jabr wa'l-muqabala
(Rules of Restoration and
Reduction), 558

Korean script, 293, 294

L
lambda functions (C++0x

standard), 814–815
layout

free-form, 15–16
unstable, 957–958

lazy evaluation, 115
leap years, 221
left children, 509
left flag, 972
left manipulator, 383, 383t
length, of strings, 63
length_error class, 678

summary, 980
length function, 971

with string variables, 63, 64
letter frequencies, 404
lexical issues style guide,

957–958
lexicographic comparison, 106
lexicographic ordering, 106

Index 1041

libraries, 807
need for feature-rich, 821

library, 23
lifeline, in sequence diagrams,

882
lifetime memory errors, 595–596
LIFO (last in, first-out), 494,

592, 765
linear search, 461, 473
Line class, 79, 982
Line constructor, 982
line feed, 396
lines, 76, 77, 79t
linked lists, 472–476

binary trees contrasted, 509
with cursor, 913–914
efficiency compared to

vectors, 490–493
execution time for operations

compared to other
container operations, 516t

implementation and friends,
709

implementing, 476–489
insertion and removal,

480–489
iterator implementation,

478–480
and iterators, 474, 912–914
list, node, and iterator classes,

477–478
as sequential containers, 758,

759
sets contrasted, 506
singly- and doubly-linked,

473
and STL, 762–763
transformations, 783, 785

linker, 23
Linux, 365, 366
Lisp, 546, 639
list class

linked list implementation,
473–476, 477–478

summary, 975–976
as template, 473–474

<list> container library,
975–976

list1.cpp (ch12), 475–476
list2.cpp (ch12), 485–489

list iterators, 762
accessing linked list elements,

474
classes for, 478
implementing, 478–480

lists. See also linked lists
circular, 502
as templates, 652

local scope, 699–700
local variables

functions, 184
style guide, 955

log function, 58t, 969
log10 function, 58t, 970
logic_error class, 674, 675, 678,

681
summary, 980

logic errors, 20, 681
log in, 12–13
long integer, 991
long keyword, 961t
long long int type (C++0x

standard), 820
loop-and-a-half problem,

135–136
loops, 122–123. See also do

loops; for loops; while
loop

for filling arrays, 290
infinite, 123–124
iterators and STL, 755
loop-and-a-half problem,

135–136
low coupling, between classes,

835, 836
lower_bound function

multimap class, 977
and STL (maps), 770t

lower_bound generic algorithm,
787

M
machine code, 9–10, 22
machine instructions, 9
Macintosh OS, 183, 365, 366
macro, 200
magic numbers

don’t use, 53, 54, 952, 955
regular expressions to find,

168–169

magic squares, 301–302
mailbox.cpp (ch23), 898–899
mailbox.h (ch23), 896–898
mailsystem.cpp (ch23), 900
mailsystem.h (ch23), 899–900
mailsystem.test (ch23), 907
main function, 17, 18, 173
manipulated images, 81
man-month, 244
map class

defining ordering for
container elements, 508

summary, 977
unambiguously referencing,

716
using, 522–523

<map> container library, 977
map function, and STL, 770t
maps, 521–525

as associative containers, 758,
769–770

constant iterators, 525
defining ordering for

container elements, 508
library uses red-black trees,

515
multimaps, 769–770
nested classes to define their

iterators, 711
operations provided by, 770t
transformations, 784
unordered_map (C++0x

standard), 817
Mark II, first bug found in,

205–206
match type (C++0x standard),

813
mathematical functions, 56–57,

58t
matrix, See two-dimensional

arrays
matrix1.cpp (ch14), 583–584
matrix2.cpp (ch15), 629–630
matrix4.cpp (ch17), 691–692
matrix5.cpp (ch18), 722–723
matrix1.h (ch14), 580–583
matrix2.h (ch15), 628–629
matrix3.h (ch16), 660–661
matrix4.h (ch17), 689–691

1042 Index

matrix5.h (ch18), 720–722
matrixtest.cpp (ch15), 630
matrixtest1.cpp (ch14), 585
matrixtest3.cpp (ch16),

661–662
matrixtest4.cpp (ch17), 692
matrixtest5.cpp (ch18), 723
matrix (two-dimensional array),

288–294
max_element function, 978
max_element generic algorithm,

786
max function, 978

and invalid type parameters,
645

max-heap, 529
maxval.cpp (ch09), 378–381
maxval2.cpp (ch09), 381–382
mean, 154
MEDIATOR pattern, 946t
member class, 711
member function call, 64

calling without an object, 73
member functions, 237–240

accessors, 232
calling without an object, 73
C++/Java comparison, 1005,

1006
class scope, 700
comparing with nonmember,

250–253
encapsulation and name

scope management,
698–699

file layout, 253
inheritance, 342
invoked on objects using dot

notation, 63, 71–72
maps, 522
mutators, 232, 235, 236
nested classes, 711–712
operator functions, 548
operator member functions,

549–550
overriding, 349–356
private class implementation,

235
private data field access, 249
protected access, 355–356
protected name scope, 706

pure virtual, 730
qualification, 702
sets, 507
source files have definitions,

253
subscript operator, 572
template classes, 651–652
this pointer, 311
in UML class diagrams,

876–877
use accessors for protected

access to data, 708
memberwise assignment, 568
memberwise copy, 609
MEMENTO pattern, 946t
memory, 4–5. See also

dynamically allocated
memory; heap

code memory, 590–591
constructors, 602–631
destructors, 602
heap memory, 590, 593–594
run-time stack memory, 590,

592–593
static data memory, 590, 591

memory address, 307
memory allocation traits, 765
memory allocator, 306, 593
memory errors, 594

array bounds errors, 596–597
avoid buffer overflow errors,

597
deleting values more than

once, 601
deleting values never

allocated, 602
initialization errors, 594–595
invalid memory references,

600–601
lifetime errors, 595–596
object slicing, 597–599

memory leaks, 313, 599–600
memory management. See also

constructors; destructors
assignment operators, 6

11–613
case study: matrices, 627–630
C++/Java comparison, 1009
and class auto_ptr, 620–622
constructors, 602–613

constructors are always
extensions, 611

and constructors with
arguments, 604–606

copy constructors, 608–609
default constructors, 606–607
destructors, 602, 613–622
explicitly under direction of

programmer, 589
and field initializer lists,

610–612
if destructor, then copy

constructor and
assignment, 619–620

include virtual destructors,
618

not declaring destructors
virtual, 617–618

observing constructors,
612–613

and operating systems, 365
overloading memory

management operators,
621–622

reference counting, 622–627
self assignment, 626–627
single argument constructors

have dual use, 605–606
tracing constructor

execution, 616–617
memory management operators,

overloading, 621–622
merge function, 976

and STL, 763t
merge generic algorithm, 785
merge sort algorithm, 451–454

analysis, 454–457
mergesort.cpp (ch11), 452–454
Message class, 80, 982
Message constructor, 982
message.h (ch23), 896
message queues, 878
messages, 76, 77, 79, 80
methods, 1005
metric units, 51t
Microsoft Windows, 183, 366
min_element function, 978
min_element generic algorithm,

