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Introduction

It took me quite some time to become aware of an amazing analogy that exists between the culinary art and the art of 
computer programming. 

Probably the most obvious comparison that comes to mind is that both the culinary specialist and the programmer 
have similar ultimate goals: to feed. For a chef, it is the human being, for which plenty of raw ingredients are used to 
provide edible nutrients as well as gastronomic pleasure, whereas for the programmer it is the microprocessor, for 
which a number of different procedures are used to provide the code that not only needs to produce some meaningful 
actions, but also needs to be delivered in the optimum form.

As much as this introductory comparison point may seem a bit far-fetched or even childish, the subsequent 
comparison points are something that I find far more applicable and far more convincing.

The recipes and instructions for preparing dishes of all kinds are abundant and ubiquitous. Almost every popular 
magazine has a culinary section dedicated to all kinds of foods, and all kind of food preparation scenarios, ranging 
from quick-and-easy/last-minute recipes all the way to really elaborate ones, from ones focusing on nutrition tables  
of ingredients to ones focusing on the delicate interplay between extraordinary, hard-to-find ingredients.

However, at the next level of expertise in the culinary art, the availability of resources drops exponentially.  
The recipes and instructions for running the food business (volume production, running the restaurant, or catering 
business), planning the quantities and rhythm of delivery for food preparation process, techniques and strategies 
for optimizing the efficiency of food delivery, techniques for choosing the right ingredients, minimizing the decay of 
stored ingredients—this kind of information is substantially more hard to find. Rightfully so, as these kinds of topics 
delineate the difference between amateur cooking and the professional food business.

The situation with programming is quite similar. 
The information about a vast variety of programming languages is readily available, through thousands of books, 

magazines, articles, web forums, and blogs, ranging from the absolute beginner level all the way to the “prepare for 
the Google programming interview” tips.

These kinds of topics, however, cover only about half of the skills required by the software professional. Soon after 
the immediate gratification of seeing the program we created actually executing (and doing it right) comes the next 
level of important questions: how to architect the code to allow for easy further modifications, how to extract reusable 
parts of the functionality for future use, how to allow smooth adjustment for different environments (starting from 
different human languages and alphabets, all the way to running on different operating systems).

As compared to the other topics of programming, these kinds of topics are rarely discussed, and to this day 
belong to the form of “black art” reserved for a few rare specimens of computer science professionals (mostly software 
architects and build engineers) as well as to the domain of university-level classes related to the compiler/linker design.

One particular factor—the ascent of Linux and the proliferation of its programming practices into a multitude 
of design environments—has brought a huge impetus for a programmer to pay attention to these topics. Unlike the 
colleagues writing software for “well-cushioned” platforms (Windows and Mac, in which the platform, IDEs, and 
SDKs relieve the programmer of thinking about certain programming aspects), a Linux programmer’s daily routine is 
to combine together the code coming from variety of sources, coding practices, and in forms which require immediate 
understanding of inner workings of compiler, linker, the mechanism of program loading, and hence the details of 
designing and using the various flavors of libraries.
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The purpose of this book is to discuss a variety of valuable pieces of information gathered from a scarce and 
scattered knowledge base and validate it through a number of carefully tailored simple experiments. It might be 
important to point out that the author does not come from a computer science background. His education on 
the topic came as a result of being immersed as electrical engineer in the technology frontier of the Silicon Valley 
multimedia industry in the time of the digital revolution, from the late 90s to the present day. Hopefully, this 
collection of topics will be found useful by a wider audience.

Audience (Who Needs This Book and Why)
The side effect of myself being a (very busy, I must say proudly) software design hands-on consultant is that I regularly 
come in contact with an extraordinary variety of professional profiles, maturity, and accomplishment levels. The solid 
statistic sample of the programmer population (of Silicon Valley, mostly) that I meet by switching office environments 
several times during a work week has helped me get a fairly good insight into the profiles of who may benefit from 
reading this book. So, here they are.

The first group is made of the C/C++ programmers coming from a variety of engineering backgrounds  
(EE, mechanical, robotics and system control, aerospace, physics, chemistry, etc.) who deal with programming on 
a daily basis. A lack of formal and more focused computer science education as well as a lack of non-theoretical 
literature on the topic makes this book a precious resource for this particular group.

The second group is comprised of junior level programmers with a computer science background. This book 
may help concretize the body of their existing knowledge gained in core courses and focus it to the operational level. 
Keeping the quick summaries of Chapters 12–14 somewhere handy may be worthwhile even for the more senior 
profiles of this particular group.

The third group is made of folks whose interest is in the domain of OS integration and customization. 
Understanding the world of binaries and the details of their inner working may help “clean the air” tremendously.

About the Book
Originally, I did not have any plans to write this particular book. Not even a book in the domain of computer science. 
(Signal processing? Art of programming? Maybe . . . but a computer science book? Naaah . . .) 

The sole reason why this book emerged is the fact that through the course of my professional career I had to deal 
with certain issues, which at that time I thought someone else should take care of. 

Once upon a time, I made the choice of following the professional path of a high-tech assassin of sort, the guy 
who is called by the citizens of the calm and decent high tech communities to relieve them from the terror of nasty 
oncoming multimedia-related design issues wreaking havoc together with a gang of horrible bugs. Such a career 
choice left pretty much no space for exclusivity in personal preferences typically found by the kids who would eat the 
chicken but not the peas. The ominous “or else” is kind of always there. Even though FFTs, wavelets, Z-transform,  
FIR and IIR filters, octaves, semitones, interpolations and decimations are naturally my preferred choice of tasks 
(together with a decent amount of C/C++ programming), I had to deal with issues that would not have been my 
personal preference. Someone had to do it.

Surprisingly, when looking for the direct answers to very simple and pointed questions, all I could find was a 
scattered variety of web articles, mostly about the high-level details. I was patiently collecting the “pieces of the puzzle” 
together, and managed to not only complete the design tasks at hand but also to learn along the way.

One fine day, the time came for me to consolidate my design notes (something that I regularly do for the variety 
of topics I deal with). This time, however, when the effort was completed, it all looked . . . well . . . like a book. This book.

Anyways . . .
Given the current state of the job market, I am deeply convinced that (since about the middle of the first decade 

of 21st century) knowing the C/C++ language intricacies perfectly—and even algorithms, data structures, and design 
patterns—is simply not enough. 
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In the era of open source, the life reality of the professional programmer becomes less and less about “knowing 
how to write the program” and instead substantially more about “knowing how to integrate existing bodies of code.” 
This assumes not only being able to read someone else’s code (written in variety of coding styles and practices), but 
also knowing the best way to integrate the code with the existing packages that are mostly available in binary form 
(libraries) accompanied by the export header files.

Hopefully, this book will both educate (those who may need it) as well as provide the quick reference for the most 
of the tasks related to the analysis of the C/C++ binaries. 

Why am I illustrating the concepts mostly in Linux?
It’s nothing personal.

In fact, those who know me know how much (back in the days when it was my preferred design platform) I used 
to like and respect the Windows design environment—the fact that it was well documented, well supported, and 
the extent to which the certified components worked according to the specification. A number of professional level 
applications I’ve designed (GraphEdit for Windows Mobile for Palm, Inc., designed from scratch and crammed with 
extra features being probably the most complex one, followed by a number of media format/DSP analysis applications) 
has led me toward the thorough understanding and ultimately respect for the Windows technology at the time.

In the meantime, the Linux era has come, and that’s a fact of life. Linux is everywhere, and there is little chance 
that a programmer will be able to ignore and avoid it.

The Linux software design environment has proven itself to be open, transparent, simple and straight to-the-point. 
The control over individual programming stages, the availability of well-written documentation, and even more  
“live tongues” on the Web makes working with the GNU toolchain a pleasure. 

The fact that the Linux C/C++ programming experience is directly applicable to low-level programming on MacOS 
contributed to the final decision of choosing the Linux/GNU as the primary design environment covered by this book.

But, wait! Linux and GNU are not exactly the same thing!!!
Yes, I know. Linux is a kernel, whereas GNU covers whole lot of things above it. Despite the fact that the GNU compiler may 
be used on the other operating systems (e.g. MinGW on Windows), for the most part the GNU and Linux go hand-in-hand 
together. To simplify the whole story and come closer to how the average programmer perceives the programming scene, 
and especially in contrast with the Windows side, I’ll collectively refer to GNU + Linux as simply “Linux.”

The Book Overview
Chapters 2–5 are mostly preparing the terrain for making the point later on. The folks with the formal computer 
science background probably do not need to read these chapters with focused attention (fortunately, these chapters 
are not that long). In fact, any decent computer science textbook may provide the same framework in far more detail. 
My personal favorite is Bryant and O’Hallaron’s Computer Systems – A Programmer’s Perspective book, which I highly 
recommend as a source of nicely arranged information related to the broader subject.

Chapters 6–12 provide the essential insight into the topic. I invested a lot of effort into being concise and trying 
to combine words and images of familiar real-life objects to explain the most vital concepts whose understanding is a 
must. For those without a formal computer science background, reading and understanding these chapters is highly 
recommended. In fact, these chapters represent the gist of the whole story.

Chapters 13–15 are kind of a practical cheat sheet, a form of neat quick reminders. The platform-specific set of 
tools for the binary files analyses are discussed, followed by the cross-referencing “How Tos” part which contains 
quick recipes of how to accomplish certain isolated tasks.

Appendix A contains the technical details of the concepts mentioned in Chapter 8. Appendix A is available online 
only at www.apress.com. For detailed information about how to locate it, go to www.apress.com/source-code/. After 
understanding the concepts from Chapter 8, it may be very useful to try to follow the hands-on explanations of how 
and why certain things really work. I hope that a little exercise may serve as practical training for the avid reader.

www.apress.com
www.apress.com/source-code/
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Chapter 1

Multitasking OS Basics

The ultimate goal of all the art related to building executables is to establish as much control as possible over 
the process of program execution. In order to truly understand the purpose and meaning of certain parts of the 
executable structure, it is of the utmost importance to gain the full understanding of what happens during the 
execution of a program, as the interplay between the operating system kernel and the information embedded inside 
the executable play the most significant roles. This is particularly true in the initial phases of execution, when it is too 
early for runtime impacts (such as user settings, various runtime events, etc.) which normally happen.

The mandatory first step in this direction is to understand the surroundings in which the programs operate.  
The purpose of this chapter is to provide in broad sketches the most potent details of a modern multitasking operating 
system’s functionality.

Modern multitasking operating systems are in many aspects very close to each other in terms of how the most 
important functionality is implemented. As a result, a conscious effort will be made to illustrate the concepts in 
platform-independent ways first. Additionally, attention will be paid to the intricacies of platform-specific solutions 
(ubiquitous Linux and ELF format vs. Windows) and these will be analyzed in great detail.

Useful Abstractions
Changes in the domain of computing technology tend to happen at very fast pace. The integrated circuits technology 
delivers components that are not only rich in variety (optical, magnetic, semiconductor) but are also getting 
continually upgraded in terms of capabilities. According to the Moore’s Law, the number of transistors on integrated 
circuits doubles approximately every two years. Processing power, which is tightly associated with the number of 
available transistors, tends to follow a similar trend.

As was found out very early on, the only way of substantially adapting to the pace of change is to define overall 
goals and architecture of computer systems in an abstract/generalized way, at the level above the particulars of the 
ever-changing implementations. The crucial part of this effort is to formulate the abstraction in such a way that any 
new actual implementations fit in with the essential definition, leaving aside the actual implementation details as 
relatively unimportant. The overall computer architecture can be represented as a structured set of abstractions,  
as shown in Figure 1-1.
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The abstraction at the lowest level copes with the vast variety of I/O devices (mouse, keyboard, joystick, trackball, 
light pen, scanner, bar code readers, printer, plotter, digital camera, web camera) by representing them with their 
quintessential property of byte stream. Indeed, regardless of the differences between various devices’ purposes, 
implementations, and capabilities, it is the byte streams these devices produce or receive (or both) that are the detail 
of utmost importance from the standpoint of computer system design.

The next level abstraction, the concept of virtual memory, which represents the wide variety of memory 
resources typically found in the system, is the subject of extraordinary importance for the major topic of this book. 
The way this particular abstraction actually represents the variety of physical memory devices not only impacts the 
design of the actual hardware and software but also lays a groundwork that the design of compiler, linker, and loader 
relies upon.

The instruction set that abstracts the physical CPU is the abstraction of the next level. Understanding the 
instruction set features and the promise of the processing power it carries is definitely the topic of interest for the 
master programmer. From the standpoint of our major topic, this level of abstraction is not of primary importance 
and will not be discussed in great detail.

The intricacies of the operating system represent the final level of abstraction. Certain aspects of the operating 
system design (most notably, multitasking) have a decisive impact on the software architecture in general. The 
scenarios in which the multiple parties try to access the shared resource require thoughtful implementation in which 
unnecessary code duplication would be avoided—the factor that directly led to the design of shared libraries.

Let’s make a short detour in our journey of analyzing the intricacies of the overall computer system and instead 
pay special attention to the important issues related to memory usage.

Memory Hierarchy and Caching Strategy
There are several interesting facts of life related to the memory in computer systems:

The need for memory seems to be insatiable. There is always a need for far more than is •	
currently available. Every quantum leap in providing larger amounts (of faster memory) 
is immediately met with the long-awaiting demand from the technologies that have been 
conceptually ready for quite some time, and whose realization was delayed until the day when 
physical memory became available in sufficient quantities.

The technology seems to be far more efficient in overcoming the performance barriers of processors •	
than memory. This phenomenon is typically referred to as “the processor-memory gap.”

The memory’s access speed is inversely proportional to the storage capacity. The access times •	
of the largest capacity storage devices are typically several orders of magnitude larger than that 
of the smallest capacity memory devices.

Figure 1-1. Computer Architecture Abstractions

Virtual Machine

Virtual Memory

Process

Byte Stream

Main Memory

CPU

Operating System

Instruction Set

I/O Devices
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Now, let’s take a quick look at the system from the programmer/designer/engineer point of view. Ideally, the system 
needs to access all the available memory as fast as possible—which we know is never possible to achieve. The immediate 
next question then becomes: is there anything we can do about it?

The detail that brings tremendous relief is the fact that the system does not use all the memory all of the time, 
but only some memory for some of the time. In that case, all we really need to do is to reserve the fastest memory for 
running the immediate execution, and to use the slower memory devices for the code/data that is not immediately 
executed. While the CPU fetches from the fast memory the instructions scheduled for the immediate execution, 
the hardware tries to guess which part of the program will be executed next and supplies that part of the code to the 
slower memory to await the execution. Shortly before the time comes to execute the instructions stored in the slower 
memory, they get transferred into the faster memory. This principle is known as caching.

The real-life analogy of caching is something that an average family does with their food supply. Unless we live in 
very isolated places, we typically do not buy and bring home all the food needed for a whole year. Instead, we mostly 
maintain moderately large storage at home (fridge, pantry, shelves) in which we keep a food supply sufficient for a 
week or two. When we notice that these small reserves are about to be depleted, we make a trip to the grocery and buy 
only as much food as needed to fill up the local storage.

The fact that a program execution is typically impacted by a number of external factors (user settings being just 
one of these) makes the mechanism of caching a form of guesswork or a hit-or-miss game. The more predictable the 
program execution flows (measured by the lack of jumps, breaks, etc.) the smoother the caching mechanism works. 
Conversely, whenever a program encounters the flow change, the instructions that were previously accumulated end 
up being discarded as no longer needed, and a new, more appropriate part of the program needs to be supplied from 
the slower memory.

The implementation of a caching principle is omnipresent and stretches across several levels of memory, as illustrated 
in Figure 1-2.

CPU registers

L1 Cache

L2 Cache

L3 Cache

Main Memory

Local Disks

Remote Storage

smaller/faster

larger/slower

Figure 1-2. Memory caching hierarchy principle

Virtual Memory
The generic approach of memory caching gets the actual implementation on the next architectural level, in which the 
running program is represented by the abstraction called process.

Modern multitasking operating systems are designed with the intention to allow one or more users to concurrently 
run several programs. It is not unusual for the average user to have several applications (e.g. web browser, editor, music 
player, calendar) running simultaneously.

The disproportion between the needs of the memory and the limited memory availability was resolved by the 
concept of virtual memory, which can be outlined by the following set of guidelines:

Program memory allowances are fixed, equal for all programs, and declarative in nature.•	

Operating systems typically allow the program (process) to use 2N bytes of memory, where 
N is nowadays 32 or 64. This value is fixed and is independent of the availability of the 
physical memory in the system
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The amount of physical memory may vary. Usually, memory is available in quantities that are •	
several times smaller than the declared process address space. It is nothing unusual that the 
amount of physical memory available for running programs is an uneven number.

Physical memory at runtime is divided into small fragments (pages), with each page being •	
used for programs running simultaneously.

The complete memory layout of the running program is kept on the slow memory (hard disk). •	
Only the parts of the memory (code and data) that are about to be currently executed are 
loaded into the physical memory page. 

The actual implementation of the virtual memory concept requires the interaction of numerous system resources 
such as hardware (hardware exceptions, hardware address translation), hard disk (swap files), as well as the lowest 
level operating system software (kernel). The concept of virtual memory is illustrated in Figure 1-3.

Process A

Process B

Physical Memory

Process C

Figure 1-3. Virtual memory concept implementation
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Virtual Addressing
The concept of virtual addressing is at the very foundation of the virtual memory implementation, and in many ways 
significantly impacts the design of compilers and linkers.

As a general rule, the program designer is completely relieved of worrying about the addressing range that his 
program will occupy at runtime (at least this is true for the majority of user space applications; kernel modules are 
somewhat exceptional in this sense). Instead, the programming model assumes that the address range is between  
0 and 2N (virtual address range) and is the same for all programs.

The decision to grant a simple and unified addressing scheme for all programs has a huge positive impact on the 
process of code development. The following are the benefits:

Linking is simplified.•	

Loading is simplified.•	

Runtime process sharing becomes available.•	

Memory allocation is simplified.•	

The actual runtime placement of the program memory in a concrete address range is performed by the operating 
system through the mechanism of address translation. Its implementation is performed by the hardware module 
called a memory management unit (MMU), which does not require any involvement of the program itself.

Figure 1-4 compares the virtual addressing mechanism with a plain and simple physical addressing scheme 
(used to this day in the domain of simple microcontroller systems).

Physical Addressing

Virtual Addressing

A a
b
c

B
C

a

b

c

a

b

c

A

A B

MMC

C

B

C

Figure 1-4. Physical vs. virtual addressing
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Process Memory Division Scheme
The previous section explanted why it is possible to provide the identical memory map to the designer of (almost) any 
program. The topic of this section is to discuss the details of the internal organization of the process memory map. It is 
assumed that the program address (as viewed by the programmer) resides in the address span between 0 and 2N,  
N being 32 or 64.

Various multitasking/multiuser operating systems specify different memory map layouts. In particular, the Linux 
process virtual memory map follows the mapping scheme shown in Figure 1-5.

operating system functionality for
controlling the program execution

environment variables
argv (list of command line arguments)
argc (number of command line arguments)

local variables for main( ) function

functions from linked dynamic libraries

initialized data

uninitialized data

functions from linked static libraries

other program functions

main function (main.o)

startup routines (crt0.o)

local variables for other function

0x00000000

SYSTEM

STACK

SHARED
MEMORY

HEAP

DATA

TEXT

Figure 1-5. Linux process memory map layout
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Regardless of the peculiarities of a given platform’s process memory division scheme, the following sections of 
the memory map must be always supported:

•	 Code section carrying the machine code instructions for the CPU to execute (.text section)

•	 Data sections carrying the data on which the CPU will operate. Typically, separate sections 
are kept for initialized data (.data section), for uninitialized data (.bss section), as well as for 
constant data (.rdata section)

The •	 heap on which the dynamic memory allocation is run

The •	 stack, which is used to provide independent space for functions

The topmost part belonging to the kernel where (among the other things) the process-specific •	
environment variables are stored

A beautifully detailed discussion of this particular topic written by Gustavo Duarte can be found at 
http://duartes.org/gustavo/blog/post/anatomy-of-a-program-in-memory. 

The Roles of Binaries, Compiler, Linker, and Loader
The previous section shed some light on the memory map of the running process. The important question that comes 
next is how the memory map of the running process gets created at runtime. This section will provide an elementary 
insight into that particular side of the story.

In a rough sketch,

The program binaries carry the details of the blueprint of the running process memory map.•	

The skeleton of a binary file is created by the linker. In order to complete its task, the linker •	
combines the binary files created by the compiler in order to fill out the variety of memory 
map sections (code, data, etc.).

The task of initial creation of the process memory map is performed by the system utility •	
called the program loader. In the simplest sense, the loader opens the binary executable 
file, reads the information related to the sections, and populates the process memory map 
structure.

This division of roles pertains to all modern operating systems.
Please be aware that this simplest description is far from providing the whole and complete picture. It should be 

taken as a mild introduction into the subsequent discussions through which substantially more details about the topic 
of binaries and process loading will be conveyed as we progress further into the topic.

Summary
This chapter provided an overview of the concepts that most fundamentally impact the design of modern multitasking 
operating systems. The cornerstone concepts of virtual memory and virtual addressing not only affect the program 
execution (which will be discussed in detail in the next chapter), but also directly impact how the program executable 
files are built (which will be explained in detail later in the book).

http://duartes.org/gustavo/blog/post/anatomy-of-a-program-in-memory
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Chapter 2

Simple Program Lifetime Stages

In the previous chapter, you obtained a broad insight into aspects of the modern multitasking operating system’s 
functionality that play a role during program execution. The natural next question that comes to the programmer’s 
mind is what to do, how, and why in order to arrange for the program execution to happen.

Much like the lifetime of a butterfly is determined by its caterpillar stage, the lifetime of a program is greatly 
determined by the inner structure of the binary, which the OS loader loads, unpacks, and puts its contents into the 
execution. It shouldn’t come as a big surprise that most of our subsequent discussions will be devoted to the art of 
preparing a blueprint and properly embedding it into the body of the binary executable file(s). We will assume that 
the program is written in C/C++.

To completely understand the whole story, the details of the rest of the program’s lifetime, the loading and 
execution stage, will be analyzed in great detail. Further discussions will be focused around the following stages of the 
program’s lifetime:

 1. Creating the source code

 2. Compiling

 3. Linking

 4. Loading

 5. Executing

The truth be told, this chapter will cover far more details about the compiling stage than about the subsequent 
stages. The coverage of subsequent stages (especially linking stage) only starts in this chapter, in which you will 
only see the proverbial “tip of the iceberg.” After the most basic introduction of ideas behind the linking stage, the 
remainder of the book will deal with the intricacies of linking as well as program loading and executing.

Initial Assumptions
Even though it is very likely that a huge percentage of readers belong to the category of advanced-to-expert programmers, 
I will start with fairly simple initial examples. The discussions in this chapter will be pertinent to the very simple, yet very 
illustrative case. The demo project consists of two simple source files, which will be first compiled and then linked together. 
The code is written with the intention of keeping the complexity of both compiling and linking at the simplest possible level.

In particular, no linking of external libraries, particularly not dynamic linking, will be taking place in this demo 
example. The only exception will be the linking with the C runtime library (which is anyways required for the vast 
majority of programs written in C). Being such a common element in the lifetime of C program execution, for the 
sake of simplicity I will purposefully turn a blind eye to the particular details of linking with the C runtime library, 
and assume that the program is created in such a way that all the code from the C runtime library is “automagically” 
inserted into the body of the program memory map.

By following this approach, I will illustrate the details of program building’s quintessential problems in a simple 
and clean form.
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Code Writing
Given that the major topic of this book is the process of program building (i.e., what happens after the source code is 
written), I will not spend too much time on the source code creation process.

Except in a few rare cases when the source code is produced by a script, it is assumed that a user does it by typing 
in the ASCII characters in his editor of choice in an effort to produce the written statements that satisfy the syntax 
rules of the programming language of choice (C/C++ in our case). The editor of choice may vary from the simplest 
possible ASCII text editor all the way to the most advanced IDE tool. Assuming that the average reader of this book is a 
fairly experienced programmer, there is really nothing much special to say about this stage of program life cycle.

However, there is one particular programming practice that significantly impacts where the story will be 
going from this point on, and it is worth of paying extra attention to it. In order to better organize the source code, 
programmers typically follow the practice of keeping the various functional parts of the code in separate files, 
resulting with the projects generally comprised of many different source and header files.

This programming practice was adopted very early on, since the time of the development environments made 
for the early microprocessors. Being a very solid design decision, it has been practiced ever since, as it is proven to 
provide solid organization of the code and makes code maintenance tasks significantly easier.

This undoubtedly useful programming practice has far reaching consequences. As you will see soon, practicing 
it leads to certain amount of indeterminism in the subsequent stages of the building process, the resolving of which 
requires some careful thinking.

Concept illustration: Demo Project
In order to better illustrate the intricacies of the compiling process, as well as to provide the reader with a little 
hands-on warm-up experience, a simple demo project has been provided. The code is exceptionally simple; it is 
comprised of no more than one header and two source files. However, it is carefully designed to illustrate the points of 
extraordinarily importance for understanding the broader picture.

The following files are the part of the project:

Source file •	 main.c, which contains the main() function.

Header file •	 function.h, which declares the functions called and the data accessed by the 
main() function.

Source file •	 function.c, which contains the source code implementations of functions and 
instantiation of the data referenced by the main() function.

The development environment used to build this simple project will be based on the gcc compiler running on 
Linux. Listings 2-1 through 2-3 contain the code used in the demo project.

Listing 2-1. function.h

#pragma once
 
#define FIRST_OPTION
#ifdef FIRST_OPTION
#define MULTIPLIER (3.0)
#else
#define MULTIPLIER (2.0)#endif
 
float add_and_multiply(float x, float y);
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Listing 2-2. function.c

int nCompletionStatus = 0;
 
float add(float x, float y)
{
    float z = x + y;
    return z;
}
 
float add_and_multiply(float x, float y)
{
    float z = add(x,y);
    z *= MULTIPLIER;
    return z;
} 

Listing 2-3. main.c

#include "function.h"
extern int nCompletionStatus = 0;
int main(int argc, char* argv[])
{
    float x = 1.0;
    float y = 5.0;
    float z;
 
    z = add_and_multiply(x,y);
    nCompletionStatus = 1;
    return 0;
} 

Compiling
Once you have written your source code, it is the time to immerse yourself in the process of code building, whose 
mandatory first step is the compiling stage. Before going into the intricacies of compiling, a few simple introductory 
terms will be presented first.

Introductory Definitions
Compiling in the broad sense can be defined as the process of transforming source code written in one programming 
language into another programming language. The following set of introductory facts is important for your overall 
understanding of the compilation process:

The process of compiling is performed by the program called the •	 compiler.

The input for the compiler is a •	 translation unit. A typical translation unit is a text file 
containing the source code.

A program is typically comprised of many translation units. Even though it is perfectly possible •	
and legal to keep all the project’s source code in a single file, there are good reasons (explained 
in the previous section) of why it is typically not the case.
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The output of the compilation is a collection of binary •	 object files, one for each of the input 
translation units.

In order to become suitable for execution, the object files need to be processed through •	
another stage of program building called linking.

Figure 2-1 illustrates the concept of compiling.

xyz.o

main.c

sum.c

xyz.c
int main(int argc, char* argv[ ])
{
      int x = 5;
      int y = 3;
      int z;

      z  = function_sum(x, y);
      return 0;
}

int function_sum(int x, int y)
{
      return (x + y)
} Compilation

1011000100101001001
1101001001001010010

1101001001010010010
1101001001010010111

1101001001010010100
1101001001010010001

0101010111011011011
1010010101001010101

1001001010010010101
1001001010010010100

1001001010010010100
1001001010010010001

sum.o

1001010010101001001

1001010101010001001
1001001001001001001

1001001001001001001
0100100101001001010

1101101101101101101

main.o

Figure 2-1. The compiling stage

Related Definitions
The following variety of compiler use cases is typically encountered:

•	 Compilation in the strict meaning denotes the process of translating the code of a higher-level 
language to the code of a lower-level language (typically, assembler or even machine code) 
production files.

If the compilation is performed on one platform (CPU/OS) to produce code to be run on some •	
other platform (CPU/OS), it is called cross-compilation. The usual practice is to use some of 
the desktop OSes (Linux, Windows) to generate the code for embedded or mobile devices.

•	 Decompilation (disassembling) is the process of converting the source code of a lower-level 
language to the higher-level language.

•	 Language translation is the process of transforming source code of one programming 
language to another programming language of the same level and complexity.

•	 Language rewriting is the process of rewriting the language expressions into a form more 
suitable for certain tasks (such as optimization).

The Stages of Compiling
The compilation process is not monolithic in nature. In fact, it can be roughly divided into the several stages  
(pre-processing, linguistic analysis, assembling, optimization, code emission), the details of which will be  
discussed next.
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Preprocessing 
The standard first step in processing the source files is running them through the special text processing program 
called a preprocessor, which performs one or more of the following actions:

Includes the files containing definitions (include/header files) into the source files, as •	
specified by the #include keyword.

Converts the values specified by using •	 #define statements into the constants.

Converts the macro definitions into code at the variety of locations in which the macros  •	
are invoked.

Conditionally includes or excludes certain parts of the code, based on the position of •	 #if, 
#elif, and #endif directives.

The output of the preprocessor is the C/C++ code in its final shape, which will be passed to the next stage, 
syntax analysis.

Demo Project Preprocessing Example

The gcc compiler provides the mode in which only the preprocessing stage is performed on the input source files:
 
gcc -i <input file> -o <output preprocessed file>.i
 

Unless specified otherwise, the output of the preprocessor is the file that has the same name as the input file and 
whose file extension is .i. The result of running the preprocessor on the file function.c looks like that in Listing 2-4.

Listing 2-4. function.i

# 1 "function.c"
# 1 "
# 1 "
# 1 "function.h" 1
 
# 11 "function.h"
float add_and_multiply(float x, float y);
# 2 "function.c" 2
 
int nCompletionStatus = 0;
 
float add(float x, float y)
{
    float z = x + y;
    return z;
}
 
float add_and_multiply(float x, float y)
{
    float z = add(x,y);
    z *= MULTIPLIER;
    return z;
}
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More compact and more meaningful preprocessor output may be obtained if few extra flags are passed to the 
gcc, like
 
gcc -E -P -i <input file> -o <output preprocessed file>.i
 
which results in the preprocessed file seen in Listing 2-5.

Listing 2-5. function.i (Trimmed Down Version)

float add_and_multiply(float x, float y);
int nCompletionStatus = 0;
 
float add(float x, float y)
{
    float z = x + y;
    return z;
}
 
float add_and_multiply(float x, float y)
{
    float z = add(x,y);
    z *= 3.0;
    return z;
}
 

Obviously, the preprocessor replaced the symbol MULTIPLIER, whose actual value, based on the fact that the 
USE_FIRST_OPTION variable was defined, ended up being 3.0.

Linguistic Analysis
During this stage, the compiler first converts the C/C++ code into a form more suitable for processing (eliminating 
comments and unnecessary white spaces, extracting tokens from the text, etc.). Such an optimized and compacted 
form of source code is lexically analyzed, with the intention of checking whether the program satisfies the syntax 
rules of the programming language in which it was written. If deviations from the syntax rules are detected, errors or 
warnings are reported. The errors are sufficient cause for the compilation to be terminated, whereas warnings may or 
may not be sufficient, depending on the user’s settings.

More precise insight into this stage of the compilation process reveals three distinct stages:

•	 Lexical analysis, which breaks the source code into non-divisible tokens. The next stage,

•	 Parsing/syntax analysis concatenates the extracted tokens into the chains of tokens,  
and verifies that their ordering makes sense from the standpoint of programming language 
rules. Finally,

•	 Semantic analysis is run with the intent to discover whether the syntactically correct 
statements actually make any sense. For example, a statement that adds two integers and 
assigns the result to an object will pass syntax rules, but may not pass semantic check (unless 
the object has overridden assignment operator).

During the linguistic analysis stage, the compiler probably more deserves to be called “complainer,” as it tends to 
more complain about typos or other errors it encounters than to actually compile the code.
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Assembling
The compiler reaches this stage only after the source code is verified to contain no syntax errors. In this stage, the 
compiler tries to convert the standard language constructs into the constructs specific to the actual CPU instruction 
set. Different CPUs feature different functionality treats, and in general different sets of available instructions, 
registers, interrupts, which explains the wide variety of compilers for an even wider variety of processors.

Demo Project Assembling Example

The gcc compiler provides the mode of operation in which the input files’ source code is converted into the ASCII text 
file containing the lines of assembler instructions specific to the chip and/or the operating system.
   
$ gcc -S <input file> -o <output assembler file>.s
 

Unless specified otherwise, the output of the preprocessor is the file that has the same name as the input file and 
whose file extension is .s.

The generated file is not suitable for execution; it is merely a text file carrying the human-readable mnemonics 
of assembler instructions, which can be used by the developer to get a better insight into the details of the inner 
workings of the compilation process.

In the particular case of the X86 processor architecture, the assembler code may conform to one of the two 
supported instruction printing formats,

AT&T format•	

Intel format•	

the choice of which may be specified by passing an extra command-line argument to the gcc assembler. The choice of 
format is mostly the matter of the developer’s personal taste.

AT&T Assembly Format Example

When the file function.c is assembled into the AT&T format by running the following command
 
$ gcc -S -masm=att function.c -o function.s
 
it creates the output assembler file, which looks the code shown in Listing 2-6.

Listing 2-6. function.s (AT&T Assembler Format)

      .file     "function.c"
      .globl    nCompletionStatus
      .bss
      .align 4
      .type     nCompletionStatus, @object
      .size     nCompletionStatus, 4
nCompletionStatus:
      .zero     4
      .text
      .globl    add
      .type     add, @function
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add:
.LFB0:
      .cfi_startproc
      pushl     %ebp
      .cfi_def_cfa_offset 8
      .cfi_offset 5, -8
      movl      %esp, %ebp
      .cfi_def_cfa_register 5
      subl      $20, %esp
      flds      8(%ebp)
      fadds     12(%ebp)
      fstps     -4(%ebp)
      movl      -4(%ebp), %eax
      movl      %eax, -20(%ebp)
      flds      -20(%ebp)
      leave
      .cfi_restore 5
      .cfi_def_cfa 4, 4
      ret
      .cfi_endproc
.LFE0:
      .size     add, .-add
      .globl    add_and_multiply
      .type     add_and_multiply, @function
add_and_multiply:
.LFB1:
      .cfi_startproc
      pushl     %ebp
      .cfi_def_cfa_offset 8
      .cfi_offset 5, -8
      movl      %esp, %ebp
      .cfi_def_cfa_register 5
      subl      $28, %esp
      movl      12(%ebp), %eax
      movl      %eax, 4(%esp)
      movl      8(%ebp), %eax
      movl      %eax, (%esp)
      call      add
      fstps     -4(%ebp)
      flds      -4(%ebp)
      flds      .LC1
      fmulp     %st, %st(1)
      fstps     -4(%ebp)
      movl      -4(%ebp), %eax
      movl      %eax, -20(%ebp)
      flds      -20(%ebp)
      leave
      .cfi_restore 5
      .cfi_def_cfa 4, 4
      ret
      .cfi_endproc
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.LFE1:
      .size     add_and_multiply, .-add_and_multiply
      .section          .rodata
      .align 4
.LC1:
      .long     1077936128
      .ident    "GCC: (Ubuntu/Linaro 4.6.3-1ubuntu5) 4.6.3"
      .section          .note.GNU-stack,"",@progbits 

Intel Assembly Format Example

The same file (function.c) may be assembled into the Intel assembler format by running the following command,
 
$ gcc -S -masm=intel function.c -o function.s
 
which results with the assembler file shown in Listing 2-7.

Listing 2-7. function.s (Intel Assembler Format)

      .file     "function.c"
      .intel_syntax noprefix
      .globl    nCompletionStatus
      .bss
      .align 4
      .type     nCompletionStatus, @object
      .size     nCompletionStatus, 4
nCompletionStatus:
      .zero     4
      .text
      .globl    add
      .type     add, @function
add:
.LFB0:
      .cfi_startproc
      push      ebp
      .cfi_def_cfa_offset 8
      .cfi_offset 5, -8
      mov       ebp, esp
      .cfi_def_cfa_register 5
      sub       esp, 20
      fld       DWORD PTR [ebp+8]
      fadd      DWORD PTR [ebp+12]
      fstp      DWORD PTR [ebp-4]
      mov       eax, DWORD PTR [ebp-4]
      mov       DWORD PTR [ebp-20], eax
      fld       DWORD PTR [ebp-20]
      leave
      .cfi_restore 5
      .cfi_def_cfa 4, 4
      ret
      .cfi_endproc
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.LFE0:
      .size     add, .-add
      .globl    add_and_multiply
      .type     add_and_multiply, @function
add_and_multiply:
.LFB1:
      .cfi_startproc
      push      ebp
      .cfi_def_cfa_offset 8
      .cfi_offset 5, -8
      mov       ebp, esp
      .cfi_def_cfa_register 5
      sub       esp, 28
      mov       eax, DWORD PTR [ebp+12]
      mov       DWORD PTR [esp+4], eax
      mov       eax, DWORD PTR [ebp+8]
      mov       DWORD PTR [esp], eax
      call      add
      fstp      DWORD PTR [ebp-4]
      fld       DWORD PTR [ebp-4]
      fld       DWORD PTR .LC1
      fmulp     st(1), st
      fstp      DWORD PTR [ebp-4]
      mov       eax, DWORD PTR [ebp-4]
      mov       DWORD PTR [ebp-20], eax
      fld       DWORD PTR [ebp-20]
      leave
      .cfi_restore 5
      .cfi_def_cfa 4, 4
      ret
      .cfi_endproc
.LFE1:
      .size     add_and_multiply, .-add_and_multiply
      .section          .rodata
      .align 4
.LC1:
      .long     1077936128
      .ident    "GCC: (Ubuntu/Linaro 4.6.3-1ubuntu5) 4.6.3"
      .section          .note.GNU-stack,"",@progbits 

Optimization
Once the first assembler version corresponding to the original source code is created, the optimization effort starts, in 
which usage of the registers is minimized. Additionally, the analysis may indicate that certain parts of the code do not 
in fact need to be executed, and such parts of the code are eliminated.
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Code Emission
Finally, the moment has come to create the compilation output: object files, one for each translation unit. The assembly 
instructions (written in human-readable ASCII code) are at this stage converted into the binary values of the corresponding 
machine instructions (opcodes) and written to the specific locations in the object file(s).

The object file is still not ready to be served as the meal to the hungry processor. The reasons why are the 
essential topic of this whole book. The interesting topic at this moment is the analysis of an object file.

Being a binary file makes the object file substantially different than the outputs of preprocessing and assembling 
procedures, both of which are ASCII files, inherently readable by humans. The differences become the most obvious 
when we, the humans, try to take a closer look at the contents.

Other than obvious choice of using the hex editor (not very helpful unless you write compilers for living), a 
specific procedure called disassembling is taken in order to get a detailed insight into the contents of an object file.

On the overall path from the ASCII files toward the binary files suitable for execution on the concrete machine, 
the disassembling may be viewed as a little U-turn detour in which the almost-ready binary file is converted into the 
ASCII file to be served to the curious eyes of the software developer. Fortunately, this little detour serves only the 
purpose of supplying the developer with better orientation, and is normally not performed without a real cause.

Demo Project Compiling Example
The gcc compiler may be set to perform the complete compilation (preprocessing and assembling and compiling), a 
procedure that generates the binary object file (standard extension .o) whose structure follows the ELF format guidelines. 
In addition to usual overhead (header, tables, etc.), it contains all the pertinent sections (.text, .code, .bss, etc.). In order to 
specify the compilation only (no linking as of yet), the following command line may be used:
 
$ gcc -c <input file> -o <output file>.o
 

Unless specified otherwise, the output of the preprocessor is the file that has the same name as the input file and 
whose file extension is .o.

The content of the generated object file is not suitable for viewing in a text editor. The hex editor/viewer is a bit 
more suitable, as it will not be confused by the nonprintable characters and absences of newline characters. Figure 2-2 
shows the binary contents of the object file function.o generated by compiling the file function.c of this demo project.
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Obviously, merely taking a look at the hex values of the object file does not tell us a whole lot. The disassembling 
procedure has the potential to tell us far more.

The Linux tool called objdump (part of popular binutils package) specializes in disassembling the binary files, 
among a whole lot of other things. In addition to converting the sequence of binary machine instructions specific to a 
given platform, it also specifies the addresses at which the instructions reside.

Figure 2-2. Binary contents of an object file
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It should not be a huge surprise that it supports both AT&T (default) as well as Intel flavors of printing the 
assembler code.

By running the simple form of objdump command, 
 
$ objdump -D <input file>.o
 
you get the following contents printed on the terminal screen:
 
disassembled output of function.o (AT&T assembler format)
function.o:     file format elf32-i386 
 
Disassembly of section .text:
 
00000000 <add>:
   0:  55                      push   %ebp
   1:  89 e5                   mov    %esp,%ebp
   3:  83 ec 14                sub    $0x14,%esp
   6:  d9 45 08                flds   0x8(%ebp)
   9:  d8 45 0c                fadds  0xc(%ebp)
   c:  d9 5d fc                fstps  -0x4(%ebp)
   f:  8b 45 fc                mov    -0x4(%ebp),%eax
  12:  89 45 ec                mov    %eax,-0x14(%ebp)
  15:  d9 45 ec                flds   -0x14(%ebp)
  18:  c9                      leave
  19:  c3                      ret
 
0000001a <add_and_multiply>:
  1a:  55                      push   %ebp
  1b:  89 e5                   mov    %esp,%ebp
  1d:  83 ec 1c                sub    $0x1c,%esp
  20:  8b 45 0c                mov    0xc(%ebp),%eax
  23:  89 44 24 04             mov    %eax,0x4(%esp)
  27:  8b 45 08                mov    0x8(%ebp),%eax
  2a:  89 04 24                mov    %eax,(%esp)
  2d:  e8 fc ff ff ff          call   2e <add_and_multiply+0x14>
  32:  d9 5d fc                fstps  -0x4(%ebp)
  35:  d9 45 fc                flds   -0x4(%ebp)
  38:  d9 05 00 00 00 00       flds   0x0
  3e:  de c9                   fmulp  %st,%st(1)
  40:  d9 5d fc                fstps  -0x4(%ebp)
  43:  8b 45 fc                mov    -0x4(%ebp),%eax
  46:  89 45 ec                mov    %eax,-0x14(%ebp)
  49:  d9 45 ec                flds   -0x14(%ebp)
  4c:  c9                      leave
  4d:  c3                      ret
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Disassembly of section .bss:
 
00000000 <nCompletionStatus>:
   0:  00 00                   add    %al,(%eax)
        ...
 
Disassembly of section .rodata:
 
00000000 <.rodata>:
   0:  00 00                   add    %al,(%eax)
   2:  40                      inc    %eax
   3:  40                      inc    %eax
 
Disassembly of section .comment:
 
00000000 <.comment>:
   0:  00 47 43                add    %al,0x43(%edi)
   3:  43                      inc    %ebx
   4:  3a 20                   cmp    (%eax),%ah
   6:  28 55 62                sub    %dl,0x62(%ebp)
   9:  75 6e                   jne    79 <add_and_multiply+0x5f>
   b:  74 75                   je     82 <add_and_multiply+0x68>
   d:  2f                      das
   e:  4c                      dec    %esp
   f:  69 6e 61 72 6f 20 34    imul   $0x34206f72,0x61(%esi),%ebp
  16:  2e 36 2e 33 2d 31 75    cs ss xor %cs:%ss:0x75627531,%ebp
  1d:  62 75
  1f:  6e                      outsb  %ds:(%esi),(%dx)
  20:  74 75                   je     97 <add_and_multiply+0x7d>
  22:  35 29 20 34 2e          xor    $0x2e342029,%eax
  27:  36 2e 33 00             ss xor %cs:%ss:(%eax),%eax
 
Disassembly of section .eh_frame:
 
00000000 <.eh_frame>:
   0:  14 00                   adc    $0x0,%al
   2:  00 00                   add    %al,(%eax)
   4:  00 00                   add    %al,(%eax)
   6:  00 00                   add    %al,(%eax)
   8:  01 7a 52                add    %edi,0x52(%edx)
   b:  00 01                   add    %al,(%ecx)
   d:  7c 08                   jl     17 <.eh_frame+0x17>
   f:  01 1b                   add    %ebx,(%ebx)
  11:  0c 04                   or     $0x4,%al
  13:  04 88                   add    $0x88,%al
  15:  01 00                   add    %eax,(%eax)
  17:  00 1c 00                add    %bl,(%eax,%eax,1)
  1a:  00 00                   add    %al,(%eax)
  1c:  1c 00                   sbb    $0x0,%al
  1e:  00 00                   add    %al,(%eax)
  20:  00 00                   add    %al,(%eax)
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  22:  00 00                   add    %al,(%eax)
  24:  1a 00                   sbb    (%eax),%al
  26:  00 00                   add    %al,(%eax)
  28:  00 41 0e                add    %al,0xe(%ecx)
  2b:  08 85 02 42 0d 05       or     %al,0x50d4202(%ebp)
  31:  56                      push   %esi
  32:  c5 0c 04                lds    (%esp,%eax,1),%ecx
  35:  04 00                   add    $0x0,%al
  37:  00 1c 00                add    %bl,(%eax,%eax,1)
  3a:  00 00                   add    %al,(%eax)
  3c:  3c 00                   cmp    $0x0,%al
  3e:  00 00                   add    %al,(%eax)
  40:  1a 00                   sbb    (%eax),%al
  42:  00 00                   add    %al,(%eax)
  44:  34 00                   xor    $0x0,%al
  46:  00 00                   add    %al,(%eax)
  48:  00 41 0e                add    %al,0xe(%ecx)
  4b:  08 85 02 42 0d 05       or     %al,0x50d4202(%ebp)
  51:  70 c5                   jo     18 <.eh_frame+0x18>
  53:  0c 04                   or     $0x4,%al
  55:  04 00                   add    $0x0,%al
        ...
 

Similarly, by specifying the Intel flavor,
 
$ objdump -D -M intel <input file>.o
 
you get the following contents printed on the terminal screen:
 
disassembled output of function.o (Intel assembler format)
function.o:     file format elf32-i386
 
Disassembly of section .text:
 
00000000 <add&gt:
   0:  55                      push   ebp
   1:  89 e5                   mov    ebp,esp
   3:  83 ec 14                sub    esp,0x14
   6:  d9 45 08                fld    DWORD PTR [ebp+0x8]
   9:  d8 45 0c                fadd   DWORD PTR [ebp+0xc]
   c:  d9 5d fc                fstp   DWORD PTR [ebp-0x4]
   f:  8b 45 fc                mov    eax,DWORD PTR [ebp-0x4]
  12:  89 45 ec                mov    DWORD PTR [ebp-0x14],eax
  15:  d9 45 ec                fld    DWORD PTR [ebp-0x14]
  18:  c9                      leave
  19:  c3                      ret
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0000001a <add_and_multiply>:
  1a:  55                     push   ebp
  1b:  89 e5                  mov    ebp,esp
  1d:  83 ec 1c               sub    esp,0x1c
  20:  8b 45 0c               mov    eax,DWORD PTR [ebp+0xc]
  23:  89 44 24 04            mov    DWORD PTR [esp+0x4],eax
  27:  8b 45 08               mov    eax,DWORD PTR [ebp+0x8]
  2a:  89 04 24               mov    DWORD PTR [esp],eax
  2d:  e8 fc ff ff ff         call   2e <add_and_multiply+0x14>
  32:  d9 5d fc               fstp   DWORD PTR [ebp-0x4]
  35:  d9 45 fc               fld    DWORD PTR [ebp-0x4]
  38:  d9 05 00 00 00 00      fld    DWORD PTR ds:0x0
  3e:  de c9                  fmulp  st(1),st
  40:  d9 5d fc               fstp   DWORD PTR [ebp-0x4]
  43:  8b 45 fc               mov    eax,DWORD PTR [ebp-0x4]
  46:  89 45 ec               mov    DWORD PTR [ebp-0x14],eax
  49:  d9 45 ec               fld    DWORD PTR [ebp-0x14]
  4c:  c9                     leave
  4d:  c3                     ret
 
Disassembly of section .bss:
 
00000000 <nCompletionStatus>:
   0:  00 00                  add    BYTE PTR [eax],al
        ...
 
Disassembly of section .rodata:
 
00000000 <.rodata>:
   0:  00 00                  add    BYTE PTR [eax],al
   2:  40                     inc    eax
   3:  40                     inc    eax
 
Disassembly of section .comment:
 
00000000 <.comment>:
   0:  00 47 43               add    BYTE PTR [edi+0x43],al
   3:  43                     inc    ebx
   4:  3a 20                  cmp    ah,BYTE PTR [eax]
   6:  28 55 62               sub    BYTE PTR [ebp+0x62],dl
   9:  75 6e                  jne    79 <add_and_multiply+0x5f>
   b:  74 75                  je     82 <add_and_multiply+0x68>
   d:  2f                     das
   e:  4c                     dec    esp
   f:  69 6e 61 72 6f 20 34   imul   ebp,DWORD PTR [esi+0x61],0x34206f72
  16:  2e 36 2e 33 2d 31 75   cs ss xor ebp,DWORD PTR cs:ss:0x75627531
  1d:  62 75
  1f:  6e                     outs   dx,BYTE PTR ds:[esi]
  20:  74 75                  je     97 <add_and_multiply+0x7d>
  22:  35 29 20 34 2e         xor    eax,0x2e342029
  27:  36 2e 33 00            ss xor eax,DWORD PTR cs:ss:[eax]
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Disassembly of section .eh_frame:
 
00000000 <.eh_frame>:
   0:  14 00                  adc    al,0x0
   2:  00 00                  add    BYTE PTR [eax],al
   4:  00 00                  add    BYTE PTR [eax],al
   6:  00 00                  add    BYTE PTR [eax],al
   8:  01 7a 52               add    DWORD PTR [edx+0x52],edi
   b:  00 01                  add    BYTE PTR [ecx],al
   d:  7c 08                  jl     17 <.eh_frame+0x17>
   f:  01 1b                  add    DWORD PTR [ebx],ebx
  11:  0c 04                  or     al,0x4
  13:  04 88                  add    al,0x88
  15:  01 00                  add    DWORD PTR [eax],eax
  17:  00 1c 00               add    BYTE PTR [eax+eax*1],bl
  1a:  00 00                  add    BYTE PTR [eax],al
  1c:  1c 00                  sbb    al,0x0
  1e:  00 00                  add    BYTE PTR [eax],al
  20:  00 00                  add    BYTE PTR [eax],al
  22:  00 00                  add    BYTE PTR [eax],al
  24:  1a 00                  sbb    al,BYTE PTR [eax]
  26:  00 00                  add    BYTE PTR [eax],al
  28:  00 41 0e               add    BYTE PTR [ecx+0xe],al
  2b:  08 85 02 42 0d 05      or     BYTE PTR [ebp+0x50d4202],al
  31:  56                     push   esi
  32:  c5 0c 04               lds    ecx,FWORD PTR [esp+eax*1]
  35:  04 00                  add    al,0x0
  37:  00 1c 00               add    BYTE PTR [eax+eax*1],bl
  3a:  00 00                  add    BYTE PTR [eax],al
  3c:  3c 00                  cmp    al,0x0
  3e:  00 00                  add    BYTE PTR [eax],al
  40:  1a 00                  sbb    al,BYTE PTR [eax]
  42:  00 00                  add    BYTE PTR [eax],al
  44:  34 00                  xor    al,0x0
  46:  00 00                  add    BYTE PTR [eax],al
  48:  00 41 0e               add    BYTE PTR [ecx+0xe],al
  4b:  08 85 02 42 0d 05      or     BYTE PTR [ebp+0x50d4202],al
  51:  70 c5                  jo     18 <.eh_frame+0x18>
  53:  0c 04                  or     al,0x4
  55:  04 00                  add    al,0x0
        ... 
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Object File Properties
The output of the compilation process is one or more binary object files, whose structure is the natural next topic of 
interest. As you will see shortly, the structure of object files contains many details of importance on the path of truly 
understanding the broader picture.