786
min function, 978

Index 1043

mismatched iterators, 756
mismatch generic algorithm, 787
misspelling words, 21
ML language, 746, 747, 1004
monitor, 2, 7
motherboard, 6
mouse, 7
move function, 982

using for graphical shapes,
77–78

Moving function, 985
multimap class

summary, 977
using, 522–523

multimaps, 769–770
multiple inheritance, 736–743

avoid, 742–743
C++/Java comparison, 1007

multiple relational operators,
117–118

multiple threads of execution,
807

multiplicities
of aggregation, 839
in UML class diagrams, 877

multiset class
defining ordering for

container elements, 508
summary, 976
using, 508

<multiset> container library,
976

multiset (bag), 507–508
as associative containers,

767–769
defining ordering for

container elements, 508
multitasking, 365
mutable keyword, 961t
mutator functions, 232, 235, 236
mutual recursion, 425–429
Mycin, 120
mysql_close function, 987
mysql_free_result function, 987
<mysql.h> library, 987
mysql_init function, 987
MySQL library, summary, 987

mysql_num_fetch_row function,
987

mysql_num_fields function, 987
mysql_num_rows function, 987
mysql_query function, 987
mysql_real_connect function,

987
mysql_store_result function,

987

N
\n newline character, See

newline escape sequence
name collision, 699
name overloading, 245, 248
name scope management

Case Study: Matrices,
continued, 720–723

and encapsulation, 698–699
encapsulation management,

713–714
friends, 708–710
friendship is granted, not

taken, 710
nested classes, 711–714
and private inheritance,

714–716
name scopes, 699–706

confusing with lifetime,
704–705

don’t pollute global scope,
703–704

forward references, 705–706
overriding, shading, and

scopes, 702–703
protected, 706–708
shadows and qualification,

701–703
use accessors for protected

access to data, 708
name space aliases, 718, 719
namespace keyword, 961t
name spaces, 17, 716–719

local declaration, 719
to manage encapsulation, 713
use unambiguous names for,

719
namespace scope, 701, 704
naming conventions, style guide,

957–958

“3n +1” (Collatz) problem, 219
negation operators, 996t
negator, 781
nested branches, 112–115
nested classes, 711–714, 742

and name scope management,
711–714

network card, 7
networking, 366
networks, 7
new keyword, 961t
newline escape sequence \n, 17

summary, 967t
new operator, 965t

dynamically allocated arrays,
326–327

for inserting list nodes, 480
overloadable, 547t
overloading and memory

management, 621–622
should always have matching

call to delete operator,
313

new[] operator, overloadable,
547t

next function
with iterators, 914
with list iterators, 478–479

next_permutation function, 979
next_permutation generic

algorithm, 785
Nim, 156
nodes

binary search trees, 509–516
binary trees, 509
dummy, 502
heaps, 529–539
inserting into linked lists,

480–484
in linked lists, 472–473, 477
removing from linked lists,

484–485
root node, 510

nonlinear control flow, 957
nonmember functions

comparing with member,
250–253

comparison operators, 561
declaring in header files, 253
file layout, 253

1044 Index

nonmember functions,
continued

operator functions, 549
source files have definitions,

253
nonmetric units, 51t
normalize function, 557
nth_element function, 979
nth triangle numbers, 412
NULL pointers, 308

common uses for, 315
and deleting memory value

more than once, 601
number systems, summary,

988–995
number types, 32–36

comparing, 105–108
numeric ranges and precision,

38–39t
Pentium floating-point bug,

39–40
numerical integrator, 8
numeric range, don’t use != to

test the end of, 128–129
numeric ranges, 38–39

O
object code, 22
object construction, 68–69
object-oriented design. See also

CRC cards; Unified
Modeling Language

case study: clock program
educational game, 851–869

case study: invoice printing,
839–851

and cohesion, 833–835
and coupling, 835–836
and CRC cards, 831–833
implementing aggregations,

838–839
and relationships between

classes, 837–838
software life cycle, 826–830

object-oriented programming,
11, 745

objects. See also arrays; vectors
in arrays, 280–282
C++/Java comparison,

1007–1008

classes, 227, 228–235
constructors for initializing

data fields, 241
constructors with parameters,

244
employee objects, 74–76
encapsulation protects

integrity of data, 236
and implementing

aggregations, 839
inspecting in functions, 212
make parallel vectors into

vectors of objects, 279–280
replacing with another, 70
in sets, 506
state, 235
state of, 235
throwing, 682
time objects, 68–73
trying to reset by calling

constructor, 247
using, 68–76
in vectors, 265, 266–269

object slicing, 363
and memory errors, 597–599

object variables, 69, 70
OBSERVER pattern, 947t
oct flag, 972
oct manipulator, 973
off-by-one errors, 124–125
ofstream class, 380

summary, 973
and TEMPLATE METHOD

pattern, 922
ofstream variables, 376
one-character lookahead, 377
OnInit function, 983
open function

class fstream, 973
class ifstream, 973
class ofstream, 973

operating systems, 183, 364–366
operator=, using, 759t
operator[], using, 759t, 762
operator function, 548–549

deque class, 975
map class, 977
vector class, 974

operator keyword, 961t

operator overloading, 248–249,
546–550

ambiguous conversions,
571–572

assignment operators,
568–569

avoid dependencies on order
of evaluation, 565

binary arithmetic operators,
558–559

case study: fractional
numbers, 551–557

case study: matrices, 577–585
comparison operators, 560–

561
compound assignment

operators, 568
conversion, coercion, and

casts, 570–571
conversion operators,

569–572
define one operator in terms

of another, 568–569
and explicit keyword, 572
function call operator,

574–577
inconsistent operations, 566
increment and decrement

operators, 564–567
inline functions, 576–577
input and output, 562–563
iterators and overloaded

operators, 566–567
memory management

operators, 621–622
only one level of conversion,

571
operator functions, 548–549
operator member functions,

549–550
other operators, 576
overloading memory

management operators,
621–622

overload only to make
programs easier to read,
559–560

peeking at the input, 563–564
as powerful and error-prone,

545
returning local objects, 559

Index 1045

simple arithmetic operators,
558–560

stream input, 563
stream output, 562–563
subscript operator, 572–574
table of overloadable

operators, 547t
unary arithmetic operators,

560
operators, 546–547

and Polish notation, 496–497
summary, 964–966
table of overloadable, 547t

OR Boolean operator, see ||
operator (OR)

ordered vector, 278
ostream class, 378, 380

overloading stream output,
562–563

summary, 971
ostream_iterator, 792
ostream_iterator class, and

ADAPTER pattern, 921
ostringstream class, 380

summary, 973
and TEMPLATE METHOD

pattern, 922
out_of_range class, 678

summary, 980
output, 40–45

<< operator overloading,
562–563

formatted string output,
66–68

operator overloading of
stream output, 562–563

reading and writing text files,
376–379

output iterators, 758t
output redirection, 136
output statement, 34
output streams, 375
overflow_error class, 678

summary, 980
overloading, 248–249. See also

operator overloading
function names, 245, 248
and templates, 648

overriding
member functions, 349–356
and run-time polymorphism,

647, 649
shadowing and name scopes,

702–703

P
pair class, summary, 978
pair constructor, 978
pair programming, 830
palindrome.cpp (ch10), 423–424
palindromes, 421–425
parallel vectors, 279–280
parameter passing, 172
parameters

functions, 171–173
to minimize global variables,

185
run-time stack, 592
sets, 507
template, 644, 648, 655, 656
time objects, 68
type mismatch, 173
use meaningful names for,

173
vectors, 275–277

parameter value, 161, 171–173
function comments on, 166
providing name and type,

162, 163
parameter variables, 171, 172

style guide for use, 954
parentheses

in arithmetic expressions, 55,
59

default constructor with, 607
unbalanced, 59

partition, of sequences, 784
partition generic algorithm,

784
Pascal, 820
passing

arrays to function using
pointers, 323

parameter values, 161
passing by reference, array

parameters, 283
past-the-end location, iterators,

475, 478

patterns, 911. See also design
patterns

and regular expressions, 813
Pentium chip, 4
Pentium floating-point bug,

39–40
Perl, 1004
permutations, 416–420
permute.cpp (ch10), 418–419
personal computers, 7

explosive growth in, 181–183
PGP (Pretty Good Privacy), 394
phoenix.cpp (ch02), 83–84
PHP language, 1004
physical limitations, 666
planning, in extreme

programming, 830
Playfair cipher, 405
Point class, 79, 981–982
Point constructor, 981
pointer arithmetic, 322
pointer dereferencing, 308, 309
pointers

to abstract classes, 730
address (&) operator, 313–314
and arrays, 305, 322–327
to character strings, 327–330,

base- and derived-class,
357–358

char* pointers, 327–328
common uses for, 314–319
confusing array and pointer

declarations, 325
confusing character pointers

and arrays, 329
confusing with the data to

which they point, 310
dangling, 312–313, 596
declaring two pointers on the

same line, 310
and deleting memory value

never allocated, 602
dynamically allocated arrays,

326–327
for dynamically allocated

memory, 593, 594
and dynamic memory

allocation, 306–311
and dynamic memory

deallocation, 311–314

1046 Index

pointers, continued
failing to allocate memory,

328–329
to functions, 330–332
and implementing

aggregations, 839
for iterators and overloaded

operators, 566–567
and lifetime memory errors,

595–596
and memory initialization

errors, 595
memory leaks, 313, 599–600
to nodes in linked lists,

472–473, 477–485
object slicing and memory

errors, 597–599
references as pointers in

disguise, 319
returning to local array,

325–326
smart, 576
some iterators are simply

pointers, 753
style guide for defining, 955
taking type of pointer, not

object, 734
this pointer, 310–311
throwing, 682
typedef with, 332
using to step through arrays,

323–324
variable definition, 308
vtable pointer, 735–736

points, 76–77, 79t
Polish notation, 496–497
polymorphic collection, 359
polymorphic vectors, 357–358
polymorphism, 341, 356–364.

See also inheritance
and abstract classes, 730
compile-time, 647–649
forms of, 648–649
object slicing and memory

errors, 598–599
and pointers, 316
run-time, 647
and software frameworks,

743, 745
using type test instead of,

734–735

pop_back function
deque class, 975
list class, 975
for reducing size of vector,

270, 277–278
using, 759, 760t
vector class, 974

pop_front function
deque class, 975
list class, 975
using, 759, 760t, 761

pop function
error of assuming never

called without preceding
push, 669

priority queues, 526
queue class, 978
stack class, 977
using with queues, 494
using with stacks, 495

ports, 7
Postal bar codes, 224–225
postfix version, of increment

and decrement operators,
564, 755

postorder traversal, binary
search trees, 517

pow function, 56, 162, 969
pqueue.cpp (ch13), 526–527
precision, 38–39
predicate function, 170
predicates, and STL, 776–777
prefix unary operators, 964, 965t
prefix version, of increment and

decrement operators, 564,
755

preorder traversal, binary search
trees, 517

preprocessor directives, 198–199
previous function, with list

iterators, 478, 479–480
primary storage, 4–5
primecode.cpp (ch04), 207–208
prime numbers, 156
primitive operations, 923, 924
principle of least astonishment,

566
print_all function, 918
printer, 2, 7

printing, 366
print queue, 493–494
printtime.cpp (ch04), 177
priority queues, 526–527

as adapters, 758, 765, 766
for discrete event

simulations, 528–529
privacy, of databases, 399–401
private implementation

classes, 232, 234, 235–236
encapsulation enables

changes without affecting
class users, 237

encapsulation for hiding, 236
encapsulation keeps from

being accidentally
corrupted, 236

private inheritance, 348
and name scope management,

714–716
private keyword, 961t

C++/Java comparison, 1006
control over access to names,

708, 713
encapsulation management,

713–714
procedures, 176–177
process workflows, 829
prodtest.cpp (ch05), 256
product.cpp (ch05), 255
product.cpp (ch24), 941
product1.cpp (ch05), 233
product2.cpp (ch05), 241–243
product.h (ch05), 254, 256–257
product.h (ch24), 935–936
productitem.cpp (ch24), 942
productitem.h (ch24), 937
programmer-defined classes, 68
programmer productivity,

243–244
programming, 3, 181

art or science?, 257–258
coding guidelines, 951–959
defensive, 20
extreme, 830
first programmer, 459–460
functional, 745–747
generic, 918–919
imperative, 745