In a rough sketch,

An object file is the result of translating its original corresponding source file. The result of •	
compilation is the collection of as many object files as there are source files in the project.

After the compiling completes, the object file keeps representing its original source file in 
subsequent stages of the program building process.

The basic ingredients of an object file are the •	 symbols (references to the memory addresses in 
program or data memory) as well as the sections.

Among the sections most frequently found in the object files are the code (.text), 
initialized data (.data), uninitialized data (.bss), and some of the more specialized sections 
(debugging information, etc.).

The ultimate intention behind the idea of building the program is that the sections obtained •	
by compiling individual source files be combined (tiled) together into the single binary 
executable file.

Such binary file would contain the sections of the same type (.text, .data, .bss, . . . ) obtained 
by tiling together the sections from the individual files. Figuratively speaking, an object file 
can be viewed as a simple tile waiting to find its place in the giant mosaic of the process 
memory map.

The inner structure of the object file does not, however, suggest where the individual sections •	
will ultimately reside in the program memory map. For that reason, the address ranges of each 
section in each of the object files is tentatively set to start from a zero value.

The actual address range at which a section from an object file will ultimately reside in the 
program map will be determined in the subsequent stages (linking) of program building process.

In the process of tiling object files’ sections into the resultant program memory map, the only •	
truly important parameter is the length of its sections, or to say it more precisely, its address 
range.

The object file carries no sections that would contribute to the stack and/or heap. The •	
contents of these two sections of the memory map are completely determined at runtime, and 
other than the default byte length, require no program-specific initial settings.

The object file’s contribution to the program’s .bss (uninitialized data) section is very •	
rudimentary; the .bss section is described merely by its byte length. This meager information 
is just what is needed for the loader to establish the .bss section as a part of the memory in 
which some data will be stored.

In general, the information is stored in the object files according to a certain set of rules epitomized in the form of 
binary format specification, whose details vary across the different platforms (Windows vs. Linux, 32-bit vs. 64-bit, x86 
vs. ARM processor family).

Typically, the binary format specifications are designed to support the C/C++ language constructs and the 
associated implementation problems. Very frequently, the binary format specification covers a variety of binary file 
modes such as executables, static libraries, and dynamic libraries.

On Linux, the Executable and Linkable Format (ELF) has gained the prevalence. On Windows, the binaries 
typically conform to the PE/COFF format specification.
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Compilation Process Limitations
Step by step, the pieces of the gigantic puzzle of program building process are starting to fall in place, and the broad 
and clear picture of the whole story slowly emerges. So far, you’ve learned that the compilation process translates 
the ASCII source files into the corresponding collection of binary object files. Each of the object files contains 
sections, the destiny of each is to ultimately become a part of gigantic puzzle of the program’s memory map, as 
illustrated in Figure 2-3.

Data

file1.o

Program memory map

Code

Data

file2.o

Code

Data

file N.o

Data

Code

Code

Figure 2-3. Tiling the individual sections into the final program memory map

The task that remains is to tile the individual sections stored across individual object files together into the body 
of program memory map. As mentioned in the previous sections, that task needs to be left to another stage of the 
program building process called linking.

The question that a careful observer can’t help but asking (before going into the details of linking procedure) is 
exactly why do we need a whole new stage of the building process, or more precisely, exactly why can’t the compilation 
process described thus far complete the tiling part of the task?

There are a few very solid reasons for splitting the build procedure, and the rest of this section will try to clarify 
the circumstances leading to such decision.
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In short, the answer can be provided in a few simple statements. First, combining the sections together 
(especially the code sections) is not always simple. This factor definitely plays certain role, but is not sufficient; there 
are many programming languages whose program building process can be completed in one step (in other words, 
they do not require dividing the procedure into the two stages).

Second, the code reuse principle applied to the process of program building (and the ability to combine together 
the binary parts coming from various projects) definitely affirmed the decision to implement the C/C++ building as a 
two-step (compiling and linking) procedure.

What Makes Section Combining so Complicated?
For the most part, the translation of source code into binary object files is a fairly simple process. The lines of code are 
translated into processor-specific machine code instructions; the space for initialized variables is reserved and initial 
values are written to it; the space for uninitialized variables is reserved and filled out with zeros, etc.

However, there is a part of the whole story which is bound to cause some problems: even though the source code 
is grouped into the dedicated source files, being part of the same program implies that certain mutual connections 
must exist. Indeed, the connections between the distinct parts of the code are typically established through either the 
following two options:

•	 Function calls between functionally separate bodies of code:

For example, a function in the GUI-related source file of a chat application may call a function 
in the TCP/IP networking source file, which in turn may call a function located in the 
encryption source file.

•	 External variables:

In the domain of the C programming language (substantially less in the C++ domain), it was a 
usual practice to reserve globally visible variables to maintain the state of interest for various 
parts of code. A variable intended for broader use is typically declared in one source file as 
global variable, and referenced from all other source files as extern variable.

A typical example is the errno variable used in standard C libraries to keep the value of the last 
encountered error.

In order to access either of the two (which are commonly referred to as symbols), their addresses (more precisely, 
the function’s address in the program memory and/or the global variable’s address in data memory) must be known.

However, the actual address cannot be known before the individual sections are incorporated into the 
corresponding program section (i.e., before the section tiling is completed!!!). Until then, a meaningful connection 
between a function and its caller and/or access to the external variable is impossible to establish, which are both 
suitably reported as unresolved references. Please notice that this problem does not happen when the function 
or global variable is referenced from the same source file in which it was defined. In this particular case, both the 
function/variable and their caller/user end up being the part of the same section, and their positions relative to each 
other are known before the “grand puzzle completion.” In such cases, as soon as the tiling of the sections is completed, 
the relative memory addresses become concrete and usable.

As mentioned earlier in this section, solving this kind of problem still does not mandate that a build procedure 
must be divided into two distinct stages. As a matter of fact, many different languages successfully implement a  
one-pass build procedure. However, the concept of reusing (binary reusing in this case) applied to the realm of 
building the program (and the concept of libraries) ultimately confirms the decision to split the program building  
into the two stages (compiling and linking).
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Linking
The second stage of the program building process is linking. The input to the linking process is the collection of 
object files created by the previously completed compiling stage. Each object file can be viewed as binary storage 
of individual source file contributions to the program memory map sections of all kinds (code, initialized data, 
uninitialized data, debugging information, etc.). The ultimate task of the linker is to form the resultant program 
memory map section out of individual contributions and to resolve all the references. As a reminder, the concept of 
virtual memory simplified the task of linker inasmuch as allowing it to assume that the program memory map that the 
linker needs to populate is a zero-based address range of identical size for each and every program, regardless of what 
address range the process will be given by the operating system at runtime.

For the sake of simplicity, I will cover in this example the simplest possible case, in which the contributions 
to the program memory map sections come solely from the files belonging to the same project. In reality, due to 
advancement of binary reuse concept, this may not be true.

Linking Stages
The linking process happens through a sequence of stages (relocation, reference resolving), which will be discussed in 
detail next.

Relocation
The first stage of a linking procedure is nothing else than tiling, a process in which sections of various kinds contained 
in individual object files are combined together to create the program memory map sections (see Figure 2-4). In order 
to complete this task, the previously neutral, zero-based address ranges of contributing sections get translated into the 
more concrete address ranges of resultant program memory map.

DataCode

Code
0x08003210 0x00003210

0x000000000x08000000

Program memory map
Object file

} {

Figure 2-4. Relocation, the first phase of the linking stage

The wording “more concrete” is used to emphasize the fact that the resultant program image created by the 
linker is still neutral by itself. Remember, the mechanism of virtual addressing makes it possible that each and every 
program has the same, identical, simple view of the program address space (which resides between 0 and 2N), whereas 
the real physical address at which the program executes gets determined at runtime by the operating system, invisible 
to the program and programmer.

Once the relocation stage completes, most (but not all!) of the program memory map has been created.
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Resolving References
Now comes the hard part. Taking sections, linearly translating their address ranges into the program memory map 
address ranges was fairly easy task. A much harder task is to establish the required connections between the various 
parts of the code, thus making the program homogenous.

Let’s assume (rightfully so, given the simplicity of this demo program) that all the previous build stages (complete 
compilation as well as section relocation) have completed successfully. Now is the moment to point out exactly which 
kinds of problems are left for the last linking stage to resolve.

As mentioned earlier, the root cause of linking problems is fairly simple: pieces of code originated from different 
translation units (i.e., source files) and are trying to reference each other, but cannot possibly know where in memory 
these items will reside up until the object files are tiled into the body of program memory map. The components of 
the code that cause the most problems are the ones tightly bound to the address in either program memory (function 
entry points) or in data memory (global/static/extern) variables.

In this particular code example, you have the following situation:

The function •	 add_and_multiply calls the function add, which resides in the same source file 
(i.e., the same translation unit in the same object file). In this case, the address in the program 
memory of function add() is to some extent a known quantity and can be expressed by its 
relative offset of the code section of the object file function.o.

Now function •	 main calls function add_and_multiply and also references the extern variable 
nCompletionStatus and has huge problems figuring out the actual program memory address 
at which they reside. In fact, it only may assume that both of these symbols will at some point 
in the future reside somewhere in the process memory map. But, until the memory map is 
formed, two items cannot be considered as nothing else than unresolved references.

The situation is graphically described in Figure 2-5.
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In order to solve these kinds of problems, a linking stage of resolving the references must happen. What linker 
needs to do in this situation is to

Examine the sections already tiled together in the program memory map.•	

Find out which part of the code makes calls outside of its original section.•	

Figure out where exactly (at which address in the memory map) the referenced part of the •	
code resides.

And finally, resolve the references by replacing dummy addresses in the machine instructions •	
with the actual addresses of the program memory map. 

function.o

nCompletionStatus

Locally
resolved
reference

Unresolved
references

nCompletion Status

add_and_multiply( )

add

add_and_multiply

main

main.o

Figure 2-5. The problem of unresolved references in its essential form
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Once the linker completes its magic, the situation may look like Figure 2-6.

Program memory map

nCompletionStatus

nCompletionStatus

add_and_multiply( )

Locally
resolved
reference

add

add_and_multiply

main

Figure 2-6. Resolved references

Demo Project Linking Example
There are two ways to compile and link the complete demo project to create the executable file so that it’s ready for 
running.

In the step-by-step approach, you will first invoke the compiler on both of the source files to produce the object 
files. In the subsequent step, you will link both object files into the output executable.
 
$ gcc -c function.c main.c
$ gcc function.o main.o -o demoApp
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In the all-at-once approach, the same operation may be completed by invoking the compiler and linker with just 
one command.
 
$ gcc function.c main.c -o demoApp
 

For the purposes of this demo, let’s take the step-by-step approach, as it will generate the main.o object file, 
which contains very important details that I want to demonstrate here.

The disassembling of the file main.o,
 
$ objdump -D -M intel main.o
 
reveals that it contains unresolved references.
 
disassembled output of main.o (Intel assembler format)
main.o:     file format elf32-i386
 
Disassembly of section .text:
 
00000000 <main>:
   0:  55                     push   ebp
   1:  89 e5                  mov    ebp,esp
   3:  83 e4 f0               and    esp,0xfffffff0
   6:  83 ec 20               sub    esp,0x20
   9:  b8 00 00 80 3f         mov    eax,0x3f800000
   e:  89 44 24 14            mov    DWORD PTR [esp+0x14],eax
  12:  b8 00 00 a0 40         mov    eax,0x40a00000
  17:  89 44 24 18            mov    DWORD PTR [esp+0x18],eax
  1b:  8b 44 24 18            mov    eax,DWORD PTR [esp+0x18]
  1f:  89 44 24 04            mov    DWORD PTR [esp+0x4],eax
  23:  8b 44 24 14            mov    eax,DWORD PTR [esp+0x14]
  27:  89 04 24               mov    DWORD PTR [esp],eax
  2a:  e8 fc ff ff ff         call   2b  <main + 0x2b>
  2f:  d9 5c 24 1c            fstp   DWORD PTR [esp+0x1c]
  33:  c7 05 00 00 00 00 01   mov    DWORD PTR ds:0x0,0x1
  3a:  00 00 00
  3d:  b8 00 00 00 00         mov    eax,0x0
  42:  c9                     leave
  43:  c3                     ret   :
 

Line 2a features a call instruction that jumps to itself (strange, isn’t it?) whereas line 33 features the access of the 
variable residing at the address 0x0 (even more strange). Obviously, these two obviously strange values were inserted 
by the linker purposefully.
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The disassembled output of the output executable, however, shows that not only the contents of the main.o 
object file have been relocated to the address range starting at the address 0x08048404, but also these two troubled 
spots have been resolved by the linker.
 
$ objdump -D -M intel demoApp
 
disassembled output of demoApp (Intel assembler format)
080483ce <add_and_multiply>:
 80483ce:        55                           push   ebp
 80483cf:        89 e5                        mov    ebp,esp
 80483d1:        83 ec 1c                     sub    esp,0x1c
 80483d4:        8b 45 0c                     mov    eax,DWORD PTR [ebp+0xc]
 80483d7:        89 44 24 04                  mov    DWORD PTR [esp+0x4],eax
 80483db:        8b 45 08                     mov    eax,DWORD PTR [ebp+0x8]
 80483de:        89 04 24                     mov    DWORD PTR [esp],eax
 80483e1:        e8 ce ff ff ff               call   80483b4 <add>
 80483e6:        d9 5d fc                     fstp   DWORD PTR [ebp-0x4]
 80483e9:        d9 45 fc                     fld    DWORD PTR [ebp-0x4]
 80483ec:        d9 05 20 85 04 08            fld    DWORD PTR ds:0x8048520
 80483f2:        de c9                        fmulp  st(1),st
 80483f4:        d9 5d fc                     fstp   DWORD PTR [ebp-0x4]
 80483f7:        8b 45 fc                     mov    eax,DWORD PTR [ebp-0x4]
 80483fa:        89 45 ec                     mov    DWORD PTR [ebp-0x14],eax
 80483fd:        d9 45 ec                     fld    DWORD PTR [ebp-0x14]
 8048400:        c9                           leave
 8048401:        c3                           ret
 8048402:        90                           nop
 8048403:        90                           nop
 
08048404 <main>:
 8048404:        55                           push   ebp
 8048405:        89 e5                        mov    ebp,esp
 8048407:        83 e4 f0                     and    esp,0xfffffff0
 804840a:        83 ec 20                     sub    esp,0x20
 804840d:        b8 00 00 80 3f               mov    eax,0x3f800000
 8048412:        89 44 24 14                  mov    DWORD PTR [esp+0x14],eax
 8048416:        b8 00 00 a0 40               mov    eax,0x40a00000
 804841b:        89 44 24 18                  mov    DWORD PTR [esp+0x18],eax
 804841f:        8b 44 24 18                  mov    eax,DWORD PTR [esp+0x18]
 8048423:        89 44 24 04                  mov    DWORD PTR [esp+0x4],eax
 8048427:        8b 44 24 14                  mov    eax,DWORD PTR [esp+0x14]
 804842b:        89 04 24                     mov    DWORD PTR [esp],eax
 804842e:        e8 9b ff ff ff               call   80483ce <add_and_multiply>
 8048433:        d9 5c 24 1c                  fstp   DWORD PTR [esp+0x1c]
 8048437:        c7 05 18 a0 04 08 01         mov    DWORD PTR ds:0x804a018,0x1
 804843e:        00 00 00
 8048441:        b8 00 00 00 00               mov    eax,0x0
 8048446:        c9                           leave  t: 
 

The line at the memory map address 0x8048437 references the variable residing at address 0x804a018. The only 
open question now is what resides at that particular address?
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The versatile objdump tool may help you get the answer to that question (a decent part of subsequent chapters is 
dedicated to this exceptionally useful tool).

By running the following command
 
$ objdump -x -j .bss demoApp
 
you can disassemble the .bss section carrying the uninitialized data, which reveals that your variable 
nCompletionStatus resides exactly at the address 0x804a018, as shown in Figure 2-7.

Figure 2-7. bss disassembled

Linker’s Viewpoint
“When you’ve got a hammer in your hand, everything looks like a nail”

—Handy Hammer Syndrome

But seriously, folks . . . .
Now that you know the intricacies of the linking task, it helps to zoom out a little bit and try to summarize the 

philosophy that guides the linker while running its usual tasks. As a matter of fact, the linker is a specific tool, which, 
unlike its older brother the compiler, is not interested in the minute details of the written code. Instead, it views the 
world as a set of object files that (much like puzzle pieces) are about to be combined together in a wider picture of 
program memory map, as illustrated by Figure 2-8.
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It does not take a whole lot of imagination to find out that Figure 2-8 has a lot of resemblance with the left part of 
Figure 2-9, whereas the linker’s ultimate task could be represented by the right part of the same figure.

Exported symbols
(needed by other
translation units)

Local symbols
(needed by local
unit only)

Symbols need
to be resolved; they
are located inside the
other translation units

Code segment
(.text)

Data segment
(.data, .bss,...)

Other segments...

Figure 2-8. The linker’s view of the world

LINKER

Figure 2-9. Linker’s view of the world as seen by humans
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Executable File Properties
The ultimate result of the linking procedure is the binary executable file, whose layout follows the rules of the 
executable format suitable for the target platform. Regardless of the actual format differences, the executable file 
typically contains the resultant sections (.text, .data, .bss, and many more narrowly specialized ones) created by 
combining the contributions from individual object files. Most notably, the code (.text) section not only contains the 
individual tiles from object files, but the linker modified it to make sure that all the references between the individual 
tiles have been resolved, so that the function calls between different parts of code as well as variable accesses are 
accurate and meaningful.

Among all the symbols contained in the executable file, a very unique place belongs to the main function, as from 
the standpoint of C/C++ programs it is the function from which the entire program execution starts. However, this is 
not the very first part of code that executes when the program starts.

An exceptionally important detail that needs to be pointed out is that the executable file is not entirely made of 
code compiled from the project source files. As a matter of fact, a strategically important piece of code responsible 
for starting the program execution is added at the linking stage to the program memory map. This object code, which 
linker typically stores at the beginning of the program memory map, comes in two variants:

•	 crt0 is the “plain vanilla” entry point, the first part of program code that gets executed under 
the control of kernel.

•	 crt1 is the more modern startup routine with support for tasks to be completed before the 
main function gets executed and after the program terminates.

Having these details in mind, the overall structure of the program executable may be symbolically represented by 
Figure 2-10.
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Figure 2-10. Overall structure of an executable file
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As you will see later in the chapter devoted to dynamic libraries and dynamic linking, this extra piece of code, 
which gets provided by the operating system, makes almost all the difference between an executable and a dynamic 
library; the latter does not have this particular part of the code.

More details of the sequence of steps happening when a program execution starts will be discussed in the  
next chapter.

Variety of Section Types
Much like running an automobile cannot be imagined without the motor and a set of four wheels, executing the 
program cannot be imagined without the code (.text) and the data (.data and/or .bss) sections. These ingredients are 
naturally the quintessential part of the most basic program functionality.

However, much like the automobile is not only the motor and four wheels, the binary file contains many more 
sections. In order to finely synchronize the variety of operational tasks, the linker creates and inserts into the binary 
file many more different section types.

By convention, the section name starts with the dot (.) character. The names of the most important section types 
are platform independent; they are called the same regardless of the platform and the binary format it belongs to.

Throughout the course of this book, the meanings and roles of certain section types in the overall scheme of 
things will be discussed at length. Hopefully, by the time the book is read through, the reader will have a substantially 
wider and more focused understanding of the binary file sections.

In Table 2-1, the specification of the Linux’ prevalent ELF binary format brings the following (http://man7.org/
linux/man-pages/man5/elf.5.html) list of various section types provided in the alphabetical order. Even though the 
descriptions of individual sections are a bit meager, taking a glance at the variety of sections at this point may give 
reader fairly good idea about the variety available.

Table 2-1. Linker Section Types

Section Name Description

.bss This section holds the uninitialized data that contributes to the program’s memory image.  
By definition, the system initializes the data with zeros when the program begins to run.  
This section is of type SHT_NOBITS. The attribute types are SHF_ALLOC and SHF_WRITE.

.comment This section holds version control information. This section is of type SHT_PROGBITS.  
No attribute types are used.

.ctors This section holds initialized pointers to the C++ constructor functions. This section is of type 
SHT_PROGBITS. The attribute types are SHF_ALLOC and SHF_WRITE.

.data This section holds initialized data that contributes to the program’s memory image. This 
section is of type SHT_PROGBITS. The attribute types are SHF_ALLOC and SHF_WRITE.

.data1 This section holds initialized data that contributes to the program’s memory image.  
This section is of type SHT_PROGBITS. The attribute types are SHF_ALLOC and SHF_WRITE.

.debug This section holds information for symbolic debugging. Thecontents are unspecified.  
This section is of type SHT_PROGBITS. No attribute types are used.

.dtors This section holds initialized pointers to the C++ destructor functions. This section is of type 
SHT_PROGBITS. The attribute types are SHF_ALLOC and SHF_WRITE.

.dynamic This section holds dynamic linking information. The section’s attributes include the  
SHF_ALLOC bit. Whether the SHF_WRITE bit is set is processor-specific. This section is of type 
SHT_DYNAMIC. See the attributes above

(continued)

http://man7.org/linux/man-pages/man5/elf.5.html
http://man7.org/linux/man-pages/man5/elf.5.html
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Table 2-1. (continued)

Section Name Description

.dynstr This section holds the strings needed for dynamic linking, most commonly the strings that 
represent the names associated with symbol table entries. This section is of type SHT_STRTAB. 
The attribute type used is SHF_ALLOC.

.dynsym This section holds the dynamic linking symbol table. This section is of type SHT_DYNSYM.  
The attribute used is SHF_ALLOC.

.fini This section holds executable instructions that contribute to the process termination code. 
When a program exits normally, the system arranges to execute the code in this section. This 
section is of type SHT_PROGBITS. The attributes used are SHF_ALLOC and SHF_EXECINSTR.

.gnu.version This section holds the version symbol table, an array of ElfN_Half elements. This section is of 
type SHT_GNU_versym. The attribute type used is SHF_ALLOC.

.gnu.version_d This section holds the version symbol definitions, a table of ElfN_Verdef structures.  
This section is of type SHT_GNU_verdef. The attribute type used is SHF_ALLOC.

.gnu_version.r This section holds the version symbol needed elements, a table of ElfN_Verneed structures. 
This section is of type SHT_GNU_versym. The attribute type used is SHF_ALLOC.

.got This section holds the global offset table. This section is of type SHT_PROGBITS. The attributes 
are processor-specific.

.got.plt This section holds the procedure linkage table. This section is of type SHT_PROGBITS.  
The attributes are processor-specific.

.hash This section holds a symbol hash table. This section is of type SHT_HASH. The attribute used is 
SHF_ALLOC.

.init This section holds executable instructions that contribute to the process initialization code. 
When a program starts to run, the system arranges to execute the code in this section before 
calling the main program entry point. This section is of type SHT_PROGBITS. The attributes 
used are SHF_ALLOC and SHF_EXECINSTR.

.interp This section holds the pathname of a program interpreter. If the file has a loadable segment 
that includes the section, the section’s attributes will include the SHF_ALLOC bit. Otherwise, 
that bit will be off. This section is of type SHT_PROGBITS.

.line This section holds the line number information for symbolic debugging, which describes 
the correspondence between the program source and the machine code. The contents are 
unspecified. This section is of type SHT_PROGBITS. No attribute types are used.

.note This section holds information in the “Note Section” format. This section is of type  
SHT_NOTE. No attribute types are used. OpenBSD native executables usually contain a .note.
openbsd.ident section to identify themselves, for the kernel to bypass any compatibility ELF 
binary emulation tests when loading the file.

.note.GNU-stack This section is used in Linux object files for declaring stack attributes. This section is of type 
SHT_PROGBITS. The only attribute used is SHF_EXECINSTR. This indicates to the GNU linker that 
the object file requires an executable stack.

.plt This section holds the procedure linkage table. This section is of type SHT_PROGBITS.  
The attributes are processor-specific.

(continued)
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Table 2-1. (continued)

Section Name Description

.relNAME This section holds relocation information as described below. If the file has a loadable 
segment that includes relocation, the section’s attributes will include the SHF_ALLOC bit. 
Otherwise, the bit will be off. By convention, “NAME” is supplied by the section to which the 
relocations apply. Thus a relocation section for .text normally would have the name .rel.text. 
This section is of type SHT_REL.

.relaNAME This section holds relocation information as described below. If the file has a loadable 
segment that includes relocation, the section’s attributes will include the SHF_ALLOC bit. 
Otherwise, the bit will be off. By convention, “NAME” is supplied by the section to which the 
relocations apply. Thus, a relocation section for .text normally would have the name .rela.text. 
This section is of type SHT_RELA.

.rodata This section holds read-only data that typically contributes to a nonwritable segment in the 
process image. This section is of type SHT_PROGBITS. The attribute used is SHF_ALLOC.

.rodata1 This section holds read-only data that typically contributes to a nonwritable segment in the 
process image. This section is of type SHT_PROGBITS. The attribute used is SHF_ALLOC.

.shrstrtab This section holds section names. This section is of type SHT_STRTAB. No attribute types  
are used.

.strtab This section holds strings, most commonly the strings that represent the names associated 
with symbol table entries. If the file has a loadable segment that includes the symbol string 
table, the section’s attributes will include the SHF_ALLOC bit. Otherwise the bit will be off. This 
section is of type SHT_STRTAB.

.symtab This section holds a symbol table. If the file has a loadable segment that includes the symbol 
table, the section’s attributes will include the SHF_ALLOC bit. Otherwise, the bit will be off. This 
section is of type SHT_SYMTAB.

.text This section holds the “text,” or executable instructions, of a program. This section is of type 
SHT_PROGBITS. The attributes used are SHF_ALLOC and SHF_EXECINSTR.

A Variety of Symbol Types
The ELF format provides a vast variety of linker symbol types, far larger than you can imagine at this early stage 
on your path toward understanding the intricacies of the linking process. At the present moment, you can clearly 
distinguish that symbols can be of either local scope or of broader visibility, typically needed by the other modules. 
Throughout the book material later on, the various symbol types will be discussed in substantially more detail.

Table 2-2 features the variety of symbol types, as shown in the man pages (http://linux.die.net/man/1/nm) 
of the useful nm symbol examination utility program. As a general rule, unless explicitly indicated (like in the case 
of “U” vs. “u”), the small letter denotes local symbols, whereas the capital letter indicates better symbol visibility 
(extern, global).

http://linux.die.net/man/1/nm
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Table 2-2. Linker Symbol Types

Symbol Type Description

“A” The symbol’s value is absolute, and will not be changed by further linking.

“B” or “b” The symbol is in the uninitialized (.bss) data section.

“C” The symbol is common. Common symbols are uninitialized data. When linking, multiple 
common symbols may appear with the same name. If the symbol is defined anywhere, the 
common symbols are treated as undefined references.

“D” or “d” The symbol is in the initialized data section.

“G” or “g” The symbol is in an initialized data section for small objects. Some object file formats permit more 
efficient access to small data objects, such as a global int variable as opposed to a large global array.

“i” For PE format files, this indicates that the symbol is in a section specific to the implementation 
of DLLs. For ELF format files, this indicates that the symbol is an indirect function. This is a GNU 
extension to the standard set of ELF symbol types. It indicates a symbol that, if referenced by a 
relocation, does not evaluate to its address, but instead must be invoked at runtime. The runtime 
execution willthen return the value to be used in the relocation.

“N” The symbol is a debugging symbol.

“p” The symbols is in a stack unwind section.

“R” or “r” The symbol is in a read only data section.

“S” or “s” The symbol is in an uninitialized data section for small objects.

“T” or “t” The symbol is in the text (code) section.

“U” The symbol is undefined. In fact, this binary does not define this symbol, but expects that it 
eventually appears as the result of loading the dynamic libraries.

“u” The symbol is a unique global symbol. This is a GNU extension to the standard set of ELF symbol 
bindings. For such a symbol, the dynamic linker will make sure that in the entire process there is 
just one symbol with this name and type in use.

“V” or “v” The symbol is a weak object. When a weak defined symbol is linked with a normal defined 
symbol, the normal defined symbol is used with no error. When a weak undefined symbol is 
linked and the symbol is not defined, the value of the weak symbol becomes zero with no error. 
On some systems, uppercase indicates that a default value has been specified.

“W” or “w” The symbol is a weak symbol that has not been specifically tagged as a weak object symbol. 
When a weak defined symbol is linked with a normal defined symbol, the normal definedsymbol 
is used with no error. When a weak undefined symbol is linked and the symbol is not defined, the 
value of the symbol is determined in a system-specific manner without error.On some systems, 
uppercase indicates that a default value has been specified.

“-” The symbol is a stabs symbol in an a.out object file. In this case, the next values printed are the 
stabs other field, the stabs desc field, and the stab type. Stabs symbols are usedto hold debugging 
information.

“?” The symbol type is unknown, or object file format-specific.
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Chapter 3

Program Execution Stages

The purpose of this chapter is to describe the sequence of events that happens when the user starts a program. The 
analysis is primarily focused on pointing out the details of interplay between the operating system and the layout of 
the executable binary file, which is tightly connected with the process memory map. Needless to say, the primary 
focus of this discussion is the execution sequence of the executable binaries created by building the code in C/C++.

Importance of the Shell
The program execution under the user’s control typically happens through a shell, a program that monitors a user’s 
actions on the keyboard and mouse. Linux features many different shells, the most popular being sh, bash, and tcsh.

Once the user types in the name of the command and presses the Enter key, the shell first tries to compare the 
typed command name against the one of its own built-in commands. If the program name is confirmed to not be any 
of the shell’s supported commands, the shell tries to locate the binary whose name matches the command string. 
If user typed in only the program name (i.e. not the full path to the executable binary), the shell tries to locate the 
executable in each of the folders specified by the PATH environment variable. Once the full path of executable binary 
is known, the shell activates the procedure for loading and executing the binary.

The mandatory first action of the shell is to create a clone of itself by forking the identical child process. Creating 
the new process memory map by copying the shell’s existing memory map seems like a strange move, as it is very 
likely that a new process memory map will have nothing in common with the memory map of the shell. This strange 
maneuver is made for a good reason: this way the shell effectively passes all of its environment variables to the new 
process. Indeed, soon after the new process memory map is created, the majority of its original contents get  
erased/zeroed out (except the part carrying the inherited environment variables) and overwritten with the memory 
map of the new process, which becomes ready for the execution stage. Figure 3-1 illustrates the idea.
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From this point on, the shell may follow one of two possible scenarios. By default, the shell waits for its forked 
clone process to complete the command (i.e. that the launched program completes the execution). Alternatively, if 
the user types in an ampersand after the program name, the child process will be pushed to the background, and the 
shell will continue monitoring the user’s subsequently typed commands. The very same mode may be achieved by 
the user not appending the ampersand after the executable name; instead, after the program is started, the user may 
press Ctrl-Z (which issues the SIGSTOP signal to the child process) and immediately after type “bg” (which issues the 
SIGCONT signal to the child process) in the shell window, which will cause the identical effect (pushing the shell child 
process to the background).

Physical memory

SHELL

Memory mapped region
for shared libraries

Process specific data
structures

(e.g, page tables,
task and mm structs,

kernel stack)

Process specific data
structures

(e.g, page tables,
task and mm structs,

kernel stack)

Kernel
virtual
memory

Process
virtual
memory

Shell first creates a copy of its
own process memory map
which will be used by a new
process.

Soon thereafter, the kernel will
wipe of the newly created
memory map, retaining only the
part carrying the environment
variables.

From that point on, everything
is ready for the loader to fill in
the empty memory map with the
contents found in the binary file
of the launched program.

Environment
variables

Physical memory

Kernel code and data Kernel code and data

Run-time heap (via malloc)

Uninitialized data (.bas)

Initialized data (.data)
Program text (.text)

Figure 3-1. The shell starts creating the new process memory map by copying its own process memory map,  
with the intention to pass its own environment variables to the new process
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A very similar scenario of starting the program happens when user applies a mouse click to the application 
icon. The program that provides the icon (like a gnome-session and/or Nautilus File Explorer on Linux) takes the 
responsibility of translating the mouse click into the system( ) call, which causes a very similar sequence of events to 
happen as if the app were invoked by typing into the shell window.

Kernel Role
As soon as the shell delegates the task of running the program, the kernel reacts by invoking a function from the 
exec family of functions, all of which provide pretty much the same functionality, but differ in the details of how 
the execution parameters are specified. Regardless of which particular exec-type function is chosen, each of them 
ultimately makes a call to the sys_execve function, which starts the actual job of executing the program.

The immediate next step (which happens in function search_binary_handler (file fs/exec.c) is to identify the 
executable format. In addition to supporting the most recent ELF binary executable format, Linux provides backwards 
compatibility by supporting several other binary formats. If the ELF format is identified, the focus of action moves into 
the load_elf_binary function (file fs/binfmt_elf.c).

After the executable format is identified as one of the supported formats, the effort of preparing the process 
memory map for the execution commences. In particular, the child process created by the shell (a clone of the shell 
itself ) is passed from shell to the kernel with the following intentions:

The kernel obtains the sandbox (the process environment) and, more importantly, the •	
associated memory, which can be used to launch the new program.

The first thing that kernel will do is to completely wipe off most of the memory map. 
Immediately after, it will delegate to the loader the process of populating the wiped off 
memory map with the data read from the new program’s binary executable fileSharePoint.

By cloning the shell process (through the •	 fork( ) call), the environment variables defined 
in the shell are passed onto the child process, which helps that the chain of environment 
variables’ inheritance not get broken.

Loader Role
Before going into the details of loader functionality, it is important to point out that the loader and linker have 
somewhat different perspectives on the contents of the binary file.

Loader-Specific View of a Binary File (Sections vs. Segments)
The linker can be thought of as a highly sophisticated module capable of precisely distinguishing a wide variety of 
sections of various natures (code, uninitialized data, initialized data, constructors, debugging information, etc.).  
In order to resolve the references, it must intimately know the details of their internal structure.

On the other hand, the loader’s responsibilities are far simpler. For the most part, its task is to copy the sections 
created by linker into the process memory map. To complete its tasks, it does not need to know much about the inner 
structure of the sections. Instead, all it worries about is whether the sections’ attributes are read-only, read-write, 
and (as it will be discussed later) whether there needs to be some patching applied before the executable is ready for 
launching.

Note ■  as will be shown later in discussions about the process of dynamic linking, the loader capabilities are a bit 
more complex than mere copying blocks of data.



Chapter 3 ■ program exeCution StageS

46

It hence does not come as a big surprise that the loader tends to group the sections created by the linker into 
segments based on their common loading requirements. As shown in Figure 3-2, the loader segments typically  
carry several sections that have in common access attributes (read or read-and-write, or most importantly, to be 
patched or not).

Segments
Sections

LINKER
LOADER

Figure 3-2. Linker vs. loader

As shown in Figure 3-3, using the readelf utility to examine the segments illustrates the grouping of many 
different linker sections into the loader segments.
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Program Loading Stage
Once the binary format is identified, the role of the kernel’s loader module comes to play. The loader first tries to 
locate the PT_INTERP segment in the executable binary file, which will assist it in the dynamic loading task.

In order to avoid the pitfalls of the proverbial “cart ahead of the horse” situation—since the dynamic loading is yet 
to be explained—let’s assume the simplest possible scenario in which the program is statically linked and there is no 
need for dynamic loading of any kind.

StatIC BUILD eXaMpLe

the term static build is used to indicate the executable, which does not have any of the dynamic linking 
dependencies whatsoever. all the external libraries needed for creating such executable are statically linked.  
as a consequence, the obtained binary is fully portable, as it does not require the presence of any system shared 
library (not even libc) in order to be executed. the benefit of full portability (which seldom requires such drastic 
measures) comes at the price of the greatly enlarged byte size of the executable.

other than full portability, the reason for the statically built executable may be purely educational, as it lends itself 
well to the process of explaining the original, simplest possible roles of the loader.

Figure 3-3. Sections grouped into segments
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the effect of static building may be illustrated with the example of plain and simple “hello World” example. Let’s 
use the same source file to build the two applications, one of which is built with the -static linker flag; see 
Listings 3-1 and 3-2.

Listing 3-1. main.cpp

#include <stdio.h>
 
int main(int argc, char* argv[])
{
    printf("Hello, world\n");
    return 0;
}
 

Listing 3-2. build.sh

gcc main.cpp -o regularBuild
gcc -static main.cpp  -o staticBuild
 
the comparison of the byte sizes of the two executables will show that the byte size of the executable built 
statically is much larger (about 100 times in this particular example).

The loader continues by reading in the program’s binary file segments’ headers to determine the addresses and 
byte lengths of each of the segments. An important detail to point out is that at this stage the loader still does not write 
anything to the program memory map. All the loader does at this stage is to establish and maintain a set of structures 
(vm_are_struct for example), carrying the mappings between the segments of executable file (actually page-wide 
parts of each of the segments) and the program memory map.

The actual copying of segments from the executable happens after the program execution starts. By that time 
the virtual memory mapping between the page of physical memory granted to the process and the program memory 
map has been established; the first paging requests start arriving from the kernel requesting that page-wide ranges of 
program segments be available for execution. As a direct consequence of such policy, only the parts of the program 
that are actually needed at runtime happen to get loaded (Figure 3-4).
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Executing Program Entry Point
From the usual C/C++ programming perspective, the program entry point is the main() function. From the point of 
program execution, however, it is not. Prior to the point when the execution flow reaches the main() function, a few 
other functions get executed, which level the playfield for the program to run.

Let’s take a closer look at what typically happens in Linux between the program loading and the execution of the 
main() function’s first line of code.

The Loader Finds the Entry Point
After loading the program (i.e. preparing the program blueprint and copying the necessary sections to the memory for 
its execution), the loader takes a quick look at the value of e_entry field from the ELF header. This value contains the 
program memory address from which the execution will start.

Disassembling the executable binary file typically shows that the e_entry value carries nothing less than the first 
address of the code (.text) section. Coincidentally, this program memory address typically denotes the origin of the 
_start function.
 

?

Program
memory
map
(its description
maintained in
the set of
structures)

Page
request

Physical MemoryProgram
executable

LOADER

KERNEL

Figure 3-4. Program loading stage
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The following is the disassembly of section .text:
 
08048320 <_start>:
 8048320:        31 ed                        xor    ebp,ebp
 8048322:        5e                           pop    esi
 8048323:        89 e1                        mov    ecx,esp
 8048325:        83 e4 f0                     and    esp,0xfffffff0
 8048328:        50                           push   eax
 8048329:        54                           push   esp
 804832a:        52                           push   edx
 804832b:        68 60 84 04 08               push   0x8048460
 8048330:        68 f0 83 04 08               push   0x80483f0
 8048335:        51                           push   ecx
 8048336:        56                           push   esi
 8048337:        68 d4 83 04 08               push   0x80483d4
 804833c:        e8 cf ff ff ff               call   8048310 <__libc_start_main@plt>
 8048341:        f4                           hlt
 

The Role of _start( ) Function
The role of the _start function is to prepare the input arguments for the __libc_start_main function that will be 
called next. Its prototype is defined as
 
int __libc_start_main(int (*main) (int, char * *, char * *), /* address of main function   */
                      int argc,                 /* number of command line args             */
                      char * * ubp_av,          /* command line arg array                  */
                      void (*init) (void),      /* address of init function                */
                      void (*fini) (void),      /* address of fini function                */
                      void (*rtld_fini) (void), /* address of dynamic linker fini function */
                      void (* stack_end)        /* end of the stack address                */
                     );
 

In fact, all that the instructions prior to the call instruction do is to stack up the required arguments for the call in 
the expected order.

In order to understand what exactly these instructions do and why, please take a look at the next section, which 
is dedicated to explaining the stack mechanism. But before going there, let’s first complete the story about starting the 
program execution.

The Role of __libc_start_main( ) Function
This function is the key player in the process of preparing the environment for the program to run. It not only sets up 
the environment variables for the program during the program execution, but it also does the following:

Starts up the program’s threading.•	

Calls the •	 _init() function, which performs initializations required to be completed before the 
main() function starts.

The GCC compiler through the __attribute__ ((constructor)) keyword supports custom 
design of the routines you may want to be completed before your program starts.
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Registers the •	 _fini() and _rtld_fini() functions to be called to cleanup after the program 
terminates. Typically, the action of _fini() is inverse to the actions of the _init() function.

The GCC compiler, through the __attribute__ ((destructor)) keyword, supports custom 
design of the routines you may want to complete before your program starts.

Finally, after all the prerequisite actions have been completed, the __libc_start_main() calls the main() 
function, thus making your program run.

Stack and Calling Conventions
As anyone with programming experience above the absolute beginner level knows, the typical program flow is in 
fact a sequence of function calls. Typically, the main function calls at least one function, which in turn may call huge 
number of other functions.

The concept of stack is the cornerstone of the mechanism of function calls. This particular aspect of program 
execution is not of paramount importance for the overall topic of this book, and we will not spend much more time 
discussing the details of how stack works. This topic has been a commonplace one for a long time, and there is no 
need to reiterate the well-known facts.

Instead, only the few important points related to the stack and functions will be pointed out.

The process memory map reserves certain area for the needs of the stack.•	

The amount of stack memory used at runtime actually varies; the larger the sequence of •	
function calls, the more of stack memory is in use.

The stack memory is not unlimited. Instead, the amount of available stack memory is bound •	
with the amount of memory available for allocation (which is the part of the process memory 
known as heap).

Functions Calling Conventions
How a function passes the arguments to the function it calls is very interesting topic. A variety of very elaborate 
mechanisms of passing the variables to the functions have been designed, resulting in specific assembly language 
routines. Such stack implementation mechanisms are typically referred to as calling conventions.

As a matter of fact, many different calling conventions have been developed for X86 architecture, such as cdecl, 
stdcall, fastcall, thiscall, to name just a few. Each of them is tailored for a specific scenario from a variety of 
design standpoints. The article titled “Calling Conventions Demystified” by Nemanja Trifunovic  
(www.codeproject.com/Articles/1388/Calling-Conventions-Demystified) provides an interesting insight into 
the differences between various calling conventions. The legendary Raymond Chen’s series of blog articles titled 
“The History of Calling Conventions,” which came a few years later (http://blogs.msdn.com/b/oldnewthing/
archive/2004/01/02/47184.aspx), are probably the most complete single source of information about the topic.

Without spending too much time on this particular topic, a detail of particular importance is that among all 
the available calling conventions, one of them in particular, the cdecl calling convention, is strongly preferred for 
implementing the interface of dynamic libraries exported to the other world. Stay tuned for more details, as the 
discussions in Chapter 6 about library ABI functions will provide better insight into the topic.

http://www.codeproject.com/Articles/1388/Calling-Conventions-Demystified
http://blogs.msdn.com/b/oldnewthing/archive/2004/01/02/47184.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2004/01/02/47184.aspx
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Chapter 4

The Impact of Reusing Concept

The code reuse concept is omnipresent and has found an impressive variety of ways of manifesting itself. Its impact 
on the process of building programs happened much before the well-known transition from procedural programming 
languages toward the object-oriented ones.

The initial reasons for dividing the tasks between compiler and linker have been already described in the 
previous chapters. Briefly, it all started from the useful habit of keeping code in separate source files; then, at compile 
time it became obvious that compiler could not easily complete the task of resolving the references simply because 
tiling the code sections into the ultimate puzzle of program memory map had to happen first.

The idea of code reuse added the extra argument to the decision of splitting the compiling and linking stages. 
The amount of indeterminism brought in by the object files (all sections having zero-based address ranges plus 
unresolved references), which initially certainly looked like a drawback, in light of the code sharing idea actually 
started looking like a precious new quality.

The code reuse concept applied to the domain of building the program executables found its first realization in 
the form of static libraries, which are bundled collections of object files. Later on, with the advent of multitasking 
operating systems, another form of reusing called dynamic libraries came to prominence. Nowadays both concepts 
(static as well as dynamic libraries) are in use, each having pros and cons, hence requiring a deeper understanding 
of their functionality’s inner details. This chapter describes in great detail these two somewhat similar, but also 
substantially different, concepts.

Static Libraries
The idea behind the concept of static libraries is exceptionally simple: once the compiler translates a collection of 
translation units (i.e., source files) into the binary object files, you may want to keep the object files for later use in 
other projects, where they may be readily combined at link time with the object files indigenous to that other project.

In order for it to be possible to integrate the binary object files into some other project, at least one additional 
requirement needs to be satisfied: that the binary files be accompanied by the export header include file, which will 
provide the variety of definitions and function declarations of at least these functions that can be used as entry points. 
The section titled “The Conclusion: The Impact of the Binary Reuse Concept” explains why some functions are more 
important than others.

There are several ways a set of object files may be put to use in various projects:

The trivial solution is to save the object files generated by the compiler, and copy  •	
(cut-and-paste) or transfer in any way possible to a project that needs them (where they will 
be linked alongside the other object files into the executable), as shown in Figure 4-1.
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The better way is to bundle the object files into a single binary file, a static library.  •	
It is far simpler and far more elegant to deliver a single binary file to the other project than 
each object file separately (Figure 4-2).
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Figure 4-1. A trivial method of binary code reuse, the precursor to static libraries
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The obvious requirement in this case is that linker understands the static library file format •	
and is capable of extracting its contents (i.e., object files bundled together) in order to link 
them in. Fortunately, this requirement has been met by probably each and every linker since 
the early days of microprocessor programming.

Let it be noted also that the process of creating a static library is by no means irreversible. •	
More specifically, a static library is merely an archive of object files, which can be manipulated 
in a number of ways. Through the easy use of appropriate tools, a static library can be 
dismantled into the collection of original object files; one or more object files may be thrown 
out from the library, new object files can be added, and finally, the existing object files may be 
replaced by a newer version.

Whichever of these two approaches you decide to follow, the trivial one or the more sophisticated static library 
approach, you essentially have the process of binary code reuse happening, as the binary files generated in one 
project are used in the other projects. The overall impact of binary code reuse to the landscape of software design will 
be discussed in detail later.
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Dynamic Libraries
Unlike the concept of static libraries, which has been around since the early days of assembler programming, the 
concept of dynamic libraries came to full acceptance much later. The circumstances that led to its creation and 
adoption are tightly related to the appearance of multitasking operating systems.

In any analysis of the functioning of a multitasking operating system, one particular notion quickly comes to 
prominence: regardless of the variety of concurrent tasks, certain system resources are unique and must be shared by 
everybody. The typical examples of shared resources on the desktop system are the keyboard, the mouse, the video 
graphics adapter, the sound card, the network card, and so on.

It would be counterproductive and even disastrous if each and every application that intends to access the 
common resources had to incorporate the code (either as a source or as a static library) that provides control over the 
resource. This would be greatly inefficient, clumsy, and a lot of storage (both hard disk and memory) would be wasted 
on storing the duplicates of the same code.

The day-dreaming of better and more efficient operating systems led to the idea of having a sharing mechanism 
that would assume neither compiling in the duplicate source files nor linking in the duplicate object files. Instead,  
it would be implemented as some kind of runtime sharing. In other words, the running application would be  
capable of integrating in its program memory map the compiled and linked parts of some other executable,  
where the integration would happen on-demand, as-per-need, at runtime. This concept is referred to as dynamic 
linking/dynamic loading, which will be illustrated in more detail in the next section.

From the very early design stages one important fact became obvious: of all the parts of the dynamic library,  
it only makes sense to share its code (.text) section, but not the data with the other processes. In the culinary analogy,  
a bunch of different chefs can share the same cookbook (code). However, given that different chefs may be concurrently 
preparing utterly different dishes from the same cookbook, it would be disastrous if they shared the same kitchen 
utensils (data).

Obviously, if a bunch of different processes had access to the dynamic library data section, the variable 
overwriting would happen at arbitrary moments, and the execution of the dynamic library would be unpredictable, 
which would render the whole idea meaningless. This way, by mapping only the code section, the multiple 
applications are free to run the shared code each in its own compartment, separately from each other.

Dynamic vs. Shared Libraries
The ambitions of operating system designers early on were to avoid unnecessary multiple presence of the same 
pieces of operating system code in the binaries of each and every application that may need them. For example, each 
application that needed to print the document would have to incorporate the complete printing stack, ending up with 
the printer driver, in order to provide the printing feature. If the printer driver changed, the whole army of application 
designers would need to recompile their applications; otherwise, a chaos would emanate due to the runtime presence 
of plethora of different printer driver versions.

Obviously, the right solution would be to implement the operating system in such a way that the following  
would happen:

The commonly needed functionality is provided in the form of dynamic libraries.•	

The application that needs the access at common functionality would need to merely load the •	
dynamic library at runtime.

The basic idea behind the concept of dynamic libraries is illustrated in the Figure 4-3.
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The first solution to this problem (i.e., the first version of dynamic linking implementation, known as load time 
relocation (LTR)), achieved the goal with partial success. The good news was that applications were relieved of 
carrying the unnecessary baggage of operating system code in its binaries; instead, they were deployed with only the 
app-specific code, whereas all system-related needs were satisfied by dynamically linking the modules supplied by 
the operating system.

The bad news, however, was that if multiple applications needed certain system functionality at runtime, each 
of the applications had to load their own copy of the dynamic library. The underlying cause of this limitation was the 
fact that the load time relocation technique modified the symbols of the .text section of the dynamic library to fit the 
particular address mapping of the given application. For another application, which would load the dynamic library 
into the possibly different address range, the modified library code simply would not fit the different memory layout.

As a result, multiple copies of the dynamic libraries resided in the processes’ memory maps at runtime. This 
is something that we could live with for some time, but the long term goals of the design were far more ambitious: 
to provide a more efficient mechanism that would allow the dynamic library to be loaded just once (by whatever 
application happens to load it first) and be made available to any other application that tried to load it next.

This goal was achieved through the concept known as position independent code (PIC). By changing how the 
dynamic library code accessed the symbols, only one copy of the dynamic library loaded into the memory map of any 
process would become shareable by memory mapping it to any application’s process memory map (Figure 4-4).
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Furthermore, it is not unusual that the operating system loads certain common system resources (top level 
drivers, for example) into the physical memory, knowing that it will most likely be needed by the plethora of running 
processes. The effect of dynamic linking is that each of the processes has the perfect illusion that they are the sole 
owners of the driver.