Index 1047

importance of exception
handling, 667

object-oriented, 11
program clearly, not cleverly,

324–325
programmer productivity,

243–244
programming languages, 10–11,

820–821
new languages, 1004

projectile flight, 153
Prolog, 1004
prompt, 41
protected inheritance, 716
protected keyword, 962t

C++/Java comparison, 1006
control over access to names,

708
and protected access, 355–356
and protected scope, 706–707

protected scope, 701, 706–708
prototype, 174–175
prototypes, 828–829
PROXY pattern, 947t
pseudocode, 190–191
pseudorandom numbers, 141
public inheritance, 348
public interface

classes, 231, 234
cohesion, 834
consistency, 836

public-key encryption, 393
public keyword, 342, 962t

C++/Java comparison, 1006
control over access to names,

708, 713
encapsulation managements,

713–714
forgetting after derived class

names: private inheritance,
347–348

punch card ballot, 320
pure virtual member function,

730
push_back function

for adding elements to
vectors, 269–270, 278

adding strings to end of
linked lists, 474, 480–482,
491, 492, 493

can’t be used with arrays, 281
deque class, 974
with inserters, 791
list class, 975
private inheritance and name

scopes, 715
using, 759t, 760
vector class, 974

push_front function
deque class, 975
with inserters, 791
list class, 975
using, 759t, 760

push function
priority queues, 526
queue class, 978
special return value for

failure, 670
stack class, 977
using with queues, 494

put position, streams, 394–395
Python, 1004

Q
qsort function, 458
qualification, shadows and name

scopes, 702
question mark escape sequence

(\?), summary, 967t
queue class, summary, 977–978
<queue> container library,

977–978
queues, 493–494

as adapter, 758, 765–766
priority queues, 526–529

quicksort algorithm, 457–458,
784

quotation marks, strings
enclosed in, 17

R
raisesal.cpp (ch04), 179–180
rand.cpp (ch05), 257
rand function, 970
rand.h (ch05), 257
random access, 472–473

streams, 394–398
random-access files, 396
random access iterators, 758t

random-access memory (RAM),
4–5, 7

random.cpp (ch03), 140
random monoalphabet cipher,

403
random number generator,

140–141
random_shuffle function, 979
random_shuffle generic

algorithm, 783
random walk, 156
range_error class, 678

summary, 980
Rational Unified Process, 829
rbegin function

and STL (Sets), 767t
using, 759t, 760

read-only memory (ROM), 4–5
readtime.cpp (ch9), 386–388
recursion, 411

efficiency, 430–434
infinite, 415
mutual, 425–429
permutations, 416–420
thinking recursively, 421–424
triangle numbers, 412–415
using in inserting values in

binary search trees, 512
recursive computation, 413
recursive functions, 413–414

helper functions, 424–425
tracing through, 419–420

recursive helper functions,
424–425

recursive solutions, 413–414
don’t worry about multiple

nested calls, 424
must ensure that they

terminate, 428
often easier to understand

than iterative solutions,
434

red-black trees, 515
refactoring, 830
reference counting, 622–627

drawbacks, 627
reference parameters, 178–180

array parameters, 283
constant references, 180–181

1048 Index

reference parameters, continued
passing by constant

reference, 277
pointers, 319
properties compared to other

parameters, 252
vectors, 276

references
to abstract classes, 730
as pointers in disguise, 319

referential transparency, 746
Refresh function, 983
regex_match function (C++0x

standard), 813
regex_search function (C++0x

standard), 813
regex type (C++0x standard),

813
register keyword, 962t
regression line, 156
regular expressions, 168–169
regular expressions (C++0x

standard), 813
reinterpret_cast keyword,

962t
relational database files, 400
relational operators

for control flow, 105–108
multiple, 117–118
predicate versions, 780

relationships, between classes,
837–838

removal
from binary search trees,

513–514
elements in sets, 506, 508
elements into heaps, 532–534
linked list elements, 472, 473,

475, 484–485, 490–491
queue and stack elements,

493–494
vector elements, 277–280

removal algorithms, 787–789
forgetting to erase removed

elements, 790
remove_copy function, 788
remove_copy_if function, 788
remove function, 979

with iterators, 914
and STL, 763t

remove_if function, 788–789,
979

removing, elements, See removal
rend function

and STL (Sets), 767t
using, 759t, 760

replace function, 979
replace generic algorithm, 789
replace_if function, 979
replace_if generic algorithm,

789
replacement algorithms,

787–789
replicated base classes, 739–742
requirements, 826, 829

educational game case study,
851–852

invoice printing case study,
840

voice mail system case study,
884

requirements document, 826
reserved words, 35
reset function, with iterators,

914
resetiosflags manipulator, 973
resize function, using, 759t
responsibilities, discovering in

CRC cards, 831–833
restoring backup copies, 15
return keyword, 962t
return statement, 18, 169–171
return type, arrays, 283
return value, 161, 169–171, 184

forgetting to check, 671
function comments on, 166
missing, 171
providing type, 163
special for exception

handling, 670–671
vectors, 275–277

reuse, See software reuse
reverse function, and STL, 763t
reverse generic algorithm, 783
reverse Polish notation (RPN),

495, 496–497
right children, 509
right flag, 972
right manipulator, 383, 383t

roles, with UML connectors,
878

Roman script, 293
root node, 510
rotation, of sequences, 783–784
roundoff errors, 49

and precision, 39
RSA encryption, 392–394
run-time error, 20, 681
runtime_error class, 678

summary, 980
run-time polymorphism, 647
run-time stack memory, 590,

592–593
unwinding, 682–684

run-time type information,
731–736

run until this line debugging
command, 206

Russian script, 293

S
salarray.cpp (ch06), 284–285
salvect.cpp (ch06), 270–271
saving work, 14

in compilation process, 22
scenes, 80
scientific flag, 972
scientific manipulator, 972
scientific method, 257
scope, 699–704. See also name

scopes
confusing with lifetime,

704–705
scripting languages, 1004
scroll bars, 744
search generic algorithm, 787
searching, 460–463. See also

binary search trees; sorting
binary search, 462–463
binary search library

functions, 463–464
cataloging your necktie

collection, 464–465
elements in sets, 506
linear search, 461, 473

secondary storage, 5
second field, of pair class, 978
seconds_from function, 981

Index 1049

seekg function, 476, 971
using, 350

seekp function, 476, 971
using, 350

segmentation fault, 312, 669
selection operator, 966t

using, 104–105
selection sort algorithm,

444–447
performance analysis,

449–451
profiling, 448–449

self assignment, 626–627
self-call, 882

virtual, 364
selsort.cpp (ch11), 445–446
semicolon

C++/Java comparison, 1006
end each program statement

with, 17
forgetting at end of class

definition, 234–235
forgetting with for loops, 129
omitting, 19, 129

sentinel value, 133
sequence diagrams, 881–883

summary, 1002, 1003
voice mail system case study,

892–895
sequential access, 473

streams, 394, 395
sequential containers, 758
sequential search, 461
SetAutoLayout function, 983
setbase manipulator, 973
SetBrush function, 985
set class

defining ordering for
container elements, 508

summary, 976
using, 507–508

<set> container library, 976
setfill manipulator, 383, 383t,

973
set function

with iterators, 914
and STL, 767t

setiosflags manipulator, 972
SetMenuBar function, 983

setprecision manipulator, 383t,
972

and consistency, 836
string formatting, 67

sets, 506–508. See also binary
search trees

as associative containers, 758,
767–769

defining ordering for
container elements, 508

library uses red-black trees,
515

multisets, 507–508
nested classes to define their

iterators, 711
operations provided by, 759t
parameters, 507
transformations, 784

set_salary function, 981
setSizer function, 983
setw manipulator, 383, 383t, 384,

972
inconsistency in use of, 836
string formatting, 67

shadows, and name scopes,
701–703

sharedstring.cpp (ch15),
623–625

shift operations, 997–998
short integer, 990–991
short keyword, 962t
SHORT PASSAGES pattern

(Alexander), 915
showbase flag, 972
ShowModal function, 985
showpoint flag, 972
sieve of Eratosthenes, 542
signed integer, 991, 992t
signed keyword, 962t
signed magnitude (two’s

complement) integers,
992–993

simpleinvoiceprinter.cpp
(ch24), 943–944

simpleinvoiceprinter.h (ch24),
940

Simula, 11–12, 821
simulations

control flow, 139–143

discrete event, 528–529
sin function, 58t, 969
single quote escape sequence

\', summary, 967t
single-stepping debugging

commands, 211
SINGLETON pattern, 947t
singly-linked lists, 473
sinh function, 58t, 970
size, of an array, See array size
size function, 974

checking data before calling
pop, 669

for current size of vectors,
269

and STL (Sets), 767t
sizeof keyword, 962t
sizeof operator, 965t, 991
Smalltalk, 1004

class inheritance hierarchies,
730

generic programming, 918
smart pointers, 576
Social Security, 400–401
software frameworks, 743–745

design your own, 745
software life cycle, 826–830
software reuse, 743

functions, 164
write functions with reuse in

mind, 165–166
sort algorithm, and function

objects, 925–926
sort function, 463–464, 976, 979

defining an ordering for, 464
does not use TEMPLATE

METHOD pattern, 931
and STL, 763t
and STRATEGY pattern, 926,

927
sort generic algorithm, 783
sorting, 443. See also searching

cataloging your necktie
collection, 464–465

defining an ordering for, 464
elements of sets, 509
heaps in arrays, 534
lambda functions used in

(C++0x standard),
814–815

1050 Index

sorting, continued
library function for, 463–464
merge sort, 451–454
merge sort analysis, 454–457
quicksort, 457–458
selection sort, 444–447
selection sort performance,

449–451
selection sort profiling,

448–449
sorting algorithms, 444
sound card, 7
sound system, 2
source code, 22, 23

factor out common, 61–62
and pseudocode, 190–191
from pseudocode to code,

188–195
separation compilation,

253–257
source files, 15

classes, 253
file layout, 252–253
style guide, 952–953

spaces, style guide for use, 952,
958

speakers, 7
specialization, 648
spiral model, of software

development, 828–829
splice function, and STL, 763t
spreadsheet program, 181–182
sqrt function, 56, 160, 161, 969
square.cpp (ch2), 78
srand function, 970
<sstream> standard library,

summary, 973
stable_partition generic

algorithm, 784
stack-based memory, 592–593
stack class

assumes pop won’t occur
without preceding push,
669

summary, 977
<stack> container library, 977
stack interface, for iterators, 913
stacks, 494–496

as adapters, 758, 765–766

pointers and dynamic
memory allocation, 307

vectors contrasted, 270
standard code libraries, 969–973
standard deviation, 154
standard namespace, 16
standards organizations, 12
standard template library, 806

associative containers, 758,
767–768

assuming ending iterator is
included in range, 756–757

brief description, 751,
752–753

case study: Dijkstra’s shortest
algorithm, 771–775

case study: file merge sort,
792–796

C++/Java comparison, 1010
container adapters, 765–766
deque containers, 759t,

763–765
functions, generators, and

predicates, 775–781
fundamental containers,

 758–765
and generic algorithms, 775,

781–790
iterator adapters, 791–792
iterators, 753–758
iterator varieties, 757–758
linked list containers, 759t,

762–763
mismatched iterators, 756
vector containers, 759t, 762

state, of an object, 235
state diagrams, 883–884

summary, 1003
voice mail system case study,

895
STATE pattern, 947t
static binding, 360
static_cast keyword, 962t

for obtaining run–time type
information, 732

static data memory, 590, 591
static keyword, 962t

and file scope, 701, 704
static modifier, 590, 591

static variables, and static data
memory, 591

status value, 671
<stdexcept> library, 678, 980
std::initializer_list data

type, 811, 812
step into debugging command,

211
step over debugging command,

211
stepping commands, 211
step to next line debugging

command, 206
stepwise refinement, 186–188
STRATEGY pattern, 917,

925–928, 930–931, 934
strcat function, with arrays,

287–288
stream, operator overloading

input, 563
stream adapters, 919–922
stream input

>> operator for, 40
clearing failure state of

stream, 137–138
processing in control flow,

134–135
string variables, 62–63

stream input iterators, 792
stream input/output package, 16
stream iterators, 792
stream loops, 570
stream manipulators, 382–384,

383t
stream output, 34
stream output iterators, 792
streams, 375. See also file streams

command line arguments,
388–392

inheritance hierarchy of
classes, 379–382

operator overloading output,
562–563

original language didn’t have,
806

random access, 394–398
reading and writing text files,

376–379
string streams, 384–388

Index 1051

str function, 973
using with string streams, 385

string class, summary, 971
strings, 17, 62–66

in C, 66
command line arguments,

388–392
concatenation, 65–66
empty, 63
enclose in quotation marks in

programs, 17
formatted output, 66–68
length, 63
in linked lists, 472–476
permutations recursively

computed, 416–420
pointers to, 327–330
relational operators for

comparing, 105–108
substrings, 63–64
as vectors of characters,

273–274
<string> standard library,

summary, 971
string variables, 62–63
strlen function, computes

length of array, 286
strncat function, with arrays,

288
strongly typed language, 173
struct keyword, 962t
stubs, 199–200
subscript, vector, 267
subscript m[i][j], 2D arrays,