Since the invention of PIC concept, the dynamic libraries designed to support it were called shared libraries. 
Nowadays, the PIC concept is prevalent, and on 64-bit systems it is strongly favored by the compilers, so the naming 
distinction between the terms dynamic vs. shared library is disappearing, and the two names are used more or less 
interchangeably.

The concept of virtual memory paved the foundation of the success of the idea of runtime sharing (epitomized 
by the concept of position-independent code). The initial idea is fairly simple: if the real process memory map (with 
real, concrete addresses) is nothing but the result of 1:1 mapping of the zero-based process memory map, what 
really prevents us from creating a monster, a real process memory map obtained by mapping parts of more than one 
different processes? In fact, this is exactly how the mechanism of runtime sharing of dynamic libraries works.

The successful implementation of the PIC concept represents a cornerstone of modern multitasking operating systems.

Processs-specific data
structures

(e.g., page tables,
task and mm structs,

kernel stack)

Startup routine (crt1)

Processs-specific data
structures

(e.g., page tables,
task and mm structs,

kernel stack)

Startup routine (crt1)

Physical Memory

Processs-specific data
structures

(e.g., page tables,
task and mm structs,

kernel stack)

User stack

Figure 4-4. The advances brought by the PIC technique of dynamic linking
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Dynamic Linking in More Detail
The concept of dynamic linking is at the very core of the concept of dynamic libraries. It is practically impossible to 
fully understand how the dynamic libraries work without understanding the complex interplay between the dynamic 
library, the client executable, and the operating system. The focus of this section is to provide the necessary broad 
level understanding of the process of dynamic linking. Once its essence is understood, the subsequent sections of this 
document will pay the due attention to the details.

So, let’s see what really happens during the process of dynamic linking.

Part 1: Building the Dynamic Library
As the previous figures suggest, the process of building a dynamic library is a complete build, as it encompasses 
both compilation (converting the source into the binary object files) as well as resolving the references. The product 
of the dynamic library building process is the binary file whose nature is identical to the nature of executable, the 
only difference being that dynamic library lacks the startup routines that would allow it to be started as independent 
program (Figure 4-5).
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Figure 4-5. Building the dynamic library

Here are some notes to consider:

In Windows, building a dynamic library strictly requires that all the references must be •	
resolved. If the dynamic library code calls a function in some other dynamic library, that other 
library and the references symbol it contains must be known at build time.

In Linux, however, the default option allows some more flexibility, allowing that some the •	
symbols be unresolved with the expectation that they will eventually show up in the final 
binary after some other dynamic library is linked in. Additionally, the Linux linker provides 
the option to fully match the Windows linker’s strictness.

In Linux, it is possible to modify the dynamic library to make it runnable by itself (still •	
researching whether such option exists on Windows). In fact, the libc (C runtime library) is 
executable by itself; when invoked by typing its filename into the shell window, it prints a 
message on the screen and terminates. For more details of how to implement such feature, 
please check Chapter 14.
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Part 2: Playing by Trust While Building the Client Executable (Looking  
for the Symbols Only)
The next stage in the scenario of using a dynamic library happens when you try to build the executable that intends on 
using the dynamic library at runtime. Unlike the static libraries scenario in which the linker is creating the executable 
on its own at will, the scenario of linking the dynamic libraries is peculiar in that the linker tries to combine its current 
work with the existing results of the previously completed linking procedure that created dynamic library binary.

The crucial detail in this part of the story is that linker pays almost all of its attention to the dynamic library’s 
symbols. It appears that at this stage the linker is almost not interested in any of the sections, neither code (.text), nor 
data (.data/.bss).

More specifically, the linker in this stage of operation “plays it by trust.”
It does not examine the binary of the dynamic library thoroughly; it neither tries to find the sections or their 

sizes, nor attempts to integrate them into the resultant binary. Instead, it solely tries to verify that the dynamic library 
contains the symbols needed by the resultant binary. Once it finds it, it completes the task and creates the executable 
binary (see Figure 4-6).
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Figure 4-6. Build time linking with a dynamic library

The approach of “playing by trust” is not completely unintuitive. Let’s consider a real-life example: if you tell 
someone that in order to mail a letter he needs to go to the kiosk in the nearby square and buy a postage stamp, you 
are essentially basing your advice on reasonable amount of trust. You do know that there should be a kiosk on the 
square, and that it carries postage stamps. The fact that you don’t know the particular details of the kiosk operation 
(working hours, who works there, the price of postage stamps) does not diminish the validity of your advice, as 
at runtime all these less important details will be resolved. The idea of dynamic linking is based on completely 
analogous assumptions.

Let it be noticed, however, that this amount of trust leaves open doors for many interesting scenarios, all of which 
fall under the “build with one, load the other” paradigm. The practical implications vary from peculiar software design 
tricks all the way to the whole new paradigm (plug-ins), both of which will be discussed later in the book.
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Part 3: Runtime Loading and Symbol Resolution
The events happening at load time are of crucial importance, as this is the time when the confidence that the linker 
had in the dynamic library’s promises needs to be confirmed. Previously, the build procedure (possibly completed on 
a build machine “A”) examined the copy of dynamic library binary in the search for symbols that executable needs. 
Now what needs to happen at runtime (possibly on different, runtime machine “B”) is the following:

 1. The dynamic library binary file needs to be found.

Each operating system has a set of rules stipulating in which directory the loader should 
look for the dynamic libraries’ binaries.

 2. The dynamic library needs to be successfully loaded into the process.

This is the moment where the promise of build-time linking must be fulfilled at runtime.

In fact, the dynamic library loaded at runtime must carry the identical set of symbols 
promised to be available at build time. More specifically, in the case of function symbols 
the term “identical” means that the function symbols found in the dynamic library at 
runtime must exactly match the complete function signature (affiliations, name, list of 
arguments, linkage/calling convention) promised at build time.

Interestingly enough, it is not required that the actual assembly code (i.e., the sections 
contents) of the dynamic library found at runtime matches the code found in the dynamic 
library binary used during the build time. This opens up a lot of interesting scenarios 
which will be discussed in detail later on.

 3. The executable symbols need to be resolved to point to the right address in the part of 
process of memory map where the dynamic library is mapped into.

It is this stage the integration of dynamic library into the process memory map truly 
deserves to be called dynamic linking, as unlike the conventional linking it happens at 
load time.

If all the steps of this stage completed successfully, you may have your application executing the code contained 
in the dynamic library, as illustrated in Figure 4-7.



Chapter 4 ■ the ImpaCt of reusIng ConCept

62

Peculiarities of Dynamic Linking on Windows
As it is true that the dynamic linking happens in two phases (build time vs. runtime) in which the linker focuses on 
different details of dynamic library binary, there is no substantial reason as to why the same identical copy of the 
dynamic library binary couldn’t be used in both of the phases.

Even though in the build-time dynamic linking phase only the library symbols play a role, there is nothing wrong 
if the exact same copy of the binary file is used in the runtime phase as well.

This principle is mostly followed throughout the variety of operating systems, including Linux. In Windows, 
however, in the attempt to make the separation between the dynamic linking stages clearer, things are made slightly 
more complicated in a way that can confuse beginners a bit.

Special Binary File Types Related to Dynamic Linking in Windows
In Windows, the distinction between the different phases of dynamic linking is accentuated by using slightly different 
binary file types in each of the phases. Namely, when a Windows DLL project is created and built, the compiler 
produces several different files.
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Figure 4-7. Load time linking of a dynamic library
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Dynamically Linked Library (.dll)

This file type is in fact the dynamic library, a shared object used at runtime by the processes through the mechanism 
of dynamic linking. More specifically, the majority of facts presented so far about the principles on which the dynamic 
library functions are fully applicable to the DLL files.

Import Library File (.lib)

A dedicated import library (.lib) binary file is used on Windows specifically at the “Part2” phase of dynamic linking 
(Figure 4-8). It contains only the list of DLL symbols and none of its linker sections, and its purpose is solely to present 
the set of dynamic library’s exported symbols to the client binary.

Shared
library

Import library

Figure 4-8. Windows import library

The file extension of the import library file (.lib) is the potential source of confusion, as the same file extension is 
also used to indicate the static libraries.

Another detail that deserves a bit of discussion is the fact that this file is called import library but in fact plays a 
role in the process of exporting the DLL symbols. As it is true that the choice of naming does depend on the side from 
which we look at the process of dynamic linking, it is also true that this file belongs to the DLL project, gets created by 
building DLL project, and may be disseminated to uncountable many applications. For all of these reasons, it should 
not be wrong to adopt the “from DLL outward” direction, and hence use the name export library.

The obvious proof that someone else at Microsoft shared this viewpoint at least to an extent can be found in the 
section discussing the use of __declspec keyword, where the naming (__declspec(dllexport)) is used to indicate 
export from DLL toward the client apps (i.e., in the outward direction).

One of the reasons why folks at Microsoft decided to stick with this particular naming convention is that the 
DLL project produces another type of library file that may be used instead of this one in the scenarios of circular 
dependencies. That another file type is called an export file (.exp) (see below), and in order to distinguish between 
the two, the existing naming has been retained.

Export File (.exp)

The export file has the same nature as the import library file. However, it is typically used in the scenario when two 
executables have circular dependencies that make impossible to complete the building of either one. In such case, the 
exp file is provided with the intention to make it possible for at least one of the binaries to successfully compile, which 
in turn can be used by the other dependent binaries to complete their builds.
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Note ■  Windows DLLs are strictly required to resolve all the symbols at build time. on Linux, however, it is possible to 
leave some dynamic library symbols unresolved with the expectation that missing symbols will eventually appear in the 
process memory map as a result of dynamically linking in some other dynamic libraries.

Unique Nature of Dynamic Library
It is important to understand early on that in the ensemble of binary types the dynamic library has fairly unique 
nature, the details of which are important to keep in mind when dealing with the usual related design issues.

When looking at the other binary types, the opposite natures of the executables and the static libraries become 
obvious almost immediately. The creation of a static library does not involve the linking stage, whereas in the case of 
the executable it is the mandatory last step. As a consequence, the nature of the executable is far more completed, as it 
contains resolved references, and due to the embedded extra start routines, it is ready for execution.

In that regard, despite the word “library,” which suggests similarities between the static and dynamic libraries,  
it is the fact that the nature of the dynamic library is far closer to the nature of the executable.

Property 1: Dynamic Library Creation Requires the Complete Build Procedure
The process of creating the dynamic library involves not only compiling but the linking stage as well. Despite what 
the naming similarities suggest, the completeness of the dynamic library build process (i.e., linking in addition to 
compiling) makes the dynamic library far more similar to the executable than to the static library. The only difference 
is that executable contains the startup code that allows the kernel to start the process. It is definitely possible  
(in Linux for sure) to add a few lines of code to the dynamic library that make it possible to execute the library from 
the command line as if it were an executable binary type. For more details, please check Chapter 14.

Property 2: The Dynamic Library Can Link In Other Libraries
This is a really interesting fact: it is not only the executable that can load and link the dynamic library, but it can be 
also another dynamic library. Hence, we can no longer say “executable” to indicate the binary that links in a dynamic 
library; we must use other more appropriate term.

Note ■  I decided to hereafter use the term “client binary” to indicate the executable or the dynamic library that loads 
a dynamic library.

Application Binary Interface (ABI)
When the interfacing concept is applied to the domain of programming languages, it is typically used to denote 
the structure of function pointers. C++ adds a few extra meanings by defining it as a class of function pointers; 
additionally, by declaring the function pointers to be equal to NULL, the interface gets an extra kick of abstraction as it 
becomes unsuitable for instantiation, but can be used as idealistic model for other classes to implement it.

The interface exported by a software module to the clients is typically referred to as an application programming 
interface (API). When applied to the domain of binaries, the concept of an interface gets one additional domain-specific 
flavor called an application binary interface (ABI). It is not wrong to think of ABI as a set of symbols (primarily a set of 
function entry points) created in the process of compiling/linking of the source code interface.
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The ABI concept comes in handy when explaining more precisely what happens during the dynamic linking.

During the first (build-time) phase of the dynamic linking, the client binary in fact links •	
against the library’s exported ABI.

As I pointed out, at build time the client binary in fact only checks whether the dynamic 
library exports the symbols (function pointers such as the ABI) and does not care at all 
about the sections (the function bodies).

In order to successfully complete the second (runtime) phase of dynamic linking, the binary •	
specimen of the dynamic library available at runtime must export the unchanged ABI, identical 
to that found at build time.

The second statement is considered as the basic requirement of dynamic linking.

Static vs. Dynamic Libraries Comparison Points
Even though I just barely touched on the concepts behind the static and dynamic libraries, some comparisons 
between the two can be already drawn.

Differences in Import Selectiveness Criteria
The most interesting difference between the static and dynamic libraries is the difference in selectiveness criteria 
applied by a client binary that tries to link them.

Import Selectiveness Criteria for Static Libraries
When the client binary links the static library, it does not link in the complete static library contents. Instead, it links in 
strictly and solely only the object files containing the symbols that are really needed, as shown in Figure 4-9.
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Figure 4-9. Import selectiveness criteria for static libraries

The byte length of the client binary gets increased, albeit only by the amount of relevant code ingested from the 
static library.
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Note ■  Despite the fact that the linking algorithm is selective when choosing which object files to link in, the  
selectivity does not go beyond the granularity of individual object files. It still could happen that in addition to the symbols 
that are really needed, the chosen object file contains some symbols that are not needed.

Import Selectiveness Criteria for Dynamic Libraries
When the client binary links the dynamic library, it features the selectivity only at the level of the symbol table,  
in which only the dynamic library symbols that are really needed become mentioned in the symbol table.

In all other regards, the selectivity is practically nonexistent. Regardless of how small a portion of the dynamic 
library functionality is concretely needed, the entire dynamic library gets dynamically linked in (Figure 4-10).
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Figure 4-10. Import selectiveness criteria for dynamic libraries

The increased amount of code only happens at runtime. The byte length of the client binary does not get 
increased significantly. The extra bytes needed for the bookkeeping of new symbols tend to amount to small byte 
counts. However, linking the dynamic library imposes the requirement that the dynamic library binary will need to be 
available at runtime on the target machine.

Whole Archive Import Scenario
An interesting twist happens when the static library’s functionality needs to be presented to the binary clients through 
the intermediary dynamic library (Figure 4-11).
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Figure 4-11. “Whole archive” scenario of importing static library

The intermediary dynamic library itself does not need any of the static library’s functionality. Therefore, 
according to the formulated import selectiveness rules, it will not link in anything from the static library. Yet, the sole 
reason why the dynamic library is designed is to ingest the static library functionality and export its symbols for the 
rest of the world to use.

How to mitigate these opposite requirements?
Fortunately, this scenario has been early identified, and adequate linker support has been provided through the 

--whole-archive linker flag. When specified, this linker flag indicates that one or more libraries listed thereafter will be 
unconditionally linked in entirely, regardless of whether the client binary that links them needs their symbols or not.

In recognition of this scenario, the Android native development system in addition to supporting the  
LOCAL_STATIC_LIBRARIES build variable, the native build system also supports the LOCAL_WHOLE_STATIC_LIBRARIES 
build variable, like so:
 
$ gcc -fPIC <source files> -Wl,--whole-archive -l<static libraries> -o <shlib filename>
 

Interestingly, there is a counter-action linker flag (--no-whole-archive). Its effect is to counteract the effect of 
--whole-archive for all subsequent libraries being specified for linking on the very same linker command line.
 
$ gcc -fPIC <source files> -o <executable-output-file> \
      -Wl,--whole-archive -l<libraries-to-be-entirely-linked-in> \
    -Wl,--no-whole-archive -l<all-other-libraries>
 

Somewhat similar in nature to the --whole-archive flag is the -rdynamic linker flag. By passing this linker flag 
you are basically requesting that the linker exports all the symbols (present in the .symtab section) to the dynamic 
(.dynsym) section, which basically makes them usable for the purposes of dynamic linking. Interestingly, this flag 
does not seem to require the -Wl prefix.
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Deployment Dilemma Scenarios
When designing the software deployment packages, the build engineers typically face a requirement to minimize the 
byte size of the deployment package. In one of the simplest possible scenarios, the software product that needs to be 
deployed is comprised of an executable that delegates the task of providing certain part of its functionality to a library. 
Let’s say that the library may come in both flavors, the static as well as the dynamic library. The basic question that 
the build engineer faces is which kind of linking scenarios to utilize in order to minimize the byte size of the deployed 
software package.

Choice 1: Linking with a Static Library
One of the choices that a build engineer faces is to link the executable with the static version of the library. This 
decision comes with pros and cons.

•	 Pros: The executable is completely self-contained, as it carries all the code it needs.

•	 Cons: The executable byte size gets increased by the amount of code ingested from the static 
library.

Choice 2: Linking with a Dynamic Library
Another possibility, of course, is to link the executable with the dynamic version of the library. This decision also 
comes with pros and cons.

•	 Pros: The executable byte size does not get changed (except maybe by the small symbols 
bookkeeping expense).

•	 Cons: There is always a chance that the required dynamic library for whatever reason is not 
physically available on the target machine. If precaution is taken and the required dynamic 
library gets deployed together with the executable, several potential problems may ensue.

First, the overall byte size of the deployment package definitely gets larger, as you now •	
deploy an executable and a dynamic library.

Second, the deployed dynamic library version may not match the requirements of the •	
other applications that may rely on it.

Third, fourth, and so on, there is a whole set of problems that may happen when dealing •	
with the dynamic libraries, known under the name “DLL hell.”

Final Verdict
The linking with static libraries is a good choice when the application links in relatively smaller portions of relatively 
smaller number of static libraries.

The linking with dynamic libraries comes as a good choice when the application depends on the dynamic 
libraries expected with the great certainty to exist at runtime on the target machine.

The likely candidates are OS-specific dynamic libraries, such as C runtime library, graphic subsystems, 
user space top level device drivers, and/or the libraries coming from very popular software packages. Table 4-1 
summarizes the differences between dealing with static vs. dynamic libraries.
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Table 4-1. Comparison Points Summary

Comparison Category Static Libraries Dynamic Libraries

Build Procedure Incomplete:

Compiling: yesLinking: no

Complete:

Compiling: yesLinking: yes

Nature of Binary Archive of object file(s)

All the sections exist, but the majority of 
references are unresolved (except local 
references).

Can’t exist standalone; the circumstances 
of the clientbinary determine plenty of 
details.

All of its symbolshave some meaning only 
within the client executable.

The executable without the startup 
routines.

Contains resolved references (except when 
intended otherwise), some of which are 
intended to be globally visible.

Very independent (in Linux, with a few 
simple additions the missing startup 
routines can be effectively added).

Highly specialized in certain strategic tasks; 
once loaded into the process, typically 
very dependable and reliable in providing 
specialized services.

Integration With 
Executable

Happens during the executable building 
process,completed during the linking 
stage.

Efficient: Only the needed object files 
from the archive get linked into the 
executable.

The byte size of the client binary gets 
increased, though.

Happens through two separate phases of 
dynamic linking:

1) Linking against the available symbols

2) Symbols and sections integration at  
load time

Inefficient: The complete library gets 
loaded into the process regardless of 
which part of library is really needed.

The byte size of client binary almost does 
not change. However, the availability of 
the dynamic library binary at runtime is 
one extra thing to worry about.

Impact on Executable 
Size

Increases the executable size, as sections 
get addedto the executable sections.

Reduces the executable size, as only 
the app-specific code resides in the app 
executable, whereas the shareable parts are 
extracted into the dynamic library.

Portability Excellent, as everything the app needs is 
within its binary.

The absence of external dependencies 
makes the portability easy.

Varies.

Good for OS-standard dynamic libraries 
(libc, device drivers, etc.), as they are 
guaranteed to exist on runtime machine.

Less good for app-specific or vendor-specific 
scenarios.

Plenty of scenarios for potential problems 
exist (versioning, missing libraries, search 
paths, etc.)

(continued)
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Comparison Category Static Libraries Dynamic Libraries

Ease of Combining Very limited.

Can’t create a static library by using the 
other libraries (neither static nor dynamic).

Can only link all of them together into the 
same executable.

Excellent.

A dynamic library can link in one or more 
static libraries, and/or one of more dynamic 
libraries.

In fact, Linux can be viewed as “Legoland,” 
a set of constructions made by dynamic 
libraries linking with the other dynamic 
libraries. The magnitude of integration 
is greatly facilitated by the availability of 
source code.

Ease of Converting Fairly easy.

The standard function of the archiver  
utility is the extraction of ingredient object  
files. Once extracted, they can be 
eliminated, replaced, or recombined  
into a new static or dynamic library.

Only in very exceptionally special cases (in 
the “Tips and Tricks” section, see the topic 
about linking the static lib into a dynamic 
lib on 64-bit Linux) this may not be good 
enough, and you might need to recompile 
the original sources.

Practically impossible for most mortals.

Some commercial solutions have been seen 
that attempt with various degree of success 
to implement the conversion of a dynamic 
to a static library.

Suitable for 
Development

Cumbersome.

Even the smallest changes in the code 
require recompiling all executables that 
link the library.

Excellent.

The best way to work on an isolated feature 
is to extract it into the dynamic library.

As long as the exported symbols (function 
signatures, and/or data structure layouts) 
are not changed, recompiling the library 
does not require recompiling the rest of the 
code.

Misc/Other Simpler, older, ubiquitous form 
of binary sharing applied even 
in the simplest microcontroller 
developmentenvironments.

Newer way of binary code reuse.

Modern multitasking system can’t even be 
imagined without them.

Essential to the concept of plug-ins.

Table 4-1. (continued)
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Table 4-2. Legal Analogy

Binary Type Legal Equivalent

Static Library The law paragraph

In general, it is written in a kind of indeterministic fashion. For example: If a person  
(which person?) is convicted of conducting a class A misdemeanor (which particular 
misdemeanor? what exactly did the person do?), he or she will be sentenced to pay the  
fine not exceeding 2000 dollars (exactly how much?), or to serve the prison term 
not exceeding 6 months (exactly how long?) or both (which one of the three possible 
combinations?).

Dynamic Library Concrete accusation

John Smith is convicted of resisting arrest and disobeying the police officer. The prosecution 
requests that he pay a fine of $1,500 and spend 30 days in jail.

Executable Serving the sentence

All references (who, what, when, and possibly why) are resolved: the law violations  
have been proven in the court of law, the judge sentenced John Smith according to the  
letter of law, and everything is ready for him to serve his sentence in the nearby state 
correction facility.

Table 4-3. Culinary Analogy

Binary Type Culinary Equivalent

Static Library Raw food ingredients (e.g., raw meat or raw vegetables)

Definitely suitable for consumption, but can’t be served right away, as they need a certain 
amount of processing (marinating, adding spices, combining with other ingredients and  
most importantly, termic processing) which must be completed first.

Dynamic Library Pre-cooked or ready-made dish

Ready for consumption, but serving it as-is makes very little sense. However, if the rest of the 
lunch is ready, it will make a great addition to the served meal.

Executable Complete lunch course

This consists of the fresh bread of the day, salad of the hour, and the prepared main course, 
which can be enriched by a certain amount of a warmed-up dish that was cooked a few  
days ago.

Useful Comparison Analogies
Tables 4-2 through 4-4 list several very useful and illustrative analogies, which may help you better understand the 
role of compilation process.
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Note ■  In the culinary analogy, you (the software designer) are running a restaurant in which (through the process of 
building the executables) you prepare a meal for the hungry Cpu who is hardly waiting to start munching the meal.

The Conclusion: The Impact of Binary Reuse Concept
As soon as the concept of binary reuse was proven to work, it had the following immediate consequences to the 
landscape of software design:

The appearance of dedicated projects whose intention is not to build executable code, but •	
instead to build a binary bundle of reusable code.

As soon as the practice of building the code for others to use starting gaining momentum, the •	
necessity to follow the encapsulation principle came to prominence.

Table 4-4. Tropical Jungle Expedition Analogy

Binary Type Expedition Role Equivalent

Executable British lord, the leader of the expedition

Decorated combat veteran, known for his excellent survival skills and instincts. Assigned by 
the British Geographic Society to investigate rumors that in the depths of tropical jungles 
exist the temples of long-lost advanced civilizations, hiding numerous material and scientific 
treasures. He is entitled to logistic support from the local British consular department, which 
takes care of coordinating the effort with the local authorities and provides all kinds of help 
with supplies, money, logistics, and transportation.

Dynamic Library Local hunter, the expedition guide

This guy was born and raised in the expedition target geographic area. He speaks all local 
languages, knows all tribal religions and cultures; has plenty of personal connections in the 
area; knows all dangerous places and how to avoid them; has exceptional survival skills; is 
a good hunter, excellent trail blazer, and can predict weather changes. Highly specialized in 
everything related to the jungle, and can completely take care of himself. Most of his adult time 
has been spent as a hired guide for expeditions like this one. Between expeditions he does 
pretty much nothing, other than spending his time with the family, going fishing and hunting, 
etc. Has neither the ambition nor the financial power to start anything himself.

Static Library Young personal assistant

Young British lad from the aristocratic family. Little or no real life experience, but Oxford 
degree in archeology and knowledge of ancient languages, as well as the operational 
knowledge of stenography, telegraphy, and Morse code earns him a place on the team. Even 
though his skills are potentially applicable to many roles and many scenarios, he has never 
been in the tropical areas, does not speak local languages, and will for the most part depend 
on higher authority and/or higher expertise of various kinds. Most likely he will have no formal 
authority over the course of expedition and no power of making the decisions of any kind 
except in the domain of his immediate expertise, and only when asked to do so.
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The essence of the idea of encapsulation is that if we are building something for others 
to use, it is always good if such export products come with clearly separated essential 
features from the less important inner functionality details. One of the mandatory ways to 
achieve it is to declare the interface, the set of quintessential functions that a user is most 
interested in using.

The interface (set of quintessential/the most important functions) is typically declared in the •	
export header file (an include file that provides the top-level interface between the reusable 
binary code and the potential user).

In a nutshell, the way to distribute the code for others to use is to deliver the software package carrying the 
set of binary files and the set of export header files. The binary files export the interface, mostly the set of functions 
quintessential for using the package.

The next wave of consequences followed immediately thereafter:

The appearance of SDKs (software development kits), which are, in the most basic version,  •	
a set of export headers and binaries (static and/or dynamic libraries) intended for integration 
with binaries created while compiling source files indigenous to the client project.

The appearance of the “one engine, variety of GUIs” paradigm.•	

There are plenty of examples where the popular engine gets used by different applications 
presenting the different GUIs to the user, but running the same engine (loaded from 
the same dynamic libraries) in the background. Typical examples in the domain of 
multimedia are ffmpeg and avisynth.

A potential for controlled exchange of intellectual properties.•	

By delivering binaries instead of source code, the software companies may deliver their 
technology without disclosing the ideas behind it. The availability of disassemblers makes 
this story somewhat more complicated, but in the long run the basic idea still applies.
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Chapter 5

Working with Static Libraries

In this chapter, I will review the typical life cycle in dealing with static libraries. I will start with simple guidelines for 
creating static library, then I will provide the overview of typical use case scenarios, and finally I will take a closer look 
at certain expert-level design tips and tricks.

Creating Static Library
A static library is created when the object files created by compiler from the set of source files are bundled together 
into a single archive file. This task is performed by a tool called an archiver.

Creating Linux Static Library
On Linux, the archiver tool, called simply ar, is available as part of GCC toolchain. The following simple example 
demonstrates the process of creating static library out of two source files:
 
$ gcc -c first.c second.c
$ ar rcs libstaticlib.a first.o second.o
 

By Linux convention, static libraries names start with prefix lib and have the file extension .a.
In addition to performing its basic task of bundling the object files into the archive (static library), the ar can 

perform several additional tasks:

Remove one or more object files from library.•	

Replace one or more object files from the library.•	

Extract one or more object files from the library.•	

The complete list of supported features can be found on the ar tool man page (http://linux.die.net/man/1/ar).

Creating a Windows Static Library
The task of creating the static library on Windows does not substantially differ from the same task performed in Linux. 
Even though it can be completed from the command line, the fact of life is that in the vast majority of cases the task of 
creating the static library is performed by creating a dedicated Visual Studio (or other similar IDE tool) project with 
the option of building the static library. When examining the project command line, you can see in Figure 5-1 that the 
task boils down to essentially the same use of an archiver tool (albeit a Windows version).

http://linux.die.net/man/1/ar
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Using the Static Library
Static libraries are used at the linking stage of projects that build executables or dynamic libraries. The static libraries’ 
names are typically passed to the linker together with the list of object files that need to be linked in. If the project also 
links in the dynamic libraries, their names are the part of the same list of linker input arguments.

Recommended Use Case Scenarios
The static libraries are the most basic way of binary sharing the code, which has been available for a long time before 
the invention of dynamic libraries. In the meantime, the more sophisticated paradigm of dynamic libraries has taken 
over the domain of binary code sharing. However, there are still a few scenarios in which resorting the use of static 
libraries still makes sense.

The static libraries are perfectly suitable for all the scenarios implementing the core of various (mostly 
proprietary) algorithms, ranging from elementary algorithms such as search and sort all the way to very complex 
scientific or mathematical algorithms. The following factors can supply the extra push toward deciding to use the 
static library as the form of delivering the code:

The overall code architecture can be described more as a “wide collection of various abilities” •	
instead of a “module with the strictly defined interface.”

The actual computation does not rely on a specific OS resource (such as a graphics card’s •	
device driver, or high priority system timers, etc.) that requires loading the dynamic libraries.

Figure 5-1. Creating a Win32 static library
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The end user wants to use your code, but does not necessarily want to share it with anybody else.•	

Code deployment requirements suggest the need for monolithic deployment (i.e. small overall •	
number of binary files delivered to the client’s machine).

Using the static library always means tighter control over the code, albeit at the price of reduced flexibility. 
The modularity is typically reduced, and the appearance of new code versions typically means recompiling every 
application that uses it.

In the domain of multimedia, the signal processing (analysis, encoding, decoding, DSP) routines are typically 
delivered in the form of static libraries. On the other hand, their integration into the multimedia frameworks (DirectX, 
GStreamer, OpenMAX) are implemented in the form of dynamic libraries which link in the algorithm-related static 
libraries. In this scheme, the simple and strict duties of communicating with the framework are delegated to the thin 
shell of dynamic library part, whereas the signal processing complexities belong to the static library part.

Static Libraries Tips and Tricks
The following section covers the list of important tips and tricks related to the use of static libraries.

Potential for Losing the Symbol Visibility and Uniqueness
The way the linker integrates the static library sections and symbols into the client binary is genuinely fairly simple 
and straightforward. When linked into the client binary, the static library sections get seamlessly combined with 
the sections coming from the client binary’s indigenous object files. The static library symbols become the part of 
the client binary symbols list and retain their original visibility; the static library’s global symbols become the client 
binary’s global symbols, and the static library’s local symbols become the client binary’s local symbols.

When the client binary is the dynamic library (i.e. not the application), the outcome of these simple and 
straightforward rules of integration may be compromised by the other dynamic libraries’ design rules.

Where is the twist?
The implicit assumption in the concept of dynamic libraries is the modularity. It is not wrong to think of a 

dynamic library as of a module that is designed to be easily replaced when the need emerges. In order to properly 
implement the modularity concept, the dynamic library code is typically structured around the interface, the set of 
functions that exposes the module’s functionality to the outer world, whereas the internals of the dynamic library are 
typically kept away from the prying eyes of the library users.

As the luck would have it, the static libraries are typically designed to provide the “heart and soul” of the dynamic 
libraries. Regardless of how precious the static library contribution is to the overall functionality of its host dynamic 
library, the rules of designing the dynamic libraries stipulate that they should export (i.e., make visible) only the bare 
minimum required for library to communicate with the outer world.

As a direct consequence of such design rules (as you will see in the following chapters), the visibility of the static 
library symbols ends up being subdued. Instead of remaining globally visible (which they were immediately after the 
linking completed), the static library symbols immediately become either demoted into the private ones or may even 
become stripped out (i.e., completely eliminated from the list of dynamic library symbols).

On the other hand, a peculiar yet very important detail is that the dynamic libraries enjoy the complete 
autonomy over their local symbols. In fact, several dynamic libraries may be loaded into the same process, each 
dynamic library featuring local symbols that have the same names as the other dynamic libraries’ local symbols. Yet 
the linker manages to avoid any naming conflicts.

The allowed existence of multiple instances of the same-named symbols may lead to a number of unwanted 
consequences. One scenario is known as the multiple instances of singleton class paradox, which will be illustrated in 
more detail in Chapter 10.
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Counterindicated Use Case Scenarios
Say you have a piece of code that provides certain functionality, and you must decide whether or not to encapsulate it 
in the form of a static library. Here are some typical scenarios in which the static library case is counterindicated:

When linking the static library requires linking several dynamic libraries (except maybe the •	
libc), then the static library probably should not be used, and the matching dynamic library 
option should be favored.

The matching dynamic library option may mean one of the following:

The existing dynamic library version of the same library should be used.•	

or

The library source code (if available) should be rebuilt to create the dynamic library.•	

or

The available static library should be dismantled into the object files, which (except in a •	
few rare cases) may be used in the build project that builds the dynamic library.

This is completely analogous to the situation that happens when a person with special needs 
(special eating habits, or special medical/environmental conditions requirements) decides to 
stay at friend’s house when visiting the town in which the friend lives. In order for the friend to 
accommodate the guest’s special needs, he needs to significantly rearrange his everyday life 
in order to make unusual extra trips to the specialty food stores, or provide special conditions 
which he himself does not really need in his everyday life. It makes far more sense for the 
visitor to take a more independent role, such as getting a hotel room or to arranging the 
support for his specific needs; and once his own references are resolved, get in touch with the 
friend whose town he is visiting.

If the functionality you implement requires the existence of single instance of a class •	
(singleton pattern), following the good dynamic library design practices will ultimately lead 
to the strong suggestion to encapsulate your code in a dynamic instead of a static library. The 
rationale behind this was explained in the previous paragraph.

A good real life example of this scenario is the design of a logging utility. It typically 
features a single instance of a class visible to a variety of functionality modules, 
specializing in serializing all possible log statements and sending the log stream to the 
recording medium (stdout, hard disk or network file, etc.).

If the functionality modules are implemented as dynamic libraries, hosting the logger class 
in another dynamic library is strongly suggested.

Specific Rules of Linking Static Libraries
Linking static libraries in Linux adheres to the following set of rules:

Linking static libraries happens sequentially, one static library by one.•	

Linking static libraries starts from the last static library on the list of static libraries passed to •	
the linker (from command line or through the makefile), and goes backwards, toward the first 
library on the list.

The linker searches the static libraries in detail, and of all the object files contained in the •	
static library it links in only the object file, which contains symbols that are really needed by 
the client binary.
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As a result of these specific rules, it is sometimes required to specify the same static library more than once on the 
same list of static libraries passed to the linker. The chances of this happening increase when a static library provides 
several unrelated sets of functionalities.

Converting Static to Dynamic Library
Static library can be converted to dynamic library fairly simply. All you need to do is the following:

Use the archiver (ar) tool to extract all the object files from the library, like•	
 

$ ar -x <static library>.a
 

which results with the collection of object files extracted from the static library into the  
current folder.

On Windows, you may use the lib.exe tool which is available through the Visual Studio 
console. Based on the MSDN online documentation (http://support.microsoft.com/
kb/31339) it is possible to extract at least one object file (you first need to list the static 
library contents, which can be also achieved by using the lib.exe tool).

Build the dynamic library from the set of the extracted object files to the linker.•	

This recipe works in almost all cases. The special cases in which additional requirements must be satisfied are 
featured next.

Static Libraries Issues on 64-bit Linux
Using the static libraries on 64-bit Linux comes with an interesting corner case scenario. Here is the outline:

Linking the static library into the executable does not differ from doing the same thing on  •	
32-bit Linux.

However, linking the static library into the shared library requires that the static library be built •	
with either the -fPIC compiler flag (suggested by the compiler’s error printout) or with the 
-mcmodel=large compiler flag.

This is quite interesting scenario.
First, a mere mentioning of the -fPIC compiler flag in the context of static libraries may be a bit confusing.  

As I will discuss in the next chapter dealing with dynamic libraries, using the -fPIC flag has been traditionally 
associated with building dynamic libraries.

It is a popular belief that passing the -fPIC flag to the compiler is one of the two key requirements strictly 
required by dynamic libraries, but never ever required for compiling static library. Any mention of the -fPIC compiler 
flag in the context of static libraries is a bit shocking.

As matter of fact, this belief is not exactly correct but it’s fairly error-safe. The truth is that the use of -fPIC flag is 
not the decisive factor of whether the static or dynamic library will be created; it is the -shared linker flag.

Back to the harsh reality. The true reason why the compiler insists on compiling the static library with the 
-fPIC flag is that on 64-bit platform the range of address offsets cannot be covered by the usual compiler assembler 
constructs in which the 32-bit registers are used. The compiler needs a kick of sort (the use of -fPIC or the 
-mcmodel=large compiler flags) in order to implement the same code with the 64-bit registers.

http://support.microsoft.com/kb/31339
http://support.microsoft.com/kb/31339
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Resolving the Problem In Real Life Scenarios
It is not completely impossible to get the software package designed much before the era of 64-bit operating systems, 
in which the static library was built without the -fPIC (or -mcmodel=large) flag. Also, the folks who deliver their static 
libraries are not necessarily the superstars of dealing with the issues related to compilers/linkers/libraries/ (unlike the 
guys who complete reading this book ;). If you have had luck (as I have) in getting the static library from the third party 
developers who were not aware of this particular scenario, there is some bad news: there is no easy workaround for 
this kind of problem.

Trying to dismantle the static library into the object file does not change the situation even for a tiny bit; the 
object files haven’t been compiled with the compiler flags required for this particular scenario, and no library 
conversion magic can help avoiding the need to recompile the static library sources. 

The only true solution to this kind of a problem is that someone who has the source code (the code distributor 
or the end user) modifies the build parameters (edit the Makefile) by adding the required flags to the set of 
compiler flags.

If that is any consolation, imagine that you don’t have the library source code at all. Now, that would be scary, huh?
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Chapter 6

Designing Dynamic Libraries: Basics

Chapter 5 covered the details of the basic ideas behind the static libraries concept, so now it’s time to examine the 
details of dealing with dynamic libraries. This is important because these details affect the everyday work of the 
programmer/software designer/software architect.

Creating the Dynamic Library
The compilers and linkers typically provide a rich variety of flags which may ultimately provide a lot of flavors to the 
process of building a dynamic library. For things to be really interesting, even the simplest, widely used recipe that 
requires one compiler and one linker flag may not be as plain and simple as it initially looks, and the deeper analysis 
may uncover a really interesting set of facts. Anyways, let’s start from the beginning.

Creating the Dynamic Library in Linux
The process of building dynamic libraries has traditionally consisted of the following minimum set of flags:

•	 -fPIC compiler flag

•	 -shared linker flag

The following simple example demonstrates the process of creating the dynamic library out of two source files:
 
$ gcc -fPIC -c first.c second.c
$ gcc -shared first.o second.o -o libdynamiclib.so
 

By Linux convention, dynamic libraries start with the prefix lib and have the filename extension .so.
If you follow this recipe, there’s little chance you’ll go astray. If these flags are passed to the compiler and linker, 

respectively, whenever you intend to build a dynamic library, the ultimate result will be the correct and usable 
dynamic library. However, taking this recipe as undisputed and universal truth is not the right thing to do. More 
precisely, as much as there is really nothing wrong with passing the -shared flag to the linker, the use of the -fPIC 
compiler flag is a really intriguing topic, which deserves some extra attention.

The rest of this section will be primarily focused on the Linux side (even though some of the concepts live in 
Windows, too).

About the -fPIC Compiler Flag
The details about using the -fPIC flag can be best illustrated trough the sequence of following questions and answers.
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Question 1: What does -fPIC stand for?

The “PIC” in -fPIC is the acronym for position-independent code. Before the concept of position-independent 
code came to prominence, it was possible to create dynamic libraries that the loader was capable of loading into the 
process memory space. However, only the process that first loaded the dynamic library could enjoy the benefits of its 
presence; all other running processes that needed to load the same dynamic library had no choice other than loading 
another copy of the same dynamic library into memory. The more processes needed to load a particular dynamic 
library, the more copies in memory had to exist.

The underlying cause of such limitations was a suboptimal loading procedure design. Upon loading the dynamic 
library into the process, the loader altered the dynamic library’s code (.text) segment in a way that made all the 
dynamic library’s symbols meaningful solely within the realm of the process that loaded the library. Even though 
this approach was suitable for the most basic runtime needs, the ultimate result was that the loaded dynamic library 
was irreversibly altered so that it would be fairly hard for any other process to reuse the already loaded library. 
This original loader design approach is known as load-time relocation and will be discussed in greater detail in 
subsequent paragraphs.

The PIC concept was clearly a huge step ahead. By redesigning the loading mechanism to avoid tying the loaded 
library’s code (.text) segment to the memory map of the first process that loaded it, the desired extra functionality 
notch was achieved by providing the way for multiple processes to seamlessly map to its memory map the already 
loaded dynamic library.

Question 2: Is the use of the -fPIC compiler flag strictly required to build  
the dynamic library?

The answer is not unique. On 32-bit architecture (X86), it is not required. If not specified, however, the dynamic 
library will conform to the older load-time relocation loading mechanism in which only the process that loads the 
dynamic library first will be able to map it into its process memory map.

On 64-bit architectures (X86_64 and I686), the simple omission of the -fPIC compiler flag (in an attempt to 
implement the load-time relocation mechanism) will result with the linker error. A discussion of why this happens 
and how to circumvent the problem will be provided later in this book. The remedy for this kind of situation is to pass 
either the -fPIC flag or -mcmodel=large to the compiler.

Question 3: Is the use of the -fPIC compiler flag strictly confined to the domain  
of dynamic libraries? Can it be used when building the static library?

It is popular belief that the use of the -fPIC flag is strictly confined to the realm of dynamic libraries. The truth is a bit 
different.

On 32-bit architecture (X86), it does not really matter if you compile the static library with -fPIC flag or not. It will 
have a certain impact on the structure of the compiled code; however, it will have negligible impact on the linking and 
overall runtime behavior of the library.

On 64-bit architecture (X86_64 for sure), things are even more interesting.

The static library linked into the executable may be compiled with or without the •	 -fPIC 
compiler flag (i.e., it does not matter whether you specify it or not).

However:

The static library linked into the dynamic library must be compiled with •	 -fPIC flag !!! 
(Alternatively, instead of the -fPIC flag, you may specify the -mcmodel=large compiler flag.)

If the static library was not compiled with either of the two flags, the attempt to link it in 
into the dynamic library results in the linker error shown in Figure 6-1.
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An interesting technical discussion related to this problem may be found in the following web article:  
www.technovelty.org/c/position-independent-code-and-x86-64-libraries.html.

Creating the Dynamic Library in Windows
The process of building a simple dynamic library in Windows requires following a fairly simple recipe. The sequence 
of screenshots (Figures 6-2 through 6-6) illustrates the process of creating the DLL project. Once the project is created, 
building the DLL requires nothing more than launching the Build command.

Figure 6-1. Linker error

Figure 6-2. The first step in creating Win32 dynamic library (DLL)

http://www.technovelty.org/c/position-independent-code-and-x86-64-libraries.html
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Figure 6-3. Click the Next button to specify DLL choice
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Figure 6-4. Available Win32 DLL Settings
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Figure 6-5. Created DLL compiler flags
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Designing Dynamic Libraries
The process of designing a dynamic library in general does not differ much from designing any other piece of 
software. Given the specific nature of dynamic libraries, there are a few specific points of importance that need to be 
discussed in detail.

Designing the Binary Interface
By its nature, a dynamic library in general provides a specific functionality to the outer world, the manner of which 
should minimize the client’s involvement in the inner functionality details. The way it is achieved is through the 
interface, where the client is relieved to the maximum extent of knowing anything it does not need to worry about.

The concept of interfacing, which is omnipresent in the domain of object-oriented programming, obtains an 
extra flavor in the domain of binary code reuse. As explained in “The Impact of the Binary Reuse Concept” section in 
Chapter 5, the immutability of the application binary interface (ABI) between the build-time and runtime phases of 
dynamic linking is the most basic requirement of successful dynamic linking.

At first glance, the design of the ABI does not differ much from the design of the API. The basic meaning of the 
concept of the interface remains unchanged: a set of functions that need to be made available to the client in order to 
use the services provided by specialized module.

Figure 6-6. Created DLL linker flags
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Indeed, as long as the program is not written in C++, the design effort of the dynamic library’s ABI does not 
require any more thinking than designing the API of a reusable software module. The fact that the ABI is just a set of 
linker symbols that needs to be loaded at runtime does not make things substantially different.

However, the impact of the C++ language (most notably, the lack of strict standardization) requires additional 
thinking when designing the dynamic library ABI.

C++ Issues
An unfortunate fact of life is that progress in the domain of programming languages was not symmetrically followed 
by the design of linkers, or to say precisely, by the strictness of the normative bodies that bring the standards in the 
software domain. The good reasons for not doing so will be pointed out throughout this section. An excellent article 
illustrating these issues is “Beginner’s Guide To Linkers” at www.lurklurk.org/linkers/linkers.html.

Let start with the plain facts and review a few of the issues.

Issue #1: C++ Imposes More Complex Symbol Name Requirements
Unlike the C programming language, the mapping of C++ functions to the linker symbols brings a lot more challenges 
to the linker design. The object-oriented nature of C++ brings the following extra considerations:

In general, C++ functions are rarely standalone; they instead tend to be •	 affiliated with various 
code entities.

The first thing that comes to mind is yes, in C++, functions generally belong to the classes 
(and as such even have the special name: methods). Additionally, classes (and therefore 
their methods) may belong to the namespaces. The situation gets even more complicated 
when templates come to the play.

In order to uniquely identify the function, the linker must somehow include the function 
affiliation information to the symbol it creates for the function entry point.

The C++ overloading mechanism allows that different methods of the same class have the •	
same name, the same return value, but differ in terms of input arguments lists.

In order to uniquely identify the functions (methods) sharing the same name, the linker 
must somehow add the information about the input arguments to the symbol it creates for 
the function entry point.

The linker design efforts to respond to these substantially more complex requirements resulted in the technique 
known as name mangling. In a nutshell, name mangling is the process of combining the function name, the 
function’s affiliation information, and the function’s list of arguments to create the final symbol name. Usually, the 
function affiliation is prepended (prefixed), whereas the function signature information is appended (postfixed) to the  
function name.

The major source of trouble is that the name mangling conventions are not uniquely standardized, and to 
this day remain vendor-specific. The Wikipedia article (http://en.wikipedia.org/wiki/Name_mangling#How_
different_compilers_mangle_the_same_functions) illustrates the differences in name mangling implementations 
across different linkers. As stated in the article, plenty of factors other than just the ABI play a role in implementing 
the mangling mechanism (exception handling stack, layout of virtual tables, structure and stack frame padding). 
Given the multitude of various requirements, the Annotated C++ Reference Manual even recommends maintaining 
individual mangling schemes.

http://www.lurklurk.org/linkers/linkers.html
http://en.wikipedia.org/wiki/Name_mangling#How_different_compilers_mangle_the_same_functions
http://en.wikipedia.org/wiki/Name_mangling#How_different_compilers_mangle_the_same_functions
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C-StYLe FUNCtIONS

When using the C++ compiler, interesting things happen when using C-style functions. even though the  
C functions do not require mangling, the linker by default creates mangled names for them. in cases when it 
is desired to avoid mangling, a special keyword must be applied in order to suggest to the linker to not apply 
mangling.

the technique is based on using the extern "C" keyword. When a function is declared (typically in a header file) 
in the following way
 
#ifdef __cplusplus
extern "C"

{
#endif // __cplusplus
 
int myFunction(int x, int y);
 
#ifdef __cplusplus

}
#endif // __cplusplus
 
the ultimate result is that linker creates its symbol deprived of any mangling. Later in this chapter the section 
about exporting abi will contain a more detailed explanation of why is this technique is a very important one.

Issue #2: Static Initialization Order Fiasco
One of the legacies of the C languages is that linker can handle fairly simply  initialized variables, be it simple data 
types or the structures. All that linker needs to do is to reserve the storage in the .data section and write the initial 
value into that location. In the domain of the C language, the order in which the variables are initialized is generally of 
no particular importance. All that matters is that the variables initialization be completed before the program starts.

In C++, however, the data type is an object in general, and its initialization is completed at runtime through 
the process of object construction, which is completed when the class constructor method completes its execution. 
Obviously, the linker needs to do far many more things in order to initialize the C++ objects. To facilitate the linker’s 
job, the compiler embeds into the object file the list of all constructors that need to be executed for a specific file, and 
stores this information into the specific object file segment. At link time, the linker examines all the object files and 
combines these construction lists into the final list that will be executed at runtime.

It is important to mention at this point that the linkers do observe the order of executing the constructors 
based on the inheritance chain. In other words, it is guaranteed that the base class constructor will be executed first, 
followed by the constructors of derived classes. This much of a logic embedded into the linker is sufficient for most of 
the possible scenarios.

The linker, however, is not indefinitely smart. There is unfortunately a whole category of cases in which a 
programmer does not in any way deviate from the C++ syntax rules, yet the linker’s limited logic nevertheless causes 
very nasty crashes that happen before the program is loaded, way before any debugger can catch it.

The typical scenario of this kind happens when the initialization of an object relies on some other object being 
initialized beforehand. I will first explain the underlying mechanism of the problem, and then suggest ways for the 
programmer to avoid them. In circles of C++ programmers this class of problems is typically referred to as a static 
initialization order fiasco.
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Note ■  an excellent illustration of the problem and the solution is presented in scott meyer’s quintessential “effective 
C++” book (“item 47: ensure that non-local static objects are initialized before they’re used”).

Problem Description

Non-local static objects are the instances of a C++ class whose visibility scope exceeds the boundaries of a class.  
More specifically, such objects may be one of the following:

Defined at global or namespace scope•	

Declared static in a class•	

Defined static at file scope•	

Such objects are routinely initialized by the linker before the program starts running. For each of such objects, 
the linker maintains the list of constructors required to create such object, and executes them in the order specified by 
the chain of inheritance.

Unfortunately, this is the only object initialization ordering scheme that the linker recognizes and implements. 
Now is the time for the special twist in the whole story.

Let’s assume that one of these objects depends on some other object being initialized beforehand. Assume for 
example that you have two static objects:

Object •	 A (instance of class a), which initializes the network infrastructure, queries the list 
of available networks, initializes the sockets, and establishes the initial connection with the 
authentication server.

Object •	 B (instance of class b), which is required to send the message over the network to the 
remote authentication server, by calling the interface methods on the instance of class b.

Obviously, the correct order of initialization is that object B gets initialized after object A. It is obvious that 
violating the order of object initialization has a very real potential for wreaking havoc. Even if the designers have been 
careful enough to envision cases when the initialization is not completed (i.e., checking the pointer values before 
making the actual calls), the best that can happen is that class B’s task does not get completed when expected.

As a matter of fact, there is no rule that dictates the order in which the initialization of static objects will happen. 
Attempts to implement the algorithm that would examine the code recognize such scenarios and suggest the correct 
ordering to the linker have proven to belong to the category of problems that are very hard to solve. The presence of 
other C++ language features (templates) only aggravates the path to the problem solution.

As the ultimate consequence, the linker may decide to initialize the non-local static object in any order. To make 
things worse, the linker’s decision of which order to follow may depend on an unimaginable number of unrelated 
runtime circumstances.

In real life, such problems are scary for a variety of reasons. First, they are hard to track as they result in crashes 
happening before the process loading is connected, much before the debugger can be of any help. Additionally, the 
crash occurrences may not be persistent; the crash may happen every now and then, or in some scenarios every time 
with different symptoms.
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Avoiding the Problem

Even though the problem is not for the faint of the heart, there is a way to avoid the ugly mess. The linker rules do not 
specify the order of initializing the variables, but the order is very precisely specified for the static variables declared 
inside a function body. Namely, the object declared as static inside the function (or class method) is initialized when 
its definition is encountered for the first time during a call to that function.

The solution to this problem becomes obvious. The instances should not be kept free-roaming in the data 
memory. Instead, they should be

Declared as static variables inside a function.•	

A function should be conveniently used as the only way to access such a variable (returning •	
the reference to the object, for example) defined static at file scope.

In summary, the following two possible solutions are traditionally applied toward solving these kinds of problems:

•	 SOLUTION 1: Provide the custom implementation of the _init() method, a standard method 
called immediately when the dynamic library is loaded, in which a class static method 
instantiates the object, thus forcing initialization by the construction. Consequently, the 
custom implementation of the standard _fini(), a standard method called immediately 
before the dynamic library is unloaded, may be provided in which the object deallocation may 
be completed.

•	 SOLUTION 2: Replace direct access to such object with a call to a custom function. Such 
function will contain a static instance of the C++ class, and will return the reference to 
it. Before the first access, a variable declared static will be constructed, ensuring that its 
initialization will happen before the first actual call. The GNU compiler as well as the C++11 
standard guarantees that this solution is thread safe.

Issue #3: Templates
The concept of templates is introduced with the purpose of eliminating duplicated and possibly scattered 
implementations of the same algorithms that mutually differ only in the data type on which the algorithm operates.  
As useful the concept is, it introduces additional problems to the linking procedure.

The essence of the problem is that different specializations of templates have completely different machine 
code representations. As luck would have it, once written, the template may be specialized in about gazillion ways, 
depending on how the template user wanted to use it. The following template
 
template <class T>
T max(T x, T y)
{
  if (x>y) { return x;}
  else     { return y;}
}
 

may be specialized for as many data types that support comparison operator (simple data types ranging from 
char all the way to double are the immediate candidates).

When the compiler encounters the template, it needs to materialize it into some form of machine code. But, it 
can’t be done until all other source files have been examined to figure out which particular specialization took place 
in the code. As this may be relatively easy for the case of standalone applications, the task requires some serious 
thinking when the template is exported by a dynamic library.
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There are two general approaches to solving these kinds of problems:

The compiler can generate all possible template specializations and create weak symbols for •	
each of them. The complete explanation of the weak symbols concept can be found in the 
discussion about linker symbol types. Note that the linker has the freedom to discard weak 
symbols once it determines that they are actually not needed in the final build.

The alternative approach is that the linker does not include the machine code •	
implementations of any of the template specializations up until the very end. Once everything 
else is completed, the linker may examine the code, determine exactly which specializations 
are really needed, invoke the C++ compiler to create the required template specializations, 
and finally, insert the machine code into the executable. This approach is favored by the 
Solaris C++ compiler suite.

Designing the Application Binary Interface
In order to minimize potential troubles, improve the portability to different platforms, and even enhance the 
interoperability between the modules created by different compilers, it is highly recommended to practice the 
following guidelines.

Guideline #1: Implement the Dynamic Library ABI as a Set of C-style Functions
There are a plenty of good reasons of why this advice makes a lot of sense. For example, you can

Avoid various issues based on C++ vs. linker interaction•	

Improve cross-platform portability•	

Improve interoperability between the binaries produced by different compilers. (Some of the •	
compilers tend to produce binaries that can be used by the other compilers. Notable examples 
are the MinGW and Visual Studio compilers.)

In order to export the ABI symbols as C-style functions, use the extern "C" keyword to direct the linker to not 
apply the name mangling on these symbols.

Guideline #2: Provide the Header File Carrying the Complete ABI Declaration
The “complete ABI declaration” means not only function prototypes, but also the preprocessor definitions, structures 
layouts, etc.

Guideline #3: Use Widely-Supported Standard C Keywords
More specifically, using your project-specific data type definitions, or platform-specific data types, or anything that 
is not universally supported across different compilers and/or different platforms is nothing but an invitation for 
problems down the road. So, try not to act as a fancy-smart-wizz guy; try instead to write your code as plainly and 
simply as possible.

Guideline #4: Use a Class Factory Mechanism (C++) or Module (C)
If the inner functionality of the dynamic library is implemented by a C++ class, it still does not mean that you 
should violate guideline #1. Instead, you should follow the so-called class factory approach (Figure 6-7).
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The class factory is a C-style function that represents one or more C++ classes to the outer world (similar to a 
Hollywood agent who represents many star actors in negotiations with film studios).

As a rule, the class factory has intimate knowledge of the C++ class layout, which is typically achieved by 
declaring it as a static method of the same C++ class.

When called by the interested client, the class factory creates an instance of the C++ class it represents. In order 
to keep the details of the C++ class layout away from the prying eyes of the client, it never forwards the instance of the 
class back to the caller. Instead, it casts the C++ class to a C-style interface and casts the pointer to the created C++ 
object as the interface pointer.

Of course, in order for this scheme to function correctly, the C++ class represented by the class factory is 
mandated to implement the export interface. In the particular case of C++, it means that the class should publicly 
inherit the interface. That way, casting the class pointer to the interface pointer comes very naturally.

Finally, this scheme requires that a certain allocation tracking mechanism keeps track of all the instances 
allocated by class factory function. In Microsoft Component Object Model (COM) technology, the reference counting 
makes sure that the allocated object gets destroyed when it’s no longer being used. In other implementations, it is 
suggested to keep the list of pointers to the allocated objects. At termination time (delineated by a call to a cleanup 
function of a kind), each list element would be deleted, and the list finally cleaned up.

The C equivalent of the class factory is typically referred to as module. It is the body of code that provides the 
functionality to the outer world through a set of carefully designed interface functions.

The modular design is typical for low-level kernel modules and device drivers, but its application is by no means 
limited to that particular domain. The typical module exports functions such as Open() (or Initialize()), one or 
more worker functions (Read(), Write(), SetMode(), etc.), and finally, Close() (or Deinitialize()).

Very typical for modules is the use of handle, the module instance identifier of a kind, very frequently 
implemented as void pointer, a predecessor of this pointer in C++.

The handle typically gets created within the Open() method and is returned to the caller. In calls to the other 
module interface methods, the handle is the mandatory first function argument.

In the cases where C++ is not an option, designing the C module is completely viable equivalent to the  
object-oriented concept of a class factory.

Caller

Interface

Class Factory

C++ Object

Interface

Figure 6-7. The class factory concept
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Guideline #5: Export Only the Really Important Symbols
By being modular in nature, the dynamic library should be designed so that its functionality is exposed to the outer 
world through a cleanly defined set of function symbols (the application binary interface, ABI), whereas the symbols 
of all other functions used only internally should be accessible to the client executables.

There are several benefits to this approach:

The protection of the proprietary contents is enhanced.•	

The library loading time may be tremendously improved as a result of significant reduction in •	
number of exported symbols.

The chance of conflicted/duplicated symbols between the different dynamic libraries •	
becomes significantly reduced.

The idea is fairly simple: the dynamic library should export only the symbols of the functions and data that are 
absolutely needed by whoever loads the library, and all the other symbols should be made invisible. The following 
section will bring more details about controlling the dynamic library symbols visibility.

Guideline #6: Use Namespaces to Avoid Symbol Naming Collision
By encompassing the dynamic library’s code into the unique namespace, you eliminate the chances that the different 
dynamic libraries feature identically named symbols (the function Initialize() is an excellent example of a function 
that may likely appear in dynamic libraries of completely different scopes of functionality).

Controlling Dynamic Library Symbols’ Visibility
From the high-level perspective, the mechanism of exporting/hiding the linker symbols is solved almost identically 
in both Windows and Linux. The only substantial difference is that by default all Windows DLL linker symbols are 
hidden, whereas in Linux all the dynamic library linker symbols are by default exported.

In practice, due to a set of features provided by GCC in an attempt to achieve cross-platform uniformity, the 
mechanisms of symbol exporting look very similar and do pretty much the same thing, in the sense that ultimately 
only the linker symbols comprising the application binary interface are exported, whereas all remaining symbols are 
made hidden/invisible.

Exporting the Linux Dynamic Library Symbols
Unlike in Windows, in Linux all of the dynamic library’s linker symbols are exported by default, so they are visible 
by whoever tries to dynamically link the library. Despite the fact that such default makes dealing with the dynamic 
libraries easy, keeping all the symbols exported/visible is not the recommended practice for many different reasons. 
Exposing too much to the customers’ prying eyes is never a good practice. Also, loading just the required minimum 
number of symbols vs. loading a gazillion of them may make a noticeable difference in time required to load the library.

It is obvious that some kind of control over which symbols get exported is needed. Furthermore, since such control 
is already implemented in Windows DLLs, achieving parallelism would tremendously facilitate the portability efforts.

There are several mechanisms for how control over symbol exporting may be achieved at build time. 
Additionally, the brute-force approach may be applied by running the strip command-line tool over the dynamic 
library binary. Finally, it is possible to combine several different methods toward the same goal of controlling the 
visibility of the dynamic library’s symbols.
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The Symbol Export Control at Build Time

The GCC compiler provides several mechanisms of setting up the visibility of linker symbols:

METHOD 1: (affecting the whole body of code)
 
-fvisibility compiler flag
 

As stated by the GCC man page (http://linux.die.net/man/1/gcc), by passing the
-fvisibility=hidden compiler flag it is possible to make every dynamic library symbols un-exported/invisible 

to whoever tries to dynamically link against the dynamic library.

METHOD 2: (affecting individual symbols only)
 
__attribute__ ((visibility("<default | hidden>")))
 

By decorating the function signature with the attribute property, you instruct the linker to either allow (default) or 
not allow (hidden) exporting the symbol.

METHOD 3: (affecting individual symbols or a group of symbols)
 
#pragma GCC visibility [push | pop]
 

This option is typically used in the header files. By doing something like this
 
#pragma visibility push(hidden)
void someprivatefunction_1(void);
void someprivatefunction_2(void);
...
void someprivatefunction_N(void);
#pragma visibility pop
 
you are basically making invisible/unexported all the functions declared in between the #pragma statements.

These three methods may be combined in any way the programmer finds it suitable.

The Other Methods

The GNU linker supports a sophisticated method of dealing with the dynamic library versioning, in which a simple 
script file is passed to the linker (through the -Wl,--version-script,<script filename> linker flag). As much as the 
original purpose of the mechanism is to specify the version information, it also has the power to affect the symbol 
visibility. The simplicity with which it accomplishes the task makes this technique the most elegant way of controlling 
the symbol visibility. More details about this technique can be found in Chapter 11 in the sections discussing the 
Linux libraries versioning control.

The Symbol Export Control Demo Example
In order to illustrate the visibility control mechanism, I’ve created a demo project in which two otherwise 
identical dynamic libraries have been built with different visibility settings. The libraries are appropriately named 
libdefaultvisibility.so and libcontrolledvisibility.so. After the libraries are built, their symbols are 
examined by using the nm utility (which is covered in detail in Chapters 12 and 13).

http://linux.die.net/man/1/gcc
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The Default Symbols Visibility Case

The source code of libdefaultvisibility.so is shown in Listing 6-1.

Listing 6-1. libdefaultvisibility.so

#include "sharedLibExports.h"
 
void mylocalfunction1(void)
{
        printf("function1\n");
}
 
void mylocalfunction2(void)
{
        printf("function2\n");
}
 
void mylocalfunction3(void)
{
        printf("function3\n");
}
 
void printMessage(void)
{
        printf("Running the function exported from the shared library\n");
}
 

The examination of the symbols present in the built library binary brings no surprises, as the symbols of all 
functions are exported and visible, as shown in Figure 6-8.

Figure 6-8. All library symbols are originally exported/visible
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The Controlled Symbols Visibility Case

In the case of a dynamic library in which you want to control the symbol visibility/exportability, the -fvisibility 
compiler flag was specified in the project Makefile, as shown in Listing 6-2.

Listing 6-2. The -fvisibility Compiler Flag

...
 
#
# Compiler
#
INCLUDES         = $(COMMON_INCLUDES)
DEBUG_CFLAGS     = -Wall -g -O0
RELEASE_CFLAGS   = -Wall -O2
VISIBILITY_FLAGS = -fvisibility=hidden -fvisibility-inlines-hidden
 
ifeq ($(DEBUG), 1)
CFLAGS           = $(DEBUG_CFLAGS) -fPIC $(INCLUDES)
else
CFLAGS           = $(RELEASE_CFLAGS) -fPIC $(INCLUDES)
endif
 
CFLAGS          += $(VISIBILITY_FLAGS)
 
COMPILE          = g++ $(CFLAGS)
 
...
 

When the library is built solely with this particular symbol visibility setting, the examination of the symbols 
indicated that the function symbols haven’t been exported (Figure 6-9).

Figure 6-9. All library symbols are now hiden

Next, when the function signature decoration with the visibility attributes is applied, as shown in Listing 6-3, 
the net effect is that the function declared with the __attribute__ ((visibility("default"))) becomes visible 
(Figure 6-10).
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Listing 6-3. The Function Signature Decoration with the Visibility Attributes Applied

#include "sharedLibExports.h"
 
#if 1
#define FOR_EXPORT __attribute__ ((visibility("default")))
#else
#define FOR_EXPORT
#endif
 
void mylocalfunction1(void)
{
        printf("function1\n");
}
 
...etc...
 
//
// also supported:
//              FOR_EXPORT void printMessage(void)
// but this is not supported:
//      void printMessage FOR_EXPORT (void)
// nor this:
//              void printMessage(void) FOR_EXPORT
//
// i.e. attribute may be declared anywhere
// before the function name
 
void FOR_EXPORT printMessage(void)
{
        printf("Running the function exported from the shared library\n");
}
 

Figure 6-10. Visibility control applied to function printMessage
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Using the strip Utility

Another mechanism of controlling the symbols visibility is available. It is not as sophisticated and it is not 
programmable. Instead, it is implemented by running a strip command-line utility (Figure 6-11). This approach is 
far more brutal, as it has the power to completely erase any information about any of the library symbols, to the point 
that none of the usual symbol examination utilities will be able to see any of the symbols at all, be it in the .dynamic 
section or not.

Figure 6-11. Using the strip utility to eliminate certain symbols

Note ■  more information about the strip utility can be found in Chapter 13.

Exporting the Windows Dynamic Library Symbols
In Linux, all the linker symbols found in the dynamic library are by default accessible by the client executables.  
In Windows, however, this is not the case. Instead, only the symbols that have been properly exported become visible 
to the client executable. The important part of enforcing this limitation is the use of a separate binary (import library) 
during the build-time phase, which contains only the symbols planned to be exported.

The mechanism of exporting the DLL symbols is fortunately completely under the programmer’s control. In fact, 
there are two supported mechanisms of how the DLL symbols may be declared for export.
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Using the __declspec(dllexport) Keyword

This mechanism is standardly provided by Visual Studio. Check the “Export symbols” checkbox in the new project 
creation dialog, as shown in Figure 6-12.

Figure 6-12. Selecting the “Export symbols” option in Win32 DLL Wizzard dialog

Here you specify that you want the project wizard to generate the library export header containing the snippets of 
code looking somewhat like Figure 6-13.
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As Figure 6-13 shows, the export header can be used both inside the DLL project and by the client executable 
project. When used within the DLL project, the project-specific macro evaluates to the __declspec(dllexport) 
keyword within the DLL project, whereas within the client executable project it evaluates to __declspec(dllimport). 
This is enforced by Visual Studio, which automatically inserts the preprocessor definition into the DLL project 
(Figure 6-14).

Figure 6-13. Visual Studio generates project-specific declaration of __declspec(dllexport) keywords
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When the project-specific keyword that evaluates to __declspec(dllexport) is added to the function 
declaration, the function linker symbol becomes exported. Otherwise, omitting such a project-specific keyword is 
guaranteed to prevent the exporting of the function symbol. Figure 6-15 features two functions, of which only one is 
declared for export.

Figure 6-14. Visual Studio automatically generates the project-specific preprocessor definition
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Now is the perfect moment to introduce the Visual Studio dumpbin utility which you may use to analyze the DLL 
in the search for exported symbols. It is the part of Visual Studio tools, and can be used only by running the special 
Visual Studio Tools command prompt (Figure 6-16).

Figure 6-16. Launching Visual Studio command prompt to access the collection of binary analysis command-line tools

Figure 6-15. Visual Studio automatically generates example of using project-specific symbol export control keyword
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Figure 6-17 shows what the dumpbin tool (invoked with the /EXPORT flag) reports about the symbols exported  
by your DLL.

Figure 6-17. Using dumpbin.exe to view the list of DLL exported symbols

Obviously, the symbol of function declared with the project-specific export symbol ends up being exported by 
the DLL. However, the linker processed it according to the C++ guidelines, which use name mangling. The client 
executables usually do not have problems interpreting such symbols, but if they do, you may declare the function as 
extern "C", which will result with the function symbol following the C-style convention (Figure 6-18).
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Using the Module-definition File (.def )

The alternative way of controlling the export of DLL symbols is through the use of module-definition (.def) files. 
Unlike the previously described mechanism (based on the __declspec(dllexport) keywords), which can be specified 
through the project creation wizard by checking the “Export symbols” checkbox, the use of a module-definition file 
requires some more explicit measures.

For starters, if you plan on using the .def file, it is recommended to not check the “Export symbols” checkbox. 
Instead, use the File ➡ New menu to create a new definition (.def) file. If this step is completed correctly, the project 
settings will indicate that the module definition file is officially part of the project, as shown in Figure 6-19.

Figure 6-18. Declaring the function as extern "C"
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Alternatively, you may manually write the .def file, add it manually to the list of project source files, and finally, 
manually edit the linker properties page to look as shown in Figure 6-19. The module-definition file that specifies the 
demo function for export looks like Figure 6-20.

Figure 6-19. Module-definition (.def) file is officially part of the project
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Under the EXPORTS line it may contain as many lines as there are functions whose symbols you plan on 
exporting.

An interesting detail is that the use of the module-definition file results in function symbols exported as C-style 
functions, without you needing to declare the function as extern "C". Whether this is an advantage or disadvantage 
depends on the personal preferences and design circumstances.

One particular advantage of using the module definition (.def) files as the method of exporting the DLL symbols 
is that in certain cross-compiling scenarios the non-Microsoft compilers tend to support this option.

One such example is using the MinGW compiler, which compiles an open source project (e.g. ffmpeg) to create 
Windows DLLs and associated .def files. In order for DLL to be dynamically linked at build time, you need to use its 
import library, which was unfortunately not generated by the MinGW compiler.

Fortunately, the Visual Studio Tools provide the lib.exe command-line utility which can generate the import 
library file based on the contents of the .def file (Figure 6-20). The lib tool is available through the Visual Studio Tools 
command prompt. The example in Figure 6-21 illustrates how the tool was used after the cross-compiling session in 
which the MinGW compiler run on Linux produced the Windows binaries (but did not supply the import libraries).

Figure 6-20. Module-definition file example
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Figure 6-21. Generating import library files for DLLs generated by MingW compiler based on specified module 
definition (.def) files
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Shortcomings of dealing with the module definition file (.def)

While experimenting with the .def files, the following shortcomings have been perceived:

•	 An inability to discern the C++ class methods from C functions: If within a DLL you have a class, 
and the class has a method of the same name as the C function you specified for export in the 
.def file, the compiler will report a conflict while trying to figure out which of the two should 
be exported.

•	 extern "C" quirks: In general, the function declared for export inside the .def file does not 
need to be declared as extern "C" as the linker will take care that its symbol follows the C 
convention. However, if you decide to nevertheless decorate the function as extern "C", 
make sure to do it in both header file and in the source .cpp file (the latter of which should 
not be normally required). Failing to do so will somehow confuse the linker, and the client 
application will not be able to link your exported function symbol. For the problem to be 
harder, the dumpbin utility output will not indicate any difference whatsoever, making the 
problem harder to resolve.

Linking Completion Requirements
The dynamic library creation process is a complete build procedure, as it involves both the compiling and the linking 
stage. In general, the linking stage gets completed once every linker symbol has been resolved, and this criterion 
should be observed regardless of whether the target is an executable or dynamic library.

In Windows, this rule is strictly enforced. The linking process is never considered complete and the output binary 
never gets created until every dynamic library symbol had been resolved. The complete list of dependent libraries is 
searched up until the last symbol reference has been resolved.

In Linux, however, this rule is a bit twisted by default when building the dynamic libraries, as it is allowed that the 
linking of dynamic library gets completed (and the binary file created) even though not all of the symbols have been 
resolved.

The reason behind allowing this deviation from the strictness of the otherwise solid rule is that it is implicitly 
assumed that the symbols missing during the linking stage will eventually somehow appear in the process memory 
map, very likely as a result of some other dynamic library being loaded at runtime. The needed symbols not supplied 
by the dynamic library are marked as undefined (“U”).

As a rule, if the expected symbol for whatever reason does not appear in the process’ memory map, the operating 
system tends to neatly report the cause by printing the text message on the stderr stream, specifying the missing symbol.

This flexibility in the Linux rules of linking the dynamic libraries has been proven on a number of occasions as a 
positive factor, allowing certain very complex linking limitations to be effectively overcome.

--no-undefined Linker Flag
Despite the fact that linking the dynamic libraries is far more relaxed in Linux by default, the GCC linker supports the 
option of establishing the linking strictness criteria matching those followed by the Windows linker.

Passing the --no-undefined flag to the gcc linker will result with the unsuccessful build if each and every symbol 
is not resolved at build time. This way, the Linux default of tolerating the presence of unresolved symbols is effectively 
reverted into the Windows-like strict criteria.

Note that when invoking the linker through the gcc, the linker flags must be preceded by the -Wl, prefix, such as:
 
$ gcc -fPIC <source files> -l <libraries> -Wl,--no-undefined -o <shlib output filename>
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Dynamic Linking Modes
The decision to link the dynamic library may be made at different stages of the program life cycle. In some scenarios, 
you know up front that your client binary will need to load certain dynamic library no matter what. In other scenarios, 
the decision about loading certain dynamic library comes as the result of runtime circumstances, or user preferences 
set at runtime. Based on when the decision about dynamically linking is actually made, the following dynamic linking 
modes can be distinguished.

Statically Aware (Load-Time) Dynamic Linking
In all the discussions so far, I have implicitly assumed this particular scenario. Indeed, it happens very frequently that 
the need for a particular dynamic library’s functionality is needed from the very moment when the program is started 
all the way to the program’s termination, and this fact is known up front. In this scenario, the build procedure requires 
the following items.

At compile time:

The dynamic library’s export header file, specifying everything that pertains to the library’s •	
ABI interface

At link time:

The list of dynamic libraries required by the project•	

The paths to the dynamic library binaries needed by the client binary in order to set up the list •	
of expected library symbols.

For more details about how the paths may be specified, please check the “Build-Time Library 
Location Rules” section.

Optional linker flags specifying the details of the linking process•	

Runtime Dynamic Linking
The whole beauty of the dynamic linking feature is the ability for the programmer to determine at runtime whether 
the need for a certain dynamic library really exists and/or which particular library needs to be loaded.

Many times, the design requires that a number of dynamic libraries exist, each of which supports the identical 
ABI, and that only one of them gets loaded depending on the user’s choice. A typical example for such a scenario is 
the multiple language support where, based on the user’s preferences, the application loads the dynamic library that 
contains all the resources (strings, menu items, help files) written in the user’s language of choice.

In this scenario, the build procedure requires the following items.
At compile time:

The dynamic library’s export header file, specifying everything that pertains to the library’s •	
ABI interface

At link time:

At least the filename of the dynamic library to be loaded. The exact path of the dynamic library •	
filename typically gets resolved implicitly, by relying on the set of priority rules governing the 
choice of paths in which the library binary is expected to be found at runtime.

All major operating systems provide a simple set of API functions that allow programmer to fully exploit this 
precious feature (Table 6-1).
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Regardless of the operating system and/or programming environment, the typical paradigm of using these 
functions can be described by the following pseudocode sequence:
 
1) handle = do_load_library("<library path>", optional_flags);
   if(NULL == handle)
      report_error();
 
2) pFunction = (function_type)do_find_library_symbol(handle);
   if(NULL == pFunction)
   {
      report_error();
      unload_library();
      handle = NULL;
      return;
   }
 
3) pFunction(function arguments); // execute the function
 
4) do_unload_library(handle);
   handle = NULL;
    
 

Listings 6-4 and 6-5 provide simple illustrations of runtime dynamic loading.

Listing 6-4. Linux Runtime Dynamic Loading

#include <stdlib.h>
#include <stdio.h>
#include <dlfcn.h>
 
#define PI (3.1415926536)
 
typedef double (*PSINE_FUNC)(double x);
 
int main(int argc, char **argv)
{
    void *pHandle;
 
    pHandle = dlopen ("libm.so", RTLD_LAZY);
    if(NULL == pHandle) {
       fprintf(stderr, "%s\n", dlerror());
       return -1;
    }
 

Table 6-1. API Functions

Purpose Linux Version Windows Version

Library Loading dlopen() LoadLibrary()

Finding Symbol dlsym() GetProcAddress()

Library Unloading dlclose() FreeLibrary()

Error Reporting dlerror() GetLastError()
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    PSINE_FUNC pSineFunc = (PSINE_FUNC)dlsym(pHandle, "sin");
    if (NULL == pSineFunc) {
       fprintf(stderr, "%s\n", dlerror());
       dlclose(pHandle);
       pHandle = NULL;
       return -1;
    }
 
    printf("sin(PI/2) = %f\n", pSineFunc(PI/2));
    dlclose(pHandle);
    pHandle = NULL;
    return 0;
}
  

Listing 6-5 illustrates the Windows runtime dynamic loading, in which we try to load the DLL, locate the symbols 
of functions DllRegisterServer() and/or DllUnregisterServer() and execute them.

Listing 6-5. Windows Runtime Dynamic Loading

#include <stdio.h>
#include <Windows.h>
 
#ifdef __cplusplus
extern "C"
{
#endif // __cplusplus
typedef HRESULT (*PDLL_REGISTER_SERVER)(void);
typedef HRESULT (*PDLL_UNREGISTER_SERVER)(void);
#ifdef __cplusplus
}
#endif // __cplusplus
 
enum
{
  CMD_LINE_ARG_INDEX_EXECUTABLE_NAME = 0,
  CMD_LINE_ARG_INDEX_INPUT_DLL,
  CMD_LINE_ARG_INDEX_REGISTER_OR_UNREGISTER,
  NUMBER_OF_SUPPORTED_CMD_LINE_ARGUMENTS
} CMD_LINE_ARG_INDEX;
 
int main(int argc, char* argv[])
{
  HINSTANCE dllHandle = ::LoadLibraryA(argv[CMD_LINE_ARG_INDEX_INPUT_DLL]);
  if(NULL == dllHandle)
  {
    printf("Failed loading %s\n", argv[CMD_LINE_ARG_INDEX_INPUT_DLL]);
    return -1;
  }
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  if(NUMBER_OF_SUPPORTED_CMD_LINE_ARGUMENTS > argc)
  {
    PDLL_REGISTER_SERVER pDllRegisterServer =
        (PDLL_REGISTER_SERVER)GetProcAddress(dllHandle, "DllRegisterServer");
    if(NULL == pDllRegisterServer)
    {
      printf("Failed finding the symbol \"DllRegisterServer\"");
      ::FreeLibrary(dllHandle);
      dllHandle = NULL;
      return -1;
    }
    pDllRegisterServer();
  }
  else
  {
    PDLL_UNREGISTER_SERVER pDllUnregisterServer =
        (PDLL_UNREGISTER_SERVER)GetProcAddress(dllHandle, "DllUnregisterServer");
    if(NULL == pDllUnregisterServer)
    {
      printf("Failed finding the symbol \"DllUnregisterServer\"");
      ::FreeLibrary(dllHandle);
      dllHandle = NULL;
      return -1;
    }
    pDllUnregisterServer();
  }
 
  ::FreeLibrary(dllHandle);
  dllHandle = NULL;
  return 0;
} 

Dynamic Linking Modes Comparison
There are very few substantial differences between the two modes of dynamic linking. Even though the moment  
in which the dynamic linking happens differs, the actual mechanism of dynamic linking is completely identical in 
both cases.

Furthermore, the dynamic library that can be loaded statically aware can also be dynamically loaded at runtime. 
There are no elements of the dynamic library design that would qualify the library strictly for use in one vs. another 
scenario.

The only substantial difference is that in the statically aware scenario has one extra requirement that needs to be 
satisfied: you need to provide the build-time library location. As will be shown in the next chapter, this task requires 
some finesses that a good software developer needs to be aware of in both Linux and Windows environments.
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Chapter 7

Locating the Libraries

The idea of binary code sharing is at the core of the concept of libraries. Somewhat less obvious is that it typically 
means that the single copy of the library binary file will reside in a fixed location on a given machine, whereas 
plenty of different client binaries will need to locate the needed library (either at build time or at runtime). In order 
to address the issue of locating the libraries, a variety of conventions have been devised and implemented. In this 
chapter, I will discuss the details of these conventions and guidelines.

Typical Library Use Case Scenarios
The use of libraries has proven to be a very powerful way of sharing code across the software community. It is a very 
common practice that companies with accumulated expertise in certain domains deliver their intellectual property in 
the form of libraries, which third parties may integrate into their products and deliver to customers.

The practice of using the libraries happens through two distinct use case scenarios. The first use case scenario 
happens when the developers try to integrate the third-party libraries (static or dynamic) in their product. Another 
scenario happens when libraries (in this case specifically dynamic libraries) need to be located at runtime in order for 
the application installed on a client’s machine to run properly.

Both use case scenarios introduce the problem of locating the library binary files. The way these problems have 
been structurally resolved will be described in this chapter.

Development Use Case Scenario
Typically, the third-party package containing the library, export headers, and possibly few extras (such as documentation, 
online help, package icons, utility applications, code and media samples, etc.) is installed on a predetermined path on 
the developer’s machine. Immediately after, the developer may create a plethora of projects residing at many different 
paths on her machine.

Obviously, each and every project that requires linking with third-party libraries needs to have access to the 
library binaries. Otherwise, it would be impossible to finish building the project.

Copying the third-party library to each and every project that a developer may create is definitely a possibility, 
albeit a very poor choice. Obviously, having copies of the library in the folder of each project that may need it defeats 
the original idea of code reuse standing behind the concept of libraries.

The acceptable alternative would be to have just one copy of the library binaries, and a set of rules helping the  
client binary projects to locate it. Such set of rules, commonly referred to as build time library location rules, is 
typically supported by the development platform’s linker. These rules basically stipulate how the information about 
the path of the libraries needed to complete the client binary linking may be passed to the linker.

The build time library location rules are fairly elaborate and tend to come in a variety of options. Each of the 
major development platforms usually provides very sophisticated set of options of how these rules may be enforced.

It is very important to understand that the build time library location rules are pertinent to both static and 
dynamic libraries. Regardless of the actual differences between linking static vs. dynamic libraries, the linker 
nevertheless must know the location of the needed library binaries.
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End User Runtime Use Case Scenario
Once the developers have integrated the third-party libraries, their products are ready to be delivered to the end 
clients. Based on the vast variety of design criteria and real-life considerations, the structure of the delivered product 
may come in the wide variety of choices:

In the simplest possible case, the product package contains only a single application file. The •	
intended use is that the client simply runs the application.

This case is fairly trivial. In order to access and run the application, all the user needs to 
do is to add its path to the overall PATH environment variable. Anybody other than the 
completely computer illiterate person is capable of completing this simple task.

In the more complex scenarios, the product package contains a mix of dynamic libraries and  •	
one or more utility applications. The dynamic libraries may be either directly forwarded  
third-party libraries, or may be created by the package vendor, or may be a combination of both.

The intended use is that a variety of applications dynamically link with the supplied dynamic 
libraries. The typical examples of such a scenario in the domain of multimedia are the 
multimedia frameworks such as DirectX or GStreamer, as each of them supplies (or counts 
on being available at runtime) an elaborate set of dynamic libraries, each providing a certain 
well-defined set of functionalities.

Much like in the development use case scenario, the meaningful approach to the problem assumes that there 
will be only one copy of the required dynamic libraries, residing at the path where the installation procedure deployed 
them. On the other hand, these libraries may be need by a multitude of client binaries (other dynamic libraries or the 
applications) residing at a plethora of different paths.

In order to structure the process of finding the dynamic libraries binaries at runtime (or slightly before, at load 
time), a set of runtime library location rules needs to be established. The runtime library location rules are usually 
fairly elaborate. Each of the development platforms provides its own flavor of sophisticated options of how these rules 
may be enforced.

Finally—at the risk of reiterating the obvious—the runtime library location rules pertain only to the dynamic 
libraries. The integration of static libraries is always completed much before the runtime (i.e., at the linking stage of 
the client binary build process), and there is never a need to locate the static libraries at runtime.

Build Time Library Location Rules
In this section, I will discuss the techniques of providing the build time paths to the library binary files. Beyond the 
simplest possible move of just furnishing the full path to the linker, there are some extra levels of finesse that deserve 
your attention.

Linux Build Time Library Location Rules
The important part of the recipe of how the build time library location rules are implemented on Linux belongs to the 
Linux libraries naming conventions.

Linux Static Library Naming Conventions
The Linux static library filenames are standardly created according to the following pattern:
 
static library filename = lib + <library name> + .a
 

The middle part of the library’s filename is the library’s actual name, which is used to submit the library to the linker.
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Linux Dynamic Library Naming Conventions
Linux features a very elaborate dynamic libraries naming convention scheme. Even though the original intention was 
to address the library versioning issues, the naming convention scheme impacts the library location mechanisms. The 
following paragraphs will illustrate the important points.

Dynamic Library Filename vs. Library Name

The Linux dynamic library filenames are standardly created according to the following pattern:
 
dynamic library filename = lib + <library name> + .so + <library version information>
 

The middle part of the library’s filename is the library’s actual name, which is used to submit the library to the 
linker, and later on to the build time library search as well as the runtime library search procedures.

Dynamic Library Version Information

The library version information carried by the last part of the library’s filename adheres to the following convention:
 
dynamic library version information = <M>.<m>.<p>
 
where each of the mnemonics may represent one or more digits indicating

•	 M: major version

•	 m: minor version

•	 p: patch (minor code change) version

The importance of dynamic library versioning information will be discussed in detail in Chapter 11.

Dynamic Library Soname

By definition, the dynamic library’s soname can be specified as
 
library soname = lib + <library name> + .so + <library major version digit(s)>
 

For example, the soname of the library libz.so.1.2.3.4 would be libz.so.1.
The fact that only the major version digits play a role in the library’s soname implies that the libraries whose 

minor versions differ will still be described by the same soname value. Exactly how this feature is used will be 
discussed in the Chapter 11 section dedicated to the topic of dynamic library versions handling.

The library soname is typically embedded by the linker into the dedicated ELF field of the library’s binary file.  
The string specifying the library soname is typically passed to the linker through the dedicated linker flag, like so:
 
$ gcc -shared <list of object files> -Wl,-soname,libfoo.so.1 -o libfoo.so.1.0.0
 

The utility programs for examining the contents of the binary files typically provide the option for retrieving the 
soname value (Figure 7-1).
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Linker’s vs. Human’s Perception of Library Name
Please notice that the library name as described by these conventions is not necessarily used in human conversation  
to denote the library. For example, the library providing the compression functionality on a given machine may 
reside in the filename libz.so.1.2.3.4. According to the library naming convention, this library’s name is simply “z”, 
which will be used in all the dealings with the linker and loader. From the human communication prospective, the 
library may be referred to as “libz”, as for example in the following bug description in a bug tracking system: “Issue 
3142: problem with missing libz binary”. To avoid the confusion, sometimes the library name is also referred to as 
the library's linker name.

Linux Build Time Library Location Rules Details
The build time library path specification is implemented on Linux in the form of so-called -L -l option. The truly 
correct way of using these two options may be described by the following set of guidelines:

Break the complete library path into two parts: the folder path and the library filename.•	

Pass the folder path to the linker by appending it after the •	 -L linker flag.

Pass the •	 library name (linker name) only to linker by appending it after the -l flag.

For example, the command line for creating the application demo by compiling the file main.cpp and linking in 
with the dynamic library libworkingdemo.so located in the folder ../sharedLib may look something like this:
 
$ gcc main.o -L../sharedLib -lworkingdemo -o demo
                         ^              ^
                         |              |
                library folder path    library name only
                                       (not the full library filename !)
 

In the cases when the gcc line combines compiling with linking, these linker flags should be prepended with 
the -Wl, flag, like so:
 
$ gcc -Wall -fPIC main.cpp -Wl,-L../sharedLib -Wl,-lworkingdemo -o demo
 

Figure 7-1. Library soname embedded in the library binary’s ELF header
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Beginners’ Mistakes: What Can Possibly Go Wrong and How to Avoid It
The typical problems happen to the impatient and inexperienced programmer in scenarios dealing with dynamic 
libraries, when either of the following situations happen:

The full path to a dynamic library is passed to the •	 -l option (-L part being not used).

The part of the path is passed through the •	 -L option, and the rest of the path including the 
filename passed through the -l option.

The linker usually formally accepts these variations of specifying the build time library paths. In the case when 
the path to static libraries is provided, these kinds of “creative freedoms” do not cause problems down the road.

However, when the path to the dynamic library is passed, the problems introduced by deviating from the truly 
correct way of passing the library path start showing up at runtime. For example, let’s say that a client application 
demo depends on the library libmilan.so, which resides on the developer’s machine in the following folder:

/home/milan/mylibs/case_a/libmilan.so.

The client application is successfully built by the following linker command line:
 
$ gcc main.o -l/home/milan/mylibs/case_a/libmilan.so -o demo
 
and runs just fine on the same machine.

Let’s assume now that the project is deployed to a different machine and given to a user whose name is “john.” 
When that user tries to run the application, nothing will happen. Careful investigation (techniques of which will 
be discussed in the Chapters 13 and 14) will reveal that the application requires at runtime the dynamic library 
libmilan.so (which is OK) but it expects to find it at the path /home/milan/mylibs/case_a/.

Unfortunately, this folder does not exist on the user “john”’s machine!
Specifying relative paths instead of absolute paths may only partially alleviate the problem. If, for example, the 

library path is specified as relative to the current folder (i.e., ../mylibs/case_a/libmilan.so), then the application 
on john’s machine would run only if the client binary and the required dynamic library are deployed to john’s 
machine in the folder structure that maintains the exact relative positions between the executable and dynamic 
library. But, if john dares to copy the application to a different folder and tries to execute it from there, the original 
problem will reappear.

Not only that, but the application may stop working even on the developer’s machine where it used to work 
perfectly. If you decide to copy the application binary at a different path on the developer’s machine, the loader will 
start searching for the library on the paths relative to the point where the app binary resides. Very likely such path will 
not exist (unless you bother to re-create it)!

The key to understanding the underlying cause of the problem is to know that the linker and the loader do not 
equally value the library paths passed under the -L vs. under the -l option.

In fact, the linker gives far more significance to what you passed under the -l option. More specifically, the part 
of the path passed through the -L option finds its use only during the linking stage, but plays no role thereafter.

The part specified under the -l option, however, gets imprinted into the library binary, and continues playing 
important role during the runtime. In fact, when trying to find the libraries required at runtime, the loader first reads 
in the client binary file trying to locate this particular information.

If you dare to deviate from the strict rule, and pass anything more than just the library filename through the -l 
option, the application built on milan’s machine when deployed and run on john’s machine will look for the dynamic 
library at hardcoded path, which most likely exists only on developer’s (milan) machine but not at user’s (john) 
machine. An illustration of this concept is provided in Figure 7-2.



Chapter 7 ■ LoCating the Libraries

120

Windows Build Time Library Location Rules
There are several ways how the information about the dynamic library required at link time may be passed to the 
project. Regardless of the way chosen to specify the build time location rules, the mechanism works for both static and 
dynamic libraries.

-L/home/milan/Demo/FirstExample/sharedLib -lfirst

LINKER

BUILD TIME

RUNTIME Client binary

Required library is successfully located on the runtime
machine even though it resides in completely different
folder structure.

First

lib First .so

Figure 7-2. The -L convention plays a role only during library building. The impact of -l convention, however, remains 
important at runtime, too
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Project Linker Settings
The standard option is to supply the information about the DLL required by the linker as follows:

Specify the DLL’s import library (.lib) file in the list of linker inputs (Figure •	 7-3).

Figure 7-3. Specify needed libraries in the list of dependencies

Add the import library’s path to the set of library path directories (Figure •	 7-4).
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#pragma Comment
The library requirement may be specified by adding a line like this one to a source file:
 
#pragma comment(lib, "<import library name, full path, or relative path>");
 

Upon encountering this directive, the compiler will insert a library search record in the object file, which will 
eventually be picked up by the linker. If only the library filename is provided in the double quotes, the search for the 
library will follow the Windows library search rules. Typically, this option is used to exercise more precision during the 
process of searching for libraries, and it is hence more usual to specify the library full path and version than otherwise.

One huge advantage of specifying the build-time library requirements in this way is that by being in the source code, 
it gives the designer the ability to define the linking requirements depending on preprocessor directives. For example,
 
#ifdef CUSTOMER_XYZ
#pragma comment(lib, "<customerXYZ-specific library>");
#else
#ifdef CUSTOMER_ABC
#pragma comment(lib, "<customerABC-specific library>");
#else
#ifdef CUSTOMER_MPQ
#pragma comment(lib, "<customerMPQ-specific library>");
#endif // CUSTOMER_MPQ
#endif // CUSTOMER_ABC
#endif // CUSTOMER_XYZ
 

Figure 7-4. Specify the library paths
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Implicit Referencing of the Library Project
This option may be used only in special case when both the dynamic library project and its client executable project 
are the parts of the same Visual Studio solution. If the DLL project is added to the client app project’s list of references, 
the Visual Studio environment will provide everything (automatically and mostly invisibly to the programmer) needed 
for building and running the app.

For starters, it will pass the complete path of the DLL to the application’s linker command line. Finally, it will 
perform the copying of the DLL to the application’s runtime folder (typically Debug for the debug version, and Release 
for the release version), thus satisfying in the easiest possible way the rules of runtime library location.

Figures 7-5 through 7-8 illustrate the recipe of how to do it, using the example of the solution 
(SystemExamination) comprised of the two related projects: a SystemExaminer DLL which is statically aware linked 
in by the SystemExaminerDemoApp application.

I will not specify the DLL dependency by relying on the first method described previously (i.e. by specifying the 
DLL’s import library (.lib) file in the list of linker inputs). This seemingly peculiar and a bit counter-intuitive detail is 
illustrated by the Figure 7-5.

Figure 7-5. In this method, you don’t need to specify the library dependency directly
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Figure 7-6. Adding a reference to the dependency library project

Instead, it will be sufficient to set the client binary project to reference the dependency library project. Visit the 
Common Properties ➤ Frameworks and References tab (Figure 7-6).
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Figure 7-7 shows the referencing the dependency library project completed.

Figure 7-7. Referencing the dependency library project is completed
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Runtime Dynamic Library Location Rules
The loader needs to know the exact location of the dynamic library’s binary file in order to open, read, and load it into 
the process. The variety of the dynamic libraries that may be needed for a program to run is vast, ranging from the 
always needed system libraries, all the way to the custom, proprietary, project-specific libraries.

From the programmer’s perspective, the hardcoding of the paths of each and every dynamic library’s path seems 
plain wrong. It would make much more sense if a programmer could just provide the dynamic library filename, and 
the operating system would somehow know where to look for the library.

All major operating systems have recognized the need to implement such a mechanism, which would be capable 
of searching and finding the dynamic library at runtime based upon the library filename provided by the program. 
Not only a set of predetermined library locations have been defined, but also the search order has been defined, 
specifying where the operating system will look first.

Finally, knowing the runtime location of the dynamic library is equally important regardless of whether the 
dynamic library is loaded statically-aware or at runtime.

Figure 7-8. The result of implicit referencing: the exact path to the library is passed to the linker

The ultimate result will be that the build time path of the required DLL is passed into the linker’s command line, 
as shown in Figure 7-8.
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Linux Runtime Dynamic Library Location Rules
The algorithm for searching for the dynamic library at runtime is governed by the following set of rules, listed in the 
higher order of priority.

Preloaded Libraries
The unquestionable highest priority above any library search is reserved for the libraries specified for preloading, 
as the loader first loads these libraries, and then starts searching for the others. There are two ways of specifying the 
preloaded libraries:

By setting the •	 LD_PRELOAD environment variable.
 
          export LD_PRELOAD=/home/milan/project/libs/libmilan.so:$LD_PRELOAD
 

Through the •	 /etc/ld.so.preload file.

This file contains a whitespace-separated list of ELF shared libraries to be loaded before  
the program.

Specifying the preloaded libraries is not the standard design norm. Instead, it is used in special scenarios, such as 
design stress testing, diagnostics, and emergency patching of the original code.

In the diagnostic scenarios, you can quickly create a custom version of a standard function, lace it with the debug 
prints, and build a shared library whose preloading will effectively replace the dynamic library that is standardly 
providing such function.

After the loading of the libraries indicated for preloading is finished, the search for other libraries listed as 
dependencies begins. It follows an elaborate set of rules, whose complete list (arranged from the topmost priority 
method downwards) is explained in the following sections.

rpath
From the very early days, the ELF format featured the DT_RPATH field used to store the ASCII string carrying the search 
path details relevant for the binary. For example, if executable XYZ depends on the runtime presence of the dynamic 
library ABC, than XYZ might carry in its DT_RPATH the string specifying the path at which the library ABC could be 
found at runtime.

This feature clearly represented a nice step ahead in allowing the programmer to establish tighter control 
over the deployment issues, most notably to avoid the broad scale of possible mismatches between the versions of 
intended vs. available libraries.

The information carried by the DT_RPATH field of the executable XYZ would be ultimately read out at runtime 
by the loader. An important detail to remember is that the path from which the loader is started plays a role in 
interpreting the DT_RPATH information. Most notably, in the cases where the DT_RPATH carries a relative path,  
it will be interpreted not relative to the location of library XYZ but instead relative to the path from which the loader  
(i.e., application) is started. As good as it is, the concept of rpath has undergone certain modifications.

According to web sources, somewhere around 1999 when version 6 of the C runtime library was in the process of 
superseding version 5, certain disadvantages of rpath had been noticed, and it was mostly replaced by a very similar 
field called runpath (DT_RUNPATH) of the ELF binary file format.

Nowadays, both rpath and runpath are available, but runpath is given higher regard in the runtime search 
priority list. Only in the absence of its younger sibling runpath (DT_RUNPATH field), the rpath (DT_RPATH field) remains 
the search path information of the highest priority for the Linux loader. If, however, the runpath (DT_RUNPATH) field of 
the ELF binary is non-empty, the rpath is ignored.
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The rpath is typically set by passing the linker the -R or -rpath flag immediately followed by the path you want to 
assign as runpath. Additionally, by convention, whenever the linker is indirectly invoked (i.e., by calling gcc or g++), 
linker flags need to be prepended by the -Wl, prefix (i.e “minus Wl comma”):
 
$ gcc -Wl,-R/home/milan/projects/ -lmilanlibrary
      ^   ^       ^
      |   |       |
      |   |       actual rpath value
      |   |
      |   run path linker flag
      |
      -Wl, prefix required when invoking linker
      indirectly, through gcc instead of 
      directly invoking ld
 

Alternatively, the rpath may be set by specifying the LD_RUN_PATH environment variable:
 
$ export LD_RUN_PATH=/home/milan/projects:$LD_RUN_PATH
 

Finally, the rpath of the binary may be modified after the fact, by running the chrpath utility program. One 
notable drawback of the chrpath is that it can’t modify the rpath beyond its already existing string length. More 
precisely, chrpath can modify and delete/empty the DT_RPATH field, but cannot insert it or extend it to a longer string.

The way to examine the binary file for the value of the DT_RPATH field is to examine the binary’s ELF header (such 
as running readelf -d or objdump -f).

LD_LIBRARY_PATH Environment Variable
It was very early on during the development of library search path concept when a need was recognized for a kind 
of a temporary, quick-and-dirty yet effective mechanism that could be used by developers to experiment and test 
their designs. The need was addressed by providing the mechanism in which a specific environment variable  
(LD_LIBRARY_PATH) would be used to satisfy these needs.

When the rpath (DT_RPATH) value is not set, this path supplied this way is used as the highest priority search 
path information.

Note ■  in this priority scheme, there is an uneven battle between the value embedded in the binary file and the  
environment variable. if things stayed the same, the presence of rpath in the binary would make troubleshooting the 
problems with a third-party software product impossible. Fortunately, the new priority scheme addressed this problem 
by recognizing that the rpath is too dictatorial and by providing a way to temporarily override its settings. the rpath’s 
younger sibling runpath is given the power to silence the rogue and authoritarian rpath, in which case LD_LIBRARY_PATH  
has a chance of temporarily getting the highest priority treatment.

The syntax of setting up the LD_LIBRARY_PATH is identical to the syntax of setting any kind of path variable. It can 
be done in the particular shell instance by typing for example something like this:
 
$ export LD_LIBRARY_PATH=/home/milan/projects:$LD_LIBRARY_PATH
 

Once again, the use of this mechanism should be reserved for the experimentation purposes. The production 
versions of the software products should not rely on this mechanism at all.
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  runpath    
 The  runpath  concept follows the same principle as the  rpath . It is the field ( DT_RUNPATH ) of the ELF binary format, which 
can be set at build time to point to the path where the dynamic library should look. As opposed to the  rpath  ,  whose 
authority is unquestionable, the  runpath  is designed to be lenient to the urgent needs of  LD_LIBRARY_PATH  mechanism. 