289
subscript operator

overloadable, 547t
overloading, 572–574

subscript:v[i], 267
substitution principle, 714
substr function, 63–64, 162, 971

[] operator more convenient
than, 274

substrings, 63–64t
super keyword, C++/Java

comparison, 1006
swap function, 978
switch keyword, 962t
switch statement

control flow, 110–111

don’t use for nonlinear
control flow, 957

symbolic names, 34
symmetric bounds, for loops,

130
syntax

array initializer list
construction, 812

array variable definition, 282
assertion, 201
assignment, 48
auto initialization, 808
block statement, 202
cast, 50
comment, 35
concept definition, 818
constant definition, 53
constant reference parameter,

181
constructor chaining, 811
constructor definition, 246
constructor with base-class

initializer, 349
constructor with field

initializer list, 248
copy constructors, 609
default constructor, 607
default/deleted

implementations, 816
delete expression, 312
derived class definition, 347
destructor definition, 614
do statement, 132
dynamic cast, 732
exception specification, 687
friends, 709
function call, 57
function declaration

(prototype), 174
function definition, 165
if statement, 202
input statement, 42
lambda functions, 814, 815
member function call, 64
member function definition,

239
multiple inheritance, 738
name space alias, 719
name space definition, 718
nested class definition, 713
new expression, 309
object construction, 69

object variable definition, 70
output statement, 34
overloaded operator

definition, 548
overloaded operator member

functions, 549–550
pointer dereferencing, 309
pointer variable definition,

309
private inheritance, 716
protected members, 707
pure virtual member

function, 731
range-based for loop, 809
reference parameter, 180
return statement, 171
simple C++ program, 18
for statement, 127
template class concept

binding, 819
template class definition, 651
template function concept

binding, 818
template function definition,

644
template member function

definition, 651
throwing an exception, 675
try block, 676
two-dimensional array, 291
typedef statement, 332
type duplication, 808
typeid, 733
variable definition, 35
vector subscript, 269
vector variable definition, 268
virtual function definition,

363
while statement, 123

syntax diagrams, 426–427
syntax error, 19

T
tab escape sequence \t,

summary, 967t
tabs, 103–104

style guide for using, 952, 958
Taiwanese script, 294
tan function, 58t, 969
tanh function, 58t, 970
tax.cpp (ch03), 114–115

1052 Index

tele.cpp (ch13), 523–525
telephone.cpp (ch23), 901–902
telephone.h (ch23), 900–901
tellg function, 971
tellp function, 971
template classes, 643, 647,

649–652
concept binding (C++0x

standard), 819
template functions, 642–646

concept binding (C++0x
standard), 818

invalid type parameters,
645–646

move from concrete to
abstract, 646

template keyword, 962t
using, 643

TEMPLATE METHOD pattern,
917, 922–924, 931, 932

template parameters
and generic algorithms, 753
invalid, 645–646
nontype template parameters,

655–656
setting behavior using

template parameters,
656–659

template classes, 650
template functions, 643

templates, 641, 643
case study: matrices,

continued, 659–662
and compile-time

polymorphism, 647–649
document template

parameter requirements,
655

don’t preserve inheritance,
654

extending heap
implementation, 535

first appearance, 806
and generic algorithms, 753
and generic programming,

918–919
lists as, 473–474
nested, 654
nontype template parameters,

655–656
and overloading, 648

setting behavior using
template parameters,
656–659

turning classes into, 652–655
templates nested, 654
test coverage, unit testing, 204
test harness, 203, 205
testing. See also debugger;

debugging
in extreme programming, 830
regression testing, 204
in software life cycle, 826,

827, 828, 829
unit testing, 203–205

test suite, 204
text, in graphical user interfaces,

744
text files, reading and writing,

376
Thai script, 293
Therac-25 incidents, 202–203
this keyword, 962t
this pointer, 310–311

and name shadowing, 702
throwing exceptions, See

exception throwing
throw keyword, 962t

using, 674–675, 686
throw statement, 674–675, 676

special form for rethrowing,
681, 684

values thrown and caught,
677–681

Time class, 980–981
Time constructor, 980
time.cpp (ch2), 73
time function, 971
time objects, 68–73
tmpnam function, 328
tolower function, 970
toolkit, 744
top function

priority queues, 526
queue class, 978
stack class, 977
using with stacks, 495

toupper function, 970
Towers of Hanoi, 442
trace.h (ch15), 616

tracetest.cpp (ch15), 616–617
trait, 659
transformations, generic

algorithms, 783–786
transform generic algorithm,

783, 784–785
transistors, 4
triangle.cpp (ch03), 132–133
triangle.cpp (ch10), 414–415
triangle numbers, 412–415
true keyword, 962t
try keyword, 962t
try statement, 675–676

doesn’t need to catch all
exceptions, 680

values thrown and caught,
677–681

Turing machine, 435
two-dimensional arrays,

288–294
omitting column size of array

parameter, 292
two’s complement integers,

992–993
type conversions, 569
typedef, pointers, 332
type definition, pointers, 332
typedef keyword, 962t
typedef statement, 332
type determination, 807
type duplication, 808
typeid keyword, 962t

and class hierarchies, 733
type inference, automatic,

807–808
typename keyword, 962t

using for templates, 643–644,
655

type parameters, See template
parameters

U
UML, See Unified Modeling

Language
umlaut character (German), 292
UML class diagrams, 835

aggregation, composition,
and association, 878–879

Index 1053

attributes and member
functions, 876

educational game case study,
855–856

invoice printing case study,
843–844

multiplicities, 877
summary, 1001–1002
voice mail system case study,

891–892
UML connectors, 838, 878, 1001
unary negation operators, 996t
unbalanced binary search trees,

515
unchecked exceptions, 1009
underflow_error class, 678

summary, 980
unget function, 971

streams, 377
unicode, 294
Unified Modeling Language. See

also sequence diagrams;
state diagrams; use cases

aggregation, composition,
and association, 878–879

attributes and member
functions, 876–877

multiplicities, 877
sequence diagrams, 881–883
state diagrams, 883–884
summary, 999–1003
use cases, 879–881