 The  runpath  is set in a way very similar to how the  rpath  is set. In addition to passing the  -R  or  -rpath  linker flag, 
an additional  --enable-new-dtags  linker flag needs to be used. As already explained in the case of  rpath , whenever 
the linker is called indirectly, through calling  gcc  (or  g++ ) instead of invoking directly  ld , by convention the linker flags 
need to be prepended by the  -Wl , prefix: 
   
  $ gcc   -Wl,-R  /home/milan/projects/   -Wl,--enable-new-dtags   -lmilanlibrary  
        ̂   ^       ^                             ^  
        |   |       |                             |  
        |   |       actual rpath value            both rpath and runpath set  
        |   |                                     to the same string value  
        |   run path linker flag             
        |                                     
        -Wl, prefix required when invoking linker  
        indirectly, through gcc instead of  
        directly invoking ld  
   

 As a rule, whenever the runpath is specified, the linker sets both  rpath  and  runpath  to the same value. 
 The way to examine the binary file for the value of the  DT_RUNPATH  field is to examine the binary’s ELF header 

(such as running  readelf -h  or  objdump -f ). 
 From the priority standpoint, whenever  DT_RUNPATH  contains a non-empty string, the  DT_RPATH  field is ignored 

by the loader. This way the dictatorial power of  rpath  is subdued and the will of  LD_LIBRARY_PATH  gets the chance of 
being respected when it is really needed. 

 The useful utility program  patchelf  is capable of modifying the  runpath  field of the binary file. At the present 
moment, it is not the part of the official repository, but its source code and the simple manual can be found at 
   http://nixos.org/patchelf.html     . Compiling the binary is fairly simple. The following example illustrates the 
 patchelf  use: 
   
  $ patchelf --set-rpath <one or more paths> <executable>  
                          ̂  
                          |  
                       multiple paths can be defined,  
                       separated by a colon (:)     

   Note  ■   Even though the  patchelf  documentation mentions  rpath , the  patchelf  in fact acts on the  runpath  field.    

  ldconfig Cache    
 One of the standard code deploy procedures is based on running the Linux  ldconfig  utility (   http://linux.die.net/
man/8/ldconfig     ). Running the  ldconfig  utility is usually one of the last steps during the standard package installation 
procedure, which typically requires passing the path to a folder containing libraries as input argument. The result is that 
 ldconfig  inserts the specified folder path to the list of dynamic library search folders maintained in the  /etc/ld.so.conf  
file. At the same token, the newly added folder path is scanned for dynamic libraries, the result of which is that the 
filenames of found libraries get added to the list of libraries’ filenames maintained in the  /etc/ld.so.cache  file.
For example, the examination of my development Ubuntu machine reveals the contents of  /etc/ld.so.conf  file 
in Figure  7-9 .  

http://nixos.org/patchelf.html
http://linux.die.net/man/8/ldconfig
http://linux.die.net/man/8/ldconfig
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When ldconfig prescans all the directories listed in the /etc/ld.so.conf file, it finds gazillion dynamic libraries 
whose filenames it keeps in the /etc/ld.so.cache file (only a small part of which is shown in Figure 7-10).

Figure 7-10. The contents (small part) of the /etc/ld.so.cache file

Figure 7-9. The contents of /etc/ld.so.conf file
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Note ■  some of the libraries referenced by the /etc/ld.so.conf file may reside in the so-called trusted library paths. 
if the -z nodeflib linker flag was used when building the executable, the libraries found in the os trusted library paths 
will be ignored during the library search.

The Default Library Paths (/lib and /usr/lib)
The paths /lib and /usr/lib are the two default locations where Linux OS keeps its dynamic libraries. The third 
party programs designed to be used with superuser privileges and/or to be available to all users typically deploy their 
dynamic library into one of these two places.

Please notice that the path /usr/local/lib does not belong to this category. Of course, nothing prevents you 
from adding to the priority list by using one of the previously described mechanisms.

Note ■  if the executable was linked with the -z nodeflib linker flag, all the libraries found in the os trusted library 
paths will be ignored during the library search.

Priority Scheme Summary
In summary, the priority scheme has the following two operating versions.

When RUNPATH field is specified (i.e. DT_RUNPATH is non-empty)

 1. LD_LIBRARY_PATH

 2. runpath (DT_RUNPATH field)

 3. ld.so.cache

 4. default library paths (/lib and /usr/lib)

In the absence of RUNPATH (i.e. DT_RUNPATH is empty string)

 1. RPATH of the loaded binary, followed by the RPATH of the binary, which loads it all the way 
up to either the executable or the dynamic library which loads all of them

 2. LD_LIBRARY_PATH

 3. ld.so.cache

 4. default library paths (/lib and /usr/lib)

For more details on this particular topic, please check the Linux loader man page (http://linux.die.net/man/1/ld).

Windows Runtime Dynamic Library Location Rules
In the simplest, popular, most widespread knowledge about the topic, the following two locations are used the most 
as the favorite paths to deploy the DLL needed at runtime:

The very same path in which the application binary file resides•	

One of the system DLL folders (such as •	 C:\Windows\System or C:\Windows\System32)

http://linux.die.net/man/1/ld


Chapter 7 ■ LoCating the Libraries

132

However, this is not where the story ends. The Windows runtime dynamic library search priority schemes are 
far more sophisticated as the following factors play a role in the priority scheme:

The Windows Store applications (Windows 8) have the different set of rules than the Windows •	
Desktop Applications.

Whether the DLL of the same name is already loaded in the memory.•	

Whether the DLL belongs to the group of known DLLs for the given version of Windows OS.•	

For more precise and up-to-date information, it makes the most sense to check the official Microsoft 
documentation about this topic, currently residing at http://msdn.microsoft.com/en-us/library/windows/
desktop/ms682586(v=vs.85).aspx.

Linux Demo of Build Time and Runtime Conventions
The following example illustrates the positive effects of tightly following the -L and -R conventions. The project 
used in this example is comprised of the dynamic library project and its test application project. In order to 
demonstrate the importance of applying the -L convention, the two demo applications are created. The first one, 
aptly named testApp_withMinusL demonstrates the positive effects of using the -L linker flag. The other one 
(testApp_withoutMinusL) demonstrates what kind of troubles may happen if the -L convention is not followed.

Both applications also rely on rpath option to specify the runtime location of the required dynamic library.  
The dynamic library’s project folder and the apps’ project folder are structured like Figure 7-11.

} Runtime dependency is on the library
residing in folder at the same level
(../deploy folder)

At build time the
dependency is on
the library that
resides in the
folder located one
level above, 
(i.e.../deploy folder),
which is different
than runtime path

Figure 7-11. The folder structure of project designed to illustrate the benefits of strictly following the –L –l conventions

http://msdn.microsoft.com/en-us/library/windows/desktop/ms682586(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms682586(v=vs.85).aspx


Chapter 7 ■ LoCating the Libraries

133

The Makefile of the application not relying on the -L convention looks like Listing 7-1.

Listing 7-1. Makefile Not Relying on the –L Convention

# Import includes
COMMON_INCLUDES  = -I../sharedLib/exports/
 
# Sources/objects
SRC_PATH         = ./src
OBJECTS          = $(SRC_PATH)/main.o
 
# Libraries
SYSLIBRARIES     =           \
                   -lpthread \
                   -lm       \
                   -ldl
 
DEMOLIB_PATH     = ../deploy
# specifying full or partial path may backfire at runtime !!!
DEMO_LIBRARY     = ../deploy/libdynamiclinkingdemo.so
LIBS             = $(SYSLIBRARIES) $(DEMO_LIBRARY) -Wl,-Bdynamic
 
# Outputs
EXECUTABLE       = demoNoMinusL
 
# Compiler
INCLUDES         = $(COMMON_INCLUDES)
DEBUG_CFLAGS     = -Wall -g -O0
RELEASE_CFLAGS   = -Wall -O2
 
ifeq ($(DEBUG), 1)
CFLAGS           = $(DEBUG_CFLAGS) $(INCLUDES)
else
CFLAGS           = $(RELEASE_CFLAGS) $(INCLUDES)
Endif
 
COMPILE          = g++ $(CFLAGS)
 
# Linker
RUNTIME_LIB_PATH = -Wl,-R$(DEMOLIB_PATH)
LINK             = g++
 
# Build procedures/target descriptions
default: $(EXECUTABLE)
%.o: %.c
        $(COMPILE) -c $< -o $@
$(EXECUTABLE): $(OBJECTS)
        $(LINK) $(OBJECTS) $(LIBS) $(RUNTIME_LIB_PATH) -o $(EXECUTABLE)
clean:
        rm $(OBJECTS) $(EXECUTABLE)
deploy:
        make clean; make; patchelf --set-rpath ../deploy:./deploy $(EXECUTABLE);\
        cp $(EXECUTABLE) ../;
 



Chapter 7 ■ LoCating the Libraries

134

The Makefile of the application following the -L convention looks like Listing 7-2.

Listing 7-2. Makefile Following the –L Convention

# Import includes
COMMON_INCLUDES  = -I../sharedLib/exports/
 
# Sources/objects
SRC_PATH         = ./src
OBJECTS          = $(SRC_PATH)/main.o
 
# Libraries
SYSLIBRARIES     =           \
                   -lpthread \
                   -lm       \
                   -ldl
           
SHLIB_BUILD_PATH = ../sharedLib
DEMO_LIBRARY     = -L$(SHLIB_BUILD_PATH) -ldynamiclinkingdemo
LIBS             = $(SYSLIBRARIES) $(DEMO_LIBRARY) -Wl,-Bdynamic
 
# Outputs
EXECUTABLE       = demoMinusL
 
# Compiler
INCLUDES         = $(COMMON_INCLUDES)
DEBUG_CFLAGS     = -Wall -g -O0
RELEASE_CFLAGS   = -Wall -O2
 
ifeq ($(DEBUG), 1)
CFLAGS           = $(DEBUG_CFLAGS) $(INCLUDES)
else
CFLAGS           = $(RELEASE_CFLAGS) $(INCLUDES)
endif
 
COMPILE          = g++ $(CFLAGS)
 
# Linker
DEMOLIB_PATH     = ../deploy
RUNTIME_LIB_PATH = -Wl,-R$(DEMOLIB_PATH)
 
LINK             = g++
 
# Build procedures/target descriptions
default: $(EXECUTABLE)
%.o: %.c
        $(COMPILE) -c $< -o $@
$(EXECUTABLE): $(OBJECTS)
        $(LINK) $(OBJECTS) $(LIBS) $(RUNTIME_LIB_PATH) -o $(EXECUTABLE)
clean:
        rm $(OBJECTS) $(EXECUTABLE)
deploy:
        make clean; make; patchelf --set-rpath ../deploy:./deploy $(EXECUTABLE);\
        cp $(EXECUTABLE) ../;
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When the process of building the dynamic library is completed, its binary is deployed to the deploy folder, which 
resides the two levels of depth above the folder in which the application Makefile resides. Hence, the build-time path 
needs to be specified as ../deploy/libdynamiclinkingdemo.so.

Figure 7-12 illustrates the advantage of adhering to the -L convention: the immunity of the program to the change 
of the runtime library paths.

Library specified as -L<path> -l <name> may be handled
neatly in both linking as well as at runtime (where its
name may be cleanly combined with rpath.)

Library specified without 
requires worrying about
maintaining the relative
paths.

Figure 7-12. The benefit of carefully following the –L –l conventions. Following the convention typically means being 
worry free at runtime

When the build time library path was specified with the -L option, the library name is effectively separated from 
the path and as such imprinted into the client binary file. When the time comes to conduct the runtime search, the 
imprinted name (i.e., not the path plus name, but solely the library name!) fits really well with the implementation of 
the runtime search algorithm.
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Chapter 8

Designing Dynamic Libraries: 
Advanced Topics

The purpose of this chapter is to discuss the details of the dynamic linking process. A crucial factor in this process is 
the memory mapping concept. Basically, it allows a dynamic library that is already loaded in the memory map of a 
running process to be mapped into the memory map of another process running concurrently.

The important rule of dynamic linking is that different processes do share the code segment of the dynamic 
library, but do not share the data segments. Each of the processes loading the dynamic library is expected to provide 
its own copy of the data on which the dynamic library code operates (i.e., the library’s data segment). Following the 
culinary analogy, several chefs in several restaurants can concurrently use the same book of recipes (instructions). 
It is very likely, however, that different chefs will use different recipes from the same book. Also, it is given that the 
dishes prepared by the recipes from the same cook book will be served to different customers. Obviously, despite the 
fact that the chefs read from the same recipe book, they each should use their own set of dishes and kitchen utensils. 
Otherwise, it would be a huge mess.

As great and simple as the whole story looks now, several technical problems needed to be solved along the way. 
Let’s take a closer look.

Why Resolved Memory Addresses Are a Must
Before going into the details of the technical problems encountered during the design of dynamic linking implementations, 
it is worth reiterating a few simple facts rooted in the domain of assembly language and machine instructions that 
ultimately determine so many other details.

Namely, certain groups of instructions expect that the address of the operand in memory be known at runtime.  
In general, the following two groups of instructions strictly require the precisely calculated addresses:

Data access instructions (•	 mov, etc.) require the address of the operand in memory. For 
example, in order to access a data variable, the mov assembler instruction of X86 architecture 
requires the absolute memory address of the variable in order to transfer the data between the 
memory and a CPU register.

The following sequence of assembly instructions is used to increment a variable stored in memory:
 
          mov eax, ds:0xBFD10000 ; load the variable from address 0xBFD10000 to register eax
          add eax, 0x1           ; increment the loaded value
          mov ds:0xBFD10000, eax ; store the result back to the address 0xBFD10000
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Subroutine calls (•	 call, jmp, etc.) require the address of function in code segment. For 
example, in order to call a function, the call instruction must be supplied with the code 
segment memory address of the function entry point.

The following sequence of assembly instructions performs the actual function call:
 
          call 0x0A120034 ; calling function whose entry point resides at address 0x0A120034
 

which is equivalent to
 
          push eip + 2    ; return address is current address + size of two instructions
          jmp 0x0A120034  ; jumping to the address of my_function
 

For things to be somewhat easier, there are scenarios in which merely a relative offset plays a role. The addresses 
of static variables as well as the entry points of functions of local scope (both declared by using the static keyword in 
the sense of C programming language) may be resolved by knowing only the relative offset from the instructions that 
reference them. Both data access and/or subroutine call assembler instructions do have the flavors that require the 
relative offset instead of the absolute address. This, however, does not remove the overall problem; it only diminishes 
it to an extent.

General Problem of Resolving References
Let’s consider the simplest possible case in which the executable (application) is the client binary that loads a single 
dynamic library. The following set of known facts describes the working scenario:

A fixed, predetermined part of the process memory map blueprint is provided by the •	
executable binary.

Once the dynamic loading is completed, the dynamic library becomes a legitimate part of •	
the process.

The connection between the executable and the dynamic library naturally happens by •	
the executable calling one or more functions implemented and properly exported by a 
dynamic library.

Here comes the interesting part.
The process of loading the library into the process memory map begins by translating the library segment’s 

address range to a new location. In general, the address range where the dynamic library will be loaded is not known 
in advance. Instead, it is determined at load time by the internal algorithm of the loader module.

The level of indeterminism in this scenario is only slightly diminished by the fact that the executable format 
stipulates the address range where the dynamic library may be loaded. However, the stipulated range of allowed 
addresses is fairly broad, as it was designed to accommodate many dynamic libraries loaded at the same time. This 
clearly does not help much in guessing where exactly the dynamic library will eventually be loaded.

The process of address translation (illustrated in Figure 8-1) that happens during the dynamic library loading is 
the crucial problem of dynamic linking, which makes the whole concept rather complex.
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What exactly is the problem with the address translation?
The address translation is not the problem per se. You’ve seen in previous chapters that the linker routinely 

performs this simple operation when trying to tile the object files together into the process memory map. However,  
it is very important which module performs the address translation.

More specifically, there are substantial differences in the scenario in which the linker performs the address 
translation from the scenario in which the loader does the same thing.

When performing the address translation, the linker in general has a “clean slate/virgin snow” •	
situation. None of the object files taken in by the linker during the tiling process have any of 
the references resolved. This gives the linker a huge degree of freedom to juggle the object files 
when trying to find the right place for them. Upon completing the initial placement of object 
files, the linker scans the list of unresolved references, resolves them, and stamps the correct 
addresses into the assembly instructions.

The loader, on the other hand, operates within significantly different circumstances. It takes •	
as input the dynamic library binary, which already passed the complete building process, and 
has resolved all the references. In other words, all of the assembler instructions are stamped 
with the correct addresses.

In the particular cases in which the linker imprinted the absolute addresses into the assembler 
instructions, the address translation performed by the loader makes imprinted addresses 
completely meaningless. Executing such fundamentally disrupted instructions gives bogus 
results at best, and has a potential of being very dangerous. Obviously, the address translation 
performed during the dynamic loading kind of falls into the broad category of the “elephant in 
the china store” paradigm.

In summary, the address translation of the loader cannot be avoided, as it is inherent to the idea of dynamic 
loading. However, it immediately imposes a very serious kind of problem. Fortunately, even though it cannot be 
avoided, a few ways of dancing around it have been successfully implemented.

0xA0120000

0x00000000

LOADER

Figure 8-1. Address translation inevitably happens as the loader tries to find a place for the dynamic library in the 
process memory map
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Which Symbols Are Likely to Suffer from Address Translation?
It is almost a no-brainer that the functions and variables declared static (in the C language sense, as in relevant only 
for the file in which they reside) are out of danger. Indeed, since only the nearby instructions need to access these 
symbols, all the accesses can be implemented by supplying the relative address offsets.

What is the situation with the functions and variables that are not declared static?
As it turns out, not being declared static still does not mean that such function or variable will inevitably be 

doomed to suffer from the address translation.
In fact, only the functions and variables whose symbols are exported by the dynamic library are guaranteed 

to suffer from the negative effects of the address translation. In fact, when the linker knows that a certain symbol 
is exported, it implements all the accesses via the absolute addresses. The address translation then renders such 
instructions unusable.

The code example analyzed in Appendix A illustrates this point, in which two non-static variables are featured in 
the code, of which only one is exported by the dynamic library. As the analysis shows, the exported variable is the one 
that gets affected by the dynamic loading address translation.

Problems Caused by Address Translation
There are times when address translation during dynamic loading can cause problems. Fortunately, these can be 
systematized into two general scenarios.

Scenario 1: Client Binary Needs to Know the Address of Dynamic  
Library Symbols
This is the most basic scenario, which happens when the client binary (an executable or a dynamic library) counts on 
symbols of a loaded dynamic library being available at runtime, but does not know what the ultimate address will be, 
as illustrated in Figure 8-2.
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If you assume the usual approach where the task of resolving the symbol addresses traditionally belongs to the 
linker (and linker only), you are in a troubled situation. Namely, the linker already completed its task of building both 
the client binary as well as the library, which is being dynamically loaded.

It quickly becomes very obvious that certain “out of the box” thinking needs to be applied in order to resolve this 
kind of situation. The solution leads into the direction of granting a part of the linker’s responsibilities of resolving the 
symbols to the loader.

In the new scheme of things, the new ability of the loader to take some of the linker’s abilities is typically 
implemented as a module commonly referred to as a dynamic linker.

Scenario 2: Loaded Library No Longer Knows the Addresses of Its  
Own Symbols
Typically, the ABI functions exported by the dynamic libraries are the well encapsulated entry points into the library’s 
inner functionality. The typical sequence that happens at runtime is that the client binary typically calls one of the ABI 
methods, which in turn calls the library’s internal functions, which are of no particular interest to the client binary and 
hence not exported.

A possible different scenario (albeit somewhat less frequently encountered) is when a dynamic library ABI 
function internally calls the other ABI function.

Let’s assume, for example, that a dynamic library hosts a module that exports the two interface functions:

•	 Initialize()

•	 Uninitialize()

Absolute address = ?

function_xyz( )

int function_xyz( )

Figure 8-2. Scenario 1: The client binary must resolve dynamic library symbols
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The internal execution flow of each of the two functions will very likely assume the sequence of calls of library 
internal functions, declared with a static scope. Calling the internal methods is typically performed by the assembler 
call family of instructions featuring relative addresses. The address translation does not negatively affect the 
implementation of call functions, as illustrated in Figure 8-3.

Library’s internal function, declared
‘static’, accessible by relative
address offset

Regardless of the fact
that the absolute
address of ABI function
is not known, the
relative offsets to the
library’s internal static
functions are sufficient
to implement the call
instructions.

The address translation
did not cause trouble at
least in this part of the
overall picture.

Due to the address
translation, the symbol
address is unknown.

Library’s exported function
(accessible by absolute address)

Figure 8-3. Regardless of address translation, the calls to local functions (which may may be implemented as relative 
jumps) can be easily resolved

It is perfectly possible, however, that the library designers decide to provide the Reinitialize() interface 
function. It would neither be surprising nor wrong that this function internally first calls the Uninitialize() interface 
function, immediately followed by the call to the Initialize() interface function.

By being the ABI interface function, the Reinitialize() function’s entry point must belong to the set of dynamic 
library’s exported symbols. The jump instructions that refer to this function may not be implemented as relative 
jumps. Instead, the linker must implement the jump/call instructions as jumps to the absolute addresses.

Obviously, now you have an interesting kind of situation. The damaged party in this scenario is no longer only 
the client binary, but the loaded library as well. After the memory translation is performed by the loader, the function 
addresses are no longer applicable. The assembler call instructions that the linker nicely imprinted with the absolute 
addresses are not only meaningless, but potentially dangerous, as their jump target is no longer where it was originally 
planned to be, as shown in Figure 8-4.
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Again, the identical problem that you face with the ABI functions exists with the dynamic library’s global 
scope variables.

Linker-Loader Coordination
It was recognized early on that in the dynamic linking scenario the linker can not completely solve everything that it 
normally solves during the building of monolithic executable.

During the initial stage of dynamic linking, the loader loads the code segment of the dynamic library into the 
new address range. Even though the linker legitimately finished the task of resolving the references when building the 
dynamic library, it is simply not enough; the address translation process rendered the absolute addresses imprinted 
into the assembler call instructions invalid.

The fact that the “earthquake” happens after the linker did all it could do implies that there must be “someone 
smart” to fix the troubles after the fact. That “someone smart” was chosen to be the loader.

Overall Strategy
Knowing all the previously described constraints, the cooperation between the linker and loader has been established 
according to the following set of broad guidelines:

The linker recognizes its own limitations.•	

The linker precisely estimates the damage, prepares the directives for fixing it, and embeds the •	
directives into the binary file.

The loader precisely follows the linker directives and applies the corrections after the address •	
translation is completed.

Library’s exported function
(accessible by absolute address)

Due to the address
translation, the symbol
address is unknown.

Calling one exported ABI function
from the other become bogus, as
the address translation rendered
the absolute address embedded
into the call assembly instruction
practically useless.

Library’s exported function
(accessible by absolute address)

Figure 8-4. Scenario 2: One ABI function internally calling another suffers from unresolved references problems. Both 
function entry points are designated for export, which urges the compiler to implement calls as absolute jumps. Resolving 
the absolute addresses is not possible until the loader completes the address translation
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Linker Recognizes Its Own Limitations
When creating a dynamic library, in addition to being witty in figuring out the relationships between the various parts 
of the puzzle, the linker also must be smart enough to recognize what will be disrupted as result of the code segment 
loading into the different range of addresses.

First, the code address range of the dynamic library memory map is zero-based, unlike with executables,  
in which case the linker deals with the more specific non-zero based address ranges.

Second, when recognizing that the addresses of certain symbols cannot be resolved before the load time, the 
linker stops trying; instead, it fills the unresolved symbols with temporary values (typically being some obviously 
wrong values, such as all zeros or so).

This does not mean, however, that linker has given up the quest of completing the task.

Linker Precisely Estimates the Damage, and Prepares Directives for Fixing It
It is completely possible to classify all the scenarios in which the loader address translation will render ineffective the 
previously resolved references. Such cases happen whenever the assembler instructions require absolute addresses. 
When completing the linking stage of building the dynamic library, the linker can identify such occurrences and 
somehow let the loader know of them.

In order to provide support for linker-loader coordination, the binary format specifications support brand new 
sections whose purpose is solely to provide the place for the linker to leave the directives for the loader of how to fix 
the damage caused by address translation happening during the dynamic loading. Furthermore, a specific simple 
syntax has been devised so that the linker can precisely specify to the loader the course of action to take. Such sections 
are called relocation sections in the binary, of which the .rel.dyn section is the oldest.

In general, the relocation directives are written into the binary by the linker, to be read later by the loader.  
They specify

At which addresses the loader needs to apply some patching after laying out the final memory •	
map of the whole process.

What exactly the loader needs to do in order to correctly patch the unresolved addresses.•	

The Loader Precisely Follows the Linker Directives
The last phase belongs to the loader. It reads in the dynamic library created by the linker, reads in the loader segments 
(each carrying a variety of linker sections), and lays them all out into the process memory map, alongside the code 
belonging to the original executable.

Finally, it locates the .rel.dyn section, reads in the directives that the linker left, and according to these 
directives performs patching of the original dynamic library. When patching is completed, the memory map is ready 
for launching the process.

Obviously, the task of handling the dynamic library loading requires that some more intelligence be granted to 
the loader than what it needs for its basic tasks.

Tactics
In general, the exchange of information between the linker and the loader happens through the specific .rel.dyn 
section inserted by the linker into the body of the binary. The only question is in which of the binary files will the linker 
insert the .rel.dyn section?

The answer is simple: it is the squeaky wheel that gets the oil. The binary whose code section needs repair will 
generally carry the .rel.dyn section.

Concretely, in Scenario 1, the linker embeds the .rel.dyn section into the client binary (the executable or 
dynamic library whose instructions were “damaged” by the loading of a new dynamic library), as this is where the 
address translation of loaded libraries caused troubles. Figure 8-5 illustrates the idea.
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In Scenario 2, however, the linker embeds the .rel.dyn section into the binary of the loaded library, as it needs 
help reconstructing the coherence between the addresses and instructions that point to them (Figure 8-6).

rel.dyn section

Address range of
loaded dynamic

library

Client binary

Linker directives for
loader:

After the library is
loaded and address
range of its code
section is determined,
certain instructions in the
code section of the
executable which
suffered from the
address range
translation need
to be patched.

Figure 8-5. In Scenario 1, the linker directives are embedded into the client binary file
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In this particular example, you have the simplest possible scenario in which an executable loads a dynamic 
library. A far more realistic case is that a dynamic library itself may load another dynamic library, which in turn may 
load yet another dynamic library, etc. Any of the dynamic libraries in the middle of the chain of dynamic loading may 
be in dual role. Scenario 1 as well as Scenario 2 may happen to be applicable to the same binary.

Linker Directives Overview
The binary format specifications typically specify in detail the syntax rules of communication between the linker 
and the loader. The linker directives for the loader generally tend to be very simple, yet very precise and to the point 
(Figure 8-7). Hence the structuring the information carried by the linker directives does not take tremendous amount 
of effort to implement and understand.

Address range of
loaded dynamic
library

Client binary

function_xyz( )

Dynamic library

rel.dyn section

Linker directives for the
loader:

After the library is loaded
and the address range of
code section is determined
certain instruction in the
code section of loaded
library which suffered from
address range translation
need to be patched.

Figure 8-6. In Scenario 2, the linker directives are embedded into the dynamic library
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In particular, the ELF file format carries the detailed definitions of how the linker specifies the directives for 
the loader. The directives are stored primarily in the .rel.dyn section as well as in a few other specialized sections 
(rel.plt, got, got.plt). The tools such as readelf or objdump can be used to display the contents of the directives. 
Figure 8-7 shows some of the examples.

The interpretation of the fields of the directive syntax is the following:

•	 Offset specifies the code section byte offset to the assembler instruction operand, which is 
rendered meaningless by the address translation and needs repair.

•	 Info is described by the ELF format specification as
 
           #define ELF32_R_SYM(i)  ((i)>>8)
           #define ELF32_R_TYPE(i)  ((unsigned char)(i))
           #define ELF32_R_INFO(s,t) (((s)<<8)+(unsigned char)(t))
 
           #define ELF64_R_SYM(i)  ((i)>>32)
           #define ELF64_R_TYPE(i)  ((i)&0xffffffffL)
           #define ELF64_R_INFO(s,t) (((s)<<32)+((t)&0xffffffffL)
 
where

•	 ELFxx_R_SYM denotes the symbol table index with respect to which the relocation must  
be made:

One of the sections of the binary file carries the list of symbols. This value simply 
represents the index of the symbol table item that represents this particular symbol. The 
readelf and objdump can provide the complete list of symbols contained in the binary’s 
symbol table.

•	 ELFxx_R_TYPE denotes the type of relocation to apply. A detailed description of available 
relocation types is shown below.

•	 Type specifies the type of action that the loader needs to perform on the assembler instruction 
operand in order to repair the problems caused by the address translation. The ELF binary 
format shown in Figure 8-8 (Figure 1-22 of the ELF specification) specifies the following 
relocation types.

Figure 8-7. Examples of linker directives
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Figure 8-8. Overview of linker directive types (from ELF format specification)
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•	 Sym.Value specifies the tentative, temporary offset within the code section (in case of 
functions) or within the data segment (in case of variables) where the symbol currently resides 
in the original binary file. It is assumed that the address translation will affect these values.

•	 Sym.Name specifies the human readable symbol name (function name, variable name)

Linker-Loader Coordination Implementation Techniques
Throughout the evolution of the dynamic linking concept, the two implementation techniques have been used: Load 
Time Relocation (LTR) and Position Independent Code (PIC).

Load Time Relocation (LTR)
Chronologically, the first implementation of the dynamic linking concept came in the form of the so-called Load 
Time Relocation. Broadly speaking, this technique was the first dynamic loading technique that really worked. 
Its immediate benefit was the ability to relieve the application binaries from the need to carry along unnecessary 
“luggage” (the code that handles the usual chores specific to the operating system).

The immediate benefits that the LTR concept brought was that not only the byte size of applications’ binaries 
became substantially smaller, but also the way certain OS-specific tasks were executed became unified across the 
wide variety of applications.

Despite the obvious benefits that this concept brought, it had several major drawbacks. First, this technique 
modifies (patches) the dynamic library code with the literal values of addresses of variables and functions, meaningful 
only in the context of the application that loaded it first. In the context of any other application (which would very 
possibly feature the different process’ memory map layout), the code modifications would very likely be useless, 
meaningless, and simply not applicable.

As a consequence, if several applications needed the services of a dynamic library at the same time, it would 
mean that you would have exactly that many copies of the same dynamic library in memory.

The second drawback was that a proportionally large amount of code modifications would be required. With 
this technique in place, the loader needs to modify/patch exactly as many places in the code that reference a certain 
variable or call a certain function. In cases where the application loads plenty of dynamic libraries, the load time 
grows to significant and noticeable initial latency during the application start.

The third drawback was that the writable code (.text) segment poses a potential security threat.
With this technique in place, the dream of loading the dynamic library into the physical memory only once, and 

mapping it into the plethora of different applications’ memory maps different address, was not achievable.
Figure 8-9 illustrates the idea behind the Load Time Relocation concept.
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All the drawbacks were addressed with the design of the newer and in many aspects superior Position 
Independent Code (PIC) approach, which quickly became the prevalent choice of linking techniques.

Position Independent Code (PIC)
The limitations of the Load Time Relocation scheme have been addressed in the next implementation of the dynamic 
linking, the technique known as Position Independent Code (Figure 8-10). The unwanted direct modifications of the 
dynamic library code segment instructions have been avoided by taking an extra step of indirection. In the lingo of 
programming languages, the approach can be described as using pointer-to-pointer instead of pointer.

Dynamic library
code (.text section)

Dynamic library
code (.text section)

Dynamic library
code (.text section)

symbols

After the loading is
completed, the final
addresses of symbols
are known. Now is the
time to connect the
instruction with the
symbols they reference.

Load time relocation
approach modifiles the
dynamic library source
(.text section) by hard
coading the instructions
address operands to
point to the addresses
of the current process
memory map.

However, hardcoding
the addresses makes
the dynamic library
unusable for the any other
process memory map
in which symbols
happen to reside on
different addresses.

Figure 8-9. LTR concept and its limitations
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Basically, the symbol addresses are supplied to the needy instructions in two steps. In order to get the symbol 
address, first a mov instruction accesses the address-of-address location and loads its contents (a needed symbol 
address) into an available CPU register. Immediately after, the retrieved symbol address now stored in a register may 
be used as the operand in the subsequent instructions (mov for data, call for function calls).

The special twist in the solution is that the symbol addresses are kept in a so-called global offset table (GOT) 
for which the linker reserves a dedicated .got section. The distance between the .text section and .got section is 
constant and known at link time. For each of the symbols that need to be resolved, the global offset table maintains a 
dedicated slot at the known and fixed offset from the table start.

Given the fixed GOT distance and fixed slot offset (both known at link time), it becomes possible for a compiler 
to implement the code instructions to reference the fixed locations. Most importantly, the implemented code does 
not depend on the actual symbol addresses, and can be used without any changes directly mapped into a plethora of 
other processes.

The final adjustment to the peculiarities of a specific memory map layout is completed by the loader. In this scheme,  
however, the loader does not irreversibly modify the code (.text section). Instead, once the symbol addresses are 
known, the loader patches the .got section, which is (much like the data sections) always implemented per process.

Dynamic library
code (.text section)

Dynamic library
code (.text section)

Dynamic library
code (.text section)

symbols

Global offset table
(GOT)

which maintain
the storage slots
for each of the
needed symbol
addresses

Fixed
address
offset

Variable
address
offset

Address
offsetGlobal offset table (GOT) maintain the storage slots carrying

addresses of each of the unresolved symbols. 

The GOT offset is constant, and known at link time. Hence, the CPU
instructions referencing GOT slot are independent of particular
process memory map layout.

The content of storage slots, however, depend on the particular
process memory map layout. Once everything is loaded and symbol
addresses are known, the loader visit the GOT and updates the
storage slots with the right values of symbol addresses.

Figure 8-10. PIC concept
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Note ■  in order to implement this scheme, a substantial design effort was needed, which is spread beyond the 
linker-loader boundaries. in fact, in order to implement the piC concept, the story must start at the compiler level.  
in particular, the –fPIC flag must be passed to compiler. the “fpiC” or simply “piC” mnemonic eventually became a synonym 
with dynamic linking.

Lazy Binding
The fact that the referencing of the symbols in the PIC approach passes through the extra level of indirection provides 
the potential for achieving the additional performance benefits at runtime. The strategy of implementing the extra 
performance kick is based on the fact that the loader does not waste precious time setting up the contents of the .got 
and .got.plt sections until the program starts.

The assembler instructions that reference the symbols are set to point to the intermediary point anyway, and 
there is nothing terribly wrong with the overall shape of the code that would put a stop to the program loading.

In fact, the loader normally does not even bother to complete setting up the contents of the .got and .got.plt 
sections until absolutely necessary. Such moments happen after the program already started, and only when the 
execution flow comes to the instructions referencing the symbols whose addresses are kept in the .got and  
.got.plt sections.

The obvious benefit of the loader’s procrastination (commonly referred to as lazy binding) is that the loading 
process gets completed faster, which makes the application start quicker. A small one-time performance penalty 
happens when the loader quickly makes up for its initial (albeit premeditated) carelessness. That happens only as per 
need, and only once, at the very first occurrence of symbol referencing. The fewer of the dynamic library’s symbols 
that actually get referenced at runtime, the more performance savings the loader is able to achieve.

The lazy binding concept is an extra feature of the PIC approach, which obviously adds another good reason for 
developers to choose the PIC over the LTR implementation. In fact, the PIC approach is a favorite implementation of 
the Scenario 1 type problem when the client binary is the executable file (i.e., application).

Rules and Limitations of the Recursive Chain of Dynamic Linking
The scenarios you’ve examined in detail so far pertain to the simplest possible dynamic linking scenarios. After taking 
a closer look at the atomic level, now let’s step back a little and take a look at the molecular level of the dynamic 
linking, as it features certain rules and limitations which are not obvious at the atomic level of the story.

In reality, the structure of a typical program may be described as the recursive chain of dynamic linking, in 
which each of the dynamic libraries in the chain loads several other dynamic libraries. Visually, the recursive chain 
of loading can be represented as the elaborate tree structure with plenty of side connections between the branches. 
The length of individual branches in some cases may end up being really large. As interesting as the complexity of the 
recursive chain of dynamic linking may be, and as impressive the length of its branches may look, these are not the 
most potent details in the whole story.

Far more important is the emerging fact that in the chain of dynamic loading each of the participating dynamic 
libraries may find itself playing the roles of both Scenario 1 and Scenario 2. Figure 8-11 illustrates the point.
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In other words, a dynamic library in the chain of loading may need to both resolve the references of the library it 
loads as well as to re-resolve the reference of its own symbols. This makes the whole story a bit more interesting.

A certain set of strong implementation preferences residing at this molecular level stipulate the implementation 
details, which I will briefly review in the next section.

Strong Implementation Preferences
Regardless of the scenario, there are always two ways of how the linker-loader coordination may be implemented: 
either the LTR or the PIC approach may be applied. The choice of the linker-loader coordination technique is not 
absolutely free. In addition to the designer’s choice based on each technique’s pros and cons, there are a few other 
limitations that need to be explicitly pointed out:

Position Independent Code (PIC) is the strongly preferred technique of executable resolving •	
the references of the first level of loaded libraries (the scenario marked with the encircled 
letter A in Figure 8-11).

In terms of choosing between LTR or PIC, the dynamic libraries in the chain of loading may feature a 
variety of combinations. A dynamic library implementing LTR may in turn dynamically load the next 
dynamic library, which implements the PIC, which in turn may dynamically load the library which 
implements …you choose—whatever your choice is, it is allowed.

A single dynamic library utilizes strictly one of the linker-loader coordination techniques •	
to resolve both Scenario 1 as well as Scenario 2 (if needed). It cannot happen that the same 
dynamic library resolves Scenario 1 by the LRT approach and Scenario 2 problems by the PIC 
approach (or vice versa).

Scenario 1
Scenario 2

A

Figure 8-11. A branch of typical recursive chain of dynamic linking
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Figure 8-12 illustrates the described rules.

A
LTR

LTR

LTR

PIC

PIC

Both are LTR

Both are PIC

Both are LTR

Both are LTR

Scenario 1
Scenario 2

Figure 8-12. Strong implementation preferences (at the molecular level) governing the implementation of the recursive 
chain of dynamic linking 
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Chapter 9

Handling Duplicate Symbols When 
Linking In Dynamic Libraries

The concept of dynamic linking clearly represented a huge step forward in the domain of software design.  
The unprecedented flexibility it brought opened up a lot of avenues for technical progress and a lot of new doors 
to substantially new concepts.

By the same token, the complexity of how the dynamic libraries function internally has brought several distinct 
challenges to the domain of the software toolchain (compilers, linkers, loaders). The early recognized need for the linker 
and loader to cooperate more tightly and the techniques of implementing it were discussed in the previous chapter.

However, this is not where the story ends.
Another interesting paradigm closely associated with the domain of dynamic libraries is the issue of handling 

duplicate symbols. More specifically, when dynamic libraries are input ingredients in the linking process, the linker 
deviates from the usual, commonsensical approach typically followed in cases when individual object files and/or 
static libraries are combined into the binary file.

Duplicate Symbols Definition
The most common problem that may happen during the process of resolving the references is the appearance of 
duplicate symbols, which happens when, in the final stage of linking, the list of all available symbols contains two or 
more symbols of the same name.

As a side note, the linker algorithm for its own internal purposes typically applies modifications of the original 
symbol names. As a direct consequence, the reported duplicate issues printed out by the linker may refer to names 
somewhat differing from the original names. The symbol name modifications may range from simple name decorations 
(e.g., prepending the underscore) all the way to the systematic handling of C++ function affiliation issues. Fortunately, 
the modifications are typically performed in a strictly uniform and predictable fashion.

Typical Duplicate Symbols Scenarios
The causes of duplicate symbols may vary. In the simplest possible case, it just happened that the different designers 
chose the most obvious name for their modules classes, functions, structures (e.g., class Timer, function getLength() 
or variables lastError or libVersion). Trying to combine these designers’ modules inevitably leads to discovering 
that duplicate symbols exist.

The other possibilities cover the typical cases when the data type instance (of a class, structure, or a simple  
data type) is defined in a header file. More than one inclusion of the header file inevitably creates the duplicate 
symbols scenario.
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Duplicate C Symbols
The C language imposes fairly simple criteria for two or more symbols to be considered duplicates of each other. As 
long as the names of functions, structures, or data types are identical, the symbols are considered identical.

For example, buidling the following code will fail:
 
file: main.c
#include <stdio.h>
 
int function_with_duplicated_name(int x)
{
    printf("%s\n", __FUNCTION__);
    return 0;
}
 
int function_with_duplicated_name(int x, int y)
{
    printf("%s\n", __FUNCTION__);
    return 0;
}
 
int main(int argc, char* argv[])
{
    function_with_duplicated_name(1);
    function_with_duplicated_name(1,2);
    return 0;
}
 

It will produce the following error message:
 
main.c:9:5: error: conflicting types for 'function_with_duplicated_name'
main.c:3:5: note: previous definition of 'function_with_duplicated_name' was here
main.c: In function 'main':
main.c:17:5: error: too few arguments to function 'function_with_duplicated_name'
main.c:9:5: note: declared here
gcc: error: main.o: No such file or directory
gcc: fatal error: no input files
compilation terminated.

Duplicate C++ Symbols
Being an object-oriented programming language, C++ imposes more relaxed duplicate symbols criteria. In terms 
of namespaces, classes/structures, and simple data types, using identical names still remains as the sole criteria of 
duplicate symbols. However, in the domain of functions, the duplicate symbols criteria is no longer limited to the 
function names alone, but also take into account the list of arguments.

The principles of function (methods) overloading allows using the same name for different methods of the same 
class having different lists of input arguments, as long as the return value type does not differ.

The same principle applies to the corner cases of two or more functions belonging to the same namespace 
not being members of any class. Even though such functions are not affiliated with any class, the more elastic C++ 
duplicate criteria applies – they are considered duplicate only if their names are identical and their list of input 
arguments are identical.
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Building the following code will be successfully completed:
 
file: main.cpp
#include <iostream>
using namespace std;
 
class CTest
{
public:
    CTest(){ x = 0;};
    ~CTest(){};
public:
    int runTest(void){ return x;};
private:
    int x;
};
 
int function_with_duplicated_name(int x)
{
    cout << __FUNCTION__ << "(x)" << endl;
    return 0;
}
 
int function_with_duplicated_name(int x, int y)
{
    cout << __FUNCTION__ << "(x,y)" << endl;
    return 0;
}
 
int main(int argc, char* argv[]){
    CTest test;
    int x = test.runTest();
 
    function_with_duplicated_name(x);
    function_with_duplicated_name(x,1);
    return 0;
}
 
file: build.sh
g++ -Wall -g -O0 -c main.cpp
g++ main.o -o clientApp
 

Running the produced binary will create the following output:
 
function_with_duplicated_name(x)
function_with_duplicated_name(x,y)
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However, trying to add the declaration of the following method to main.cpp
 
float function_with_duplicated_name(int x)
{
    cout << __FUNCTION__ << "(x)" << endl;
    return 0.0f;
}
 
will violate the basic rules of C++ function overloading, which will result with the following build failure:
 
main.cpp: In function 'float function_with_duplicated_name(int)':
main.cpp:23:42: error: new declaration 'float function_with_duplicated_name(int)'
main.cpp:17:5: error: ambiguates old declaration 'int function_with_duplicated_name(int)'
g++: error: main.o: No such file or directory
g++: fatal error: no input files
compilation terminated.

Duplicate Symbols Default Handling 
When individual object files or static libraries are being linked together into the resultant binary file, the linker strictly 
follows the zero-tolerance policy against the duplicate symbols.

When the linker detects the duplicate symbols, it prints out an error message specifying the files/lines of code 
where the duplicate symbols occurrences happen, and the linking is declared a failure. This basically means that 
developers need to go back to the drawing board and try to resolve the problem, which very likely means that the code 
needs to be recompiled.

The following example illustrates what happens when you try to link into the same client binary the two static 
libraries featuring duplicate symbols. The project is comprised of two very simple static libraries featuring duplicate 
symbols as well as the client application that attempts to link them both:
 
Static Library libfirst.a:
 
file: staticlibfirstexports.h
#pragma once
 
int staticlibfirst_function(int x);
int staticlib_duplicate_function(int x);
 
file: staticlib.c
#include <stdio.h>
 
int staticlibfirst_function(int x)
{
    printf("%s\n", __FUNCTION__);
    return (x+1);
}
 
int staticlib_duplicate_function(int x)
{
    printf("%s\n", __FUNCTION__);
    return (x+2);
}
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  file: build.sh  
  gcc -Wall -g -O0 -c staticlib.c  
  ar -rcs libfirst.a staticlib.o  
      
  Static Library libsecond.a:  
   
  file: staticlibsecondexports.h  
  #pragma once  
   
  int staticlibsecond_function(int x);  
  int staticlib_duplicate_function(int x);  
      
  file: staticlib.c  
  #include <stdio.h>  
   
  int staticlibsecond_function(int x)  
  {  
      printf("%s\n", __FUNCTION__);  
      return (x+1);  
  }  
   
  int staticlib_duplicate_function(int x)  
  {  
      printf("%s\n", __FUNCTION__);  
      return (x+2);  
  }  
   
  file: build.sh  
  gcc -Wall -g -O0 -c staticlib.c  
  ar -rcs libsecond.a staticlib.o  
   

  ClientApplication:  
   
  file: main.c  
  #include <stdio.h>  
  #include "staticlibfirstexports.h"  
  #include "staticlibsecondexports.h"  
   
  int main(int argc, char* argv[])  
  {  
      int nRetValue = 0;  
      nRetValue += staticlibfirst_function(1);  
      nRetValue += staticlibsecond_function(2);  
      nRetValue += staticlib_duplicate_function(3);  
      printf("nRetValue = %d\n", nRetValue);  
      return nRetValue;  
  }  
   
  file: build.sh  
   
  gcc -Wall -g -O0 -I../libFirst -I../libSecond -c main.c  
  gcc main.o -L../libFirst -lfirst -L../libSecond -lsecond -o clientApp  
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Due to the presence of duplicate symbols in both static libraries, trying to build the client application results with 
the linker error:
 
/home/milan/Desktop/duplicateSymbolsHandlingResearch/01_duplicateSymbolsCriteria/02_duplicatesIn 
TwoStaticLibs/01_plainAndSimple/libSecond/staticlib.c:10: multiple definition of  
'staticlib_duplicate_function'
../libFirst/libfirst.a(staticlib.o):/home/milan/Desktop/duplicateSymbolsHandlingResearch/01_dupl 
icateSymbolsCriteria/02_duplicatesInTwoStaticLibs/01_plainAndSimple/libFirst/staticlib.c:10: first 
defined here
collect2: ld returned 1 exit status
 

Commenting out the call to the duplicate function does not help avoiding the linker failure. Obviously, the 
linker first tries to tile together everything coming from the input static libraries and individual object files (main.c). 
If the duplicate symbols happen this early in the linking game, the linker declares a failure, regardless of the fact that 
nobody tried to reference the duplicated symbols.

Duplicate Local Symbols Are Allowed
Interestingly, local functions declared with the static keyword in the C language meaning of that keyword (i.e., 
visibility scope limited only to the functions residing in the same source file) do not get registered as duplicates. 
Modify the source files of the static libraries in your example with the following code:
 
Static Library libfirst.a:
file: staticlib.c
static int local_staticlib_duplicate_function(int x)
{
    printf("libfirst: %s\n", __FUNCTION__);
    return 0;
}
 
int staticlibfirst_function(int x)
{
    printf("%s\n", __FUNCTION__);
    local_staticlib_duplicate_function(x);
    return (x+1);
}
 
Static Library libsecond.a:
file: staticlib.c
static int local_staticlib_duplicate_function(int x)
{
    printf("libsecond: %s\n", __FUNCTION__);
    return 0;
}
 
int staticlibsecond_function(int x)
{
    printf("%s\n", __FUNCTION__);
    local_staticlib_duplicate_function(x);
    return (x+1);
}
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ClientApplication:
 
file: main.c
 
#include <stdio.h>
#include "staticlibfirstexports.h"
#include "staticlibsecondexports.h"
 
int main(int argc, char* argv[])
{
    staticlibfirst_function(1);
    staticlibsecond_function(2);
    return 0;
}
 

The client application will now build successfully and produce the following output:
 
staticlibfirst_function
libfirst: local_staticlib_duplicate_function
staticlibsecond_function
libsecond: local_staticlib_duplicate_function
 

Obviously, the linker keeps the separate compartments for the local functions. Even though their symbol names 
are completely identical, the collision does not happen.

Duplicate Symbols Handling When Linking in Dynamic Libraries
When dynamic libraries are added to the mix of input ingredients at the linking stage, the way the linker handles the 
duplicate symbols becomes a lot more interesting and lot more involved. First and foremost, the linker abandons the 
policy of zero-tolerance for duplicate symbols, and does not immediately declare the linking failure. Instead, it applies 
the approximate, less-than-ideal approach to resolve the symbols naming collision.

In order to illustrate the linker’s altogether different approach to this specific scenario, the simple demo project 
is created. It is comprised of the two dynamic libraries featuring the duplicate symbols and the client application that 
links them both:
 
Shared Library libfirst.so:
 
file: shlibfirstexports.h
#pragma once
 
int shlibfirst_function(int x);
int shlib_duplicate_function(int x);
 
file: shlib.c
#include <stdio.h>
 
static int local_shlib_duplicate_function(int x)
{
    printf("shlibFirst: %s\n", __FUNCTION__);
    return 0;
}
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int shlibfirst_function(int x)
{
    printf("shlibFirst: %s\n", __FUNCTION__);
    local_shlib_duplicate_function(x);
    return (x+1);
}
 
int shlib_duplicate_function(int x)
{
    printf("shlibFirst: %s\n", __FUNCTION__);
    local_shlib_duplicate_function(x);
    return (x+2);
}
  
file: build.sh
gcc -Wall -g -O0 -fPIC -c shlib.c
gcc -shared shlib.o -Wl,-soname,libfirst.so.1 -o libfirst.so.1.0.0
ldconfig -n .
ln -s libfirst.so.1 libfirst.so
 

Shared Library libsecond.so:
 
file: shlibsecondexports.h
#pragma once
 
int shlibsecond_function(int x);
int shlib_duplicate_function(int x);
 
file: shlib.c
#include <stdio.h>
 
static int local_shlib_duplicate_function (int x)
{
    printf("shlibSecond: %s\n", __FUNCTION__);
    return 0;
}
 
int shlibsecond_function(int x)
{
    printf("shlibSecond: %s\n", __FUNCTION__);
    local_shlib_duplicate_function(x);
    return (x+1);
}
 
int shlib_duplicate_function(int x)
{
    printf("shlibSecond: %s\n", __FUNCTION__);
    local_shlib_duplicate_function(x);
    return (x+2);
}
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file: build.sh
gcc -Wall -g -O0 -fPIC -c shlib.c
gcc -shared shlib.o -Wl,-soname,libsecond.so.1 -o libsecond.so.1.0.0
ldconfig -n .
ln -s libsecond.so.1 libsecond.so
 

ClientApplication:
 
file: main.c
#include <stdio.h>
#include "shlibfirstexports.h"
#include "shlibsecondexports.h"
 
int main(int argc, char* argv[])
{
    int nRetValue = 0;
    nRetValue += shlibfirst_function(1);
    nRetValue += shlibsecond_function(2);
    nRetValue += shlib_duplicate_function(3);
    return nRetValue;
}
 
file: build.sh
 
gcc -Wall -g -O0 -I../libFirst -I../libSecond -c main.c
gcc main.o -Wl,-L../libFirst -Wl,-lfirst   \
           -Wl,-L../libSecond -Wl,-lsecond \
           -Wl,-R../libFirst               \
           -Wl,-R../libSecond              \
           -o clientApp
 

Even though the two shared libraries feature the duplicates and even one of the duplicates  
(shlib_duplicate_function) is not local function, building the client application completes successfully.

Running the client application, however, brings a bit of surprise:
 
shlibFirst: shlibfirst_function
shlibFirst: local_shlib_duplicate_function
shlibSecond: shlibsecond_function
shlibSecond: local_shlib_duplicate_function
shlibFirst: shlib_duplicate_function
shlibFirst: local_shlib_duplicate_function
 

Obviously, the linker found some way of resolving the duplicate symbols. It solved it by picking one of the 
symbol occurrences (the one in shlibfirst.so) and directed all the references to shlib_duplicate_function to that 
particular symbol occurrence.

This linker’s decision is clearly a very controversial step. In real-world scenarios, the identically named functions 
of different dynamic libraries may carry substantially different functionality. Imagine, for example, that each of the 
dynamic libraries libcryptography.so, libnetworkaccess.so, and libaudioport.so feature the Initialize() 
method. Imagine now that the linker decided that the call to Initialize() always means only initializing one of the 
libraries (and never initializing the other two).
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Obviously, these kinds of scenarios should be carefully avoided. In order to do it right, the way of how the linker 
“thinks” should be thoroughly understood first.

The details of the linker’s internal algorithm for handling dynamic library duplicate symbols will be discussed 
later in this chapter.

General Strategies of Eliminating Duplicate Symbols Problems
In general, the best approach to resolving the duplicate symbols is to reinforce the symbol affiliations to their 
particular modules, as it usually eliminates the vast majority of potential duplicate symbols problems.

In particular, resorting to the use of namespaces is the most recommended technique, as it has been proven to 
work across plenty of different scenarios, regardless of the form in which the code is made available to the software 
community (static library vs. shared library). This feature is confined to the domain of the C++ language and requires 
the use of the C++ compiler.

Alternatively, if for whatever reason the use of a strictly C compiler is strongly preferred, prepending the function 
names with the unique prefix may be used as a viable, yet somewhat less powerful and less flexible, alternative.

Duplicate Symbols and Dynamic Linking Modes
Before going into the details of the linker’s new approach to handling the duplicate symbols, it is important to point 
out a few significant facts.

The runtime dynamic loading of dynamic libraries (through the dlopen() or LoadLibrary() calls) imposes 
practically no risk of having duplicate symbols. The retrieved dynamic library symbols are typically assigned (through 
the dlsym() or GetProcAddress() calls) to the variable whose name is very likely already chosen to not duplicate any 
of the existing symbols in the client binary.

On the contrary, it is the statically aware linking of dynamic libraries that represents the typical scenario in which 
the duplicate symbols occurrences happen.

The genuine reason for deciding to link in a dynamic library is the interest in the set of the dynamic library’s ABI 
symbols or its subset. Very frequently, however, the dynamic library may carry a lot more symbols of remote or no 
importance to the client binary project, and the unawareness of their presence may lead to an unintentional choice of 
a duplicate named function or data coming from different dynamic libraries.

There is only so much precaution that dynamic library developers can take in order to make the things better. 
Reducing the export of the dynamic library symbols to only the essential set of symbols is definitely a measure that 
may significantly reduce the probability of symbol names collision. However, this highly recommended design 
practice does not directly act against the very root of the problem. Regardless of how frugal you are in exporting your 
dynamic library symbols, it is still possible that different developers choose the most straightforward names for the 
symbols, which results with two or more binary files contending about the right to use the symbol name.

Finally, it is important to point out that you are not dealing with the peculiarity of a specific linker on specific 
platform; the Windows linker (Visual Studio 2010 certainly) almost completely follows the same set of rules in 
determining how to handle the duplicate symbols encountered during the process of dynamic linking. 
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Linker’s Criteria in the Approximate Algorithm of Resolving  
Dynamic Libraries’ Duplicate Symbols
In the search for the best candidate to represent the duplicated symbol name, the linker makes the decision based on 
the following circumstances:

•	 Location of the duplicated symbols: The linker assigns different levels of importance to the 
symbols located in different parts of the process memory map. A more detailed explanation 
follows immediately.

•	 Specified linking order of the dynamic libraries: If two or more symbols reside in the code parts 
of equal priorities, the symbol residing in the dynamic library that was passed to the linker 
earlier in the list of specified dynamic libraries will win the bout to represent the duplicated 
symbol over the symbol residing in the dynamic library declared later on in the list.

Location, Location, Location: Code Priority Zoning Rules
The variety of linker symbols participating in building the client binary may reside in a variety of locations. The 
first criterion that the linker applies toward resolving name collisions between symbols is based on the comparison 
between the following symbols priority scheme.

First Level Priority Symbols: Client Binary Symbols

The initial ingredient of building the binary file is the collection of its object files, which are either indigenous to the 
project or come in the form of the static library. In the case of Linux, the sections coming from these ingredients 
typically occupy the lower part of the process memory map.

Second Level Priority Symbols: Dynamic Library Visible Symbols

The dynamic library exported symbols (residing in the dynamic section of the dynamic libraries) are taken by the 
linker as the next priority level in the priority scheme.

Third Level Priority (Unprioritized, Noncompeting) Symbols

The symbols declared as static are typically never the subject of the duplicated symbol name conflicts, regardless of 
whether they belong to the client binary or to the statically aware linked dynamic library.

To the same group belong the dynamic library’s stripped off symbols, which obviously do not participate in the 
stage of linking the client binary. Figure 9-1 illustrates the symbols priority zoning approach.
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Analyses of Specific Duplicate Names Cases
The following sections cover several use cases.

Case 1: Client Binary Symbol Collides with Dynamic Library ABI Function 
This scenario can be basically described as the symbol belonging to priority zone 1 colliding against the symbol 
belonging to priority zone 2 (Figure 9-2).
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Chapter 9 ■ handling dupliCate SymbolS When linking in dynamiC librarieS

167

As a general rule, the symbol related to the higher priority code zone always wins; in other words, it gets chosen 
by the linker as the target of all the references to the duplicate named symbol.

The following project is created to demonstrate this particular scenario. It consists of a static library, a dynamic 
library, and the client application that links them both (the dynamic library is statically aware linked). The libraries 
feature a duplicate name symbol:
 
Static Library libstaticlib.a:
 
file: staticlibexports.h
#pragma once
 
int staticlib_first_function(int x);
int staticlib_second_function(int x);
 
int shared_static_duplicate_function(int x);
 
file: staticlib.c
#include <stdio.h>
#include "staticlibexports.h"
 
int staticlib_first_function(int x)
{
    printf("%s\n", __FUNCTION__);
    return (x+1);
}
 

?

Dynamic library

Figure 9-2. Case 1: The client binary symbol collides with the dynamic library ABI symbol
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int staticlib_second_function(int x)
{
    printf("%s\n", __FUNCTION__);
    return (x+2);
}
 
int shared_static_duplicate_function(int x)
{
    printf("staticlib: %s\n", __FUNCTION__);
    return 0;
}
 
file: build.sh
gcc -Wall -g -O0 -c staticlib.c
ar -rcs libstaticlib.a staticlib.o
 
Shared Library libshlib.so:
 
file: shlibexports.h
#pragma once
 
int shlib_function(void);
int shared_static_duplicate_function(int x);
 
file: shlib.c
#include <stdio.h>
#include "staticlibexports.h"
 
int shlib_function(void)
{
        printf("sharedLib: %s\n", __FUNCTION__);
    return 0;
}
 
int shared_static_duplicate_function(int x)
{
    printf("sharedLib: %s\n", __FUNCTION__);
    return 0;
}
 
file: build.sh
gcc -Wall -g -O0 -I../staticLib -c shlib.c
gcc -shared shlib.o -Wl,-soname,libshlib.so.1 -o libshlib.so.1.0.0
ldconfig -n .
ln -s libshlib.so.1 libshlib.so
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ClientApplication:
 
file: main.c
#include <stdio.h>
#include "staticlibexports.h"
#include "shlibexports.h"
int main(int argc, char* argv[])
{
    int nRetValue = 0;
    nRetValue += staticlib_first_function(1);
    nRetValue += staticlib_second_function(2);
 
    shlib_function();
    shared_static_duplicate_function(1);
    printf("nRetValue = %d\n", nRetValue);
    return nRetValue;
}
 
file: build.sh
gcc -Wall -g -O0 -I../staticLib -I../sharedLib -c main.c
gcc main.o -Wl,-L../staticLib -lstaticlib \
           -Wl,-L../sharedLib -lshlib     \
           -Wl,-R../sharedLib             \
           -o clientApp
 

The client application builds successfully and produces the following output:
 
staticlib_first_function
staticlib_second_function
sharedLib: shlib_function
staticlib: shared_static_duplicate_function
nRetValue = 6
 

Obviously, the linker picks the static library symbol as it belongs to the higher priority code zone.
Change the build order, as shown here:

 
file: buildDifferentLinkingOrder.sh
gcc -Wall -g -O0 -I../staticLib -I../sharedLib -c main.c
gcc main.o -Wl,-L../sharedLib -lshlib     \
           -Wl,-L../staticLib -lstaticlib \
           -Wl,-R../sharedLib             \
           -o clientAppDifferentLinkingOrder
 

Note that the change in code does not change the final outcome:
 
$ ./clientAppDifferentLinkingOrder
staticlib_first_function
staticlib_second_function
sharedLib: shlib_function
staticlib: shared_static_duplicate_function
nRetValue = 6
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Windows-Specific Twist
The Visual Studio linker has a slightly different way of implemented this ruling in this particular case (i.e., when the 
static library features the symbol of the same name with the dynamic library ABI symbol).

When the static library appears as first on the list of libraries, the DLL’s symbols is silently ignored, which is 
exactly as expected.

However, if the DLL is specified as the first on the list of libraries, what happens is not what you might expect (i.e., 
that the static library symbol always prevails). Instead, the linking fails with a message saying something like
 
StaticLib (staticlib.obj): error LNK2005: function_xyz already defined \
        in SharedLib.lib (SharedLib.dll)
ClientApp.exe: fatal error LNK1169: one or more multiply defined symbols found
BUILD FAILED. 

Case 2: ABI Symbols of Different Dynamic Libraries Collide
This scenario can be basically described as two symbols both belonging to the priority zone 2 colliding against each 
other (Figure 9-3).

Dynamic library

?

Figure 9-3. Case 2: ABI symbols of different dynamic libraries collide
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Clearly, since none of the symbols have the zoning advantage, the decisive factor in this case will be the linking order.
In order to demonstrate this particular scenario, the following demo project is created, which consists of two shared 

libraries featuring the duplicate ABI symbols and the client app that statically aware links both dynamic libraries. To 
provide a few more important details, one of the shared library ABI functions internally calls the duplicated ABI function:
 
Shared Library libfirst.so:
 
file: shlibfirstexports.h
#pragma once
 
int shlib_function(void); // duplicate ABI function
int shlibfirst_function(void);
  
file: shlib.c
#include <stdio.h>
 
int shlib_function(void)
{
        printf("shlibFirst: %s\n", __FUNCTION__);
    return 0;
}
 
int shlibfirst_function(void)
{
        printf("%s\n", __FUNCTION__);
        return 0;
}
 
file: build.sh
gcc -Wall -g -O0 -c shlib.c
gcc -shared shlib.o -Wl,-soname,libfirst.so.1 -o libfirst.so.1.0.0
ldconfig -n .
ln -s libfirst.so.1 libfirst.so
 
Shared Library libsecond.so:
 
file: shlibsecondexports.h
#pragma once
 
int shlib_function(void);
int shlibsecond_function(void);
int shlibsecond_another_function(void);
 
file: shlib.c
#include <stdio.h>
 
int shlib_function(void)
{
    printf("shlibSecond: %s\n", __FUNCTION__);
    return 0;
}
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int shlibsecond_function(void)
{
    printf("%s\n", __FUNCTION__);
    return 0;
}
 
int shlibsecond_another_function(void)
{
    printf("%s\n", __FUNCTION__);
    shlib_function(); // internal call to the duplicate ABI function
    return 0;
}
 
file: build.sh
gcc -Wall -g -O0 -fPIC -c shlib.c
gcc -shared shlib.o -Wl,-soname,libsecond.so.1 -o libsecond.so.1.0.0
ldconfig -n .
ln -s libsecond.so.1 libsecond.so
 

ClientApplication:
 
file: main.c
#include <stdio.h>
#include "shlibfirstexports.h"
#include "shlibsecondexports.h"
 
int main(int argc, char* argv[])
{
    shlib_function();    // duplicate ABI function
    shlibfirst_function();
    shlibsecond_function();
    shlibsecond_another_function(); // this one internally calls shlib_function()
    return 0;
}
 
file: build.sh
gcc -Wall -g -O0 -I../libFirst -I../libSecond -c main.c
gcc main.o -Wl,-L../libFirst -Wl,-lfirst   \
           -Wl,-L../libSecond -Wl,-lsecond \
           -Wl,-R../libFirst               \
           -Wl,-R../libSecond              \
           -o clientApp
 

Even though the two shared libraries feature the duplicates and even one of the duplicates  
(shlib_duplicate_function) is not local function, building the client application completes successfully.

Running the client application results in the following output:
 
$ ./clientApp
shlibFirst: shlib_function
shlibfirst_function
shlibsecond_function
shlibsecond_another_function
shlibFirst: shlib_function
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Obviously, the linker picked the shlibFirst’s version of the duplicate symbol to uniquely represent the 
duplicated symbol name. Furthermore, even though shlibsecond_another_function() internally calls the 
duplicated shlib_function(), it does not affect the final outcome of the linking stage.

Being the ABI symbol (the part of the .dynsym section), the duplicated function symbol always gets resolved in 
the same way, regardless of the fact that it resides in the same source file with the remaining ABI functions.

No Impact of Different Function Calls Order
As the part of the investigation, the impact of the reversed function call order is examined (see Listing 9-1).

Listing 9-1. main_differentOrderOfCalls.c

#include <stdio.h>
#include "shlibfirstexports.h"
#include "shlibsecondexports.h"
 
int main(int argc, char* argv[])
{
    // Reverse order of calls - first shlibsecond methods
    // get called, followed by the shlibfirst methods
    shlibsecond_function();
    shlibsecond_another_function();
    shlib_function();    // duplicate ABI function
    shlibfirst_function();
    return 0;
}
 

This particular change did not affect the final outcome in any way. Obviously, the important moments of the 
linking stage that critically impact the duplicate symbol resolution process happen during an earlier stage of linking. 

Impact of Different Linking Order 
Building the application with the different linking order, however, yields different results:
 
file: buildDifferentLinkingOrder.sh
gcc -Wall -g -O0 -I../shlibFirst -I../shlibSecond -c main.c
gcc main.o -Wl,-L../shlibSecond -lsecond \
           -Wl,-L../shlibFirst  -lfirst  \
           -Wl,-R../shlibFirst           \
           -Wl,-R../shlibSecond          \
           -o clientAppDifferentLinkingOrder
 
$ ./clientAppDifferentLinkingOrder
shlibSecond: shlib_function
shlibfirst_function
shlibsecond_function
shlibsecond_another_function
shlibSecond: shlib_function
 

Obviously, the specified reversed linking order affected the linker’s decision. The shlibSecond’s version of 
duplicated shlib_function is now chosen to represent the duplicated symbol.
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Case 3: Dynamic Library ABI Symbol Collides with Another  
Dynamic Library Local Symbol
This scenario can be basically described as a symbol belonging to priority zone 2 colliding against a symbol belonging 
to priority zone 3 (Figure 9-4).

Dynamic library

Dynamic library

?

Figure 9-4. Case 3: Dynamic library ABI symbol collides with another dynamic library local symbol

As a general rule, much like in the Case 1 example, the symbol related to the higher priority code zone always wins 
the bout; in other words, it gets chosen by the linker as the target of all the references to the duplicate named symbol.

In order to illustrate this particular scenario, the following demo project is created; it consists of two shared 
libraries (featuring the duplicate symbols) and the client application that statically aware links both libraries:
 
Shared Library libfirst.so:
 
file: shlibfirstexports.h
#pragma once
 
int shlib_function(void);
int shlibfirst_function(void);
  
file: shlib.c
#include <stdio.h>
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int shlib_function(void)
{
    printf("shlibFirst: %s\n", __FUNCTION__);
    return 0;
}
 
int shlibfirst_function(void)
{
    printf("%s\n", __FUNCTION__);
    return 0;
}
 
file: build.sh
gcc -Wall -g -O0 -c shlib.c
gcc -shared shlib.o -Wl,-soname,libfirst.so.1 -o libfirst.so.1.0.0
ldconfig -n .
ln -s libfirst.so.1 libfirst.so
 
Shared Library libsecond.so:
 
file: shlibsecondexports.h
#pragma once
 
int shlibsecond_function(void);
 
file: shlib.c
#include <stdio.h>
 
static int shlib_function(void)
{
    printf("shlibSecond: %s\n", __FUNCTION__);
    return 0;
}
 
int shlibsecond_function(void)
{
    printf("%s\n", __FUNCTION__);
    shlib_function();
    return 0;
}
 
file: build.sh
gcc -Wall -g -O0 -c shlib.c
gcc -shared shlib.o -Wl,-soname,libsecond.so.1 -o libsecond.so.1.0.0
ldconfig -n .
ln -s libsecond.so.1 libsecond.so
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ClientApplication:
 
file: main.c
#include <stdio.h>
#include "shlibfirstexports.h"
#include "shlibsecondexports.h"
 
int main(int argc, char* argv[])
{
    shlibfirst_function();
    shlibsecond_function();
    return 0; 
}
 
file: build.sh
gcc -Wall -g -O0 -I../shlibFirst -I../shlibSecond -c main.c
gcc main.o -Wl,-L../shlibFirst -lfirst   \
           -Wl,-L../shlibSecond -lsecond \
           -Wl,-R../shlibFirst           \
           -Wl,-R../shlibSecond          \
           -o clientApp
 

Building the client application completed successfully. Running the client application results with the  
following output:
 
$ ./clientApp
shlibFirst: shlib_function
shlibsecond_function
shlibSecond: shlib_function
 

Here we have a bit of interesting situation.
First, when the client binary invokes the duplicate named shlib_function, the linker has no doubts that this 

symbol should be represented by the shlibFirst library method, simply because it resides in the code zone of higher 
priority. The first line of the client app output witnesses to this fact.

However, much before the linker deliberation happened, during the building of the dynamic library itself, the 
internal calls of shlibsecond_function() to its local shlib_function() was already resolved, simply because the 
two symbols are local to each other. This is the reason why the internal call of one shlibSecond function to another 
shlibSecond function does not get affected by the process of building the client binary.

As expected, when the linker’s decision is determined by the differences in the code zone priorities, reversing the 
linking order has no impact on the final outcome.

Case 4: Dynamic Library Non-exported Symbol Collides with  
Another Dynamic Library Non-exported Symbol
This scenario can be basically described as two symbols both belonging to priority zone 3 collide against each other 
(Figure 9-5).
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The symbols belonging to code zone 3 are mostly invisible to the process of building the client binary. These 
symbols are either declared to be of local scope (and completely not interesting to the linker), or stripped off (invisible 
to the linker).

Even though the symbol names may be duplicated, these symbols do not end up in the linker’s list of symbols 
and do not cause any conflicts. Their importance is strictly confined to the domain of the dynamic libraries of which 
they are a part.

In order to illustrate this particular scenario, the following demo project is created; it consists of one static library, 
one shared library, and the client application that links both libraries. The dynamic library is linked statically aware.

Each of the binaries features local functions whose names are the duplicates of the names of local functions 
found in the remaining modules. Additionally, the client application has the local function identically named as the 
function of the shared library whose symbols is intentionally stripped off.
 
Static Library libstaticlib.a:
 
file: staticlibexports.h
#pragma once
 
int staticlib_function(int x);
 
file: staticlib.c
#include <stdio.h>
#include "staticlibexports.h"
 

Dynamic library

Dynamic library

Figure 9-5. Case 4: Dynamic library’s non-exported symbol collides with another dynamic library’s non-exported symbol
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static int local_function(int x)
{
    printf("staticLib: %s\n", __FUNCTION__);
    return 0;
}
 
int staticlib_function(int x)
{
    printf("%s\n", __FUNCTION__);
    local_function(x);
    return (x+1);
}
 
file: build.sh
gcc -Wall -g -O0 -c staticlib.c
ar -rcs libstaticlib.a staticlib.o
 
Shared Library libshlib.so:
file: shlibexports.h
#pragma once
 
int shlib_function(void);
 
file: shlib.c
#include <stdio.h>
#include "staticlibexports.h"
 
static int local_function(int x)
{
    printf("sharedLib: %s\n", __FUNCTION__);
    return 0;
}
 
static int local_function_strippedoff(int x)
{
    printf("sharedLib: %s\n", __FUNCTION__);
    return 0;
}
 
int shlib_function(void)
{
    printf("sharedLib: %s\n", __FUNCTION__);
    local_function(1);
    local_function_strippedoff(1);
    return 0;
}
 
file: build.sh
gcc -Wall -g -O0 -I../staticLib -c shlib.c
gcc -shared shlib.o -Wl,-soname,libshlib.so.1 -o libshlib.so.1.0.0
strip -N local_function_strippedoff libshlib.so.1.0.0
ldconfig -n .
ln -s libshlib.so.1 libshlib.so
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Client Application:
file: main.c
#include <stdio.h>
#include "staticlibexports.h"
#include "shlibexports.h"
 
static int local_function(int x)
{
    printf("clientApp: %s\n", __FUNCTION__);
    return 0;
}
 
static int local_function_strippedoff(int x)
{
    printf("clientApp: %s\n", __FUNCTION__);
    return 0;
}
 
int main(int argc, char* argv[])
{
    shlib_function();
    staticlib_function(1);
    local_function(1);
    local_function_strippedoff(1);
    return 0;
}
 
file: build.sh
gcc -Wall -g -O0 -I../staticLib -I../sharedLib -c main.c
gcc main.o -Wl,-L../staticLib -lstaticlib \
           -Wl,-L../sharedLib -lshlib     \
           -Wl,-R../sharedLib             \
           -o clientApp
 

As expected, the client application is built successfully and produced the following output:
 
sharedLib: shlib_function
sharedLib: local_function
sharedLib: local_function_strippedoff
staticlib_function
staticLib: local_function
clientApp: local_function
clientApp: local_function_strippedoff
 

Obviously, the linker did not perceive any duplicate symbol issue. All the local/stripped off symbols have been 
resolved within their particular modules, and did not conflict with any of identically-named local/stripped off 
symbols in the other modules.
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Interesting Scenario: Singleton in Static Library
Now that you know how the linker handles the unprioritized/non-competing domain of dynamic libraries’ local/stripped 
off symbols, it is much easier to understand the interesting scenario described in Chapter 6 as a “multiple instances of 
a singleton class” problem (one of the counter-indicated scenarios for using the static libraries).

Imagine for a moment the following real-world scenario: say you need to design a unique process-wide logging 
utility class. It should exist in one instance and should be visible to all of the different functional modules.

The implementation paradigm would be normally based on the singleton design pattern. Let’s assume for a 
moment that the home of your singleton class is a dedicated static library.

In order to get access to the logging utility, several dynamic libraries hosting your functional modules link in that 
particular static library. Being merely part of the dynamic library inner functionality (i.e., not part of dynamic library’s 
ABI interface), the singleton class symbols have not been exported. The singleton class symbols automatically start 
belonging to the unprioritized/noncompeting code zone.

Once the process starts and all the dynamic libraries are loaded, you end up having a situation in which several 
dynamic libraries live in the same process, each of them having a singleton class in their own “private backyards.” Lo 
and behold, due to the non-competing nature of the dynamic libraries’ local symbols zone, all of a sudden you end up 
having multiple (nicely coexisting) instances of your singleton logging utility class.

The only problem is that you wanted a single, unique singleton class instance, not many of them!!!
In order to illustrate this particular scenario, the next demo project is created with the following components:

A static library hosting the singleton class•	

Two shared libraries, each linking in the static library. Each of the shared libraries export •	
only one symbol: a function that internally calls the singleton object methods. Singleton class 
symbols coming in from the linked static library are not exported.

A client application that links in the static library in order to access the singleton class itself. It •	
also statically aware links in both of the shared libraries.

The client app and both shared libraries make their own calls to the singleton class. As you will see shortly, the 
app will feature three different instances of the singleton class:
 
Static Library libsingleton.a:
 
file: singleton.h
#pragma once
 
class Singleton
{
public:
    static Singleton& GetInstance(void);
     
public:
    ~Singleton(){};
    int DoSomething(void);
     
private:
    Singleton(){};
    Singleton(Singleton const &);     // purposefully not implemented
    void operator=(Singleton const&); // purposefully not implemented
     
private:
    static Singleton* m_pInstance;
};
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file: singleton.cpp
#include <iostream>
#include "singleton.h"
using namespace std;
 
Singleton* Singleton::m_pInstance = NULL;
 
Singleton& Singleton::GetInstance(void)
{
    if(NULL == m_pInstance)
        m_pInstance = new Singleton();
    return *m_pInstance;
}
 
int Singleton::DoSomething(void)
{
    cout << "singleton instance address = " << this << endl;
    return 0;
}
 
file: build.sh
# for 64-bit OS must also pass -mcmodel=large compiler flag
g++ -Wall -g -O0 -c singleton.cpp
ar -rcs libsingleton.a singleton.o
 
Shared Library libfirst.so:
 
file: shlibfirstexports.h
#pragma once
 
#ifdef __cplusplus
extern "C"
{
#endif // __cplusplus
 
int shlibfirst_function(void);
 
#ifdef __cplusplus
}
#endif // __cplusplus
 
file: shlib.c
#include <iostream>
#include "singleton.h"
using namespace std;
 
#ifdef __cplusplus
extern "C"
{
#endif // __cplusplus
 



Chapter 9 ■ handling dupliCate SymbolS When linking in dynamiC librarieS

182

int shlibfirst_function(void)
{
    cout << __FUNCTION__ << ":" << endl;
    Singleton& singleton = Singleton::GetInstance();
    singleton.DoSomething();
    return 0;
}
 
#ifdef __cplusplus
}
#endif // __cplusplus
 
file: build.sh
rm -rf *.o lib*
g++ -Wall -g -O0 -fPIC -I../staticLib -c shlib.cpp
g++ -shared shlib.o -L../staticLib -lsingleton     \
    -Wl,--version-script=versionScript             \
    -Wl,-soname,libfirst.so.1 -o libfirst.so.1.0.0
ldconfig -n .
ln -s libfirst.so.1 libfirst.so
 
file: versionScript
{
    global:
         shlibfirst_function;
    local:
         *;
};
Shared Library libsecond.so:
 
file: shlibfirstexports.h
#pragma once
 
#ifdef __cplusplus
extern "C"
{
#endif // __cplusplus
 
int shlibsecond_function(void);
 
#ifdef __cplusplus
}
#endif // __cplusplus
 
file: shlib.c
#include <iostream>
#include "singleton.h"
using namespace std;
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#ifdef __cplusplus
extern "C"
{
#endif // __cplusplus
 
int shlibsecond_function(void)
{
    cout << __FUNCTION__ << ":" << endl;
    Singleton& singleton = Singleton::GetInstance();
    singleton.DoSomething();
    return 0;
}
 
#ifdef __cplusplus
}
#endif // __cplusplus
 
file: build.sh
rm -rf *.o lib*
g++ -Wall -g -O0 -fPIC -I../shlibFirst -I../staticLib -c shlib.cpp
g++ -shared shlib.o -L../staticLib -lsingleton       \
    -Wl,--version-script=versionScript               \
    -Wl,-soname,libsecond.so.1 -o libsecond.so.1.0.0
ldconfig -n .
ln -s libsecond.so.1 libsecond.so
 
file: versionScript
{
    global:
         shlibsecond_function;
    local:
         *;
};
 

ClientApplication:
 
file: main.c
#include <iostream>
#include "shlibfirstexports.h"
#include "shlibsecondexports.h"
#include "singleton.h"
 
using namespace std;
 
int main(int argc, char* argv[])
{
    shlibfirst_function();
    shlibsecond_function();
    cout << "Accesing singleton directly from the client app" << endl;
    Singleton& singleton = Singleton::GetInstance();
    singleton.DoSomething();
    return 0;
}
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file: build.sh
g++ -Wall -g -O0 -I../staticLib -I../shlibFirst -I../shlibSecond -c main.cpp
g++ main.o -L../staticLib -lsingleton \
           -L../shlibFirst -lfirst    \
           -L../shlibSecond -lsecond  \
           -Wl,-R../shlibFirst        \
           -Wl,-R../shlibSecond       \
           -o clientApp
 

The client application produced the following output:
 
shlibfirst_function:
singleton instance address = 0x9a01008
shlibsecond_function:
singleton instance address = 0x9a01018
Accesing singleton directly from the client app
singleton instance address = 0x9a01028 

Note ■  it is left to the diligent reader to find out that the runtime dynamic loading (dlopen) would not change anything 
in this regard.

As a final note on this topic, a thread-safer singleton version in which the singleton instance would be a function 
static variable instead of a class-static variable was tried:
 
Singleton& Singleton::GetInstance(void)
{
    Static Singleton uniqueInstance;
    return uniqueInstance;
}
 

This approach resulted with only somewhat better results, in which both of the shared libraries print out the 
identical singleton instance address value, albeit the client app printed out substantially different singleton instance 
address values.

Solving the Problem
To not be completely pessimistic, there are several ways to solve this class of problem.

One of the possibilities is based on relaxing the symbol export criteria for a little bit by allowing the dynamic 
libraries to additionally export the singleton class symbols. After being exported, the singleton symbols will no longer 
belong to the unprioritized/non-competing category of symbols allowed to exist in gazillion of instances. Instead, 
they will be promoted into the “competing ABI symbols” category. According to the elaborated rules, the linker would 
then pick just one of the symbols and direct all the references to that particular singleton class symbol.

The ultimate solution to the problem would be to host the singleton class in a dynamic library. That way, the vast 
majority of the possible unwanted scenarios would be completely eliminated. None of the ABI design rules would be 
violated, and the design of new modules will not be facing the ludicrous extra design requirements.
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Final Remark: Linking Does Not Provide Any Kind of  
Namespace Inheritance
The use of namespaces is definitely the most powerful tool to completely avoid the unpleasant surprises coming from 
too much reliance on the linker’s internal reasoning in handling the duplicate symbols.

Regardless of the fact that one shared library may link another shared library, which may link yet another 
shared library, which eventually may link the static library, protecting the uniqueness of the symbols carried by a 
library sitting somewhere in the middle of the chain of linking requires that exactly that particular library’s code be 
encapsulated in its own proprietary namespace.

Expecting that the namespace of the topmost library will shield the uniqueness of the symbols of the library in 
between possible clashes with the other dynamic libraries is just plain wrong.

The only solid plan, the one that really works, is that each and every library, static or dynamic, should feature its 
own dedicated namespace.
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Chapter 10

Dynamic Libraries Versioning

Most of the time, code development is work in progress. As a result of striving to provide more and more features, 
as well as to solidify the existing body of code, the code inevitably changes. More frequently than not, the design’s 
quantum leaps tend to break the compatibility between the software components. The ideal of achieving backwards 
compatibility typically requires a dedicated and focused effort. A very important role in these efforts belongs to the 
versioning concept.

Given the fact that dynamic libraries provide functionality that is typically used by far more than one client binary, 
the precision of tracking the library versions and the discipline in respecting the indicated versioning information 
requires an extra level of strictness. Failure to notice and react to the discrepancies between the functionality provided 
by the different versions of a dynamic library may mean not only the malfunctioning of a single application, but 
sometimes chaos in the broader functionality of the operating system (file system, networking, windowing system, etc).

Gradation of Versions and their Impact on Backwards 
Compatibility
Not all code changes have the same impact on the module’s functionality. Some of the changes are cosmetic in nature, 
others represent bug fixes, and still others bring in substantial changes that break away from the paradigms that 
existed before. The gradation of overall importance of changes is manifested in the sophisticated versioning scheme 
whose details deserve dedicated discussion.

Major Version Code Changes
As a rule, changes in the dynamic library code that break previously supported functionality should result with 
the incremented major version number. The symptoms of disrupted previous functionality cover a wide range of 
possibilities, including the following:

A substantial change in provided runtime functionality, such as the complete elimination •	
of a previously supported feature, substantial change of requirements for a feature to be 
supported, etc.

Inability of the client binary to link against the dynamic library due to a changed ABI, such •	
as removed functions or whole interfaces, changed exported function signatures, reordered 
structure or class layout, etc.

Completely changed paradigms in maintaining the running process or changes requiring the •	
major infrastructure changes (such as switching to a completely different type of database, starting 
to rely on different forms of encryption, starting to require different types of hardware, etc.).
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Minor Version Code Changes
Changes in the dynamic library code that introduce new functionality without breaking the existing functionality 
typically result with the incremented minor version number. The code changes that qualify for the increment of 
dynamic library minor version numbers typically do not impose recompiling/relinking of the client binaries, nor 
cause substantially changed runtime behavior. The added features typically do not represent radical turns, but rather 
a mild enhancement of the existing assortment of available choices.

Modifications of ABI interfaces are not automatically precluded in the case of minor version increment code 
changes. The ABI modifications in the case of minor version changes, however, mostly mean additions of new 
functions, constants, and structures or classes—in other words, changes that do not impact the definition and use 
of the previously existing interfaces. Most importantly, the client binaries that relied on the previous version do not 
require rebuilding in order to use the new minor version of the dynamic library.

Patch Version
Code changes that are mostly of internal scope, which neither cause any change in the ABI interface nor bring  
a substantial functionality change typically qualify for the “patch” status.

Linux Dynamic Library Versioning Schemes
The Linux-specific implementation of the versioning concept will be discussed in detail, as the sophistication with 
which it resolves some of the most important questions related to the dynamic libraries versioning problem definitely 
deserves attention. Two distinct versioning schemes are currently in use: the versioning scheme based on the library’s 
soname and the individual symbols versioning scheme.

Linux Soname-based Versioning Scheme
Linux Library Filename Carries the Version Information
As mentioned in chapter 7, the last part of the filename of a Linux dynamic library represents the library’s versioning 
information:
 
library filename = lib + <library name> + .so + <library version information>
 

The library version information typically uses the format
 
dynamic library version information = <M>.<m>.<p>
 
where the M represents one or more digits indicating the library major version, the m represents one or more  
digits indicating the library minor version, and the p stands for one or more digits indicating the library patch  
(i.e., very minor change) number.

The Usual Dynamic Library Upgrade Practices
In typical real-world scenarios, arrivals of new minor versions of dynamic libraries tend to happen fairly frequently. 
The expectations of the minor version upgrade causing any problems are generally very low, especially if the vendor 
follows solid testing procedures before publishing the new code.
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Most of the time, installation of the new minor version of the dynamic library should be a fairly simple and 
smooth procedure, such as a simple file copying of a new file.

However, regardless of how small the chances are that a new minor version breaks existing functionality, there is 
still a possibility that it will happen. In order to be able to elegantly step back and restore the previous version of the 
dynamic library which worked flawlessly, the simple file copying needs to be replaced by a bit more subtle approach.

Preamble: The Flexibility of Softlinks

By definition, a softlink is the element of the file system that carries a string containing the path to another file.  
In fact, we may say that softlink points to an existing file. In most aspects, the operating system treats the softlink as  
the file to which it points. The access to a softlink and redirection to the file it represents impose negligible 
performance penalties.

The softlink may be easily created.
 
$ ln -s <file path> <softlink path>
 

It can also be redirected to point to another file.
 
$ ln -s -f <another file> <existing softlink>
 

Finally, the softlink may be destroyed when no longer needed.
 
$ rm -rf <softlink path>

Preamble: Library Soname vs. Library Filename

As mentioned in the Chapter 7 discussion about the Linux library naming conventions, the library file name should 
adhere to the following scheme:
 
library filename = lib + <library name> + .so + <library complete version information>
 

The soname of the Linux dynamic library is defined as
 
library soname = lib + <library name> + .so + <(only the)library major version digit(s)>
 

Obviously, the soname is almost identical to the library filename, the only difference being that it does not carry 
the complete versioning information but only carries the dynamic library major version. As you will see, this fact plays 
particularly important role in the dynamic libraries versioning schemes.

Combining Softlink and Soname in the Library Upgrade Scheme

The softlink’s flexibility lends itself really well to scenarios of upgrading the dynamic libraries. The following 
guidelines describe the procedure:

In the same folder where the actual dynamic library filename resides, a softlink is maintained •	
which points to the actual library file.

Its name exactly matches the soname of the library to which it points. That way, the softlink  •	
in fact carries the library name in which the versioning information is somewhat relaxed  
(i.e. carries no more than the major version information).
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As a rule, the client binaries are never (i.e., only exceptionally rarely) linked against the •	
dynamic library filename carrying the fully detailed version information. Instead, as you will 
see in detail shortly, the client binary build procedure is purposefully set to result with the 
client binary being linked against the library soname.

The reasoning behind this decision is fairly simple: specifying the full and exact versioning •	
information of the dynamic library would impose too many unnecessary restrictions, as it 
would directly prevent linking against any newer version of the same library.

Figure 10-1 illustrates the concept.

Extra Softlink Needed as Convenience for Development Scenarios

When building the client binary, you need to determine the build-time location of the dynamic library, during which 
you are expected to follow the rules of the “-L -l” convention. Even though it is possible to pass the exact dynamic 
library filename (or softlink/soname) to the linker by adding the colon character between the “-l” and the filename 
(-l:<filename>), such as
 
$ gcc -shared <inputs> -l:libxyz.so.1 -o <clientBinary>
 
it is the informal but well settled convention to pass only the library name deprived from any versioning information. 
For example,
 
$ gcc -shared <inputs> -lm -ldl -lpthread -lxml2 -lxyz -o <clientBinary>
 
indicates that the client binary requires linking with libraries whose names are libm, libdl, libpthread, libxml2,  
and libxyz, respectively.

For that reason, in addition to the softlink carrying the library’s soname, it is typical to provide the softlink 
carrying just the library name plus .so file extension, as illustrated in Figure 10-2.

Client binary

libxyz.so.3

libxyz.so.3.1.15

Figure 10-1. The role of the softlink whose name matches the library’s soname
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There are several ways to provide the extra softlink. The most structured way to do it is through the package 
deployment configuration (pkg-config). A somewhat less structured way is to do it in the deployment target of the 
makefile that governs the building of the dynamic library. Finally, it is always possible to create the softlink manually 
from the command line or by setting up a simple script to do it.

Analysis of Soname-based Versioning Scheme 
The described scheme obviously combines two flexibilities: the inherent flexibility of a softlink with the soname’s 
versioning flexibility. Here is how the two flexibilities play together in the overall scheme of things.

The Softlink’s Role

Since the operating system treats the softlink as the file it points to, and inherently provides efficient dereferencing 
mechanisms, the loader has no particular problem connecting the client binary through the softlink with the actual 
library file available at runtime.

When a new version of a dynamic library arrives, it takes very little effort and time to copy its file into the same 
folder where the older version already resides, and to modify the softlink to point to the newer version file.
 
$ ln -s -f <new version of dynamic library file> <existing soname>
 

The benefits of this scheme are obvious:

No need to rebuild the client binary.•	

No need to erase or overwrite the current version of the dynamic library file. Both files can •	
coexist in the same folder.

Easy, elegant, on-the-fly setting up the client binary to use the newer version of the  •	
dynamic library.

The ability to elegantly restore the client binary’s connection with the older dynamic library •	
version in cases when the upgrade results with the unexpected functionality.

Client binary
in development

Build time
(link time)

Runtime

Client binary

libxyz.so.3.1.15

libxyz.so.3

libxyz.so

gcc -shared -lxyz .....

Figure 10-2. The use of softlinks during build time vs. during runtime
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Version Safeguarding Role of Soname

As mentioned in the previous section, not all kinds of changes in the dynamic library code will have a disruptive 
impact on the client binary functionality. The minor version increments are reasonably expected to not cause any 
major problems (such as the inability to dynamically link or run, or severe unwanted and unexpected runtime 
changes). The upgrades require major version increments; on the other hand, they are extremely risky proposition, 
and should be taken with extreme caution.

It does not require a whole lot of thinking to conclude that the soname is in fact designed to act like a fairly elastic 
safeguard of a kind.

By using it as a dynamic library identifier in the process of building the client binary, you •	
basically impose limits on the major version of the dynamic library.

The loader is designed to be smart enough to recognize the attempt to upgrade the dynamic 
library to a major version different from what the soname suggests and prevent it from 
happening.

By purposefully omitting the details about the minor version and patch number, you implicitly •	
allow the minor version changes to happen without much of a hassle.

As great as this all sounds, this scheme is fairly safe only in the scenarios in which you have good reason to expect 
that the changes brought by the new library version will not break the overall functionality, which is the case when at 
most the minor version changes. Figure 10-3 illustrates version safeguarding role of soname.

DO NOT

ENTER

Upgrade
Minor versions

Major versionlibxyz.so.

Figure 10-3. Soname safeguards against linking with incompatible major versions of shared library, but does not 
interfere with minor version upgrades

In situations when the new dynamic library features an upgraded major version, this scheme is by design 
prevented from running. Explaining how exactly the limitation measures work in this case requires us to dive a little 
bit deeper into the implementation details.

Technicalities of the Soname Implementation
As fundamentally solid as it sounds, the scheme based on using soname would not be nearly as powerful unless its 
implementation featured a very important facet. More specifically, the soname gets embedded into the binaries. The 
ELF format reserves the dedicated fields of the dynamic section that are used (depending on the purpose) to carry the 
soname information. During the linking stage, the linker takes the specified soname string and inserts it into the ELF 
format field of choice.
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The “undercover life” of the soname starts when the linker imprints it into the dynamic library, with the purpose 
of declaring the library’s major version. However, it does not end there. Whenever a client binary links against the 
dynamic library, the linker extracts the dynamic library’s soname and inserts it into the client binary’s file as well, 
albeit this time with a bit different purpose—to indicate the versioning requirements of the client binary.

Soname Embedded into the Dynamic Library File

When building a dynamic library, you can use the dedicated linker flag to specify the library soname.
 
$ gcc -shared <list of linker inputs> -Wl,-soname,<soname> -o <library filename>
 

The linker embeds the specified soname string into the DT_SONAME field of the binary, as shown in Figure 10-4.

Soname Propagated into the Client Binary File

When client binary gets linked (either directly or through the softlink) with the dynamic library, the linker gets the 
dynamic library soname and inserts it into the DT_NEEDED field of the client binary, as shown in Figure 10-5.

Figure 10-4. Soname gets embedded into the DT_SONAME field of the binary file
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That way, the versioning information carried by the soname gets propagated further, establishing firm versioning 
rules between all parties involved (the linker, the dynamic library file, the client binary file, and the loader).

Unlike the library filenames, which can be fairly easily modified by everybody (ranging from a younger sibling 
with too many fingers per brain cell and too much time all the way to malicious hackers), changing the soname 
value is neither a simple nor a practical task, as it requires not only modifications of the binary file but also thorough 
familiarity with the ELF format.

The Support from the Other Utility Programs (ldconfig)

In addition to being supported by all the necessary players in the dynamic linking scenario (i.e., the linker, the binary 
files, the loader), the other tools tend to support the soname concept. The ldconfig utility program is a notable 
example in that regard. In addition to its original scope of responsibilities, this tool has an extra “Swiss knife” feature.

When -n <directory> command line arguments are passed, the ldconfig opens up all the dynamic library files 
(whose names conform to the library naming convention!), extracts their soname, and for each of them creates a 
softlink whose name is equal to the extracted soname.

Figure 10-5. Linked library soname gets propagated into the client binary
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The -l <specific library file> option is even more flexible, as in this case the dynamic library filename may 
be absolutely any legal filename. No matter what the filename may look like (be it the fully fledged original library 
name with the full versioning information or a severely altered filename), the soname embedded into the specified 
file gets extracted and the correct softlink gets created unambiguously pointing to the library file.

To demonstrate this, a small experiment was run in which the original library name was purposefully altered.  
Yet the ldconfig managed to create the correct softlink, as shown in Figure 10-6.

Linux Symbol Versioning Scheme
In addition to controlling the versioning information of the whole dynamic library, the GNU linker supports an extra 
level of control over the versioning, in which the version information may be attributed to individual symbols. In 
this scheme, the text files known as version scripts featuring a fairly simple syntax are passed to the linker during the 
linking stage, which the linker inserts into the ELF sections (.gnu.version and similar ones) specialized in carrying 
the symbol versioning information.

The Advantage of Symbol Versioning Mechanism
The symbol versioning scheme is in many aspects more sophisticated than the soname-based versioning. A particularly 
interesting detail of the symbol versioning approach is that it allows a single dynamic library binary file to simultaneously 
carry several different versions of the same symbol. The different client binaries that need different versions of the same 
dynamic library will be loading the same, one and only binary file, and yet will be able to link against the symbols of a 
specified version.

For comparison, when the soname-based versioning method is used, in order to support several major versions 
of the same library, you need exactly that many different binaries (each carrying a different soname value) to be 
physically present on the target machine. Figure 10-7 illustrates the difference between the versioning schemes.

Figure 10-6. Regardless of the library name, ldconfig extracts its soname
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As an added bonus, due to the richness of the features supported by the script file syntax, it is also possible to 
control the symbol visibility (i.e., which symbols are exported by the library and which remain hidden), in the manner 
whose elegance and simplicity surpasses all the symbol visibility methods described so far.

Symbol Versioning Mechanisms Analysis Model
In order to fully understand the symbol versioning mechanism, it is important to define the usual use case scenarios 
in which it gets used.

Phase 1: Initial Version

In the beginning, let’s say that a first ever published version of the dynamic library gets happily linked with the client 
binary “A” and everything runs great. Figure 10-8 describes this early phase of development cycle.

Soname versioning scheme Symbol versioning scheme

Client binary
“C”

Client binary
“B”

Client binary
“A”

Client binary
“C”

Client binary
“B”

Different symbol
versions

Client binary
“A”

libxyz.so.3

libxyz.so

libxyz.so.2

libxyz.so.1

Figure 10-7. Comparison of soname-based and symbol-based versioning schemes

Client binary

A

Dynamic library
version 1.0.0

Figure 10-8. Chronologically earliest client binary “A” links in library version 1.0.0

This is, however, just the beginning of the story.
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Phase 2: Minor Version Changes

With every day that passes, the dynamic library development progress inevitably brings changes. Even more 
importantly, not only does the dynamic library get changed, but also a new slew of client binaries (“B,” “C,” etc.) 
emerge, which did not exist at the time when the linking of dynamic library with the first client binary “A” happened. 
This stage is illustrated by Figure 10-9.

Client binary

Client binary

A

B

Dynamic library
version 1.0.0

Dynamic library
version 1.0.0 New features

Figure 10-9. Somewhat newer client binary “B” links in newer library version (1.1.0)

Some of the dynamic library changes may have no implications on the already existing client binaries’ 
functionality. Such changes are rightfully considered the minor version changes.

Phase 3: Major Version Changes

Occasionally, the dynamic library code changes happen to bring differences that are too radical and mean a complete 
breakup with what the previous library versions provided. The new client binaries (“C”) created at the time of these 
new changes typically have no problem getting along with the new paradigm.

The older client binaries (“A” and “B”), however, may end up in the situation illustrated by Figure 10-10, which is 
similar to an elderly couple at a rock’n’roll wedding reception waiting forever for the band to play their favorite Glenn 
Miller tune.
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The task of software developers is to make the transition of the functionality upgrades as smooth as possible. 
Breaking the compatibility with the existing infrastructure is seldom a wise move. The more the library is popular 
among the developers, the less recommended it is to break away from the library’s expected functionality. The true 
solution to the problem is that the new dynamic library keeps providing for both older and newer functionality 
versions, at least for some time. This idea is illustrated in Figure 10-11.

Client binary

Client binary

Client binary

A

B

C

Dynamic library
version 1.0.0

Dynamic library
version 1.0.0

Dynamic library
version 2.0.0

Symbol versioning allows old
and new functionalities to coexist

Figure 10-11. Symbol versioning resolves incompatibility issues

Client binary

Client binary

Client binary

A

B

C

Dynamic library
version 1.0.0

Dynamic library
version 1.0.0

Dynamic library
version 2.0.0Substantial

functionality changes

Figure 10-10. The latest and greatest client binary “C” links in the newest dynamic library version (2.0.0), which is 
incompatible for use by the older client binaries “A” and “B”
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The Basic Implementation Ingredients
The symbol versioning scheme is implemented by combining the linker version script with the .symver assembler 
directive, both of which will be elaborated in detail next.

Linker Version Script

The most basic implementation of the symbol visibility control mechanism is based on the GNU linker reading in the 
symbol version information supplied in the form of the version script text file.

Let’s start a simple demo from the example of a simple dynamic library (libsimple.so) which features the three 
functions shown in Listing 10-1.

Listing 10-1. simple.c

int first_function(int x)
{
    return (x+1);
}
 
int second_function(int x)
{
    return (x+2);
}
 
int third_function(int x)
{
    return (x+3);
}
 

Let’s say now that you want the first two library functions (but not the third one!) to carry the versioning 
information. The way to specify the symbol version is to create a fairly simple version script file, which may look 
somewhat like the code in Listing 10-2.

Listing 10-2. simpleVersionScript

LIBSIMPLE_1.0 {
    global:
         first_function; second_function;
      
    local:
         *;
};
 

Finally, let’s now build the dynamic library. The version script filename may be conveniently passed to the linker 
by using the dedicated linker flag, like so:
 
$ gcc -fPIC -c simple.c
$ gcc -shared simple.o -Wl,--version-script,simpleVersionScript -o libsimple.so.1.0.0
 

The linker extracts the information from the script file and embeds it into the dedicated ELF format section 
dedicated to versioning. More information on how the symbol versioning information gets embedded into the ELF 
binary files will follow shortly.
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.symver Assembler Directive

Unlike the version script file that represents the “bread and butter” of the symbol versioning concept, used in all 
phases and all scenarios, the symbol versioning paradigm relies on another ingredient—the .symver assembler 
directive—to resolve the tough corner cases.

Let’s assume a scenario of major version changes in which a function signature did not change between the 
versions, but the underlying functionality has changed quite a bit. Further, there’s a function that originally used 
to return a number of linked elements, but in the latest version was redesigned to return the total number of bytes 
occupied by the linked list (or vice versa). See Listing 10-3.

Listing 10-3. Example of substantially different implementations of the same function which qualify for different 
major versions

// VERSION 1.0:
unsigned long list_occupancy(struct List* pStart)
{
    // here we scan the list, and return the number of elements
    return nElements;
}
 
// VERSION 2.0:
unsigned long list_occupancy(struct List* pStart)
{
    // here we scan the list, but now return the total number of bytes
    return nElements*sizeof(struct List);
}
 

Obviously, the clients of the library’s first version will face problems, as the value returned by function will no 
longer match what is expected.