Unified Modeling Language
User Guide, The, 840

union keyword, 963t
unique_copy generic algorithm,

789, 796
unique function, 979

and STL, 763t
unique generic algorithm, 789
units, 51t
unit test frameworks, 203, 205
unit testing, 203–205
UNIX, 366

debugger, 206
unordered_map, 817
unordered vector, 277
unsigned integer, 991, 992t
unsigned keyword, 963t

unstable layout, 957–958
upcast, 732
upper_bound function

multimap class, 977
and STL (maps), 770t

upper_bound generic algorithm,
787

uppercase flag, 972
use cases, 879–881

summary, 1000
voice mail system case study,

885–887
user input errors, 666
user interface, 183
user interface prototype,

828–829
user manual, as product of

requirements document,
826

uses relationship, 835, 838
using keyword, 963t
util.cpp (ch11), 447
util.h (ch11), 446
<utility> container library, 978

V
value parameter, 178

properties compared to other
parameters, 252

values, maps, 521–522
variable names, 34–36

choose descriptive, 37–38
invoked member functions,

63
style guide, 952, 957

variables, 34–35. See also global
variables

automatic type inference
(C++0x standard), 807

C++/Java comparison,
1004–1005

enumerated types, 54
global scope, 700–701
initialize when you define,

36–37
shadowing of names, 702
style guide, 955

variable scope, functions,
183–185

variable type, 35
vector class, summary, 974
<vector> container library, 974
vector function, 974
vector parameters, 275–277
vectors, 266–269. See also arrays

bounds errors, 268, 272
to collect data items, 266–269
to conveniently manage

collections of objects, 265
don’t combine vector access

and index increment, 273
efficiency compared to linked

lists, 490–493
execution time for operations

compared to other
container operations, 516t

inspecting in the debugger,
272–273

make parallel vectors into
vectors of objects, 279–280

nested classes to define their
iterators, 711

operations provided by, 759t
parameters and return values,

275–277
passing by constant

reference, 277
polymorphic, 357–358
removing and inserting

elements, 277–280
returning pointers to local

array, 326
as sequential containers, 758
sets contrasted, 506
and STL, 762
strings are vectors of

characters, 273–274
as templates, 652
transformations, 784
working with, 269–272

vector variables, 267
vertical tab escape sequence \v,

summary, 967t
Vigenère cipher, 404–405
virtual destructors

including, 618
not declaring, 617–618

virtual functions, 359–360, 364
virtual function tables, 735–736

1054 Index

virtual keyword, 963t
C++/Java comparison, 1006
and polymorphism, 358–359
with replicated base classes,

741, 742
virtual memory, 365
virtual self-calls, 364
viruses, 274–275
VisiCalc, 181–182
VISITOR pattern, 947t
Visual Basic, 11
void keyword, 963t

to indicate function does not
return a value, 176

volatile keyword, 963t
volume.cpp (ch02), 52
voter verifiable audit trail, 321
vtable, 735
vtable pointer, 735–736

W
walkthroughs, 195–200
warning messages, 107
warnings, 107
waterfall model, of software

development, 827–828
wchar_t keyword, 963t
while keyword, 963t
while loops, 121–123

and loop-and-a-half problem,
135

style guide, 957
while statement, 122–123

C++/Java comparison, 1004
white-box testing, 203

white space, 61
between numbers, 42
string variables, 62
style guide, 958

wildcards, 169
windows, 366

displaying graphics objects
in, 76–81

putting on screen, 744–745
word processors, 3, 181
wxApp class, summary, 983
wxBoxSizer class, summary, 984
wxBoxSizer constructor, 984
wxButton class, summary, 984
wxButton constructor, 984
wxDC class, summary, 985
wxDialog class, summary, 985
wxDialog constructor, 985
wxFlexGridSizer class,

summary, 984
wxFlexGridSizer constructor,

984
wxFrame class, summary, 983
wxFrame constructor, 983
wxMenuBar class, summary, 984
wxMenu class, summary, 984
wxMenu constructor, 984
wxMessageDialog class,

summary, 985
wxMessageDialog constructor,

985
wxMouseEvent class, summary,

985
wxPaintDC class, summary, 984
wxPaintDC constructor, 984

wxPoint class, summary, 986
wxSize class, summary, 986
wxSizer class, summary, 984
wxStaticText class, summary,

984
wxStaticText constructor, 984
wxString class, summary, 985
wxString constructor, 985
wxTextCtrl class, summary, 983
wxTextCtrl constructor, 983
wxTextEntryDialog class,

summary, 985
wxTextEntryDialog constructor,

985
wxWidgets library, summary,

983–986
wxWindow class

summary, 983
using, 744–745

<wx/wx.h> library, 983–986

X
x public field, wxPoint class, 986

Y
y public field, wxPoint class, 986

Z
zero overhead principle, 807
zero terminator, arrays, 286

Illustration Credits

Chapter 1

Page 4: Copyright © 2007, Intel Corporation.
Page 5: Courtesy Intel Corporation.
Page 6 (top): PhotoDisc, Inc./Getty Images.
Page 6 (bottom): Copyright © 2007, Intel Corporation.
Page 8: Courtesy of Sperry Univac, Division of Sperry Corporation.

Chapter 2

Page 80: Copyright 2001–2008 Lev Givon. All rights reserved.
Page 81 (left): Keith Kapple/SUPERSTOCK.
Page 81 (right): Daniel Briggs/SUPERSTOCK.

Chapter 3

Page 115: Sidney Harris/ScienceCartoonsPlus.com.
Page 121: Vaughn Youtz/Zuma Press.
Page 138: Bob Daemmrich/Getty Images.

Chapter 4

Page 182: Visicalc screen capture, Copyright © IBM Corporation. Used with permission.
Page 205: Naval Surface Weapons Center, Dahlgren, VA.

Chapter 7

Page 320: David Young-Wolff/PhotoEdit.
Page 321: Lisa F. Young/iStockphoto.
Page 333: Courtesy of Professor Naehyuck Chang, Computer Systems Lab,

Department of Computer Engineering, Seoul National University.

Chapter 8

Page 365: Courtesy of Satoru Satoh.

1056 Illustration Credits

Chapter 10

Page 435: Science Photo Library/Photo Researchers, Inc.

Chapter 11

Page 460: Topham/The Image Works.

Chapter 12

Page 493: Photodisc/Punchstock.
Page 497: Courtesy of Nigel Tout.

Chapter 14

Page 558: Science Photo Library/Photo Researchers, Inc.