As stated previously, the credo of this versioning technique is to provide the different versions of the same symbol 
in the same binary file. Nicely said, but how to do it? An attempt to build both function versions will result in the linker 
reporting the duplicate symbols. Fortunately, the GCC compiler supports the custom .symver assembler directive, 
which helps alleviate the problem (see Listing 10-4).

Listing 10-4. The same pair of different versions of the function featured in Listing 10-3, this time with properly 
applied symbol versioning

__asm__(".symver list_occupancy_1_0, list_occupancy@MYLIBVERSION_1.0");
unsigned long list_occupancy_1_0(struct List* pStart)
{
    // here we scan the list, and return the number of elements
    return nElements;
}
                                   // default symbol version indicated by the additional "@"
                                   //                 |
                                   //                 v
__asm__(".symver list_occupancy_2_0, list_occupancy@@MYLIBVERSION_2.0");
unsigned long list_occupancy_2_0(struct List* pStart)
{
    // here we scan the list, but now return the total number of bytes
    return nElements*sizeof(struct List);
}
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How Does This Scheme Work? 

In order to eliminate the linker facing the duplicate symbols problem, you can create different names for different 
versions of the same function, which will be used for internal purposes only (i.e. will not be exported). These two 
functions are list_occupancy_1_0 and list_occupancy_2_0.

From the outer world perspective, however, the linker will create the symbol featuring the expected function 
name (i.e. list_occupancy()), albeit decorated with the appropriate symbol version information, appearing in the 
two different versions: list_occupancy@MYLIBVERSION_1.0 and list_occupancy@MYLIBVERSION_2.0.

As a consequence, both the older and the newer client binary will be able to identify the symbol they expect.  
The older client binary will be happy to see that the symbol list_occupancy@MYLIBVERSION_1.0 exists. Its calls to this 
intermediary function symbol will be internally routed to the right place—to the list_occupancy_1_0() dynamic 
library function, which is the real symbol.

Finally, the brand new client binaries, which do not particularly care about the previous versions history, will choose 
the default symbol, indicated by the extra @ character in the name (in this case, list_occupancy@@MYLIBVERSION_2.0).

Sample Project Analysis: Phase 1 (Initial Version)
Now that you understand how the basic implementation ingredients (version script and/or .symver assembler 
directive) work, it’s time to take a closer look at a real example. To illustrate the important points, let’s go back to the 
original example used to illustrate the linker version script (i.e. the library libsimple.so featuring three functions, the 
first two of which will be subject to symbol versioning). In order to make the demo more convincing, some printf’s will 
be added to the original code; see Listing 10-5 through Listing 10-8.

Listing 10-5. simple.h

#pragma once
int first_function(int x);
int second_function(int x);
int third_function(int x);

Listing 10-6. simple.c

#include <stdio.h>
#include "simple.h"
 
int first_function(int x)
{
    printf(" lib: %s\n", __FUNCTION__);
    return (x+1);
}
 
int second_function(int x)
{
    printf(" lib: %s\n", __FUNCTION__);
    return (x+2);
}
 
int third_function(int x)
{
    printf(" lib: %s\n", __FUNCTION__);
    return (x+3);
}
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Listing 10-7. simpleVersionScript

LIBSIMPLE_1.0 {
    global:
         first_function; second_function;
      
    local:
         *;
};

Listing 10-8. build.sh

gcc -Wall -g -O0 -fPIC -c simple.c
gcc -shared simple.o -Wl,--version-script,simpleVersionScript -o libsimple.so.1.0.0
 

Now that the library is built, let’s take a closer look at how the ELF format supports the symbol versioning concept.

ELF Format Support 

The section analysis of the library file indicates that there are three sections of fairly similar names that are used to 
carry the version information, as shown in Figure 10-12.

Figure 10-12. ELF format support for versioning information

Invoking the readelf utility with the -V command line argument provides a report about the contents of these 
sections in a particularly neat way, as shown in Figure 10-13.
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It becomes apparent that the

•	 .gnu.version_d section describes the versioning information defined in this particular 
library (hence the appendix “_d” in the section name).

•	 .gnu.version_r section describes the versioning information of the other libraries, which is 
referenced by this library (hence the appendix “_r” in the section name).

•	 .gnu_version section provides the summary list of all version information related to the library.

It is interesting at this point to verify whether the version information got associated with the symbols specified in 
the version script.

Of all the available ways (nm, objdump, readelf) to examine the binary file symbols, it is again the readelf utility 
that provides the answer in the nicest form in which the association of symbols with the specified version information 
becomes apparent, as illustrated in Figure 10-14.

Figure 10-13. Using readelf to list contents of version-related sections

Figure 10-14. Using readelf to print symbol versioning information

Clearly, the versioning information specified in the version script and passed to the linker found its way into the 
binary file and certainly became the attribute of the symbols intended for versioning.

As an interesting side note, the disassembling of the binary file, however, shows that there is no such thing as 
first_function@@LIBVERSIONDEMO_1.0. All you can find is the symbol of the real first_function. The disassembling 
at runtime (by running gdb) shows the same thing.

Obviously, the exported symbol decorated with the symbol versioning information is a kind of fiction (useful, but 
still a fiction), whereas the only thing that counts in the end is the symbol of the real, existing function.
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Propagation of Version Symbol Information to the Client Binaries

Another round of interesting findings happens when you examine the client binaries that link against your symbol-
versioned dynamic library. In order to explore the symbol versioning in that particular direction, let’s create a simple 
demo application that references the versioned symbols; see Listing 10-9.

Listing 10-9. main.c

#include <stdio.h>
#include "simple.h"
 
int main(int argc, char* argv[])
{
    int nFirst  = first_function(1);
    int nSecond = second_function(2);
    int nRetValue = nFirst + nSecond;
    printf("first(1) + second(2) = %d\n", nRetValue);
    return nRetValue;
}
 

Let’s now build it.
 
$ gcc -g -O0 -c -I../sharedLib main.c
$ gcc main.o -Wl,-L../sharedLib -lsimple \
             -Wl,-R../sharedLib -o firstDemoApp
 

Please notice that in order to exercise solely the symbol versioning mechanism, specifying the library soname has 
been purposefully omitted.

It does not come as a big surprise that the demo app, being an ELF binary file, also carries the version related 
sections (as shown by the section inspection illustrated in the Figure 10-15).

Figure 10-15. Demo application also features versioning-related sections

It is far more important that the demo dynamic library’s symbol version information was ingested by the client 
binary through the process of linking, as shown in Figure 10-16.
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Exactly like it happens in the previously described soname-based versioning scenario, the symbol versioning 
mechanism also gets passed from the dynamic library to its client binary. This way, a form of contract between the 
client binary and the dynamic library versioning has been established.

Why is this important? From the moment in which the linking of the client binary with the dynamic library 
happened, the dynamic library code may pass through a multitude of changes and accordingly through the multitude 
of minor and major versions.

Regardless of the dynamic library changes, its client binary will keep carrying on the versioning information that 
was present at the time of the linking. If exactly that version (and of course exactly the functionality associated with 
that particular version) happens to be missing, the broken backwards compatibility will be strongly indicated.

Before advancing further, let’s make sure that your versioning scheme does not prevent the app from running. 
The simple experiment is shown in Figure 10-17.

Sample Project Analysis: Phase 2 (Minor Version Changes)
Once you understand the basics of how the symbol versioning scheme operates, it’s time to simulate the scenario in 
which the dynamic library development results with the non-disruptive changes (i.e., minor version) changes. In the 
attempt to simulate the real-life scenarios, the following steps will be taken:

You will modify the dynamic library by adding a few more functions. Only one of the newly •	
added functions will be exported. The versioning script will be enriched by the extra item 
announcing the LIBSIMPLE_1.1 minor version upgrade.

The original client binary (i.e., the initial simple demo application) will be purposefully left •	
untouched. By not rebuilding it, it will perfectly mimic the legacy application, built at the time 
when the dynamic library featured the initial version 1.0.

Figure 10-16. Client binary “ingests” the symbol versioning info from library it linked in

Figure 10-17. Versioning scheme working correctly
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The new client binary (another simple demo application) will be created and linked against •	
the updated dynamic library. This way, it will serve as an example of a brand new client 
binary, created at the time of the latest and greatest dynamic library version 1.1, unaware of 
any of the previous library versions.

To simplify the demo, its code will not be significantly different from the original simple demo •	
application. The most notable difference is that it will call the new ABI function, which did not 
exist prior to the latest 1.1 version.

Listings 10-10 and 10-11 show what the source file of the modified dynamic library looks like now.

Listing 10-10. simple.h

#pragma once
 
int first_function(int x);
int second_function(int x);
int third_function(int x);
 
int fourth_function(int x);
int fifth_function(int x); 

Listing 10-11. simple.c

#include <stdio.h>
#include "simple.h"
 
int first_function(int x)
{
    printf(" lib: %s\n", __FUNCTION__);
    return (x+1);
}
 
int second_function(int x)
{
    printf(" lib: %s\n", __FUNCTION__);
    return (x+2);
}
 
int third_function(int x)
{
    printf(" lib: %s\n", __FUNCTION__);
    return (x+3);
}
 
int fourth_function(int x) // exported in version 1.1
{
    printf(" lib: %s\n", __FUNCTION__);
    return (x+4);
}
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int fifth_function(int x)
{
    printf(" lib: %s\n", __FUNCTION__);
    return (x+5);
}
 

Listing 10-12 shows how the version script will look after the changes.

Listing 10-12. simpleVersionScript

LIBSIMPLE_1.0 {
    global:
         first_function; second_function;
      
    local:
         *;
};
 
LIBSIMPLE_1.1 {
    global:
         fourth_function;
      
    local:
         *;
};
 

The new demo application source file will look like Listing 10-13.

Listing 10-13. main.c

#include <stdio.h>
#include "simple.h"
 
int main(int argc, char* argv[])
{
    int nFirst  = first_function(1);
    int nSecond = second_function(2);
    int nFourth  = fourth_function(4);
    int nRetValue = nFirst + nSecond + nFourth;
    printf("first(1) + second(2) + fourth(4) = %d\n", nRetValue);
    return nRetValue;
}
 

Let’s now build it.
 
$ gcc -g -O0 -c -I../sharedLib main.c
$ gcc main.o -Wl,-L../sharedLib -lsimple \
             -Wl,-R../sharedLib -o newerApp
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Let’s now take a closer look at the effects of this little versioning adventure, which perfectly mimics the real life 
scenario happening when dynamic library minor versions gets upgraded.

First, as shown in Figure 10-18, the versioning information now features not only the original version (1.0) but 
also the newest version (1.1)

Figure 10-19. Symbols of different versions present in the shared library

Figure 10-18. Complete versioning information ingested by the client binary

The set of exported symbols is now comprised of both version 1.0 and version 1.1 symbols, as shown in Figure 10-19.

Let’s see now how the things look with the newer, more modern client binary (newerApp) built for the first time 
after version 1.1 came out. As illustrated in Figure 10-20, the linker read out the information about all the versions 
supported by the dynamic library and inserted it into the newer app’s client binary.
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The list of dynamic library symbols on whose presence the client binary counts on at runtime contains the 
symbols of both versions. Figure 10-21 illustrates the point.

Figure 10-20. Newer client binary ingested complete versioning info (both old and newer symbol versions)

Figure 10-21. Symbols of all versions ingested from the shared library

Figure 10-22. Both older and newer app link the same library, but use the symbols of different versions

Now, in order to verify that the addition of the new functionality and modified versioning information works as 
expected, you can try to run both the old and new application. As shown in Figure 10-22, running the old app will 
prove that the new minor version of the dynamic library did not bring any unpleasant surprises.
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Sample Project Analysis: Phase 3 (Major Version Changes)
In the previously analyzed examples I’ve covered cases in which the new code changes generally did not impact how 
the clients used the existing code base. Such code changes are rightfully recognized as minor version increments.

I will not try to cover much more dramatic situations, in which the code changes seriously undermine the way of 
how the clients used the code, thus clearly falling into the major version increments category.

The Case of Changed ABI Function Behavior

Potentially the most unpleasant code changes happen when seemingly nothing happens with the dynamic library 
symbols (i.e., the functions do not have their prototypes altered, and/or the structures do not have their layout 
changed), but the underlying meaning of what the functions do with the data—and most importantly, the values they 
return—does change.

Imagine for a moment that you have a function that used to return the time value in milliseconds. One fine day, 
the developers figured out that the millisecond as a measure was not precise enough, and decide to return the value in 
nanoseconds instead (which is 1,000 times larger).

This scenario is what we will use as the topic of the next example; I’ll show how problems of this nature may 
be solved by clever use of the symbol versioning mechanism. (I do agree that example is a bit childish/fantastic/
naive. Indeed, there are about a million ways how the chaos ensuing from this change may be avoided. For example, 
you could introduce a new ABI function with the word “nanoseconds” in the name, which would return time in 
nanoseconds. Even then, an example like this one is sufficiently good for the demo purposes.)

Back to the topic, let’s assume that the demo dynamic library export header hasn’t changed at all, so the function 
prototypes are unchanged. However, the most recent design requirements dictate that the first_function() from 
now on needs to return a value different from what it used to return.
 
int first_function(int x)
{
    printf(" lib: %s\n", __FUNCTION__);
    return 1000*(x+1);
}
 

Needless to say, this kind of change is bound to wreak havoc with the existing client binaries. Their existing code 
infrastructure simply does not expect a value of that order of magnitude. It is possible that stepping out of the bounds 
of arrays causes an exception. In graph-plotting scenarios, the value would be way out of bounds, etc.

So now you need a way to make sure that the old customers get the usual treatment (i.e., the existing client 
binaries’ calls to first_function() return the value it used to), whereas the new customers get the benefit of a  
new design.

The only problem is that you have to resolve the conflict; the same function name must be used in two 
substantially different scenarios. Fortunately, the symbol versioning mechanism proves it is able to handle problems 
of this kind.

As a first step, you will modify the version script to indicate support for the new major version; see Listing 10-14.

Listing 10-14. simpleVersionScript

LIBSIMPLE_1.0 {
    global:
         first_function; second_function;
    local:
         *;
};
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LIBSIMPLE_1.1 {
    global:
         fourth_function;
    local:
         *;
};
 
LIBSIMPLE_2.0 {
    global:
         first_function;
    local:
         *;
};
 

Next, you will apply the recipe based on using the .symver assembler directive, as shown in Listing 10-15.

Listing 10-15. simple.c (only the changes shown here)

...
__asm__(".symver first_function_1_0,first_function@LIBSIMPLE_1.0");
int first_function_1_0(int x)
{
    printf(" lib: %s\n", __FUNCTION__);
    return (x+1);
}
 
__asm__(".symver first_function_2_0,first_function@@LIBSIMPLE_2.0");
int first_function_2_0(int x)
{
    printf(" lib: %s\n", __FUNCTION__);
    return 1000*(x+1);
}
...
 

As shown in Figure 10-23, the dynamic library now features one extra piece of versioning information.
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Interestingly, as shown in Figure 10-24, it looks like the .symver directive actually did its magic.

Figure 10-24. Both versions of first_function() exist

Figure 10-23. The latest and greatest library version contains all the symbol versions
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The ultimate effect of the whole .symver scheme is the magic of exporting two versions of the first_function() 
symbol, despite the fact that a function of such name no longer exists because it was replaced by first_function_1_0() 
and first_function_2_0().

In order to clearly show the implementation differences, you will create the new application whose source does 
not differ from previous version (see Listing 10-16).

Listing 10-16. main.c

#include <stdio.h>
#include "simple.h"
 
int main(int argc, char* argv[])
{
    int nFirst  = first_function(1); // seeing 1000 times larger return value will be fun!
    int nSecond = second_function(2);
    int nFourth  = fourth_function(4);
    int nRetValue = nFirst + nSecond + nFourth;
    printf("first(1) + second(2) + fourth(4) = %d\n", nRetValue);
    return nRetValue;
}
 

The new app name will be chosen accordingly:
 
$ gcc -g -O0 -c -I../sharedLib main.c
$ gcc main.o -Wl,-L../sharedLib -lsimple \
             -Wl,-R../sharedLib -o ver2PeerApp
 

The runtime comparison will clearly show that the old clients will have their functionality unaffected by the 
major version changes. The contemporary app, however, will count on the new functionality brought by version 2.0. 
Figure 10-25 summarizes the point.

Figure 10-25. Three apps (each of which rely on different symbol versions of the same dynamic library) run as intended
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The Case of Changed ABI Function Prototype

The previously described case is a bit bizarre. Due to the numerous ways it can be avoided, the chances of it 
happening in real life are fairly low. From an education standpoint, however, it is precious as the procedure of fixing 
such problem is the simplest as can be.

A far more usual case that falls under the major version code changes is when the signature of a function needs to 
be changed. For example, let’s assume that for the new use case scenarios the first_function() needs to accept an 
additional input argument.
 
int first_function(int x, int normfactor);
 

Obviously, you now need to support the functions of the same name but of different signatures. In order to 
demonstrate this problem, let’s create another version, shown in Listing 10-17.

Listing 10-17. simpleVersionScript

LIBSIMPLE_1.0 {
    global:
         first_function; second_function;
    local:
         *;
};
 
LIBSIMPLE_1.1 {
    global:
         fourth_function;
    local:
         *;
};
 
LIBSIMPLE_2.0 {
    global:
         first_function;
    local:
         *;
};
 
LIBSIMPLE_3.0 {
    global:
         first_function;
    local:
         *;
};
 

In general, the solution for this problem does not substantially differ from the previous case, as the recipe based 
on the .symver assembler directive will be used much in the same way as in the previous example (see Listing 10-18).
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Listing 10-18. simple.c (only the changes shown here)

__asm__(".symver first_function_1_0,first_function@LIBSIMPLE_1.0");
int first_function_1_0(int x)
{
    printf(" lib: %s\n", __FUNCTION__);
    return (x+1);
}
 
__asm__(".symver first_function_2_0,first_function@LIBSIMPLE_2.0");
int first_function_2_0(int x)
{
    printf(" lib: %s\n", __FUNCTION__);
    return 1000*(x+1);
}
 
__asm__(".symver first_function_3_0,first_function@@LIBSIMPLE_3.0");
int first_function_3_0(int x, int normfactor)
{
    printf(" lib: %s\n", __FUNCTION__);
    return normfactor*(x+1);
}
 

The most substantial difference, however, is that the export header must be modified, as shown in Listing 10-19.

Listing 10-19. simple.h

#pragma once
 
// defined when building the latest client binary
#ifdef SIMPLELIB_VERSION_3_0
int first_function(int x, int normfactor);
#else
int first_function(int x);
#endif // SIMPLELIB_VERSION_3_0
 
int second_function(int x);
int third_function(int x);
 
int fourth_function(int x);
int fifth_function(int x);
 

Only the client binary built with the SIMPLELIB_VERSION_3_0 preprocessor constant passed to the compiler 
will include the new first_function() prototype.
 
$ gcc -g -O0 -c -DSIMPLELIB_VERSION_3_0 -I../sharedLib main.c
$ gcc main.o -Wl,-L../sharedLib -lsimple \
           -Wl,-R../sharedLib -o ver3PeerApp
 

It will be a nice little exercise for the reader to verify that in all other aspects (versioning information, symbols 
presence, runtime outcomes) the example meets his/her expectations.
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Version Script Syntax Overview
The version scripts shown in the code examples so far feature only a subset of the broad range of supported syntax 
features. The purpose of this section is to provide a brief overview of the supported options.

Version Node

The basic entity of the version script is the version node, the named construct encapsulated between the curly 
brackets describing certain version, such as
 
LIBXYZ_1.0.6 {
 
    ... <some descriptors reside here>
 
};
 

The version node usually encapsulates several keywords controlling different aspects of the versioning process, 
whose variety will be discussed in more detail shortly.

Version Node Naming Rules

The node name is typically chosen to precisely describe the full version described by the node. Usually, the name 
ends with digits separated by dots or underscores. It is a common sense practice that the nodes representing the later 
versions come after the nodes representing earlier versions.

However, this is just a practice that makes the life of humans easier. The linker does not particularly care how you 
name your version nodes, nor does it care what order they appear in the file. All that it really requires that the names 
are different.

A similar situation is with the dynamic libraries and their client binaries. What really matters to them is the 
chronology in which the version nodes were added to the version files—which particular version was present at the 
time they were built. 

Symbols Export Control

The global and local modifiers of a version node directly control the symbol exporting. The semicolon-separated list 
of symbols declared under the global label will be exported, as opposed to the symbols declared under the local label.
 
LIBXYZ_1.0.6 {
    global:
        first_function; second_function;
    local:
        *;
};
 

Even though it is not the primary topic of the versioning scheme, this mechanism of exporting the symbols is in 
fact completely legitimate (and in many aspects the most elegant) way of specifying the list of exported symbols.  
An example of how this mechanism works will be provided in subsequent sections.
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Wildcard Support

The version script supports the same set of wildcards that the shells support for expression matching operations. For 
example, the following version script declares as global all the functions whose name starts with “first” or “second:”
 
LIBXYZ_1.0.6 {
    global:
        first*; second*;
    local:
        *;
};
 

Additionally, the asterisk under the local label specifies all other functions to be of the local scope (those not to 
be exported). Filenames specified under double quotes are to be taken verbatim, regardless of any wildcard characters 
they may contain.

Linkage Specifier Support

The version script may be used to specify the extern "C" (no name mangling) or extern "C++" linkage specifier.
 
LIBXYZ_1.0.6 {
    global:
        extern "C" {
            first_function;
        }
    local:
        *;
};

Namespace Support

The version scripts also support the use of namespace in specifying the affiliation of the versioned and/or exported 
symbols.
 
LIBXYZ_1.0.6 {
    global:
        extern "C++" {
            libxyz_namespace::*
        }
    local:
        *;
};

Unnamed Node

An unnamed node can be used to specify the unversioned symbols. Additionally, its purpose may be to host the 
symbols export specifiers (global and/or local).

In fact, when the control over the symbol export is your only motive for using the versioning script mechanism,  
it is very usual to have a version script containing only one unnamed node.
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Version Script Side Feature: Symbol Visibility Control

A side feature of the version script mechanism is that it also provides control over the symbol visibility. The symbols 
listed in the version script node under the global tab end up being exported, whereas the symbols listed under the 
local tab do not get exported.

It is perfectly legal to use the version script mechanism solely for the purpose of specifying the symbols to export. 
However, it is highly recommended in such case to use the unnamed script version nodes, as demonstrated in the 
simple demo illustrated by Figure 10-26.

Figure 10-26. Version script can be used as the most elegant way of controlling the symbol visibility, as it does not 
require any modifications of the source code

Windows Dynamic Libraries Versioning
The versioning implementation in Windows follows an identical set of principles as its Linux counterpart. The code 
changes that significantly break away from the existing runtime functionality or require rebuilding of client binaries 
lead to the major version changes. The additions/expansions of the provided functionality that do not disrupt the 
functionality of the existing client binaries qualify for the minor version changes.
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The code changes that mostly affect the details of inner functionality are referred to in Linux as patches and in 
Windows as build versions. Other than the obvious naming differences, there are no substantial differences between 
the two concepts.

DLL Version Information
As with Linux dynamic libraries, the versioning information of Windows dynamic libraries (DLL) is optional. Unless a 
conscious design effort is made to specify such information, it will not be appearing as part of the DLL. As a good design 
rule, however, all the major DLL vendors (starting with Microsoft, of course) make sure the dynamic libraries they supply 
carry the version information. When available, the DLL version information is provided as a dedicated tab on the file 
property pages, which may be retrieved by right-clicking the file icon in the File Explorer pane, as shown in Figure 10-27.

Figure 10-27. Example of DLL version information
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Specifying DLL Version Information
In order to illustrate the most important aspects of the Windows DLL versioning, a demo Visual Studio solution is 
created featuring two projects:

VersionedDLL project, which builds the DLL whose version information is provided•	

VersionedDLLClientApp project, which builds the client application that loads the versioned •	
DLL and tries to retrieve its versioning information

The usual way to supply the versioning information to the DLL project is to add the dedicated version resource 
element to the library resource file, as shown in Figure 10-28.

Figure 10-28. Adding the version field to the project resource file
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Once the version resource is added to the DLL project resource file, it can be viewed and modified through the 
Visual Studio resource editor.

As Figure 10-29 indicates, the versioning information provides two distinct versioning components, FILEVERSION 
as well as PRODUCTVERSION. Despite the fact that in the vast majority of real life scenarios these two components 
have the identical values, certain differences exist in how the values of these components are set. If a DLL is used in 
more than one project, its file version number will likely be noticeably larger that its product version number.

Figure 10-29. Using the Visual Studio editor to set file version and product version information

Normally, when the DLL is just created, the version (major version, minor version, build number) are typically 
set to fairly small and fairly rounded values, such as 1.0.0. In this example, however, I’ve purposefully chosen for the 
sake of a convincing demo to not only set the versioning information to fairly large numeric values, but also so that the 
FILEVERSION values differ from the PRODUCTVERSION values.

When library is built, the version information specified by editing the version resource file can be viewed by  
right-clicking the file icon on the File Explorer pane, and choosing the Properties menu item (Figure 10-30).
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Querying and Retrieving DLL Version Information
The DLL version information may be of particular importance to several interested parties and in a multitude of 
scenarios. The client binaries whose functionality critically depends on the DLL version may want to programmatically 
examine the DLL version details in order to take an appropriate course of further actions. The installation/deployment 
packages may first retrieve the version information of the existing DLLs in order to decide whether or not to replace/
overwrite the existing DLLs with newer versions of the same file. Finally, the persons performing the system 
administration maintenance or troubleshooting duties may wish to take a closer look at the DLL version.

In this section I will focus primarily on the programmatic ways the DLL version information may be retrieved.

Figure 10-30. Set values appearing in the properties of built DLL binary file
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Linking Requirements
The software modules that need to access the versioning related functionality must be linked with the version.dll 
(i.e., its import library version.lib must be specified in the list of linker inputs), as illustrated by Figure 10-32.

Figure 10-31. DLLVERSIONINFO structure

VERSIONINFO Structure
The DLLVERSIONINFO structure, declared in the <shlwapi.h> header file, is typically used to pass the versioning 
information. Figure 10-31 shows its layout details.
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The ways that the DLL version information may be retrieved will be discussed next.

Elegant Way: Calling the DLL’s DllGetVersion Function
Well-designed DLLs typically export the implementation of the DllGetVersion() function, whose signature adheres 
to the following specification:
 
HRESULT CALLBACK DllGetVersion( DLLVERSIONINFO *pdvi);
 

This is mentioned in the in MSDN documentation at http://msdn.microsoft.com/enus/library/windows/
desktop/bb776404(v=vs.85).aspx. The DLLs provided by the Microsoft typically provide the expected functionality.

It is not complicated for the custom designed DLLs to implement it as well. Here is the outline of the recipe: the 
function prototype must be properly declared and exported, illustrated by Listing 10-20, as well as by Figure 10-33.

Listing 10-20. VersionedDll.h

// The following ifdef block is the standard way of creating macros which make exporting
// from a DLL simpler. All files within this DLL are compiled with the VERSIONEDDLL_EXPORTS
// symbol defined on the command line. This symbol should not be defined on any project
// that uses this DLL. This way any other project whose source files include this file see
// VERSIONEDDLL_API functions as being imported from a DLL, whereas this DLL sees symbols
// defined with this macro as being exported.

Figure 10-32. Linking against version.lib (version.dll) is required

http://msdn.microsoft.com/enus/library/windows/desktop/bb776404(v=vs.85).aspx
http://msdn.microsoft.com/enus/library/windows/desktop/bb776404(v=vs.85).aspx
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#ifdef VERSIONEDDLL_EXPORTS
#define VERSIONEDDLL_API __declspec(dllexport)
#else
#define VERSIONEDDLL_API __declspec(dllimport)
#endif
 
#include <Shlwapi.h>
 
VERSIONEDDLL_API HRESULT CALLBACK DllGetVersion(DLLVERSIONINFO* pdvi);
 

Figure 10-33. Properly exporting DllGetVersion() function from DLL

There are several ways the function may be implemented.

The •	 DLLVERSIONINFO structure members may be set to the predetermined set of values.  
It is preferred to have the version values in the form of parameterized constants (instead of 
literal constants).

The •	 DLLVERSIONINFO structure may be populated by loading the DLL resources, extracting the 
version information strings, and parsing out the details about major, minor, build version.

Listing 10-21 illustrates the combination of both methods. If the version resource retrieval failed, the predetermined 
values may be returned. (For the sake of simplicity, the literal constants are used in this listing. We all know that it can be 
accomplished in more structured way).

Listing 10-21. VersionedDLL.cpp

#define SERVICE_PACK_HOTFIX_NUMBER  (16385)
 
VERSIONEDDLL_API HRESULT CALLBACK DllGetVersion(DLLVERSIONINFO* pdvi)
{
        if(pdvi->cbSize != sizeof(DLLVERSIONINFO) &&
           pdvi->cbSize != sizeof(DLLVERSIONINFO2))
        {
                return E_INVALIDARG;
        }
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        if(FALSE == extractVersionInfoFromThisDLLResources(pdvi))
        {
                // should not happen that we end up here,
                // but just in case - try to save the day
                // by sticking in the actual version numbers
                // TBD: use parametrized value instead of literals
                pdvi->dwMajorVersion = 4;
                pdvi->dwMinorVersion = 1;
                pdvi->dwBuildNumber  = 7;
                pdvi->dwPlatformID   = DLLVER_PLATFORM_WINDOWS;
        }
        if(pdvi->cbSize == sizeof(DLLVERSIONINFO2))
        {
                DLLVERSIONINFO2 *pdvi2 = (DLLVERSIONINFO2*)pdvi;
                pdvi2->dwFlags = 0;
                pdvi2->ullVersion = MAKEDLLVERULL(pdvi->dwMajorVersion,
                                                  pdvi->dwMinorVersion,
                                                  pdvi->dwBuildNumber,
                                                  SERVICE_PACK_HOTFIX_NUMBER);
        }
        return S_OK;
}
 

The details of the function that extracts the version information from the DLL resources follow immediately  
in Listing 10-22.

Listing 10-22. VersionedDLL.cpp (upper part)

extern HMODULE g_hModule;
 
BOOL extractVersionInfoFromThisDLLResources(DLLVERSIONINFO* pDLLVersionInfo)
{
    static WCHAR fileVersion[256];
    LPWSTR lpwstrVersion = NULL;
        UINT   nVersionLen   = 0;
    DWORD  dwLanguageID  = 0;
    BOOL   retVal;
 
    if(NULL == pDLLVersionInfo)
        return FALSE;
 
    HRSRC hVersion = FindResource(g_hModule,
                                  MAKEINTRESOURCE(VS_VERSION_INFO),
                                  RT_VERSION );
    if(NULL == hVersion)
        return FALSE;
         
    HGLOBAL hGlobal = LoadResource( g_hModule, hVersion );
    if(NULL == hGlobal)
        return FALSE;
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    LPVOID lpstrFileVersionInfo  = LockResource(hGlobal);
    if(NULL == lpstrFileVersionInfo)
        return FALSE;
 
    wsprintf(fileVersion, L"\\VarFileInfo\\Translation");
    retVal = VerQueryValue ( lpstrFileVersionInfo,
                             fileVersion, (LPVOID*)&lpwstrVersion, (UINT *)&nVersionLen);
    if(retVal && (4 == nVersionLen))
    {
        memcpy(&dwLanguageID, lpwstrVersion, nVersionLen);
        wsprintf(fileVersion, L"\\StringFileInfo\\%02X%02X%02X%02X\\ProductVersion",
                          (dwLanguageID & 0xff00)>>8,
                           dwLanguageID & 0xff,
                          (dwLanguageID & 0xff000000)>>24,
                          (dwLanguageID & 0xff0000)>>16);
    }
    else  
    wsprintf(fileVersion,L"\\StringFileInfo\\%04X04B0\\ProductVersion",GetUserDefaultLangID());
 
    if(FALSE == VerQueryValue (lpstrFileVersionInfo,
                               fileVersion,
                               (LPVOID*)&lpwstrVersion,
                               (UINT *)&nVersionLen))
    {
        return FALSE;
    }
 
    LPWSTR pwstrSubstring = NULL;
    WCHAR* pContext = NULL;
    pwstrSubstring = wcstok_s(lpwstrVersion, L".", &pContext);
    pDLLVersionInfo->dwMajorVersion = _wtoi(pwstrSubstring);
 
    pwstrSubstring = wcstok_s(NULL, L".", &pContext);
    pDLLVersionInfo->dwMinorVersion = _wtoi(pwstrSubstring);
 
    pwstrSubstring = wcstok_s(NULL, L".", &pContext);
    pDLLVersionInfo->dwBuildNumber = _wtoi(pwstrSubstring);
         
    pwstrSubstring = wcstok_s(NULL, L".", &pContext);
    pDLLVersionInfo->dwPlatformID = _wtoi(pwstrSubstring);
 
    pDLLVersionInfo->cbSize = 5*sizeof(DWORD);
 
    UnlockResource( hGlobal );
    FreeResource( hGlobal );
 
    return TRUE;
}
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The important part of the recipe is that the good moment to capture the value of DLL’s module handle is when 
the DllMain() function gets called, as shown in Listing 10-23.

Listing 10-23. dllmain.cpp

// dllmain.cpp : Defines the entry point for the DLL application.
#include "stdafx.h"
 
HMODULE g_hModule = NULL;
 
BOOL APIENTRY DllMain( HMODULE hModule,
                       DWORD  ul_reason_for_call,
                       LPVOID lpReserved
                                         )
{
        switch (ul_reason_for_call)
        {
        case DLL_PROCESS_DETACH:
        g_hModule = NULL;
                break;
        case DLL_PROCESS_ATTACH:
                g_hModule = hModule;
        case DLL_THREAD_ATTACH:
        case DLL_THREAD_DETACH:
                break;
        }
        return TRUE;
}
 

Finally, Listing 10-24 shows how the client binary retrieves the versioning information.

Listing 10-24. main.cpp (client app)

BOOL extractDLLProductVersion(HMODULE hDll, DLLVERSIONINFO* pDLLVersionInfo)
{
    if(NULL == pDLLVersionInfo)
        return FALSE;
 
    DLLGETVERSIONPROC pDllGetVersion;
    pDllGetVersion = (DLLGETVERSIONPROC) GetProcAddress(hDll, "DllGetVersion");
    if(NULL == pDllGetVersion)
        return FALSE;
 
    ZeroMemory(pDLLVersionInfo, sizeof(DLLVERSIONINFO));
    pDLLVersionInfo->cbSize = sizeof(DLLVERSIONINFO);
    HRESULT hr = (*pDllGetVersion)(pDLLVersionInfo);
    if(FAILED(hr))
        return FALSE;
 
    return TRUE;
}
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Brutal Alternative: Examining File Version Directly
If it happens that the DLL does not export the DllGetVersion() function, you may resort to the more brutal measure 
of extracting the versioning information embedded in the file resources. The complete effort of implementing this 
approach resides on the client binary side. As can be easily concluded by comparing the following code with the code 
laid out in the previous approach description, the same methodology is applied, based on loading the resources from 
the file, extracting the version string and extracting the version numbers thereof (see Listing 10-25).

Listing 10-25. main.cpp (client app)

BOOL versionInfoFromFileVersionInfoString(LPSTR lpstrFileVersionInfo,
                                          DLLVERSIONINFO* pDLLVersionInfo)
{
    static WCHAR fileVersion[256];
    LPWSTR lpwstrVersion    = NULL;
    UINT   nVersionLen  = 0;
    DWORD  dwLanguageID = 0;
    BOOL   retVal;
 
    if(NULL == pDLLVersionInfo)
        return FALSE;
 
    wsprintf(fileVersion, L"\\VarFileInfo\\Translation");
    retVal = VerQueryValue ( lpstrFileVersionInfo,
                             fileVersion, (LPVOID*)&lpwstrVersion, (UINT *)&nVersionLen);
    if(retVal && (4 == nVersionLen))
    {
        memcpy(&dwLanguageID, lpwstrVersion, nVersionLen);
        wsprintf(fileVersion, L"\\StringFileInfo\\%02X%02X%02X%02X\\FileVersion",
                 (dwLanguageID & 0xff00)>>8,
                  dwLanguageID & 0xff,
                 (dwLanguageID & 0xff000000)>>24,
                 (dwLanguageID & 0xff0000)>>16);
    }
    else
        wsprintf(fileVersion,L"\\StringFileInfo\\%04X04B0\\FileVersion",GetUserDefaultLangID());
 
    if(FALSE == VerQueryValue (lpstrFileVersionInfo,
                               fileVersion,
                               (LPVOID*)&lpwstrVersion,
                               (UINT *)&nVersionLen))
    {
        return FALSE;
    }
 
    LPWSTR pwstrSubstring = NULL;
    WCHAR* pContext = NULL;
    pwstrSubstring = wcstok_s(lpwstrVersion, L".", &pContext);
    pDLLVersionInfo->dwMajorVersion = _wtoi(pwstrSubstring);
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    pwstrSubstring = wcstok_s(NULL, L".", &pContext);
    pDLLVersionInfo->dwMinorVersion = _wtoi(pwstrSubstring);
 
    pwstrSubstring = wcstok_s(NULL, L".", &pContext);
    pDLLVersionInfo->dwBuildNumber = _wtoi(pwstrSubstring);
         
    pwstrSubstring = wcstok_s(NULL, L".", &pContext);
    pDLLVersionInfo->dwPlatformID = _wtoi(pwstrSubstring);
 
    pDLLVersionInfo->cbSize = 5*sizeof(DWORD);
    return TRUE;
}
 
BOOL extractDLLFileVersion(DLLVERSIONINFO* pDLLVersionInfo)
{
    DWORD dwVersionHandle = 0;
    DWORD dwVersionInfoSize = GetFileVersionInfoSize (DLL_FILENAME, &dwVersionHandle);
    if(0 == dwVersionInfoSize)
        return FALSE;
 
    LPSTR lpstrFileVersionInfo = (LPSTR) malloc (dwVersionInfoSize);
    if (lpstrFileVersionInfo == NULL)
        return FALSE;
  
    BOOL bRetValue = GetFileVersionInfo(DLL_FILENAME,
                                        dwVersionHandle,
                                        dwVersionInfoSize,
                                        lpstrFileVersionInfo);
    if(bRetValue)
    {
        bRetValue = versionInfoFromFileVersionInfoString(lpstrFileVersionInfo, pDLLVersionInfo);
    }
 
    free (lpstrFileVersionInfo);
    return bRetValue;
}
 
int main(int argc, char* argv[])
{
    //
    // Examining the DLL file ourselves
    //
    memset(&dvi, 0, sizeof(DLLVERSIONINFO));
    if(extractDLLFileVersion(&dvi))
    {
        printf("DLL File Version (major, minor, build, platformID) = %d.%d.%d.%d\n",
                dvi.dwMajorVersion, dvi.dwMinorVersion,
                dvi.dwBuildNumber, dvi.dwPlatformID);
    }
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    else
        printf("DLL File Version extraction failed\n");
 
    FreeLibrary(hDll);
 
    return 0;
}
 

Finally, the result of running the demo app which demonstrates both approaches (DLL querying and “brute force”) 
is shown in Figure 10-34.

Figure 10-34. Programmatically extracting DLL product version as well as the file version
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Chapter 11

Dynamic Libraries: Miscellaneous 
Topics

After understanding the most profound ideas behind the concept of dynamic libraries, and before diving into the 
details of the toolbox of the software professional dealing with libraries on daily basis, it is a good moment to take 
a closer look at a few remaining issues. First, let’s take a closer look at the concept of plug-ins, the omnipresent 
mechanism of seamlessly extending the basic functionality of a framework. Then, I will point out a few practical 
implications stemming from the concept of dynamic libraries. Finally, I will take a closer look at a few miscellaneous 
topics which a developer may encounter in the everyday work.

Plug-in Concept
Probably the most important concept made possible by the advancement of dynamic linking is the concept of  
plug-ins. There is nothing substantially hard to understand in the concept itself, as we encounter it in plethora of 
everyday scenarios, most of which don’t require any technical background. A good example of the plug-in concept is 
the drill and the variety of drill bits that can be changed as per the needs of particular situation and the decision of the 
end user (Figure 11-1).
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The software concept of plug-ins follows the same principle. Basically, there is a major application (or execution 
environment) that performs a certain action on a certain processing subject (for example, the photo processing 
application that modifies a picture’s properties), and there is a set of modules that specialize in performing a very 
specific action on the processing subject (for example, blurring filter, sharpening filter, sepia filter, color contrast filter, 
high pass filter, averaging filter, etc.), a concept which is very easy to comprehend.

But that’s not all.
Not all of the systems comprising the flagship application and the associated modules deserve to be called  

“plug-in architecture.” In order for architecture to support the plug-in model, the following requirements need to be 
satisfied as well:

Adding or removing the plug-ins should not require that the application be recompiled; •	
instead, the application should be capable of determining the availability of plug-ins at 
runtime.

The modules should export their functionality through a runtime loadable mechanism of •	
some kind.

The system should be functional regardless of which plug-ins are available at runtime to end user.•	

Figure 11-1. Drill and bits, an everyday example of the plug-in concept
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In reality, the above requirements are typically supported through the following design decisions:

Plug-ins are implemented as dynamic libraries. Regardless of the inner functionality, all •	
plug-in dynamic libraries export the standardized interface (a set of functions allowing the 
application to control the plug-in execution).

The application loads the plug-ins through the process of dynamic library loading.  •	
The following two options are typically supported:

The application looks at the predefined folder and tries loading all the dynamic libraries •	
that it finds there at runtime. Upon loading, it tries to find the symbols corresponding  
to the interface that the plug-ins are expected to export. If the symbols are not found  
(or only some of them are found), the plug-in library is unloaded.

The user, through a dedicated GUI option at runtime, specifies the plug-in location and •	
tells the application to load the plug-in and start providing its functionality.

Rules of Exporting
Rigorously strict rules for each and every plug-in architecture do not exist. However, a common sense set of guidelines 
does exist. According to the paragraph explaining the impact of the C++ language on linker problems, the majority of 
plug-in architectures tend to follow the simplest possible scheme in which a plug-in exports a pointer to the interface 
comprised of C-linkage functions.

Even though the plug-ins’ inner functionality may be implemented as a C++ class, such a class typically 
implements the interface exported by its dynamic library container, and passing a pointer to the class instance (casted 
as the pointer to the interface) to the application is usual practice.

Popular Plug-in Architectures
There is vast variety of popular programs that support the plug-in architecture, such as (but not limited to):

Image processing applications (Adobe Photoshop, etc.)•	

Video processing applications (Sony Vegas, etc.)•	

Sound processing (Steinberg VST plug-in architecture, universally supported across all major •	
audio editors)

Multimedia frameworks (GStreamer, avisynth) and popular applications (Winamp, mplayer)•	

Text editors (a vast number of which have plug-ins providing certain functionalities) •	

Software development integrated development environments (IDEs) supporting a variety of •	
features through the plug-ins

Version control systems’ front-end GUI applications•	

Web browsers (NPAPI plug-in architecture)•	

Etc.•	

For each of these plug-in architectures there is typically a published plug-in interface document stipulating in 
detail the interaction between the application and the plug-in.
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Tips and Tricks
The very last step on your journey to fully understanding the concept of dynamic libraries requires that you take a 
little step back and organize everything you’ve learned so far into another set of simple facts. Formulating things in a 
different manner may sometimes mean a lot of difference in the domain of everyday design practices.

Practical Implications of Working with Dynamic Libraries
After all the details about the dynamic libraries have been examined, the most potent truth about them is that linking 
against dynamic libraries is kind of linking on promise. Indeed, during the build stage, all that the client executable 
worries about are the dynamic libraries symbols. It is only at the runtime loading stage that the contents of the 
dynamic library sections (code, data, etc.) come to play. There are several real-life implications stemming from the 
described set of circumstances.

Compartmentalized, Faster Development
The concept of dynamic libraries allows a lot of freedom for a programmer. As long as the set of symbols important to 
the client executable does not change, the programmer is free to keep modifying the actual dynamic library code as 
long and as much as desired.

This simple fact has a tremendous impact on the programming everyday routines, as it tends to greatly reduce 
unnecessary compile time. Instead of having to recompile the whole body of code whenever a minuscule change 
of code happens, by using the dynamic libraries, the programmers can reduce the need to rebuild the code to the 
dynamic library itself. It is no wonder that programmers often decide to host code under development in the dynamic 
library, at least up until the development is completed.

Runtime Quick Substitution Ability
At build time, the client binary doesn’t need the fully fledged dynamic library with all bells and whistles in place. 
Instead, all that the client binary really needs at build time is the set of dynamic library’s symbols—nothing more and 
nothing less than that.

This is really interesting. Please take a deep breath, and let’s take a look at what this claim really means.
The dynamic library binary file that you use at build time and the dynamic library file that is loaded at runtime 

may be substantially different in every aspect, except in one: the symbols must match.
In other words (and yes, this is true and exactly how it was meant to be), for the statically-aware building 

purposes you may use dynamic library whose code (flash and blood) is yet about to be implemented, but its symbols 
(the skeleton) are already in their final shape.

Or, you may use a library whose code you know will change, as long as you may be assured that the set of 
exported symbols will not change.

Or, you may use the dynamic library suitable for one specific flavor (such as language pack) at build time, but link 
at runtime with another dynamic library—as long as the both dynamic library binaries export the same set of symbols.

This is really, really interesting. An extreme example of how we may benefit from this important finding happens 
in the domain of Android native programming. During the effort to develop a module (dynamic library or native 
application), it is not completely uncommon for whole teams of developers unnecessarily and unwisely to take the 
time-consuming path of adding their source code into the gigantic Android source tree whose building may take 
several hours.



Chapter 11 ■ DynamiC Libraries: misCeLLaneous topiCs

237

Alternatively, a far more effective procedure is to develop a module as a standalone Android project, unrelated 
to the Android source tree. In a matter of minutes, the Android native dynamic libraries necessary to complete the 
build phase may be copied (“adb pulled” in Android lingo) from any working Android device/phone and added to the 
project build structure. Instead taking several hours, the build procedure now takes several minutes at most.

Even though the code ( the .text section) of the dynamic library pulled from the nearest available Android 
phone may significantly differ from the code found in the Android source tree, the list of symbols is very likely 
identical in both dynamic libraries. Obviously, the quick replacement library pulled from the Android device may 
satisfy the build requirements, whereas at runtime “the right one” of the dynamic library binary will be loaded.

Miscellaneous Tips
In the remainder of this chapter, I will cover the following interesting tidbits of knowledge:

Converting the dynamic library to executable•	

Conflicting runtime memory handling scenarios of Windows libraries•	

Linker weak symbols•	

Converting Dynamic Library to Executable
As was pointed out earlier in the introductory discussions about dynamic libraries, the difference between the 
dynamic library and executable is in the fact that later has startup routines which allow the kernel to actually start the 
execution. In all other aspects, especially if compared to the static libraries, it appears that the dynamic library and 
executable are of the same nature, such as the binary file in which all the references have been resolved.

Given so many similarities and so little differences, is it possible to convert the dynamic library to the executable?
The answer to this question is positive. It’s most certainly possible on Linux (I’m still looking to confirm the 

claim on Windows as well). As a matter of fact, the library implementing C runtime library (libc.so) is in fact truly 
executable. When invoked by typing its filename in the shell window, you get the response shown in Figure 11-2.

Figure 11-2. Running libc.so as executable file
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The question that naturally comes next is how to implement the library in order to make it executable?
The following recipe makes it possible:

Implement the main function inside the dynamic library—the function whose prototype is•	
 
          int main(int argc, char* argv[];
 

Declare the standard •	 main() function as the library entry point. Passing the -e linker flag is 
how you accomplish this task.

 
          gcc -shared -Wl,-e,main -o<libname>
 

Turn the •	 main() function into a no-return function.  This can be done by inserting the 
_exit(0) call as the last line of the main() function.

Specify the interpreter to be the dynamic linker. The following line of code would do it:•	
 
           #ifdef __LP64__
           const char service_interp[] __attribute__((section(".interp"))) = 
                   "/lib/x86_64-linux-gnu/ld-linux-x86-64.so.2"; 
           #else
           const char service_interp[] __attribute__((section(".interp"))) =
                   "/lib/ld-linux.so.2";
           #endif
 

Built the library without the optimization (with the •	 -O0 compiler flag).

A simple demo project is made to illustrate the idea. In order to prove the truly dual nature of the dynamic library 
(i.e., even though it now can be run as executable, it still remains capable of functioning as a regular dynamic library), 
the demo project contains not only the demo dynamic library, but also the executable that dynamically loads it and 
calls its printMessage() function. The Listing 11-1 illustrates the details of executable shared library project:

Listing 11-1.

file: executableSharedLib.c

#include "sharedLibExports.h"
#include <unistd.h> // needed for the _exit() function
 
// Must define the interpretor to be the dynamic linker
#ifdef __LP64__
const char service_interp[] __attribute__((section(".interp"))) =
    "/lib/x86_64-linux-gnu/ld-linux-x86-64.so.2";
#else
const char service_interp[] __attribute__((section(".interp"))) =
    "/lib/ld-linux.so.2";
#endif
 
void printMessage(void)
{
    printf("Running the function exported from the shared library\n");
}
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int main(int argc, char* argv[])
{
    printf("Shared library %s() function\n", __FUNCTION__);
         
    // must make the entry point function to be a 'no-return' function type
    _exit(0);
} 

file: build.sh

g++ -Wall -O0 -fPIC -I./exports/ -c src/executableSharedLib.c -o src/executableSharedLib.o
g++ -shared -Wl,-e,main ./src/executableSharedLib.o -pthread -lm -ldl -o  
../deploy/libexecutablesharedlib.so
 

The Listing 11-2 illustrates the details of the demo app whose purpose is to prove that by becoming executable 
our shared library did not loose its original functionality:

Listing 11-2.

file: main.c

#include <stdio.h>
#include "sharedLibExports.h"
 
int main(int argc, char* argv[])
{
    printMessage();
    return 0;
} 

file: build.sh

g++ -Wall -O2 -I../sharedLib/exports/ -c src/main.c -o src/main.o
g++  ./src/main.o -lpthread -lm -ldl -L../deploy -lexecutablesharedlib -Wl,-Bdynamic -Wl,-R 

../deploy -o demoApp

When you try to use it, the results shown in Figure 11-3 appear.
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The project source code tarball provides the more insight into the details.

Conflicting Runtime Memory Handling of Windows Libraries
In general, once the dynamic library gets loaded into the process, it becomes a legitimate part of the process and 
pretty much inherits all the privileges of the process, including access to the heap (the pool of memory on which 
dynamic memory allocation runs). For these reasons, it is perfectly normal that a dynamic library function allocates 
memory buffer, and passes it to a function belonging to the other dynamic library (or to executable code) where the 
memory can be deallocated when no longer needed.

However, there is a special twist to the whole story which needs to be carefully examined.
Typically, regardless of how many dynamic libraries are loaded into the process, they all link against the same 

instance of C runtime library, which provides the memory allocation infrastructure—the malloc and free (or in the 
case of C++, new and delete), as well as the implementation of the list keeping track of the allocated memory buffers. 
If this infrastructure is unique per process, there are really no reasons why the described scheme in which anybody 
can deallocate the memory allocated by anybody else should not work.