Chapter 17

Page 689 (left, center, right): © AP/Wide World Photos.

Chapter 22

Page 829: Booch/Jacobson/Rumbaugh, The Unified Modeling Language Reference Manual,
pg. 41, ©1999 by Addison Wesley Longman, Inc. Reproduced by permission of Pearson
Education, Inc.

Chapter 24

Page 915: Rob Meinychuck/Digital Vision.

	Copyright
	Preface
	Contents
	Chapter 1: Introduction
	What Is a Computer?
	What Is Programming?
	The Anatomy of a Computer
	Translating Human-Readable Programs to Machine Code
	Programming Languages
	The Evolution of C++
	Becoming Familiar with Your Computer
	Compiling a Simple Program
	Errors
	The Compilation Process
	Algorithms

	Chapter 2: Numbers and Objects
	Number Types
	Input
	Assignment
	Constants
	Arithmetic
	Strings
	Using Objects
	Displaying Graphical Shapes (Optional)

	Chapter 3: Control Flow
	The if Statement
	Relational Operators
	Multiple Alternatives
	Nested Branches
	Boolean Operations
	The while Loop
	The for Loop
	The do Loop
	Nested Loops
	Processing Inputs
	Simulations

	Chapter 4: Functions
	Functions as Black Boxes
	Implementing Functions
	Function Comments
	Return Values
	Parameters
	Side Effects
	Procedures
	Reference Parameters
	Variable Scope and Global Variables
	Stepwise Refinement
	Case Study: From Pseudocode to Code
	Walkthroughs
	Preconditions
	Unit Testing
	The Debugger

	Chapter 5: Classes
	Discovering Classes
	Interfaces
	Encapsulation
	Member Functions
	Default Constructors
	Constructors with Parameters
	Accessing Data Fields
	Comparing Member Functions with Nonmember Functions
	Separate Compilation

	Chapter 6: Vectors and Arrays
	Using Vectors to Collect Data Items
	Working with Vectors
	Vector Parameters and Return Values
	Removing and Inserting Vector Elements
	Arrays

	Chapter 7: Pointers
	Pointers and Memory Allocation
	Deallocating Dynamic Memory
	Common Uses for Pointers
	Arrays and Pointers
	Pointers to Character Strings
	Pointers to Functions

	Chapter 8: Inheritance
	Derived Classes
	Calling the Base-Class Constructor
	Overriding Member Functions
	Polymorphism

	Chapter 9: Streams
	Reading and Writing Text Files
	The Inheritance Hierarchy of Stream Classes
	Stream Manipulators
	String Streams
	Command Line Arguments
	Random Access

	Chapter 10: Recursion
	Triangle Numbers
	Permutations
	Thinking Recursively
	Recursive Helper Functions
	Mutual Recursion
	The Efficiency of Recursion

	Chapter 11: Sorting and Searching
	Selection Sort
	Profiling the Selection Sort Algorithm
	Analyzing the Performance of the Selection Sort Algorithm
	Merge Sort
	Analyzing the Merge Sort Algorithm
	Searching
	Library Functions for Sorting and Binary Search

	Chapter 12: Lists, Queues, and Stacks
	Linked Lists
	Implementing Linked LIsts
	The Efficiency of List and Vector Operations
	Queues and Stacks

	Chapter 13: Sets, Maps, and Priority Queues
	Sets
	Binary Search Trees
	Tree Traversal
	Maps
	Priority Queues
	Heaps

	Chapter 14: Operator Overloading
	Operator Overloading
	Case Study: Fractional Numbers
	Overloading Simple Arithmetic Operators
	Overloading Comparison Operators
	Overloading Input and Output
	Overloading Increment and Decrement Operators
	Overloading the Assignment Operators
	Overloading Conversion Operators
	Overloading the Subscript Operator
	Overloading the Function Call Operator
	Case Study: Matrices

	Chapter 15: Memory Management
	Categories of Memory
	Common Memory Errors
	Constructors
	Destructors
	Reference Counting
	Case Study: Matrices, Continued

	Chapter 16: Templates
	Template Functions
	Compile-Time Polymorphism
	Template Classes
	Turning a Class into a Template
	Nontype Template Parameters
	Setting Behavior Using Template Parameters
	Case Study: Matrices, Continued

	Chapter 17: Exception Handling
	Handling Exceptional Situations
	Alternative Mechanisms for Handling Exceptions
	Exceptions
	Case Study: Matrices, Continued

	Chapter 18: Name Scope Management
	Encapsulation
	Name Scopes
	Protected Scope
	Friends
	Nested Classes
	Private Inheritance
	Name Spaces
	Case Study: Matrices, Continued

	Chapter 19: Class Hierarchies
	Class Inheritance Hierarchies
	Abstract Classes
	Obtaining Run-Time Type Information
	Multiple Inheritance
	Software Frameworks

	Chapter 20: The Standard Template Library
	The STL
	Iterators
	The Fundamental Containers
	Container Adapters
	Associative Containers
	Case Study: Dijkstra’s Shortest Algorithm
	Functions, Generators, and Predicates
	Generic Algorithms
	Iterator Adapters
	Case Study: File Merge Sort

	Chapter 21: Features of the C++0x Standard
	C++0x Design Objectives
	Automatic Type Inference
	Range-based for Loop
	New Constructor Features
	Regular Expressions
	Lambda Functions
	Controlling Default Implementations
	Hash Tables
	Concepts
	Other Minor Changes

	Chapter 22: Object-Oriented Design
	The Software Life Cycle
	CRC Cards
	Cohesion
	Coupling
	Relationships Between Classes
	Implementing Aggregations
	Case Study: Printing an Invoice
	Case Study: An Educational Game

	Chapter 23: The Unified Modeling Language
	The Unified Modeling Language
	Use Cases
	Sequence Diagrams
	State Diagrams
	Case Study: A Voice Mail System

	Chapter 24: An Introduction to Design Patterns
	Iterators
	The Pattern Concept
	The ADAPTER Pattern
	The TEMPLATE METHOD Pattern
	Function Objects and the STRATEGY Pattern
	The COMPOSITE Pattern
	Case Study: Putting Patterns to Work

	Appendix A: C++ Language Coding Guidelines
	Appendix B: Keyword Summary
	Appendix C: Operator Summary
	Appendix D: Character Codes
	Appendix E: C++ Library Summary
	Appendix F: Number Systems
	Appendix G: Bit and Shift Operations
	Appendix H: UML Summary
	Appendix I: A C++ / Java Comparison
	Glossary
	Index
	Illustration Credits