The interesting case, however, may happen in the domain of Windows programming. Visual Studio provides 
(at least) two base DLLs on top of which all the executables (applications/dynamic libraries) are built—the usual C 
runtime library (msvcrt.dll) as well as Microsoft Foundation Classes (MFC) library (mfx42.dll). Sometimes projects 
requirement may happen to dictate the mixing and matching of the DLLs built upon on different base DLLs, which 
may immediately cause very unpleasant deviations from the expected rules.

Let’s say for the sake of clarity that in the same project you have the following two DLLs loaded at runtime: DLL 
“A,” built on msvcrt.dll, and DLL “B,” built on MFC DLL. Let’s now assume that DLL “A” allocates memory buffers and 
passes it to DLL “B,” which uses them and then deallocates them. In this case, the attempt to deallocate the memory 
will result in a crash (the exception looking like the one in Figure 11-4).

Figure 11-3. Illustrating dual nature (dynamic lib, executable) of the demo library
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The cause of the problem is that there are two bookkeeping authorities around the available pool of heap memory; 
both C runtime DLL and MFC DLL maintain their own, separate lists of the allocated buffers (see Figure 11-5).

???Allocation list
Heap memory

DLL linked against
mfx42.dll

DLL linked against
msvcrtl.dll

msvcrt.dll mfx42.dll

Figure 11-5. The mechanism of runtime problems caused by unrelated memory allocation bookkeepings maintained 
by different DLLs

Figure 11-4. Error message dialog typical for between-DLLs-conflict memory issues
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Normally, when sending the buffer for deallocation, the memory allocation infrastructure searches the list of 
allocated memory addresses, and if the buffer passed for deallocation is found in the list, the deallocation can be 
successfully completed. If, however, the allocated buffer is maintained in one list (say, maintained by the C runtime DLL) 
and passed for deallocation to the other list (say, maintained by the MFC DLL), the buffer’s memory address will not 
be found in the list, and the deallocation call will throw an exception. Even if you handle the exception silently, it is 
questionable whether the application will be capable of sending the buffer to the right DLL for deallocation, thus 
causing memory leaks.

For things to be worse, virtually none of the usual memory-bound checking tools have been able to detect and 
report anything wrong. In the defense of the tools, you can notice that in fact none of the typical memory violations 
happen in this particular case (such as writing past the buffer boundaries, overwriting buffer address, etc). This all 
makes the problem unpleasant to deal with, and unless you have an idea upfront about the potential problems, it may 
be really tough to pinpoint the cause, let alone the solution to the problem.

The solution to the problem is exceptionally simple: the memory buffers allocated in one DLL should be 
ultimately passed back to the same DLL to be deallocated. The only problem is that in order to apply this simple 
solution you need to have access to the source code of both DLLs, which may not always be possible.

Linker Weak Symbols Explained
The idea of a linker weak symbol is in its essence similar to the overriding feature of object-oriented languages  
(which is one of the manifestations of polymorphism principle). When applied to the domain of linking, the idea of 
weak symbols practically means the following:

Compilers (most notably, •	 gcc) support the language construct, allowing you to declare a 
symbol (a function and/or a global or function-static variable) as weak.

The following example demonstrates how to declare a C function as a weak symbol:
 
          int __attribute__((weak)) someFunction(int, float);
 

The linker takes this information to handle such symbol in a very unique way.•	

If another identically named symbol appears during the linking, and is not declared weak, •	
that another symbol will replace the weak symbol.

If another identically named symbol appears during the linking and is declared weak, the •	
linker is free to decide which of the two will be actually implemented.

The presence of two non-weak (i.e., strong) symbols of the same name is considered an •	
error (the symbol is already defined).

If during the linking no other identically named symbols appear, the linker may not •	
implement such symbol. If the symbol is a function pointer, the safeguarding the code is a 
must (in fact, it is strongly recommended to do it always).

An excellent illustration of the concept of weak symbols is found in Winfred C.H. Lu’s blog post at  
http://winfred-lu.blogspot.com/2009/11/understand-weak-symbols-by-examples.html. The actual  
real-life scenario of when such features may come handy is described in Andrew Murray’s blog post at  
www.embedded-bits.co.uk/2008/gcc-weak-symbols/.

http://winfred-lu.blogspot.com/2009/11/understand-weak-symbols-by-examples.html
http://www.embedded-bits.co.uk/2008/gcc-weak-symbols/
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Chapter 12

Linux Toolbox

The purpose of this chapter is to introduce the reader to a set of tools (utility programs as well as other methods) for 
analyzing the contents of the Linux binary files.

Quick Insight Tools
The easiest and the most immediate insight into the nature of a binary file can be obtained by using the file and/or 
size utility programs.

file Utility Program
The command-line utility named simply file (http://linux.die.net/man/1/file) is used to find out details about 
just about any file type. It can quickly come in handy because it determines the most basic info about the binary file 
(Figure 12-1).

Figure 12-1. Using the file utility

size Utility Program
The command-line utility named size (http://linux.die.net/man/1/size) may be used to instantly obtain an 
insight into the ELF sections byte lengths (Figure 12-2).

http://linux.die.net/man/1/file
http://linux.die.net/man/1/size
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Detailed Analysis Tools
Detailed insight into the binary file properties may be obtained by relying on the collection of utilities collectively 
referred to as binutils (www.gnu.org/software/binutils/). I will illustrate the use of the ldd, nm, objdump, and 
readelf utilities. Even though it formally does not belong to the binutils, the shell script called ldd (written by 
Roland McGrath and Ulrich Drepper) nicely fits in the same compartment of the toolbox, and hence its use will be 
illustrated as well.

ldd
The command ldd (http://linux.die.net/man/1/ldd) is an exceptionally useful tool, as it shows the complete list of 
the dynamic libraries which a client binary will try to statically aware load (i.e., the load-time dependencies).

When analyzing the load-time dependencies, ldd first examines the binary file trying to locate the ELF format 
field in which the list of the most immediate dependencies has been imprinted by the linker (as suggested by the 
linker command line during the build process).

For each of the dynamic libraries whose names have been found embedded within the client binary file, ldd 
tries to locate their actual binary files according to the runtime library location search rules (as described in detail in 
Chapter 7). Once the binaries of the most immediate dependencies have been located, ldd runs the next level of its 
recursive procedure, trying to find their dependencies. On each of the “second generation” dependencies, ldd runs 
another round of investigation, and so on.

Once the described recursive search is completed, ldd gathers the list of reported dependencies, trims out the 
duplicates, and prints out the result (as shown in Figure 12-3).

Figure 12-2. Using the size utility

www.gnu.org/software/binutils/
http://linux.die.net/man/1/ldd
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Before using ldd it is important to be aware of its limitations:

•	 ldd cannot identify the libraries dynamically loaded at runtime by calling the dlopen() 
function. In order to obtain this kind of information, different approaches must be applied. 
For more details, please visit Chapter 13.

According to its man page, running certain •	 ldd versions may actually represent a  
security threat.

Safer ldd Alternatives
As stated in the man page:

Be aware, however, that in some circumstances, some versions of ldd may attempt to obtain the 
dependency information by directly executing the program. Thus, you should never employ ldd on 
an untrusted executable, since this may result in the execution of arbitrary code. A safer alternative 
when dealing with untrusted executables is the following (and also shown in Figure 12-4):

 
$ objdump -p /path/to/program | grep NEEDED 

Figure 12-3. Using the ldd utility

Figure 12-4. Using objdump to (only partially) substitute the ldd utility

The same result may be achieved by using the readelf utility (Figure 12-5):
 
$ readelf -d /path/to/program | grep NEEDED
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Figure 12-5. Using readelf to (only partially) substitute the ldd utility

Figure 12-6. Using the nm utility to list unmangled symbols

Obviously, in the analysis of dependencies both tools do not go deeper than merely reading out the list of the 
most immediate dependencies from the binary file. From a security standpoint, this is definitely a safer method of 
finding the answer.

However, the provided list is nowhere near being as exhaustively complete as typically provided by ldd. In order 
to match it, you would probably need to conduct the recursive search on your own.

nm
The nm utility (http://linux.die.net/man/1/nm) is used to list the symbols of a binary file (Figure 12-6). The output 
line that prints out the symbol also indicates the symbol type. If the binary contains C++ code, the symbols are printed 
by default in the mangled form. Here are some of the most typically used input argument combinations:

•	 $ nm <path-to-binary> lists all symbols of a binary file. In case of shared libraries, it means 
not only the exported (of the .dynamic section) but all other symbols as well. If the library has 
been stripped (by using the strip command), nm without arguments will report no symbols 
found.

•	 $ nm -D <path-to-binary> lists only the symbols in the dynamic section (i.e., exported/
visible symbols of a shared library).

•	 $ nm -C <path-to-binary lists the symbols in demangled format (Figure 12-6).

http://linux.die.net/man/1/nm
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•	 $ nm -D --no-demangle <path-to-binary> prints the dynamic symbols of shared library and 
strictly requires that the symbols are not demangled (Figure 12-7).

Figure 12-7. Using the nm utility to list mangled symbols

Figure 12-8. Using nm to recursively search for the presence of a symbol in the set of libraries

This option is extremely useful in detecting the most usual bug when designing the shared 
library—the case when the designer forgets the extern "C" specifier in the ABI function 
declaration/definition (which happens to be exactly what the client binary expects to find).

•	 $ nm -A <library-folder-path>/* | grep symbol-name is useful when you search for a 
symbol in multitude of binaries located in the same folder, as -A option prints the name of 
each library in which a symbols is found (Figure 12-8).

•	 $ nm -u <path-to-binary> is useful when you want to list the library’s undefined symbols 
(i.e., the symbols that the library itself does not contain, but counts on to be provided at 
runtime, possibly by some other loaded dynamic library).

The web article at www.thegeekstuff.com/2012/03/linux-nm-command/ lists the 10 most useful nm commands.

http://www.thegeekstuff.com/2012/03/linux-nm-command/
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objdump
The objdump (http://linux.die.net/man/1/objdump) utility program is probably the single most versatile binary 
analysis tool. Chronologically, it is older than readelf, which parallels its abilities in many cases. The advantage of 
objdump is that in addition to ELF, it supports about 50 other binary formats. Also, its disassembling capabilities are 
better than those of readelf.

The following sections cover the tasks that most frequently make use of objdump.

Parsing ELF Header
The objdump -f command-line option is used to obtain an insight into the object file’s header. The header provides 
plenty of useful information. In particular, the binary type (object file/static library vs. dynamic library vs. executable) 
as well as the information about the entry point (start of the .text section) may be quickly obtained (Figure 12-9).

Figure 12-9. Using objdump to parse the ELF header of various binary file types

When examining the static library, objdump -f prints out the header of each and every object file found in the 
library.

Listing and Examining Sections
The objdump -h option is used to list the available sections (Figure 12-10).

http://linux.die.net/man/1/objdump
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When it comes to section examinations, objdump provides dedicated command switches for the sections that 
are most frequently topic of interest for the programmers. In the following sections, I look at some of the notable 
examples.

Figure 12-10. Using objdump to list the binary file sections
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Listing All Symbols
Running objdump -t <path-to-binary> provides output that is the full equivalent of running nm <path-to-binary> 
(Figure 12-11).

Figure 12-11. Using objdump to list all symbols
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Listing Dynamic Symbols Only
Running objdump -T <path-to-binary> provides output that is the full equivalent of running nm -D <path-to-binary> 
(Figure 12-12).

Examining Dynamic Section
Running objdump -p <path-to-binary> examines the dynamic section (useful for finding DT_RPATH and/or  
DT_RUNPATH settings). Please notice that in this scenario you care about the final part of displayed output  
(Figure 12-13).

Figure 12-12. Using objdump to list only dynamic symbols
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Examining Relocation Section
Running objdump -R <path-to-binary> examines the relocation section (Figure 12-14).

Figure 12-13. Using objdump to examine the library dynamic section
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Examining Data Section
Running objdump -s -j <section name> <path-to-binary> provides the hex dump of the values carried by the 
section. In Figure 12-15, it is the .got section.

Listing and Examining Segments
Running objdump -p <path-to-binary> displays information about the ELF binary segments. Note that only the first 
part of the displayed output pertains to this particular task (Figure 12-16).

Figure 12-14. Using objdump to list the relocation section

Figure 12-15. Using objdump to examine the data section
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Disassembling the Code
Here are a few examples of how objdump may be used to disassemble the code:

Disassembling and specifying assembler notation flavor (Intel style in this case), as shown in •	
Figure 12-17.

Figure 12-16. Using objdump to list segments



Chapter 12 ■ Linux tooLbox

255

Disassembling and Intel style and interspersing the original source code (Figure •	 12-18).

Figure 12-17. Using objdump to disassemble the binary file

Figure 12-18. Using objdump to disassemble the binary file (Intel syntax)
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This option works only if the binary is built for debug (i.e., with the -g option).

Disassembling specific sections.•	

Other than .text section that carries the code, the binary may contain other sections (.plt, for 
example) that also contain the code. By default, objdump disassembles all the sections carrying 
the code. However, there may be scenarios in which you are interested in examining the code 
carried strictly by a given section (Figure 12-19).

Figure 12-19. Using objdump to disassemble a specific section
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objdump nm equivalents
objdump can be used to provide full equivalents of the nm command:

•	 $ nm <path-to-binary>

equivalent is
 
$ objdump -t <path-to-binary>
 

•	 $ nm -D <path-to-binary>

equivalent is
 
$ objdump -T <path-to-binary>
 

•	 $ nm -C <path-to-binary>

equivalent is
 
$ objdump -C <path-to-binary> 

readelf
The readelf (http://linux.die.net/man/1/readelf) command-line utility provides almost completely duplicate 
functionality found in the objdump utility. The most notable differences between the readelf and objdump are

•	 readelf supports only ELF binary format. On the other hand, the objdump can analyze about 
50 different binary formats, including the Windows PE/COFF format.

•	 readelf does not depend on the Binary File Descriptor library (http://en.wikipedia.org/
wiki/Binary_File_Descriptor_library), which all GNU object file parsing tools depend on, 
thus providing the independent insight into the contents of ELF format

The following two sections provide an overview of the most common tasks that make use of objdump.

Parsing ELF Header
The readelf -h command-line option is used to obtain an insight into the object file’s header. The header provides 
plenty of useful information. In particular, the binary type (object file/static library vs. dynamic library vs. executable) as 
well as the information about the entry point (the start of the .text section) may be quickly obtained (Figure 12-20).

http://linux.die.net/man/1/readelf
http://en.wikipedia.org/wiki/Binary_File_Descriptor_library
http://en.wikipedia.org/wiki/Binary_File_Descriptor_library
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Figure 12-20. (continued)
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Figure 12-20. Examples of using readelf to examine the ELF header of executable, shared library, and object  
file/static library

When examining the static library, readelf -h prints out the header of each and every object file found in  
the library.

Listing and Examining Sections
The readelf -S option is used to list the available sections (Figure 12-21).
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When it comes to section examinations, readelf provides dedicated command switches for the sections that are 
most frequently topics of interest for programmers, such as the .symtab, .dynsym, and .dynamic sections.

Listing All Symbols
Running readelf --symbols provides output that is the full equivalent of running nm <path-to-binary> (Figure 12-22).

Figure 12-21. Using readelf to list sections
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Figure 12-22. Using readelf to list all symbols
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Listing Dynamic Symbols Only
Running readelf --dyn-syms provides output that is the full equivalent of running nm -D <path-to-binary> 
(Figure 12-23).

Examining the Dynamic Section
Running readelf -d examines the dynamic section (useful for finding DT_RPATH and/or DT_RUNPATH settings),  
as shown in Figure 12-24.

Figure 12-23. Using readelf to list dynamic symbols
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Figure 12-24. Using readelf to display the dynamic section

Examining the Relocation Section
Running readelf -r examines the relocation section, as shown in Figure 12-25.
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Figure 12-25. Using readelf to list relocation (.rel.dyn) section

Examining the Data Section
Running readelf -x provides the hex dump of the values carried by the section. In Figure 12-26, it is the .got section.

Listing and Examining Segments
Running readelf --segments displays information about the ELF binary segments (Figure 12-27).

Figure 12-26. Using readelf to provide a hex dump of a section (the .got section in this example)
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Detecting the Debug Build
The readelf command has very good support for displaying all kind of debugging-specific information contained in 
the binary (Figure 12-28).

Figure 12-27. Using readelf to examine segments
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To quickly determine whether the binary was built for debug or not, in the case of a debug build, the output 
of running readelf --debug-dump with any of available options will be comprised of a number of lines printed on 
stdout. On the contrary, if the binary was not built for debugging, the output will be an empty line. One of the quick 
and practical ways of limiting the output spew in the case when the binary contains the debugging information is to 
pipe the readelf output to the wc command:
 
$ readelf --debug-dump=line <binary file path>| wc -l
 

Alternatively, the following simple script may be used to display the readelf's findings in plain and simple text 
form. It requires that the path to the binary file be passed as an input argument.
 
file: isDebugVersion.sh
if readelf --debug-dump=line $1 > /dev/null; then echo "$1 is built for debug"; fi 

Deployment Phase Tools
After you successfully build your binary files and start thinking about the details of the deploying stage, utilities such 
as chrpath, patchelf, strip, and ldconfig may come handy.

Figure 12-28. Readelf provides the option to examine binary file debug information
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chrpath
The chrpath command-line utility program (http://linux.die.net/man/1/chrpath) is used to modify the rpath 
(DT_RPATH field) of the ELF binaries. The basic concept behind the runpath field is described in Chapter 7, under the 
“Linux Runtime Library Location Rules” section.

The following details illustrate the use (Figure 12-29) as well as some of the limitations (Figure 12-30) of chrpath:

It can be used to modify •	 DT_RPATH within its original string length.

It can be used to delete the existing •	 DT_RPATH field.

However, be cautious!

If the •	 DT_RPATH string is initially empty, it cannot be substituted with new non-empty string.

It can be used to convert •	 DT_RPATH to DT_RUNPATH.

It cannot substitute the existing •	 DT_RPATH string with the longer string.

Figure 12-29. Using the chrpath utility to modify RPATH

http://linux.die.net/man/1/chrpath
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Figure 12-30. Limitations of the chrpath utility

patchelf
The useful patchelf (http://nixos.org/patchelf.html) command-line utility program is currently not part of 
the standard repositories, but it is possible to build it from the source tarball. Simple, basic documentation is also 
available.

This utility can be used to set and modify the runpath (DT_RUNPATH field) of the ELF binaries. The basic concept 
behind the runpath field is described in the Chapter 7, under the “Linux Runtime Library Location Rules” section.

The simplest way of setting up the runpath is to issue a command like this one:
 
$ patchelf --set-rpath <one or more paths> <executable>
                             ^
                             |
                          multiple paths can be defined,
                          separated by a colon (:)
 

http://nixos.org/patchelf.html
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The capabilities of patchelf of modifying the DT_RUNPATH field far exceed the chrpath capabilities of modifying 
the DT_RPATH field, as it can modify the string value of DT_RUNPATH in any way imaginable (substituting with a shorter 
or longer string, inserting multiple paths, erasing, etc.).

strip
The strip command-line utility program (http://linux.die.net/man/1/strip) can be used to eliminate all 
the library symbols that are not needed in the process of dynamic loading. An illustration of the strip effects was 
demonstrated in Chapter 7, under the “Exporting the Linux dynamic library symbols” section.

ldconfig
In Chapter 7 (devoted to the Linux runtime library location rules), I indicated that one of the ways (albeit not the 
highest priority) to specify the paths where the loader should look for libraries at runtime is through the use of 
ldconfig cache.

The ldconfig command-line utility program (http://linux.die.net/man/8/ldconfig) is typically executed as 
the very last step of a package installation procedure. When a path containing the shared library is passed as input 
argument to ldconfig, it searches the path for the shared libraries, and updates the set of files it uses for bookkeeping:

The file •	 /etc/ld.so.conf containing the list of folders it standardly scans

The file •	 /etc/ld.so.cache file, which contain the ASCII textual list of all libraries found 
throughout the scans of variety of paths that were passed as input argument

Runtime Analysis Tools
The analyses of runtime issues may benefit by using the tools such as strace, addr2line, and especially GNU 
debugger (gdb).

strace 
The strace (http://linux.die.net/man/1/strace) command-line utility program tracks down the system calls 
made by the process as well as the signals received by the process. It can be helpful in figuring out the runtime 
dependencies (i.e., not only load-time dependencies for which the ldd command is suitable). Figure 12-31 illustrates 
the typical strace output.

http://linux.die.net/man/1/strip
http://linux.die.net/man/8/ldconfig
http://linux.die.net/man/1/strace
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addr2line
The addr2line (http://linux.die.net/man/1/addr2line) command-line utility program can be used to convert the 
runtime address into information about the source file and the line number corresponding to the address.

If (and if only) the binary is built for debug (by passing the-g -O0 compiler flags), using this command may be 
very helpful when analyzing crash information in which the program counter address where the crash happened is 
printed on the terminal screen as something like this:
 
#00 pc 0000d8cc6 /usr/mylibs/libxyz.so
 

Figure 12-31. Using the strace utility

http://linux.die.net/man/1/addr2line
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Running the addr2line on such console output
 
$ addr2line -C -f -e /usr/mylibs/libxyz.so 0000d8cc6
 
will result with output that may look like this:
 
/projects/mylib/src/mylib.c: 45 

gdb (GNU Debugger) 
The legendary GNU debugger tool known as gdb can be used to perform the runtime code disassembling. The advantage of 
disassembling the code at runtime is that all the addresses have already been resolved by the loader, and the addresses are 
for the most part final.

The following gdb commands can be useful during the runtime code disassembling:

•	 set disassembly-flavor <intel | att>

•	 disassemble <function name>

The following two flags may come handy when invoking the disassemble command:

The •	 /r flag requires that the assembler instructions be additionally shown in hexadecimal 
notation (Figure 12-32).

Figure 12-32. Using gdb to show the disassembled code combined with hex values of instructions

The •	 /m flag intersperses the assembler instructions with the C/C++ lines of code (if available), 
as shown in Figure 12-33.
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To combine these two flags, type them together (i.e., /rm) instead of separately (i.e., /r /m), as shown in 
Figure 12-34.

Figure 12-33. Interspersed (assembly and source code) disassembly flavor

Figure 12-34. Combining /r and /m disassembly flags
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Static Library Tools
The vast majority of tasks related to the static libraries can be performed by the archiver ar utility. By using ar, you 
may not only combine the object files into the static library, but also list its contents, remove individual object files,  
or replace them with the newer version.

ar
The following simple example illustrates the usual stages of using the ar tool. The demo project is comprised of four 
source files (first.c, second.c, third.c, and fourth.c) and one export header file that can be used by the client 
binaries (shown in following five examples).

first.c

#include "mystaticlibexports.h"
 
int first_function(int x)
{
        return (x+1);
} 

second.c

#include "mystaticlibexports.h"
 
int fourth_function(int x)
{
        return (x+4);
} 

third.c

#include "mystaticlibexports.h"
 
int second_function(int x)
{
        return (x+2);
} 

fourth.c

#include "mystaticlibexports.h"
 
int third_function(int x)
{
        return (x+3);
} 
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mystaticlibexports.h

#pragma once
int first_function(int x);
int second_function(int x);
int third_function(int x);
int fourth_function(int x);
 

Let’s assume that you have the object files created by compiling each of the source files:
 
$ gcc -Wall -c first.c second.c third.c fourth.c
 

The following screen snapshots illustrate the various stages of dealing with the static library.

Creating the Static Library
Running ar -rcs <library name> <list of object files> combines the specified object files into the static 
library (Figure 12-35).

Listing the Static Library Object Files
Running ar -t <library name> prints out the list of the object files carried by the static library (Figure 12-36).

Figure 12-35. Using ar to combine object files to static library

Figure 12-36. Using ar to print out the list of static library’s object files
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Deleting an Object File from the Static Library
Let’s say that you want to modify the file first.c (to fix a bug, or simply to add extra feature) and for the time being 
you don’t want your static library to carry the first.o object file. The way to delete the object file from the static 
library is to run ar -d <library name> <object file to remove> (Figure 12-37).

Adding the New Object File to the Static Library
Let’s say that you are happy with the changes you made in the file first.c and you have recompiled it. Now you  
want to put the newly created object file first.o back into the static library. Running ar -r <library name> 
<object file to append> basically appends your new object file to the static library (Figure 12-38).

Figure 12-37. Using ar to delete an object file from static library

Figure 12-38. Using ar to add new object file to static library

Please notice that the order in which the object files reside in the static library has been changed. The new file has 
been effectively appended to the archive.
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Restoring the Order of Object Files
If you insist on your object files appearing in the original order that existed prior to your code changes, you may 
correct it. Running ar -m -b <object file before> <library name> <object file to move> accomplishes the 
task (Figure 12-39).

Figure 12-39. Using ar to restore the order of object files within the static library
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Chapter 13

Linux How To’s

The previous chapter provided a review of the useful analysis utilities available in Linux, so now is a good moment 
to provide an alternative view of the same topic. This time the focus will not be on the utilities per se, but rather on 
showing how some of the most frequently performed tasks can be completed.

There is typically more than one way to complete an analysis task. For each of the tasks described in this chapter, 
alternative ways of completing the task will be provided.

Debugging the Linking
Probably the most powerful aid in debugging the linking stage is the use of the LD_DEBUG environment variable 
(Figure 13-1). It is suitable for testing not only the build process but also the dynamic library loading at runtime.

Figure 13-1. Using the LD_DEBUG environment variable to debug linking
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The operating system supports a predetermined set of values to which LD_DEBUG may be set before running the 
desired operation (build or execution). The way to have them listed is to type
 
$ LD_DEBUG=help cat
 

As with any other environment variable, there are several ways to set the value of LD_DEBUG:

Immediately, on the same line from which the linker is invoked•	

Once for the lifetime of terminal shell•	
 

$ export LD_DEBUG=<chosen_option>
 
which can be reversed by
 
$ unset LD_DEBUG

 
From within the shell profile (such as •	 .bashrc) file, setting it for each and every terminal 
session. Unless your daily job is to test the linking process, this option is probably not the most 
optimal one.

Determining the Binary File Type
There are a few simple ways to determine the binary type:

The •	 file utility (among the wide variety of file types it can handle) provides probably the 
simplest, quickest, and most elegant way to determine the nature of binary file.

•	 readelf ELF header analysis provides, among other details, information about the binary file 
type. Running

 
$ readelf -h <path-of-binary> | grep Type

 
will display one of the following choices:

•	 EXEC (executable file)

•	 DYN  (shared object file)

•	 REL  (relocatable file)

In the case of static libraries, the REL output will appear once for each of the object files carried 
by the library.

•	 objdump EFL header analysis may provide similar analysis with a bit less detailed report. The 
output of this command
 
$ objdump -f <path-of-binary>
 
will have a line containing one of the following values:

•	 EXEC_P (executable file)

•	 DYNAMIC  (shared object file)

No type indicated, in the case of an object file•	

In the case of a static library, an object file will appear once for each of the object files carried 
by the library.
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Determining the Binary File Entry Point
Determining the binary file entry point is a task that varies in complexity from the very simple (in the case of 
executable files) to the somewhat more involved (determining the entry point of the dynamic library at runtime), both 
of which will be illustrated in this section.

Determining the Executable Entry Point
The entry point of executable (i.e., the address of the first instruction in the program memory map) can be 
determined by either

•	 readelf ELF header analysis, which provides, among other details, information about the 
binary file type. Running

 
$ readelf -h <path-of-binary> | grep Entry
 
will display a line looking somewhat like this:
 
Entry point address:               0x<address>

 
•	 objdump EFL header analysis, which may provide the similar analysis with a bit less detailed 

report. The output of this command
 

$ objdump -f <path-of-binary> | grep start
 
will displ.ne looking somewhat like this:
 
start address 0x<address> 

Determining the Dynamic Library Entry Point
When the entry point of a dynamic library is looked for, the investigation is not as straightforward. Even though it 
is possible to use one of the previously described methods, the provided information (typically a low-valued hex 
number, such as 0x390) is not particularly useful. Given the fact that the dynamic library is mapped into the client 
binary process memory map, the library's true entry point may be determined only at runtime.

Probably the simplest way is to run the executable that loads the dynamic library in the gnu debugger. If the 
LD_DEBUG environment variable is set, the information about the loaded library will be printed out. All you need to do 
is to set the break point on the main() function. This symbol is very likely to exist regardless of whether the executable 
was built for debugging or not.

In cases when the dynamic library is linked in a statically aware fashion, by the time the program execution 
reaches the breakpoint there, the loading process will already be completed.

In cases of runtime dynamic loading, probably the easiest approach is to redirect the massive screen printout to 
the file for visual inspection later on.

Figure 13-2 illustrates the method that relies on the LD_DEBUG variable. 
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List Symbols
The following approaches may be followed when trying to list the symbols of executables and libraries:

•	 nm utility

•	 readelf utility

In particular,

A list of all visible symbols may be obtained by running•	
 
                $ readelf --symbols <path-to-binary> 

Figure 13-2. Determining the dynamic library entry point at runtimeList Symbols
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A list of only the symbols exported for dynamic linking purposes may be obtained  •	
by running

 
$ readelf --dyn-syms <path-to-binary>

 
•	 objdump utility

In particular,

A list of all visible symbols may be obtained by running•	
 

$ objdump -t <path-to-binary>
 

A list of only the symbols exported for dynamic linking purposes may be obtained  •	
by running

 
$ objdump -T <path-to-binary>

List and Examine Sections
There are several ways of obtaining the information about the binary sections. The quickest and most rudimentary 
insight can be obtained by running the size command. For a more structured and more detailed insight, you can 
typically rely on tools like objdump and/or readelf, the latter being specialized strictly in the ELF binary format. 
Typically, the mandatory first step is to list all the sections present in the binary file. Once such insight is obtained, 
the content of a specific segment is examined in detail.

Listing the Available Sections
The list of sections of the ELF binary file can be obtained by one of the following methods:

•	 readelf utility
 

$ readelf -S <path-to-binary>
 

•	 objdump utility
 

$ objdump -t <path-to-binary> 

Examining Specific Sections
By far the most frequently examined sections are the ones containing the linker symbols. For that reason, a wide 
variety of tools has been developed to address this specific need. For the same reason, even though it belongs under 
the broad category of examining the sections, the paragraph describing the symbols extraction has been presented 
first as a separate topic.
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Examining the Dynamic Section
The dynamic section of the binary (the dynamic library in particular) contains plenty of interesting information. 
Listing the contents of this particular section may be accomplished by relying on one of the following:

•	 readelf utility
 

$ readelf -d <path-to-binary>
 

•	 objdump utility
 

$ objdump -p <path-to-binary>
 

Among the useful pieces of information that may be extracted from dynamic section, here are the ones that are 
extremely valuable:

The values of •	 DT_RPATH or DT_RUNPATH fields

The value of the dynamic library •	 SONAME field

The list of required dynamic libraries (•	 DT_NEEDED field)

Determining Whether Dynamic Library is PIC or LTR

If the dynamic library is built without the -fPIC compiler flag, its dynamic section features the TEXTREL field, which 
otherwise would not be present. The following simple script (pic_or_ltr.sh) can help you determine whether the 
dynamic library was built with -fPIC flag or not:
 
if readelf -d $1 | grep TEXTREL > /dev/null; \
then echo "library is LTR, built without the -fPIC flag"; \
else echo "library was built with -fPIC flag"; fi 

Examining the Relocation Section
This task may be accomplished by relying on the following:

•	 readelf utility
 

$ readelf -r <path-to-binary>
 

•	 objdump utility
 

$ objdump -R <path-to-binary> 

Examining the Data Section
This task may be accomplished by relying on the following:

•	 readelf utility
 

$ readelf -x <section name> <path-to-binary>
 

•	 objdump utility
 

$ objdump -s -j <section name> <path-to-binary> 
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List and Examine Segments
This task may be accomplished by relying on the following:

•	 readelf utility
 

$ readelf --segments <path-to-binary>
 

•	 objdump utility
 

$ objdump -p <path-to-binary>
 

Disassembling the Code
In this section, you will examine different approaches to disassembling the code.

Disassembling the Binary File
The best tool for this particular task is the objdump command. In fact, this is probably the only case in which readelf 
does not provide a parallel solution. In particular, the .text section may be disassembled by running
 
$ objdump -d <path-to-binary>
 

Additionally, you may specify the printout flavor (AT&T vs. Intel).
 
$ objdump -d -M intel <path-to-binary>
 

If you want to see the source code (if available) interspersed with the assembly instructions, you may run the 
following:
 
$ objdump -d -M intel -S <path-to-binary>
 

Finally, you may want to analyze the code in a given section. Other than the .text section, which is notorious for 
carrying code, some other sections (.plt, for example) can contain source code.

By default, objdump disassembles all the sections carrying code. To specify the individual section to disassemble, 
use -j option:
 
$ objdump -d -S -M intel -j .plt <path-to-binary> 

Disassembling the Running Process
The best way is to rely on the gdb debugger. Please refer to the previous chapter’s section devoted to this 
wonderful tool.
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Identifying the Debug Build
It seems that the most reliable way to recognize whether the binary has been built for debug (i.e., with the -g option) 
is to rely on the readelf tool. In particular, running
 
$ readelf --debug-dump=line <path-to-binary>
 
will provide non-empty output in the case of debug version of the binary file.

Listing Load-time Dependencies
To list the set of shared libraries on which an executable (application and/or shared library) depends on at load time, 
please take a closer look at the discussion devoted to the ldd command (in which both the ldd method and a safer 
method based on the objdump) have been mentioned).

In a nutshell, running ldd
 
$ ldd <path-to-binary>
 
will provide the complete list of dependencies.

Alternatively, relying on objdump or readelf to examine the dynamic section of the binaries is a bit safer 
proposition, which comes at the cost of providing only the first level of dependencies.
 
$ objdump -p /path/to/program | grep NEEDED
$ readelf -d /path/to/program | grep NEEDED 

Listing the Libraries Known to the Loader
To list all the libraries whose runtime paths are known and available to the loader, you may rely on the ldconfig 
utility. Running
 
$ ldconfig -p
 
will print the complete list of libraries known to the loader (i.e., currently present in the /etc/ld.so.cache file) 
together with their respective paths.

Consequently, searching for a particular library in the entire list of libraries available to the loader can be 
accomplished by running
 
$ ldconfig -p | grep <library-of-interest> 

Listing Dynamically Linked Libraries
As opposed to the tasks listed so far in this chapter, this particular task has not been mentioned in the context of the 
binary analysis tools. The reason is simple: the binary file analysis tools are of little use at runtime when the runtime 
dynamic library loading happens. Tools such as ldd do not cover the dynamic libraries loaded at runtime by the call to 
dlopen() function.

The following methods will provide the complete list of dynamic libraries loaded. The list includes both the 
libraries dynamically linked as statically aware as well as the libraries dynamically linked at runtime.
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strace Utility
Calling strace <program command line> is  a useful method for listing the sequence of system calls among which 
open() and mmap() are the most interesting for us. This method reveals the complete list of loaded shared 
libraries. Whenever a shared library is mentioned, typically the few output lines below the mmap() call reveals  
the loading address.

LD_DEBUG Environment Variable
Given its flexibility and wide array of choices, this option is always on the list of tools for tracking down everything 
related to the linking/loading process. For this particular problem, the LD_DEBUG=files option may provide plenty of 
printouts carrying the excessive information about the libraries dynamically loaded at runtime (their names, runtime 
paths, entry point addresses, etc.).

/proc/<ID>/maps File
Whenever a process runs, the Linux operating system maintains a set of files under the /proc folder, keeping track of 
the important details related to the process. In particular, for the process whose PID is NNNN, the file at location  
/proc/<NNNN>/maps contains the list of libraries and their respective load addresses. For example, Figure 13-3 shows 
what this method reports for the Firefox browser.

Figure 13-3. Examining /proc/<PID>/maps file to examine process memory map
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REMARK 1:
A potential small problem may be that certain applications complete quickly, not leaving enough time to 

examine the process memory map. The simplest and quickest solution in this case would be to start the process 
through the  gdb debugger and put a breakpoint on the main function. While the program execution stays blocked on 
the breakpoint, you will have unlimited time to examine the process memory map.

REMARK 2:
If you are sure that only one instance of the program is currently being executed, you can eliminate the need to look 

for the process PID by relying on the pgrep (process grep) command. In the case of Firefox browser, you would type
 
$ cat /proc/`pgrep firefox`/maps 

lsof Utility
The lsof utility analyses the running process and prints out in the standard output stream the list of all files opened 
by a process. As stated in its man page (http://linux.die.net/man/8/lsof), an open file may be a regular file, a 
directory, a block special file, a character special file, an executing text reference, a library, a stream, or a network file 
(Internet socket, NFS file, or UNIX domain socket).

Among the broad selection of file types it reports being open, it also reports the list of dynamic libraries loaded 
by the process, regardless of whether the loading was performed statically aware or dynamically (by running 
dlopen at runtime).

The following snipped illustrates how to get the list of all shared libraries opened by the Firefox browser shown 
in Figure 13-4:
 
$ lsof -p `pgrep firefox` 

Figure 13-4. Using the lsof utility to examine process memory map

Note that lsof provides the command line option of running the process examination periodically. By specifying 
the examination period you may catch the moments in which the runtime dynamic loading and unloading happens.

http://linux.die.net/man/8/lsof
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When running lsof with the -r option, the periodic process examination goes on in an endless loop, requiring 
the user to press Ctrl-C to terminate. Running lsof with the +r option has the effect of lsof terminating when no 
more open files are detected.

Programmatic Way
It is also possible to write code so that it prints out the libraries being loaded by the process. When application code 
incorporates calls to the dl_iterate_phdr() function, its printouts at runtime may help you determine the complete list of 
shared libraries that it loads as well as the extra data associated with each library (such as the loaded library start address).

To illustrate the concept, demo code comprised of a driver app and two simple dynamic libraries has been 
created. The app's source file is shown in in the following example. One of the dynamic libraries is dynamically linked 
statically aware, whereas the other library is dynamically loaded by invoking the dlopen() function:
 
#define _GNU_SOURCE
#include <link.h>
#include <stdio.h>
#include <dlfcn.h>
#include "sharedLib1Functions.h"
#include "sharedLib2Functions.h"
 
static const char* segment_type_to_string(uint32_t type)
{
    switch(type)
    {
    case PT_NULL:         // 0
        return "Unused";
        break;
    case PT_LOAD:         // 1
        return "Loadable Program Segment";
        break;
    case PT_DYNAMIC:      //2
        return "Dynamic linking information";
        break;
    case PT_INTERP:       // 3
        return "Program interpreter";
        break;
    case PT_NOTE:         // 4
        return "Auxiliary information";
        break;
    case PT_SHLIB:        // 5
        return "Reserved";
        break;
    case PT_PHDR:         // 6
        return "Entry for header table itself";
        break;
    case PT_TLS:          // 7
        return "Thread-local storage segment";
        break;
//  case PT_NUM:          // 8                /* Number of defined types */
    case PT_LOOS:         // 0x60000000
        return "Start of OS-specific";
        break;
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    case PT_GNU_EH_FRAME: // 0x6474e550
        return "GCC .eh_frame_hdr segment";
        break;
    case PT_GNU_STACK:    // 0x6474e551
        return "Indicates stack executability";
        break;
    case PT_GNU_RELRO:    // 0x6474e552
        return "Read-only after relocation";
        break;
//  case PT_LOSUNW:       // 0x6ffffffa
    case PT_SUNWBSS:      // 0x6ffffffa
        return "Sun Specific segment";
        break;
    case PT_SUNWSTACK:    // 0x6ffffffb
        return "Sun Stack segment";
        break;
//  case PT_HISUNW:       // 0x6fffffff
//        case PT_HIOS:         // 0x6fffffff        /* End of OS-specific */
//        case PT_LOPROC:       // 0x70000000        /* Start of processor-specific */
//        case PT_HIPROC:       // 0x7fffffff        /* End of processor-specific */
    default:
        return "???";
    }
}
 
static const char* flags_to_string(uint32_t flags)
{
    switch(flags)
    {
    case 1:
        return "--x";
        break;
    case 2:
        return "-w-";
        break;
    case 3:
        return "-wx";
        break;
    case 4:
        return "r--";
        break;
    case 5:
        return "r-x";
        break;
    case 6:
        return "rw-";
        break;
    case 7:
        return "rwx";
        break;
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    default:
        return "???";
        break;
    }
}
 

static int header_handler(struct dl_phdr_info* info, size_t size, void* data)
{
    int j;
    printf("name=%s (%d segments) address=%p\n",
            info->dlpi_name, info->dlpi_phnum, (void*)info->dlpi_addr);
    for (j = 0; j < info->dlpi_phnum; j++) {
         printf("\t\t header %2d: address=%10p\n", j,
             (void*) (info->dlpi_addr + info->dlpi_phdr[j].p_vaddr));
         printf("\t\t\t type=0x%X (%s),\n\t\t\t flags=0x%X (%s)\n",
                 info->dlpi_phdr[j].p_type,
                 segment_type_to_string(info->dlpi_phdr[j].p_type),
                 info->dlpi_phdr[j].p_flags,
                 flags_to_string(info->dlpi_phdr[j].p_flags));
    }
    printf("\n");
    return 0;
}
 

int main(int argc, char* argv[])
{
    // function from statically aware loaded library
    sharedLib1Function(argc);

    // function from run-time dynamically loaded library
    void* pLibHandle = dlopen("libdemo2.so", RTLD_GLOBAL | RTLD_NOW);
    if(NULL == pLibHandle)
    {
        printf("Failed loading libdemo2.so, error = %s\n", dlerror());
        return -1;
    }
    PFUNC pFunc = (PFUNC)dlsym(pLibHandle, "sharedLib2Function");
    if(NULL == pFunc)
    {
        printf("Failed identifying the symbol \"sharedLib2Function\"\n");
        dlclose(pLibHandle);
        pLibHandle = NULL;
        return -1;
    }
    pFunc(argc);
    if(2 == argc)
        getchar();
    if(3 == argc)
        dl_iterate_phdr(header_handler, NULL);
    return 0;
}
 

The central place in this code example belongs to the call to the dl_iterate_phdr() function. This function 
essentially extracts the relevant process mapping information at runtime and passes it to the caller. The caller is 
responsible for providing the custom implementation of the callback function (header_handler() in this example).  
Figure 13-5 shows what the produced screen printout may look like.
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Creating and Maintaining the Static Library
The majority of the tasks related to dealing specifically with the static libraries can be completed by using the Linux ar 
archiver. Completing tasks such as disassembling the static library code or inspecting its symbols does not differ from 
how it is performed on the applications or dynamic libraries.

Figure 13-5. The programmatic way (relying on dl_iterate_phdr() call) of examining the dynamic library loading 
locations in the process memory map
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Chapter 14

Windows Toolbox

The purpose of this chapter is to introduce the reader to the set of tools (utility programs as well as other methods) 
for analyzing the contents of the Windows binary files. Even though the Linux objdump utility has some capabilities of 
analyzing the PE/COFF format, the strict focus in this chapter will be on indigenous Windows tools, which are more 
likely to be up to par with any changes to the PE/COFF format which may happen along the way.

Library Manager (lib.exe)
The Windows 32-bit Library Manager lib.exe comes as a standard part of the Visual Studio development tools 
(Figure 14-1).

Figure 14-1. Using the lib.exe utility

This utility program not only handles the static libraries much in the same way as its Linux counterpart  
(archiver ar), but also plays a role in the domain of dynamic libraries as the tool that can create import libraries 
(the collection of DLL symbols, file extension .lib) as well as the export files (capable of resolving the circular 
dependencies, file extension .exp).  Detailed documentation about lib.exe can be found at the MSDN site  
(http://msdn.microsoft.com/en-us/library/7ykb2k5f.aspx).

http://msdn.microsoft.com/en-us/library/7ykb2k5f(v=vs.71).aspx)
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lib.exe as a Static Library Tool
In this section I will illustrate the typical roles in which the lib.exe tool may be really useful.

lib.exe as a Default Archiver Tool
When Visual Studio is used to create a C/C++ static library project, lib.exe is set as default archiver/librarian tool, 
and the project settings’ Librarian tab is used to specify the command line options for it (Figure 14-2).

Figure 14-2. Using lib.exe as default archiver

By default, building the static library project invokes lib.exe after the compilation stage, which happens without 
any action required by the developer. However, this is not necessarily where the use of lib.exe must end. It is possible 
to run lib.exe from the Visual Studio command prompt much in the same way as the Linux ar archiver is used to 
perform the same kinds of tasks.

lib.exe as a Command Line Utility
In order to illustrate the use of lib.exe you will create a Windows static library fully matching the functionality of the 
Linux static library used to demonstrate the use of ar in Chapter 10. The demo project is comprised of four source 
files (first.c, second.c, third.c, and fourth.c) and one export header file which can be used by the client binaries. 
These files are shown in the following five examples.
 
file: first.c
#include "mystaticlibexports.h"
 
int first_function(int x)
{
        return (x+1);
}
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file: second.c
#include "mystaticlibexports.h"
 
int fourth_function(int x)
{
        return (x+4);
}
 
file: third.c
#include "mystaticlibexports.h"
 
int second_function(int x)
{
        return (x+2);
}
 
file: fourth.c
#include "mystaticlibexports.h"
 
int third_function(int x)
{
        return (x+3);
}
file: mystaticlibexports.h
#pragma once
int first_function(int x);
int second_function(int x);
int third_function(int x);
int fourth_function(int x); 

Creating a Static Library

Let’s assume that you compiled all four source files and that you have available four object files (first.obj, second.obj, 
third.obj, and fourth.obj). Passing the desired library name to lib.exe (after the /OUT flag) followed by the list of 
participating object files will have the effect of creating the static library, as shown in Figure 14-3.
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In order to completely mimic the default settings supplied by Visual Studio when creating the static library 
project, I’ve added the /NOLOGO argument.

Listing the Static Library Contents

When the /LIST flag is passed to lib.exe, it prints out the list of object files currently contained by the static library,  
as shown in Figure 14-4.

Figure 14-3. Using lib.exe to combine object files into a static library

Figure 14-4. Using lib.exe to list the object files of static library

Removing Individual Object Files from the Static Library

The individual object files can be removed from the static library by passing the /REMOVE flag to lib.exe (Figure 14-5).
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Inserting the Object File into the Static Library

The new object file may be added to the existing static library by passing the library filename followed by the list of 
object files to be added. This syntax is very similar to the scenario of creating the static library, except that the /OUT 
flag may be omitted (Figure 14-6).

Figure 14-5. Using lib.exe to remove individual object file from static library

Figure 14-6. Using lib.exe to insert object file to static library

Extracting the Individual Object File from the Static Library

Finally, the individual object files may be extracted from the static library. In order to demonstrate it, I first purposefully 
deleted the original object file (first.obj) whose extraction from the static library is planned to happen (Figure 14-7).
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lib.exe in the Realm of Dynamic Libraries (Import Library Tool)
lib.exe is also used to create the DLL import library (.lib) file and export file (.exp) based on the available export 
definition file (.def). When working strictly within the Visual Studio environment, this task is typically automatically 
assigned to lib.exe. A far more interesting scenario happens when the DLL is created by a third-party compiler 
which does not create the corresponding import library and export file. In such cases, lib.exe must be run from the 
command line (i.e., the Visual Studio command prompt).

Figure 14-7. Using lib.exe to extract an individual object file from the static library
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The following example illustrates how lib.exe can be used to create the missing import libraries after the cross 
compiling session in which MinGW compiler run on Linux produced the Windows binaries, but did not supply the 
needed import libraries (Figure 14-8).

Figure 14-8. Using lib.exe to create an import library based on DLL and its definition (.DEF)_  file
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The typical tasks described in the following sections can be completed by running dumpbin.

Identifying the Binary File Type
When run without the extra flags, dumpbin reports the binary file type (Figure 14-10).

Figure 14-9. Using the dumpbin utility

dumpbin Utility
The Visual Studio dumpbin utility (http://support.microsoft.com/kb/177429) is for the most part the Windows 
equivalent of Linux objdump utility, as it performs the examination and the analysis of the important details of 
executable, such as exported symbols, sections, disassembling the code (.text) sections, list of object files in static 
library, etc.

This tool is also a standard part of the Visual Studio package. Similar to the previously described lib tool, it is 
standardly run from the Visual Studio Command Prompt (Figure 14-9).

http://support.microsoft.com/kb/177429
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Listing the DLL Exported Symbols
Running dumpbin /EXPORTS <dll path> provides the list of exported symbols (Figure 14-11).

Figure 14-10. Using the dumpbin utility to identify binary file types
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Listing and Examining the Sections
Running dumpbin /HEADERS <binary file path> prints out the complete list of sections present in the file (Figure 14-12).

Figure 14-11. Using dumpbin utility to list exported symbols of DLL file
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Once the section names are listed, the individual section info can be obtained by running  
dumpbin /SECTION:<section name> <binary file path> (Figure 14-13).

Figure 14-12. Using dumpbin to list the sections
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Disassembling the Code
Running dumpbin /DISASM <binary file path> provides the disassembled listing of the complete binary file (Figure 14-14).

Figure 14-13. Using dumpbin to get detailed insight into a specific section
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Identifying the Debug Build
The dumpbin utility is used to identify the debug version of a binary file. The indicators of a debug build vary depending  
on the actual binary file type.

Figure 14-14. Using dumpbin to disassemble the code
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Object Files
Running dumpbin /SYMBOLS <binary file path> on the object files (*.obj) will report the object file built for debugging 
as file of type COFF OBJECT (Figure 14-15).

Figure 14-15. Using dumpbin to detect the debug version of the object file

The release version of the same file will be reported as file type ANONYMOUS OBJECT (Figure 14-16).
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DLLs and Executables
The certain indicator that a DLL or executable file was built for debugging is the presence of .idata section in the 
output of running the dumpbin /HEADERS option. The purpose of this section is to support the “edit and continue” 
feature that is available in debug mode only. More specifically, to enable this option the /INCREMENTAL linker flag is 
required and typically set for Debug and disabled for Release configuration (Figure 14-17).

Figure 14-16. Indication of the release built of the object file
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Listing the Load Time Dependencies
The complete list of the dependency libraries and the symbols imported from them may be obtained by running 
dumpbin /IMPORTS <binary file path> (Figure 14-18).

Figure 14-17. Using dumpbin to detect the debug version of DLL
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Dependency Walker
The Dependency Walker (a.k.a. depends.exe, see www.dependencywalker.com/) is the utility capable of tracking down 
the dependency chain of loaded dynamic libraries (Figure 14-19). It is not only capable of analyzing the binary file 
(in which case it parallels the Linux ldd utility), but it also can perform the runtime analyses in which it can detect 
and report the runtime dynamic loading. It was originally developed by Steve Miller, and was part of the Visual Studio 
suite of tools up until the VS2005 version.

Figure 14-18. Using dumpbin to list loading dependencies

http://www.dependencywalker.com/
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Figure 14-19. Using the Dependency Walker utility
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